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Abstract

We consider the problem of task reweighting in fair-
scheduled multiprocessor systems wherein each task’s pro-
cessor share is specified as a weight. Task reweighting can
be used as a means for consuming (or making available)
spare processing capacity. In this paper, we propose a mul-
tiprocessor reweighting scheme that can change a task’s
processor share with “minimal’ error per share change.

1 Introduction

Two trends are evident in recent work on real-time sys-
tems. First, multiprocessor designs are becoming quite
common. This is due both to the advent of reasonably-
priced multiprocessor platforms and to the prevalence of
computationally-intensive applications with real-time re-
quirements that have pushed beyond the capabilities of
single-processor systems. Second, many applications now
exist that require fine-grained adaptivity, i.e., the ability
to react to external events within short time scales by ad-
justing task parameters, particularly processor shares. Ex-
amples of such applications include human-tracking sys-
tems, computer-vision systems, and signal-processing ap-
plications such as synthetic aperture imaging.

One such application is the Whisper tracking system de-
signed at the University of North Carolina to perform full-
body tracking in virtual environments [10]. Like many
tracking systems, Whisper uses predictive techniques to
track objects. The computational cost of making the “next”
prediction in tracking an object depends on the accuracy
of the previous one, as an inaccurate prediction requires
a larger space to be searched. Thus, the processor shares
of the tasks that are deployed to implement these tracking
functions vary with time. In fact, the variance can be as
much as two orders of magnitude. Moreover, share changes
must be enacted within time scales as short as 10 ms.

In this paper, we focus our attention on a particular class
of global scheduling algorithms known as fair scheduling
algorithms (specifically, Pfair algorithms [3], as introduced
later.) Under fair scheduling, correctness is defined by com-
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paring to an ideal scheduler that can guarantee each task
precisely its required share over any time interval. Such an
ideal scheduler can instantaneously enact share changes, but
is impractical to implement, as it requires the ability to pre-
empt and swap tasks at arbitrarily small time scales. Share
allocations, in practical schemes, track the ideal with only
bounded “error.” We consider an allocation policy to be
fine-grained if any additional per-task “error” (in compar-
ison to the ideal allocation) caused by a task share-change
request is constant; we use the term drift to refer to this
source of error, and refer to the process of changing a task’s
share as reweighting.

Srinivasan and Anderson [8] have given sufficient condi-
tions (described in Sec. 2) under which tasks may dynami-
cally join and leave a running Pfair-scheduled system with-
out causing any missed deadlines. As discussed later, these
rules require that tasks sometimes be delayed when leav-
ing the system. As a result of these “leaving delays,” any
reweighting scheme constructed from these rules is coarse-
grained, i.e., susceptible to non-constant drift.

In this paper, we show (for the first time) that fine-
grained reweighting on multiprocessors is possible by pre-
senting reweighting rules that ensure constant drift. These
rules are introduced in the following way. After first pre-
senting a more careful review of prior work in Sec. 2, we
present a new task model in Sec. 3 that allows task weights
to vary with time. In Sec. 4 we present our reweighting
rules, and show that they ensure constant drift. It can be
shown that zero drift is not possible; hence, our rules cannot
be substantially improved. In Sec. 5, we assess the efficacy
of these rules via an experimental evaluation.

2 Preliminaries

In defining notions relevant to Pfair scheduling, we limit
attention (for now) to periodic tasks, all of which begin ex-
ecution at time 0. A periodic task 7' with an integer pe-
riod T.p and an integer execution cost 7T'.e has a weight
wt(T) = T.e/T.p, where 0 < wt(T) < 1. Due to
page limitations, we henceforth assume wt(7) < % for
all T'. Tasks of “heavier” weight require additional rea-
soning, as described in the full paper (found at htt p: //
WwWw. cs. unc. edu/ ~ander son/ papers. htm ).

Under Pfair scheduling, processor time is allocated in
discrete time units, called quanta; the time interval [¢,¢41),
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Figure 1. f for a (a) periodic and (b) IS task of weight 5/16.

where ¢ is a nonnegative integer, is called slot ¢. (Hence,
time ¢ refers to the beginning of slot ¢.) The sequence of
allocation decisions over time defines a schedule. The func-
tion S(T, t) gives the total number of slots allocated to task
T in the slot interval [0, t).

A Pfair schedule is defined by comparing to an ideal
schedule that allocates wt(T) processor time to task T'
in each slot. Deviance from the ideal schedule at time ¢
is captured by the function lag(T,t), which is defined as
wt(T) -t — S(T,t). A schedule is Pfair iff (VT,t :: —1 <
lag(T,t) < 1). Informally, each task’s allocation error
must always be less than one quantum. These error bounds
are ensured by treating each quantum of a task’s execution,
henceforth called a subtask, as a schedulable entity. The ith
subtask of task 7', denoted T, where ¢ > 1, has an associ-
ated pseudo-release r(7;) = | (i — 1)/wt(T)| and pseudo-
deadline d(T;) = [i/wt(T)]. (For brevity, we often drop
the prefix “pseudo-.”) It can be shown that if each sub-
task 7; is scheduled in the interval w(7T;) = [r(T;), d(T3)),
termed its window, then (VT.,t :: —1 < lag(T,t) < 1)
is maintained. In Fig. 1(a), r(T2) = 3, d(T2) = 7, and
w(Ty) = [3,7). (This figure also depicts per-slot “flow
values,” which are considered below.) Thus, 75 must be
scheduled in slots 3-6. (Tasks execute sequentially, so if T}
is scheduled in slot 3, then 75 is scheduled in slots 4-6.)

IS model. The intra-sporadic (IS) task model [7] gener-
alizes the well-known sporadic task model [6] by allow-
ing subtasks to be released late. This extra flexibility is
useful in many applications where processing steps may
be delayed. Fig. 1(b) illustrates the Pfair windows of an
IS task. An IS task T is active at time t if there exists
a subtask T} such that r(T}) < t < d(T%), and is pas-
sive otherwise. In Fig. 1(b), T is active in all slots but
slot 4. Each subtask T; of an IS task has an offset 6(T;)
that gives the amount by which its release has been de-
layed. The release and deadline of a subtask 7; of an IS
task T are defined as r(T;) = 0(T;) + [ (i — 1) /wt(T) | and
d(T;) = 0(T;) + [i/wt(T)], where the offsets satisfy the
property k > i = 0(Ty,) > 6(T;).

f(T;: subtask, ¢: integer)

1. ift<r(T;)vt> (d(T;) — 1) then

2: f(Ti,t):=0

3: elseift =r(T;) then

4. ifi = 1\/b(Ti,1) = 0 then

5: F(Ty, t) == wi(T)

6: else

7: . F(T5,t) :=wW(T) — f(Ti—1,d(T3) — 1)
8: i

9: elseif t =d(T;) — 1then

100 f(Ti,t) := max(1 — 32024 f(T, q), Wa(T))
11: else

122 f(Ty,t) == wt(T)

13: fi

Figure 2. Pseudo-code defining f(T5,t).

PD2. The PD? [7] Pfair scheduling algorithm is optimal
for scheduling IS tasks on an arbitrary number of proces-
sors. It prioritizes subtasks on an earliest-pseudo-deadline-
first (EPDF) basis, and uses two tie-breaking rules. For the
case wherein all task weights are at most 1/2 (our focus
here), PD? uses one tie-break, b(7T;), which is defined as
[i/wt(T)] — [i/wt(T)]. In a periodic task system, b(7;)
is 1 if T;’s window overlaps T;41’s, and is O otherwise. In
Fig. 1, b(T;) = 1for 1 < i < 4 and b(T5) = 0. If two sub-
tasks have equal deadlines, then a subtask with a b-bit of 1
is favored over one with a b-bit of 0. Further ties are broken
arbitrarily. (See [2] for a more detailed explanation.)

Lag and flow. The lag of an IS task can be defined in
much the same way as for periodic tasks [7]. Let ideal(T, t)
denote the share that 7" receives in a fluid schedule in [0, t).
Then, lag(T,t) = ideal(T,t) — S(T,t). ideal(T,t) is de-
fined in terms of a function flow(7", w) that gives the share
assigned to task 7" in slot u. flow(T', ) is in turn defined
in terms of a function f that indicates the share assigned to
each subtask 7T; in each slot. f can be defined using an arith-
metic expression, but we have opted instead for a more intu-
itive pseudo-code-based definition in Fig. 2. Observe that,
while subtask T is active, f (T}, t) usually equals wt(T'), but
may be less than wt(T') in slots 7(7;) and d(T;) — 1. Some
example f values are given in Fig. 1. The following two
properties follow from f’s definition.

F1: For all time slots ¢, ETieT f(T,t) <wt(T).
F2: For any subtask T; € T, >, f(T;,t) = 1.

For example, in Fig. 1(a), ZTieT f(T;,3) = 1—16 + 1;“6, and
S f(Tet) = £+ 2+ 3+ L = 1. Having de-
fined f, flow(T', t) is defined as ), f(7,t). In Fig. 1(a),
flow(T', 3) = f(T1,3) + f(T2,3) + f(T5,3) + ... = &= +

7 +0+... = . ideal(T,t) is defined as Ztilo flow(T’, w).

u=
Dynamic task systems. The leave/join conditions of

Srinivasan and Anderson [8] mentioned earlier, and a theo-
rem concerning them, are stated below.



J: (join condition) A task 7" can join at time ¢ iff the sum
of the weights of all tasks after joining is at most M,
the number of processors.

L: (leave condition) Let T; denote the last-scheduled sub-
task of T'. T can leave at time ¢ iff ¢ > d(T;) + b(T;).

Theorem 1 ([8]). PD? correctly schedules any feasible dy-
namic IS task system satisfying J and L.

Note that a task may reweight by leaving with its old
weight and rejoining with its new weight.

3 Adaptable Task Mode

The adaptable task model proposed here extends the IS
model by allowing the weight of a task T', wt(7', t), to be
a function of time. The notion of an ideal system consid-
ered earlier for periodic and IS tasks served two purposes.
First, it gave us a means for defining “allocation error,” i.e.,
lag. Second, it gave us a means for defining subtask releases
and deadlines. For adaptable tasks, it is convenient to use
a different notion of an “ideal” system for each purpose.
The true ideal system, proposed below, provides a means
of accurately tracking allocation error. Its definition does
not depend on how subtask releases and deadlines are de-
fined. In contrast, the windowed ideal system, defined later,
accounts for shares on a per-subtask basis in order to define
a subtask’s releases and deadlines.

True ideal system. The true ideal system can enact
weight changes instantaneously, and hence is the ultimate
standard for defining allocation error. A task 7”s true ideal
allocation up to time ¢, true_ideal(7’, t), is given by

t
true_ideal(T’, t):/ wto (T, u)du, (D
0

where Wty(T', u) equals wWt(7", u) if T is active at u, and 0
otherwise [9]. Unlike elsewhere in this paper, in (1), ¢ is
allowed to be any rational value.

Windowed ideal system. For an IS task, a subtask 7;’s
deadline is defined to be the time ¢ such that at some time
within (¢ — 1, t] the cumulative flow allocated to T; equals a
unit share. For an adaptable task, if a subtask 7;’s dead-
line were determined using its cumulative true ideal in-
stead, then no earliest-pseudo-deadline-first (EPDF) algo-
rithm (such as PD?) could correctly schedule all task sets.
This follows from a counterexample given in the full paper,
which is omitted here due to space constraints.

The windowed ideal system determines each subtask’s
releases and deadlines so that the drift per weight change
is constrained to a small constant value. Since the win-
dowed ideal system defines the behavior of adaptable tasks,
we omit the term “windowed” where this does not cause
confusion. As definitions fundamental to the (windowed)
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Figure 3. Both insets depict a one-processor system consist-
ing of a task U of weight 1/2 and a task 7" with a weight of
5/16 that increases to 1/2 at time 7. (@) True ideal allocations and
true_ideal(7', t). (b) The windows and f values for all three tasks
and ideal(T, t).

ideal system are introduced, the one-processor system in
Fig. 3 is used as an example. This system consists of a task
U of weight 1/2 and a task 7" with a weight of 5/16 that
increases to 1/2 at time 7. Inset (a) depicts true ideal alloca-
tions and true_ideal(7T’, t), and inset (b) shows the f values
(defined below) for all three tasks and ideal(T’, t) (defined
below). (f and ideal(T’, t) define the behavior of adaptable
tasks.)

In defining an adaptable subtask’s deadlines and re-
leases, it is useful to define two different notions of a sub-
task’s deadline. A subtask 7;’s scheduling deadline d(T3)
(defined later) is used to determine 7;’s priority for schedul-
ing and cannot change once it has been set. A subtask 7;’s
flow-based deadline fd(T;) is defined to be the time ¢ such
that ), _, f(T;,q) = 1, where f(T3,t) is a “windowed ver-
sion” of per-slot flow for subtask 7’ at ¢.

As with IS tasks, f can be defined mathematically, but
we opt instead for a pseudo-code-based definition, shown
in Fig. 4. There are three changes in f’s new definition:
in lines 5, 7, 10, and 11, wt(7T, t) is used instead of wt(7T);
in lines 1, 7, and 9, fd(T}) is used instead of d(7T3); and in
line 4, f(T;,t) := wt(T, t) if d(T;—1) # fd(T;—1). These
changes account for 7”s time-varying weight. As before,
properties F1 and F2 hold for this new definition.

Given the above definition of f, flow and ideal can be
defined, as before. In fact, the definition of flow(T, t) is
exactly the same as before, except that the new definition of
fis used. A task T”s ideal allocation up to (integral) time ,



f(T5: subtask, t: integer)
I ift <r(T;)Vvt> (fd(T;) — 1) then

2: f(Ti,t):=0
3: elseift =r(T;) then
4. if’i=1Vb(Ti,1)=0V
d(Ti_l) 75 fd(Tz_l) then
5: F(Ti,t) :=Wt(T, t)
6: else
7 F(Ty,t) == W(T, t) — f(Ti_1,fd(T;) — 1)
8: fi

9: elseif ¢t = fd(T;) — 1 then

10: f(Ti,t) := max(1 — 5024 f(Ty, @), W(T, 1))
11: else

122 f(Ty,t) == wWi(T, t)

13: fi

Figure 4. Pseudo-code defining the new f(T;,t)

ideal(7’, t), is given by the formula

t t
ideal(T’, t) = / flow(T, wydu = > flow(T, w).
0

u=0

As before, T"s lag is given by lag(7’, t) = ideal(T, t) —
S(T,t). To see the difference between ideal(7’, ¢) and
true_ideal(T, t), consider Fig. 3. Notice that until time 8,
T’s windowed ideal allocation is the same as its true ideal
allocation; however, at time 9 the windowed ideal is 3/16
less then the true ideal, and at time 11 the windowed ideal
is 11/16 less than the true ideal. Moreover, after time 11
the windowed ideal is always 11/16 less than the true ideal
(though both now increase at a rate of 1/2).

Releases and scheduling deadlines. The projected flow-
based deadline of subtask T; at u, pfd(T;, u), is the time
that would be the flow-based deadline of subtask T; if
T’s weight remained static after time w. In Fig. 3(b),
pfd(T7, 0) = 4, pfd(T3, 6) = 10, and pfd(T3, 7) = 9.

The scheduling deadline (or the deadline, for short) of a
subtask T; is defined as d(T;) = pfd(T;, r(T3)).

Let R(T;) denote the earliest time T; can be released (as
defined by the application being scheduled). Then, r(73)
is defined as follows: fori = 1, r(Ty) = R(T1), and for
1> 1, ’I’(TZ) = max(R(TZ), d(Tzfl) — b(ﬂfl)Jd(Tl,l))
In Fig. 3(b), 7(T1) = 0, (T3) = 6, and r(T) = 10.

4 Fine-Grained Reweighting

Fine-grained reweighting improves upon coarse-grained
reweighting by changing future subtask releases and dead-
lines. Let t. denote a time at which one or more tasks are to
be reweighted. We can guarantee fine-grained reweighting
by applying one or more of the rules specified below. The
choice of which rule to apply depends on whether the “cur-
rently active” subtask of a task has been scheduled by #..
(We remind the reader that all weights are assumed to be at
most 1/2; as explained in the full paper, an additional rule is
required if this is not the case.) Let T); be the subtask of task

T with the smallest index such that r(T};) < t. < d(T}).
Let u = wt(7T,t. — 1) and let v be T”s new weight. For
example, in Fig. 5(a), t. = 10, T; = T, u = 3/20, and
v = 1/2. We say that T is flow-changeable at time ¢. from
weight v to v if T} is scheduled before ¢, and otherwise is
omission-changeable at time ¢, from « to v.

Rule O: If T is omission-changeable at time ¢. from u to
v, then it leaves with weight u at time max(d(T;-1) +
b(Tj_1),t.) and immediately rejoins with weight v.

Rule F: If T is flow-changeable at time ¢, from u to v, then
it leaves with weight w at time min(fd(T3), d(7})) +
b(T;) and instantly rejoins with weight v.

The terms “leaving” and “joining” should be viewed as
conceptional notions since it is both easier to comprehend
and define a weight-varying task as a series of short-lived
tasks, each with one weight, rather than one long-running
task with multiple weights. Note that weight decreases do
not free capacity until the change is completed. Both rules
are extensions of the leave/join rules L and J given earlier
in Sec. 2. However, the rules above exploit the specific cir-
cumstances that occur when a task changes its weight to
“short circuit” rules L and J, so that reweighting is accom-
plished faster. By rule L, T' can leave at time d(T%) +b(T}),
where T}, is its last-scheduled subtask. If task 1" (as defined
above) is omission-changeable, then its subtask 7; has not
been scheduled by time ¢.. Such a task can be viewed as
having left the system at time max(d(7j_1) + b(Tj_1), t.),
in which case, it can rejoin the system immediately at time
t.. In Fig. 5(b), task T" of weight 3/20 leaves at time 8 and
task U of weight 1/2 joins at time 10. In Fig. 5(c), task T’
increases its weight from 3/20 to 1/2 via rule O. Note that
in Fig. 5(b), T behaves as if it leaves at time 8 and rejoins
at time 10 with its new weight.

If T is flow-changeable, then by rule L, it may leave at
time d(7T};) + b(T;). However, if fd(T;) + b(1}) occurs ear-
lier, then T' may leave then. (“Flow-changeable” refers to
the fact that a task’s flow-based deadline may be used in
changing its weight.) Since both the ideal and actual sys-
tems have finished executing 7; by time fd(73), the proof
that leaving at this time cannot cause deadline misses is vir-
tually identical to that of rule L. In Fig. 5(d), task 7" in-
creases its weight from 3/20 to 1/2 at time 10 via rule F.
Note that T" “leaves”™ at its flow-based deadline at time 12,
which is two time units earlier than its scheduling deadline.

OF-reweighting (respectively, LJ-reweighting) refers to
reweighting via rules O and F (resp., the leave/join rules L
and J) under PD?. Since O and F are extensions of L and J,
the following theorem follows from Theorem 1.

Theorem 2. Under OF-reweighting, no scheduling dead-
line is missed, provided the sum of all task weights is at
most M (the number of processors) at any time.
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Figu re 5. A four-processor system consisting of a set C' of 19 tasks of weight 3/20 each, and a task T" of weight 3/20, and in (b), a task U of
weight 1/2. In (a)—(c), all ties are broken in favor of tasks from C, and in (d), all ties are broken in favor of task 7". The numbers in each slot denote
the number of tasks from each set scheduled in that slot. (@) No weight change. (b) 7" leaves at time 8 and U joins at time 10. () 7" reweights to 1/2
via rule O at slot 10. (d) T" reweights to 1/2 via rule F at slot 10. Notice that rule O or F is applied depending on whether T’ is scheduled prior to

slot 10.

Drift. To show that OF-reweighting is fine-grained, we
must show that the drift (from the true ideal) is constant.
Towards that end, we introduce the concept of total drift.
For a given allocation policy A, total drift is defined as

¢
t-drift 4(T,t) = / Wty (T, u)du — allocation o(T,t),
0

where allocation 4 (T, ) is the total allocation under policy
A for task T up to time ¢, and Wt (7", u) is as defined earlier
in Sec. 3. Given this terminology, a reweighting algorithm
A is fine-grained iff there exists a constant ¢ such that for
all times ¢ and tasks T', —c - n < t_drift 4(T,t) < c¢c-n
holds, where n is the number of times that 7" has changed
its weight in the interval [0, ¢]. Note that a given reweighting
policy A is not fine-grained if for an arbitrary value c, there
exists a system that contains a task 7" that changes its weight
once at time ¢ such that t_drift(T", ¢) > c.

Before showing that OF-reweighting is fine-grained, we
first prove that LJ-reweighting is not. Consider the four-
processor system depicted in Fig. 6(b). The depicted sys-
tem consists of a set A of 35 tasks with weight 1/10 and a
task T" with weight 1/10 that increases to 1/2 at time 4. In
this example, task 7" changes its weight via LJ-reweighting.
The weight change is not enacted until time 10. As a con-
sequence, 1’s total drift reaches a value of 5 at time 10.
This example can be generalized to generate any value of
total drift for 7', by decreasing its initial weight. Under
LJ-reweighting, such a task cannot change its weight until
the end of the first window generated by its initial weight.
Hence, by decreasing the weight of T to 1/(2(c + 1)), we
have t_drift . ;(T',d(T1)) > c. The theorem below follows.

Theorem 3. LJ-reweighting is not fine-grained.

Next, consider OF-reweighting. By Theorem 2, to prove
that OF-reweighting is fine-grained, we merely need to con-
sider the window placements of a task after it is reweighted.

Suppose a task T"’s weight is changed at time ¢ and T} is its
active subtask at ¢.. If T" changes its weight via rule O, then
the resulting allocation error is clearly at most one quan-
tum. In Fig. 5(b), the true ideal flow in slots 6 through 9
associated with the “omitted” subtask 75 is “lost.” This to-
tal flow is at most one quantum. If 7" changes its weight via
rule F, then it releases a subtask with a window defined by
its new weight at time min(fd(Z), d(T})) + b(Z};). Under a
true ideal allocation, 7" changes to its new weight within the
quantum [fd(7;) — 1, fd(T7)). It follows that the resulting al-
location error is at most one quantum. From this discussion,
we have the following theorem.

Theorem 4. OF-reweighting is fine-grained.

5 Experimental Results

In this section we present a set of experiments that in-
volve randomly-generated task sets. Such experiments are
of interest because they allow a wide range of system con-
figurations to be considered. (In the full version of this pa-
per, we present an additional set of experiments that involve
a simulation of Whisper itself.)

In these experiments, each task 7" has a minimum weight,
minwt(T), and a maximum weight, mazwt(T'), such that
minwt(T) < WHT, t) < mazwt(T) holds for all t. Tasks
were randomly assigned a minimum weight in the range
[1/500,1/100] and a maximum weight that is either two
times or two orders of magnitude larger. We refer to a task
that has a maximum weight two orders of magnitude larger
than its minimum as a high-variance task. High-variance
tasks were included because share changes of two orders of
magnitude can occur in Whisper. All simulations were run
for 1,000 time steps, and repeated 61 times. In each graph
presented below, 98% confidence intervals are given. The
simulated platform was assumed to be similar to a testbed
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Figu re 6. A four-processor system with a set A of 35 tasks with weight 1/10 and a task T" with weight 1/10 that increases to 1/2 at time 4. The
total drift for 7" is labeled in (b) and (c). (a) The ideal allocations for each task. (b) LJ-reweighting. () OF-reweighting.

system in our lab that is comprised of 2.7 GHz processors.
On this testbed, we implemented and timed both reweight-
ing algorithms considered in our simulations and found that
all per-slot scheduling decisions could be made in at most
5.7 ps for the largest task systems considered in our exper-
iments. Assuming a 1ms scheduling quantum, we regarded
this value as insignificant and thus ignored scheduling over-
heads in our simulations. In each experiment, each task T’
was initially assigned a weight equal to its minimum and
then was reweighted at time 500 so that its new weight is
given by the formula (taken from [1])

M-W

xow @

minwt(T) + (mazwt(T) — minwt(T))
where M is the number of processors, W is the sum of
all minimum weights, and X is the sum of all maximum
weights. Assuming X > M, (2) guarantees that the sum of
all weights equals the number of processors.

We conducted experiments in which the number of high-
variance tasks varied from 0 to 50, the number of processors
from 4 to 16, and the number of tasks from 50 to 200. How-
ever, due to space limitations, the graphs below present only
a representative sampling of the data that we collected.

In the first set of graphs, in insets (a)—(b) of Fig. 7, the
number of tasks is 50 and the number of processors is set at
either 4 or 16. Inset (a) shows, for a 4-processor systems,
the maximal drift of any task, and the average drift of all
tasks, at time 1,000, as a function of the number of high-
variance tasks. Inset (b) gives the total amount of computa-
tion completed by time 1,000, as a percentage of the ideal
allocation, as a function of the number of high-variance
tasks, for both 4 and 16 processors. In inset (a), the OF-
Max and OF-Avg curves are difficult to distinguish from
the z-axis since the largest maximal drift incurred by OF-
reweighting was 0.923. For LJ-reweighting, on the other
hand, the largest maximal and average drift incurred were
75.8 and 6.1, respectively. Furthermore in inset (b), OF-
reweighting stabilizes at approximately 100% (99.4%) of
the ideal allocation for 4 (16) processors. In contrast, LJ-
reweighting stabilizes at approximately 85% (83%) for 4
(16) processors. Notice that, for both 4- and 16-processor
systems, with only two high-variance tasks and only one
weight change, LJ-reweighting is only within 90% of the
ideal, while OF-reweighting is virtually at 100%.

In inset (b), OF-reweighting actually exceeds the ideal
allocation for some task sets. This is because the system
is underutilized before time 500, providing an opportunity
for both OF- and LJ-reweighting to be slightly ahead of
the ideal system. Since a task under OF-reweighting is
not heavily penalized for changing its weight, this “over-
allocation” carries over to time 1,000. OF-reweighting will
only be slightly ahead of the ideal because of Pfair restric-
tions. Notice that, while the maximal drift drops as the
number of high-variance tasks increases, the average drift
increases and the percentage of the ideal decreases. Thus,
while the “worst” task may perform better, the system on
the whole performs worse.

In insets (c)—(d) of Fig. 7, the number of high-variance
tasks is 10, the total number of tasks is either 50 or 200,
and the number of processors varies from 4 to 16. In-
set (c) shows the maximal drift of any task, and the av-
erage drift of all tasks, at time 1,000, for task sets with
50 tasks. Inset (d) shows the total amount of computation
completed by time 1,000 as a percentage of the ideal al-
location for task sets of size 50 and 200. Notice that, for
LJ-reweighting, the amount of computation completed sta-
bilizes at approximately 85% (89%) of the ideal for sys-
tems with 50 (200) tasks. In contrast, for OF-reweighting,
the amount of computation completed stablizes at approxi-
mately 100% (101%) for systems with 50 (200) tasks.

In all of these experiments, OF-reweighting substantially
outperformed LJ-reweighting. In scenarios where a task’s
weight increases by two orders of magnitude, at least one
task under LJ-reweighting incured two orders of magni-
tude of drift. Furthermore, Fig. 7(a) illustrates that, even
when the maximal drift of any task is as small as 11, LJ-
reweighting completes as little as 85% of the ideal alloca-
tion 500 time steps after a weight change, in systems with
only one weight change.

6 Concluding Remarks

We have shown (for the first time) that fine-grained
reweighting is possible on multiprocessor platforms. The
experiments reported herein show that our reweighting rules
enable greater precision in adapting than LJ-reweighting.
However, this added precision comes at the price of higher
scheduling costs. Q(maz(N, M log N)) time is required
to reweight N tasks simultaneously. In contrast, LJ-
reweighting entails only O(M log N) time. However, as
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FigU re 7. Selection of experiments. For clarity, the legend in
each inset orders the curves in the (top-to-bottom) order they appear
in that graph. If curves cannot be observed, it is because they are
indistinguishable from the x-axis.

noted earlier, experiments conducted on our testbed system
indicate that scheduling overheads will likely be small in
practice under either scheme. Moreover, we have shown in
a related paper that this precision-versus-overhead tradeoff
can be balanced by using schemes that are hybrids of “pure”
OF- and LJ-reweighting [4].

As mentioned earlier, while our focus in this paper
has been scheduling techniques that facilitate fine-grained
adaptations, techniques for determining how and when to
adapt are equally important. Such techniques can either
be application-specific (e.g., adaptation policies unique to
a tracking system like Whisper) or more generic (e.g.,
feedback-control mechanisms incorporated within schedul-
ing algorithms [5]). Both kinds of techniques warrant fur-
ther study, especially in the domain of multiprocessor plat-
forms.
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