
Task partitioning upon memory-constrained multiprocessors ∗

Nathan Fisher James H. Anderson Sanjoy Baruah
Department of Computer Science

The University of North Carolina at Chapel Hill
{fishern, anderson, baruah}@cs.unc.edu

Abstract

Most prior theoretical research on partitioning algo-
rithms for real-time multiprocessor platforms has focused
on ensuring that the cumulative computing requirements of
the tasks assigned to each processor does not exceed the
processor’s processing power. However, many multipro-
cessor platforms have only limited amounts of local per-
processor memory; if the memory limitation of a processor
is not respected, thrashing between “main” memory and the
processor’s local memory may occur during run-time and
may result in performance degradation. We formalize the
problem of task partitioning in a manner that is cognizant
of both memory and processing capacity constraints as the
memory constrained multiprocessor partitioning problem,
prove that this problem is intractable, and present efficient
algorithms for solving it under certain – well-defined – con-
ditions.

Keywords: Multiprocessor systems; Partitioned schedul-
ing; Memory-constrained systems; Utilization-based
schedulability tests.

1 Introduction

As the functionality demanded of real-time embedded
systems has increased, it is becoming unreasonable to ex-
pect to implement them upon uniprocessor platforms [19];
hence, multiprocessor platforms are increasingly used for
implementing such systems. Efficient system implementa-
tion on such multiprocessor platforms may require the care-
ful management of several key resources, such as processor
capacity, memory capacity, communication bandwidth, etc.
For instance, in assigning tasks to processors care must be
taken to ensure that both the limited computing capacity of
a processor and its limited local memory is taken into con-
sideration.

Consider as an example the IXP 2800, which is the high-
end member of the Intel IXP family of programmable net-
work processors (NPs). Such NPs offer an alternative to
conventional ASIC (application-specific integrated circuit)

∗Supported in part by the National Science Foundation (Grant Nos.
ITR-0082866, CCR-0204312, and CCR-0309825).

designs for deploying customized functions, such as fire-
walls, intrusion detection, load balancing, virtual private
networks, protocol conversions, etc., in switches and routers
on the Internet. The 2800 contains an XScale (ARM ar-
chitecture) core processor, sixteen independent RISC CPUs
called microengines (MEs), interface controls for access to
off-chip SRAM and DRAM, and standard interfaces to me-
dia or a switch fabric. The 32-bit XScale core processor
is intended for use for control functions such as manag-
ing routing tables or other state information, or handling
exception packets. Each 32-bit ME has access to private
storage for 4K instructions and 640 words of local mem-
ory: these MEs are intended for creating multiple parallel
task pipelines for performing (perhaps different) process-
ing functions on multiple packets concurrently. In mapping
tasks to these MEs it is necessary that, in addition to not
overloading the ME’s computing capacity, the total code-
size of all tasks assigned to a particular ME not exceed 4K
instructions.

Most prior theoretical research on partitioning algo-
rithms for real-time multiprocessor platforms has focused
on ensuring that the cumulative computing requirements of
the tasks assigned to each processor does not exceed the
processor’s computing capacity [15, 12]. Our research can
be considered to be a generalization of this earlier work,
in the sense that it is aimed at determining strategies for
assigning tasks to processors in multiprocessor platforms
in which several resources are only available in limited
amounts on each processor. In this paper, we describe in
detail our findings concerning systems in which there are
two such constraining resources – local memory for stor-
ing program code, and computation capacity. Given a mul-
tiprocessor comprised of several processors, each with its
own (limited) processing capacity and local memory, and a
collection of tasks, each characterized by its code-size and
its computation requirement, the memory-constrained mul-
tiprocessor partitioning problem attempts to partition the
tasks among the processors such that neither the memory
capacity, nor the computing capacity on any processor is
exceeded.

The remainder of this paper is organized as follows. In
Section 2, we formally define the problem that we wish to
solve, prove that it is intractable, and briefly list related re-
search. In Section 3 we describe how our problem may be
mapped on to an equivalent Integer Linear Programming



(ILP) problem. In Section 4, we briefly review some prop-
erties of linear programs. In Section 5, we use these prop-
erties to derive an efficient algorithm for obtaining a partial
mapping of tasks to processors; in Section 6, we describe
how this partial mapping may, under certain (well-defined)
circumstances, be extended to obtain a complete mapping.
In Section 7, we describe a heuristic algorithm for those
cases where system parameters render the approach in Sec-
tion 6 inapplicable: our heuristic is based upon the idea of
hierarchically partitioning the problem into smaller, more
tractable, ones. We have experimentally evaluated both of
our proposed algorithms by simulations on synthetic work-
loads; we briefly describe these experiments in Section 8.
(The extended version of this paper will include the results
and discussion of these experiments.) We conclude in Sec-
tion 9, with a summary of the results presented here.

2 System Model

In this paper, we consider the problem of mapping a
given collection of tasks upon a platform comprised of mul-
tiple processors. We will assume that all processors are
identical, in the sense that they have exactly the same com-
puting capacity and the same amount of local memory avail-
able.

A task i is characterized by two parameters:

• its utilization ui, denoting the fraction of the comput-
ing capacity of a single processor that must be reserved
for executing it; and

• its code-size si, denoting the fraction of the local mem-
ory associated with a single processor that must be re-
served for storing its program code.

(Note that we make no assumptions about the relation-
ship between ui and si for a task i)

We will represent a system Γ comprised of such tasks,
to be scheduled upon a platform comprised of identical pro-
cessors, by a 3-tuple comprised of two equal-sized vectors
of positive real numbers ranging over (0, 1], and an integer.
Let �un and �sn denote vectors of size n, and let m be a pos-
itive integer. Then Γ def= (�un,�sn,m) denotes the memory-
constrained system consisting of n tasks, in which the ith

task has utilization ui and code-size si, that is to be imple-
mented on a platform comprised of m processors each of
unit computing and memory capacity.

Some additional notation:

usum(�un,�sn, m)
def
=

n∑
i=1

ui , umax(�un,�sn, m)
def
= max

{
ui

}n

i=1

ssum(�un,�sn, m)
def
=

n∑
i=1

si , smax(�un,�sn, m)
def
= max

{
si

}n

i=1
.

When it is clear from context precisely which system
we are referring to, we will sometimes omit the system
specification from this notation and use umax to denote
umax(�un,�sn,m) (similarly for usum, smax, and ssum).

We are now ready to define our problem precisely.

Definition 1 Given a system (�un,�sn,m), the Memory-
constrained multiprocessor partitioning problem is to deter-
mine a mapping function χ : {1, . . . , n} → {1, . . . , m}
such that the following 2m conditions are satisfied:

for all j, 1 ≤ j ≤ m,


 ∑

{all i | χ(i)=j}
ui ≤ 1,




for all j, 1 ≤ j ≤ m,


 ∑

{all i | χ(i)=j}
si ≤ 1




Here, the first m conditions assert that the utilization
bound of each processor is respected, while the second m
conditions assert that the memory constraints of each pro-
cessor is respected.

It is not difficult to see that this problem is, in fact, in-
tractable.

Theorem 1 The memory-constrained multiprocessor parti-
tioning problem is NP-complete in the strong sense.

Proof Sketch: Since one can guess a partitioning χ :
{1, . . . , n} → {1, . . . , m} in polynomial time, and ver-
ify that this mapping is indeed feasible, it follows that the
memory-constrained multiprocessor partitioning problem is
in NP.

We can show that it is NP-hard in the strong sense by
transforming from bin-packing [8]. Each item to be packed
corresponds to a single task, with both parameters, utiliza-
tion and code-size set, equal to the size of the item. Both
the computing capacity and the local memory size of each
processor are set equal to the bin size. It is straightforward
to observe that a bin packing exists if and only if the trans-
formed memory-constrained multiprocessor system is fea-
sible.

Related research. When either the utilization limitation
or the memory limitation may be ignored, task partitioning
is essentially a bin-packing problem: Each processor is a
“bin” of capacity one, and each task assigned to it consumes
an amount of this capacity equal to its utilization/code-
size. While bin-packing is known to be NP-complete in
the strong sense, efficient approximation algorithms and
polynomial-time approximation schemes are known [8, 7]
that can be used to determine task assignments with be-
haviour that is bounded in the worst-case. Unfortunately,
when both utilization and memory limitations are consid-
ered simultaneously, the task assignment problem becomes
much more difficult. This problem bears remarkable simi-
larities to the M -Dimensional Vector Packing Problem (M -
DVPP) [5] with M = 2: tasks can be modeled as two-
dimensional vectors (the two dimensions correspond to the
code-size and utilization requirements, respectively), and
processors as bins that are characterized by two distinct ca-
pacities, memory size and computing capacity. The M -
DVPP, like bin-packing, is known to be intractable (NP-
hard in the strong sense [5]). Unfortunately, unlike bin-



packing, for which even simple heuristics (such as best-
fit, first-fit, etc. [8, 7]) have good worst-case performance
guarantees, good polynomial-time approximation schemes
for M -DVPP provably cannot exist [18]. Some theoreti-
cal work on obtaining approximation algorithms for vector
packing has been done by Chekuri and Khanna [2]; how-
ever, it seems unlikely that these results are applicable to
our attempts to obtain solutions (exact or approximate) to
the memory-constrained multiprocessor partitioning prob-
lem. Several greedy heuristic algorithms have also been
studied in the literature [4, 5, 14, 20]; in particular, Beck and
Siewiorek [1] have experimentally evaluated several vector
packing heuristics for task allocation: while some heuris-
tics were able to obtain acceptable allocations for certain
specific kinds of task systems, there seems to be no heuristic
that consistently (and provably) comes up with near-optimal
allocations.

3 An ILP formulation

In a Integer Linear Program (ILP), one is given a set of
variables, some or all of which are restricted to take on in-
teger values only, and a collection of “constraints” that are
expressed as linear inequalities over the variables. The set
of all points over which all the constraints hold is called
the feasible region for the integer linear program. One may
also be given an “objective function,” also expressed as a
linear inequality of these variables, and the goal of finding
the extremum (maximum/ minimum) value of the objective
function over the feasible region.

Consider any system (�un,�sn,m). For any mapping of
the n tasks on the m processors, let us define (n×m) indica-
tor variables xi,j , for i = 1, 2, . . . , n; and j = 1, 2, . . . ,m.
Variable xi,j is set equal to one if the ith task is mapped
onto the jth processor, and zero otherwise.

We can represent the memory-constrained multiproces-
sor partitioning problem as the following integer program-
ming problem, with the variables xi,j restricted to non-
negative integer values.

ILP(�un,�sn, m)
.

Minimize L, subject to the following constraints, and the re-
striction that the variables xi,j (1 ≤ i ≤ n; 1 ≤ j ≤ m)
take on integer values only:

∑m

j=1
xi,j = 1 (i = 1, 2, . . . , n) (1a)∑n

i=1
(xi,j · ui) ≤ L (j = 1, 2, . . . , m) (1b)∑n

i=1
(xi,j · si) ≤ L (j = 1, 2, . . . , m). (1c)

(1)

Informally, L represents the maximum fraction of both
the computing capacity and the local memory of any pro-
cessor that is used, and is set to be the objective function
(i.e., the quantity to be minimized) of the ILP problem. The
n constraints corresponding to (1a) above assert that each

task be assigned some processor; the m constraints corre-
sponding to (1b), that no processor’s computing capacity
is exceeded; and the m constraints corresponding to (1c),
that no processor’s memory is exceeded. It is not hard
to see that an assignment of non-negative integer values
to the variables xi,j satisfying these constraints, for which
L ≤ 1, is equivalent to a feasible partitioning of the n tasks
upon the m processors. Thus, obtaining a solution to the
ILP (1) above is equivalent to determining whether a given
memory-constrained multiprocessor task system is feasible.
This is formally stated by the following theorem:

Theorem 2 The Integer Linear Programming problem (1)
has a solution with L ≤ 1 if and only if the memory-
constrained multiprocessor system is feasible.

Theorem 2 above allows us to transform the problem of
determining whether a memory-constrained multiprocessor
system is feasible to an ILP problem. At first sight, this may
seem to be of limited significance, since ILP is also known
to be intractable (NP-complete in the strong sense [16]).
However, some recently-devised approximation techniques
for solving ILP problems, based upon the idea of LP re-
laxations to ILP problems, may prove useful in obtaining
solutions to the memory-constrained multiprocessor parti-
tioning problem under certain circumstances – this is the
issue that we we explore in the remainder of this paper.

4 A review of some results on linear pro-
gramming

In this section, we briefly review some facts concerning
linear programming (LP) that will be used in later sections.
In a Linear Program (LP) over a given set of n variables,
as with ILPs, one is given a collection of constraints that
are expressed as linear inequalities over these n variables,
and perhaps an objective function, also expressed as a linear
inequality of these variables. The region in n-dimensional
space over which all the constraints hold is again called the
feasible region for the linear program, and the goal is to find
the extremal value of the objective function over the feasible
region. A region is said to be convex if, for any two points
p1 and p2 in the region and any scalar λ, 0 ≤ λ ≤ 1, the
point (λ · p1 + (1 − λ) · p2) is also in the region. A vertex
of a convex region is a point p in the region such that there
are no distinct points p1 and p2 in the region, and a scalar
λ, 0 < λ < 1, such that [p ≡ λ · p1 + (1 − λ) · p2].

It is known that an LP can be solved in polynomial time
by the ellipsoid algorithm [10] or the interior point algo-
rithm [9]. (In addition, the exponential-time simplex al-
gorithm [3] has been shown to perform extremely well “in
practice,” and is often the algorithm of choice despite its
exponential worst-case behaviour.) We do not need to un-
derstand the details of these algorithms: for our purposes, it
suffices to know that LP problems can be efficiently solved
(in polynomial time).

We now state without proof some basic facts concerning
such linear programming optimization problems.



Fact 1 The feasible region for a LP problem is convex, and
the objective function reaches its optimal value at a vertex
point of the feasible region.

An optimal solution to an LP problem that is a vertex
point of the feasible region is called a basic solution to the
LP problem.

Fact 2 Consider a linear program on n variables
x1, x2, . . . , xn, in which each variable is subject to the con-
straint that it be at least 0 (these constraints are called non-
negativity constraints). Suppose that there are a further m
linear constraints. If m < n, then at most m of the variables
have non-zero values at each vertex of the feasible region1

(including the basic solution).

We will assume that the LP-solver returns a vertex-
optimal solution. See [17] for polynomial-time techniques
on obtaining a vertex-optimal solution from LP-solvers that
can return non-vertex solutions.

5 Obtaining a partial partitioning using lin-
ear programming

By relaxing the requirement that the xi,j variables in the
ILP (1) (Section 3) be integers only, we obtain the following
LP, which is referred to as the LP-relaxation [17] of ILP (1):

LPR(�un,�sn, m)
.

Minimize L, subject to the following constraints:
∑m

j=1
xi,j = 1 (i = 1, 2, . . . , n) (2a)∑n

i=1
(xi,j · ui) ≤ L (j = 1, 2, . . . , m) (2b)∑n

i=1
(xi,j · si) ≤ L (j = 1, 2, . . . , m) (2c)

(2)

Observe that the LP (2) is a linear program on (nm +
1) variables (the nm xi,j’s and L), with only (n + 2m)
constraints other than non-negativity constraints. By Fact 2
above, therefore, at most (n + 2m) of these variables have
non-zero values at any basic solution to this LP.

The crucial observation is that each of the n con-
straints (2a) is on a different set of xi,j variables — the first
such constraint has only the variables x1,1, x1,2, . . . , x1,m,
the second has only the variables x2,1, x2,2, . . . , x2,m, and
so on. Since there are at most (n + 2m) non-zero variables
in the basic solution and L takes on a non-zero value (for
non-trivial systems), it follows from the pigeon-hole princi-
ple that at most 2m − 1 of these constraints (2a) will have
more than one non-zero value in the basic solution. For each
of the remaining (at least) (n−2m+1) constraints, the sole
non-zero xi,j variable must equal exactly 1, in order that the
constraint be satisfied. Fact 3 follows.

1The feasible region in n-dimensional space for this linear program
is the region over which all the n + m constraints (the non-negativity
constraints, plus the m additional ones) hold.

Fact 3 For at least (n − 2m + 1) of the integers i in
{1, 2, . . . , n}, exactly one of the variables {xi,1, xi,2, . . . ,
xi,m} is equal to 1, and the remaining are equal to zero, in
any basic solution to LPR(�un,�sn,m).

As a consequence of Fact 3 and the polynomial-time solv-
ability of Linear Programming, it follows that the solution
to LPR(�un,�sn,m) immediately yields a partial mapping of
tasks to processors, in which all but at most 2m − 1 tasks
get mapped.

6 Completing the partial partitioning

In Section 5, we observed that a partial mapping of the
tasks in any system (�un,�sn,m) to the processors in the sys-
tem could be efficiently determined in time polynomial in
the representation of the system; however, this partial map-
ping may fail to map up to 2m− 1 tasks. In this section, we
modify the approach of Section 5 so that these unmapped
tasks can be easily mapped as well. For ease of exposition,
in Section 6.1 below we first present (and prove properties
of) a somewhat simplified version of our algorithm; in an
extended version of this paper, we describe how the algo-
rithm presented here can be further generalized.

6.1 Algorithm Partition: theoretical description

The modification to the linear program LPR(�un,�sn,m)
that we propose is to tighten the constraints somewhat,
thereby obtaining the linear program LPR2(�un,�sn,m).
Observe that LPR2(�un,�sn,m) is essentially the LP relax-
ation of the ILP corresponding to mapping the tasks in
(�un,�sn,m) upon m processors of computing capacity and
local memory (1−2umax) and (1−2smax) respectively. We
will describe how the partial mapping obtained from a ba-
sic solution to LPR2(�un,�sn,m) may be extended to include
the unmapped tasks as well. Our algorithm is formalized as
Algorithm Partition (Figure 1).

LPR2(�un,�sn, m)
.

Minimize L, subject to the following constraints:
∑m

j=1
xi,j = 1 (i = 1, 2, . . . , n) (3a)∑n

i=1
(xi,j · ui) ≤ (1 − 2umax)L (j = 1, 2, . . . , m) (3b)∑n

i=1
(xi,j · si) ≤ (1 − 2smax)L (j = 1, 2, . . . , m) (3c)

(3)

From Figure 1 we see that whenever LPR2(�un,�sn,m)
has a solution with L ≤ 1, Algorithm Partition success-
fully determines a partitioning of the tasks in (�un,�sn,m)
among the m processors. The question we now address
is this: under what conditions is LPR2(�un,�sn,m) guar-
anteed to have a solution with L ≤ 1? We show in The-
orem 3 below that there is a simple sufficient test, sim-
ilar to the utilization bounds for single-criterion schedu-
lability analysis [11, 15, 12, 6], for determining whether



Algorithm Partition.

Given: memory constrained task system (�un,�sn, m)

Step 0: Construct LPR2(�un,�sn, m).

Step 1: Obtain a basic solution to LPR2(�un,�sn, m). If the
value of L in this solution is greater than 1, then declare
failure and return. Else, proceed to Step 2.

Step 2: Observe that, if we have not declared failure in step
1 above, then

1. We have obtained a mapping for all but at most
(2m − 1) tasks; and

2. there is enough remaining capacity available on
each processor to accommodate an additional
two tasks.

Hence, the remaining at most (2m − 1) tasks can be
distributed evenly among the processors, with at most
two tasks to a processor.

Figure 1. Algorithm Partition

system (�un,�sn,m) is successfully scheduled by Algo-
rithm Partition.

Theorem 3 If memory constrained multiprocessor system
(�un,�sn,m) satisfies the following two conditions:

usum(�un,�sn,m) ≤ m − 2m · umax(�un,�sn,m)
and ssum(�un,�sn,m) ≤ m − 2m · smax(�un,�sn,m)

then it is successfully partitioned by Algorithm Partition.

The proof of Theorem 3 will be included in an extended
version of this paper.

7 A Hybrid Approach

The Partition algorithm, described in Section 6 above
is applicable only to systems (�un,�sn,m) for which both
umax(�un,�sn,m) and smax(�un,�sn,m) are each less than
one-half. However, if a feasible task system has at least
one task with either codesize or utilization at least one-half,
LPR2 becomes infeasible and Partition will return failure.

In this section, we propose an algorithm HybridPartition
for partitioning tasks in systems where tasks can have a
utilization or code size greater than one-half. This al-
gorithm is based upon the notion of hierarchically de-
composing the input system into smaller systems. Sec-
tion 7.1 presents the notation needed for describing the al-
gorithm HybridPartition presented in Section 7.2.

7.1 Notation

The general approach we propose is to divide the system
into smaller systems and use ILP and the Partition algo-
rithm as subroutines. However, before we can can describe

our approach, we need to formalize what it means to divide
the system into smaller systems.

Informally, our approach will map the processors in the
system to a smaller set of “virtual” processors. The capacity
(utilization or memory) of each virtual processor is the sum
of the capacities of all processors that map to that virtual
processor. More formally, let X be the set of all processors,
and Y be the set of b virtual processors. Then, a mapping of
processors to virtual processors is any surjective function v :
X → Y . For any i ∈ X , let ci be the utilization capacity,
and di be the memory capacity of processor i. Define the
utilization capacity of each virtual processor, j ∈ Y to be
Cj =

∑
i∈{l:v(l)=j} ci. The memory capacity of j, Dj is

defined similarly.
In addition to aggregating the processors into virtual pro-

cessors, we will divide the set of tasks into light and heavy
task sets. A task is considered to be heavy if either its uti-
lization or code-size exceeds or equals half available respec-
tive capacities of a processor or memory. More formally
stated, a task t is heavy and an element of the set Theavy if

ut ≥ 1
2

min
i∈X

{ci} or st ≥ 1
2

min
i∈X

{di}.

Otherwise, a task is considered to be an element of Tlight.
Let n̂ denote the number of heavy tasks in a system, and
let �un̂ and �sn̂ denote the utilization and code-size vectors
for the set Theavy. Also, let �Cb and �Db denote the utiliza-
tion and memory capacity vectors for virtual processors, Y .
Then, we let (�un̂,�sn̂, �Cb, �Db) denote the system defined by
considering only heavy tasks and b virtual processors. The
ILP for this system is given below.

ILP(�un̂,�sn̂, �Cb, �Db)
.

Minimize L, subject to the following constraints, and the re-
striction that the variables xi,j (1 ≤ i ≤ n̂; 1 ≤ j ≤ b) take
on integer values only:

∑b

j=1
xi,j = 1 (i = 1, 2, . . . , n̂) (4a)∑n̂

i=1
(xi,j · ui) ≤ Cj · L (j = 1, 2, . . . , b) (4b)∑n̂

i=1
(xi,j · si) ≤ Dj · L (j = 1, 2, . . . , b) (4c)

(4)

7.2 Algorithm HybridPartition: theoretical de-
scription

Given a system (�un,�sn,m), our algorithm works by
evenly grouping the processors into b virtual processors.
The parameter b is referred to as the branching factor of
our algorithm. Assume for simplicity that b, m, and n are
powers of 2, and m > b. The processor mapping func-
tion is v(i) =

⌈
b·i
m

⌉
(meaning the ith processor is mapped

to the v(i)th virtual processor). The set of tasks are di-
vided into Theavy and Tlight. We solve the ILP defined by



(�un̂,�sn̂, �Cb, �Db) using well-known integer programming
methods (see, e.g., [17]). Note, this ILP contains only 2b+n̂
constraints, while ILP (1) contains 2m + n constraints. Af-
ter solving the ILP, we have defined a mapping of Theavy
to Y . Let Tj (⊆ Theavy) be the set of heavy tasks that are
mapped to the jth virtual processor (1 ≤ j ≤ b). For each
Tj , we define a new system corresponding to the tasks of Tj

and set of processors {i : v(i) = j} and recursively repeat
the process from the beginning.

The recursion terminates when b ≥ m. At which
point, Integer is called and the heavy tasks are bound to ac-
tual processors, and removed from the set of available tasks.
If during any of the recursive calls an ILP is declared infea-
sible, our algorithm returns failure. The capacities (utiliza-
tion and memory) of each processor are updated by sub-
tracting the utilization and code-size of the tasks bound
to them. Note that by recalculating the capacities of the
processors, some tasks may be reclassified as heavy tasks.
While Theavy is non-empty, we repeat the entire recursive
process again. Finally, when all the heavy tasks have been
bound to processors and Theavy is empty, we define a sys-
tem using Tlight and all m processors with their remaining
capacities and call Partition.

8 Experimental Results

The algorithms Partition, HybridPartition, and the in-
teger program solver (referred to as Integer) were imple-
mented for comparison. However, due to space limitations,
we are unable to include the results of these experiments.
The results of the experiments can be found in an extended
version of this paper.

9 Summary and Conclusions

There are generally multiple resources, such as the com-
puting capacities of the processors, the amount of local
memory available at each processor, the available com-
munication bandwidth, etc., that are available in limited
quantities in each processor in a multiprocessor platform.
However, much prior theoretical research on task alloca-
tion and scheduling algorithms for multiprocessor platforms
has focused primarily on one resource: the computing ca-
pacity. Our major contribution in this paper is to devise
techniques for simultaneously considering constraints due
to several resources; in particular, we have considered sys-
tems in which both the computing capacity at each pro-
cessor, and the amount of local memory, are available in
limited amounts. We have formalized this task-partitioning
problem; proved that it is intractable (NP-hard in the strong
sense); and obtained an efficient polynomial-time parti-
tioning algorithm that often works, as well as a simple
utilization-based test for determining whether a system is
guaranteed to be successfully scheduled by this polynomial-
time algorithm. To address systems where our polynomial-
time algorithm is incapable of finding a partition, we have
designed a different algorithm which hierarchically decom-
poses the system, and partitions the smaller systems. We

have experimentally compared both our algorithms with the
integer programming methods producing exact solutions.

References

[1] BECK, J., AND SIEWIOREK, D. Modeling multicomputer task al-
location as a vector packing problem. In Proceedings of the 9th In-
ternational Symposium on System Synthesis (San Deigo, CA, Nov.
1996), pp. 115–121.

[2] CHEKURI, C., AND KHANNA, S. On multi-dimensional packing
problems. In Proceedings of the Tenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (January 1999), pp. 185–194.

[3] DANTZIG, G. B. Linear Programming and Extensions. Princeton
University Press, 1963.

[4] DE LA VEGA, W. F., AND LUEKER, G. S. Bin packing can be solved
within 1 + ε in linear time. Combinatorica 1, 4 (1981), 349–355.

[5] GAREY, M. R., GRAHAM, R. L., JOHNSON, D. S., AND YAO, A.
C. C. Resource constrained scheduling as generalized bin packing.
Journal of Combinatorial Theory (Series A) 21 (1976), 257–298.

[6] GOOSSENS, J., FUNK, S., AND BARUAH, S. Priority-driven
scheduling of periodic task systems on multiprocessors. Real Time
Systems 25, 2–3 (2003), 187–205.

[7] JOHNSON, D. Fast algorithms for bin packing. Journal of Computer
and Systems Science 8, 3 (1974), 272–314.

[8] JOHNSON, D. S. Near-optimal Bin Packing Algorithms. PhD thesis,
Department of Mathematics, Massachusetts Institute of Technology,
1973.

[9] KARMAKAR, N. A new polynomial-time algorithm for linear pro-
gramming. Combinatorica 4 (1984), 373–395.

[10] KHACHIYAN, L. A polynomial algorithm in linear programming.
Dokklady Akademiia Nauk SSSR 244 (1979), 1093–1096.

[11] LIU, C., AND LAYLAND, J. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the ACM 20,
1 (1973), 46–61.

[12] LOPEZ, J. M., GARCIA, M., DIAZ, J. L., AND GARCIA, D. F.
Worst-case utilization bound for EDF scheduling in real-time mul-
tiprocessor systems. In Proceedings of the EuroMicro Conference
on Real-Time Systems (Stockholm, Sweden, June 2000), IEEE Com-
puter Society Press, pp. 25–34.

[13] MAKHORIN, A. GNU Linear Programming Kit Reference Manual
(Version 4.1). Free Software Foundation, 59 Temple Place, Suite
330, Boston, MA, August 2003.

[14] MARUYAMA, K., TANG, D. T., AND CHANG, S. K. A general
packing algorithm for multidimensional resource requirements. In-
ternational Journal of Computer and Information Sciences 6, 2 (June
1977), 131–149.

[15] OH, D.-I., AND BAKER, T. P. Utilization bounds for N-processor
rate monotone scheduling with static processor assignment. Real-
Time Systems: The International Journal of Time-Critical Computing
15 (1998), 183–192.

[16] PAPADIMITRIOU, C. H. On the complexity of integer programming.
Journal of the ACM 28, 4 (1981), 765–768.

[17] SCHRIJVER, A. Theory of Linear and Integer Programming. John
Wiley and Sons, 1986.

[18] WOEGINGER, G. J. There is no asymptotic PTAS for two-
dimensional vector packing. Information Processing Letters 64
(1997), 293–297.

[19] WOLFE, W. Computers as Components: Principles of Embedded
Computing Systems Design. Morgan Kaufmann Publishers, 2000.

[20] YAO, A. C.-C. New algorithms for bin packing. Journal of the ACM
27, 2 (Apr. 1980), 207–227.


