Tardiness Bounds for EDF Scheduling on Multi-Speed Multicore Platfor ms*

Hennadiy Leontyev and James H. Anderson
Department of Computer Science, University of North Carolin@lzapel Hill
{leontyev,andersgr@cs.unc.edu

Abstract the home that multiplexes interactive applications that re
quire best-effort service with multimedia applicationgtth
Multicore platforms, which include several processing have real-time requirements [3]. Such applications might
cores on a single chip, are being widely touted as a so- include streaming movies over the Internet, providing ca-
lution to heat and energy problems that are impediments ble television, or executing custom programs such as video
to single-core chip designs. To accommodate both paral-games. Timing constraints in these applications are typi-
lelizable and inherently-sequential applications on tame cally soft missed deadlines, though undesirable, are usually
platform, heterogeneous multicore designs with faster andnot disastrous. Such constraints are far more common than
slower cores have been proposed. In this paper, we considethard constraints in many settings [8]. Unfortunately, prio
the problem of scheduling soft real-time workloads on such work on scheduling real-time workloads on heterogeneous
a platform. multiprocessors has focused only on hard real-time systems
While such work can be applied to schedule soft real-time
applications, this comes at the price of overly consereativ
system designs.
In this paper, we show that such conservatism can be
) eliminated if deadline misses are permissible. We show this
_Given the thermal and power problems that plague py hresenting an algorithm for multi-speed systems called
single-processor chip designs, most major chip manufactur EDF-ms, which is a variant of the glob&DF (GEDF)
ers are investing in multicore technologies to ac_hievedrrigh scheduling algorithm. Like&SEDF [4], deadline tardiness
system performance. A number of systems with a modest,nqerEDF-ms is bounded when scheduling sporadic tasks.
number of cores are currently available, and in the coming rther, such bounds do not require severe caps on total
years, the number of cores per chip is expected to increasgygjjization. In contrast, even with same-speed cores, if
s?g.nificantly. In fa}ct, chips with hundreds of cores are en- yaadiines cannot be missed, then caps that can approach
visioned. It remains to be seen, however, whether such ansgy, of the available processing capacity are required un-
extensive degree of parallelism can be effectively exetbit yer all known scheduling algorithms, except for Pfair al-
Indeed, many applications exist that ameerentlysequen- gqrithms [2]. Pfair algorithms, which have not been stud-
tial. In light of this, one approach, which is being advo- jgq in the context of multi-speed systems, schedule tasks
cated by many chip designers, is to provide a mix of faster jq quautum at a time, and thus preempt and migrate tasks
and slower cores on the same platform [7]. On such a plat-frequently. EDF-ms preempts and migrates tasks less fre-
form, an inherently-sequential application would benefit b quently, does not require same-speed cores, and can accom-

executing on a faster core, while parallizable application yq4ate tasks with high execution costs for which utilizatio
could execute across many slower cores. While having only oy ~eeds one on slower cores.

fast cores would obviously be desirable, faster cores requi

greater chip area, so such an approach would adversely limifrjor work. Work on scheduling in heterogeneous multi-
the number Of cores per chip. o _ _ processor real-time systems was initiated by Funk and col-
Large multicore platforms will likely be used in settings |eagues, who presented a number of scheduling algorithms
where timing constraints are required. For example, one en-and associated analysis methods for systems with hard tim-
visioned use of such platforms is as a central server W|th|ning constraints. References concerning this work can be
“Work supported by a grant from Intel Corp.. by NSF grants CNS found in Funk’s Ph.D. dissertation [6] (and are not included

0408996, CCF 0541056, and CNS 0615197 and by ARO grant W911NF- Nere due to space constraints). As noted earlier, our empha-
06-1-0425. sis onsoft real-time systems distinguishes our work from

1. Introduction

these earlier efforts. tergrouptask may be executed on two groups of cores. We
In work that is more experimental in nature, Kuner use the term “intergroup” instead of “migrating” because a
al. [7] measured throughput and job response times on afixed task in our case may migrate (among the cores in its
two-speed multicore system with partitioned scheduling, group). We distribute the invocations of an intergroup task
and presented dynamic load-balancing heuristics that max-between its two assigned core groups in the same way as
imize throughput. This work is of relevance to research on invocations of migrating tasks are distributed&DF-fm.
soft real-time systems, as job response times are condidere Further, we treat intergroup tasks specially when schedul-
but it does not include any analysis for validating deadline ing, as in the earlieEDF-hl algorithm, so that they can be
or deadline tardiness. guaranteed zero tardiness. This enables each group of cores
Our algorithm,EDF-ms, has been devised by utilizing to be analyzed independently. However, one key difference
ideas from two prior papers concerning symmetric multi- arises in our analysis: the distribution pattern used fer in
processor systems by Degt al. [1, 5]. In [1], an EDF- tergroup tasks allows short-term overloads to occur (fer th
based algorithm calle®&DF-fm is presented that limits Ssame reason that such overloads occUgDF-fm). Thus,
task migrations without restrictive caps on total utilinat the analysis of tardiness in [5] must be adjusted to allow
EDF-fm is a hybrid of partitonedEDF and GEDF. In privileged tasks to create short-term overloads.

EDF-fm, tasks are categorized as either “fixed” or “migrat- Summary of contributions. The main contributions of
ing” (hence the suffixfm”). A fixedtask exclusively exe- this paper include devisingDF-ms and establishing tar-
cutes on a specific processor. On the other hand, e&ch diness bounds for it. In addition, we present an experimen-
gratingtask executes on two processors, with each of its in- ta| evaluation ofEDF-ms’s effectiveness in limiting tardi-
vocations executing exclusively on one of its assigned pro-ness. To our knowledgeEDF-ms is the first algorithm
cessors. Individual task utilizations must be capped at 1/2 proposed for multi-speed platforms that can schedule soft
but total utilization is not restricted (other than beingatst real-time tasks with bounded tardiness without severe uti-
the system’s total processing capacity). Invocations ohea |ization restrictions. Because the ideas underly#mf-ms
migrating task are distributed between its assigned proceswere originally proposed in completely different settings
sors so that these processors are not overloaded in the longiew analysis for integrating these ideas had to be devised.
run; however, short-term overloads are possible. Such over EDF-ms, its analysis, and evaluation are presented in de-
loads can cause fixed tasks to miss their deadlines. How+ajl in Secs. 3-5, after first presenting our system model in

ever, such misses are by bounded amounts only. Sec. 2.
BecauseEDF-ms is a variant of GEDF, tardiness
bounds established f@EDF are of relevance to our work. 2. System M odel

Such bounds were first established by Devi and Anderson
in [4]. These bounds apply to any sporadic task system
with total utilization at mosf\/ scheduled o/ symmetric
processors. Any task can have maximum tardiness. Suc
behavior might not be acceptable for certain applications.
In [5], the analysis in [4] is extended to allow up fa
“privileged” tasks to have any predefined tardiness value,
including zero. The resulting variant @EDF is called
EDF-hl. (The suffix ‘hl” signifies that privileged tasks are
given higher priority, and others lower.)

We consider the problem of scheduling a set of sporadic

tasks onM > 4 cores ofg > 2 speeds. We will group cores

y speed: we letn;, denote the number of cores in Group
h, wherel < h < g, and we lets;, denote their speed. We
assumes; = 1 ands; < s if 7 < k. We also assume that
my, > 2 holds for eachh. (Given that our main focus is
large multicore platforms, this is a reasonable assumption
However, we briefly consider later how to handle groups
with only one core.)
Our approach. In the problem considered herein, cores We let 7 denote the sporadic task system to be sched-
are organized into groups, where cores in the same groupuled, and assume that it consistsrofindependent tasks,
have the same speed. In the earld®F-fm algorithm, mi- Ti,...,T,. Each task is invoked arleasedrepeatedly,
grating tasks are prioritized over fixed tasks to ensure thatwith each such invocation calledjab. Associated with
the former have zero tardiness. This allows schedulability each taskl; are two parameters,; and p;: e; gives the
to be analyzed on each processor independently. (If a mi-maximumexecution timef one job of7; on a unit-speed
grating task were to miss a deadline on one of its proces-core, while,p;, called theperiod of T}, gives the minimum
sors, then this might delay its next invocation on its other time between two consecutive job release%;0fOn a core
processor. As a result, the two processors could not be anwith speeds;,, a job of T; completes ire;/s; time units.
alyzed independently.) We desire to maintain a similar in- For brevity, T;'s parameters are sometimes denoted using

dependence property acragsupsof cores. To do this, we
categorize tasks as either “fixed” or “intergroup.” fiked
task executes only on the cores in one group, whilénan

the notationl; = (e;, p;).
Thek!" job of T;, wherek > 1, is denoted; ;. Atask’s
first job may be released at any time at or after time zero.

The release time of the jdb, ; is denoted-; ,, and its (ab- 9 Group 1 Group 2 Group 3

solute) deadlinel; ;, is defined as-; ;, + p;. Each task is
sequential, so at any time, it may execute on at most one 87
core. When a job of a task misses its deadline, the release 7+
time of the next job of that task is unaltered. This ensures 6
that each task receives a processor share in accordance with 5
its utilization (defined below) in the long term. Thus, a task 4
may release a new job when prior job(s) of that task have
. 3+ —

not been completed. Such a new job cannot commence ex- u,=0.8
ecution until the prior jobs have completed. If a jéb; 27 [u=08
with a deadline atl; ; completes at time, then itstardi- 1 {u=08
nesds defined asnax(0,t — d; ;). A tasks tardiness is the 0- R
maximum of the tardiness of any of its jobs.

The utilization of taskT} is defined asi; = e;/p;, and Figure 1. Mapping of the task set onto groups
the utilization of the task systemasUsum = Y., ¢, Ui- of cores in Example 1. Different shadings are
We required>,, ., ui < oo my - sk and Usym < used for tasks with utilization at most one,

S _,my - sp. Otherwise, tardiness can grow unbound- two, and three.
edly. Note that the first of these requirements implies

u; < maz(s;j). Note also that it is possible that > s;

holds for someg.

In this paper, we assume that time is continuous, but ex-use the notatioff;_ ; to denoteT}, . . ., T} in describing this
ecution costs, periods, and core speeds are rational. task set.r consists ofl} _5 = (8,10), Ts_9 = (3,2), and
Tio—13 = (472) Ta.SkST1,5, Ts—9, andT]_O,lg have uti-

3. Algorithm EDF-ms lization 0.8, 1.5, and2.0, respectively. The system is com-

prised of three groups of cores of speeds one, two, and three.
The nameEDF-ms stands forEDF multi-speed Like ~ Thatis,m; = 3,51 = 1, my = 3, 53 = 2, mg = 3, and
EDF-fm [1], mentioned earlier, the algorithm consists of 3 = 3. In Fig. 1, each core group is depicted as a “bin”
two phases: an offlinask assignmenghase and an online With its height proportional tan, - s,, i.e., the total pro-
executiorphase. When the task assignment phase is applied€Ssing capacity of the group. As seen, tabks; are as-
to some task set, at mosty groups of tasks are created. In Signed to Groug, tasksT’s_s to Group2, and taskdo—13
addition, there may be up tp— 1 tasks that do not belong 10 Group3. TasksTy = T andT, = T are intergroup
to any group. Each of these tasks may execute on the coretasks.
of two groups. For each pair of consecutive groups, say
Grouph and Grouph + 1, at most one task that migrates
between them may exist. We denote this task (if it exists)
asThh+1 and call it anintergrouptask. All other tasks T ={T;: Zin > 0}.
are calledfixed tasks, as each executes within one group
only. The assignment algorithm (which is not shown, due As with migrating tasks ifEDF-fm [1], if an intergroup
to space constraints) sorts tasks by utilization and assign task7""*! were to miss its deadline in the schedule for ei-
tasks to groups by exhausting the capacity of faster groupsther Grouph or Grouph + 1, then this would create a non-
first. trivial linkage between these two groups that complicates
The assignment algorithm returns a set of valdgs,, scheduling analysis. This is because, if a jobZdf"*!
wherel < k <nandl < h < g. The valueZ, ; denotes misses its deadline, then the processing of the next job of
the fraction ofT},’s utilization that is assigned to Group Thh+1 may be delayed untifter its release, and this may

For each Grough, we can define a set of taskgs with
jobs to be scheduled by this group:

For any fixed tasK’, assigned to Group, Zj, ;, = u;. holds. increase the chance that it will miss as well. Thus, missed
For any intergroup tasky, = 77", Z, + Zj, i1 = uy, deadlines in one group could lead to missed deadlines in an-
holds. If taskT}, may not execute on Group thenZy, ;, = other group. Thus, our scheduling policy must achieve two
0. The assignment algorithm ensures the following. goals: (i) allow us to analyze the schedule in each group
independently, andii) not overload any group in the long
Z Zip=ui A Z Zip < M Sk @) run (for otherwise, tardiness in such a group would grow
h ‘ unboundedly).

Example 1. Fig. 1 shows the assignment determined for ~ These goals are accomplished as follows. During the ex-
the task set = {T1,...,T13}. For conciseness, we will ecution phase dEDF-ms, jobs of tasks irr;, are scheduled

7 T T i>G) focus on Group 2. Consider the time instaat 6 when the

o1 & o7 roup fourth job of Ty is released. When considering this fourth
77 7 lr T job in the bottom rulej = 4. Prior to timet, one job of
S O e I I i> Group 3 T, was assigned to Group 2, g¢ = 1. Applying these
values via the bottom rule, we obtgin-1 =3 = [1-3] =

|ja/ fo,2], SO the job is assigned to Group 2. Note that, by
time 6, three jobs ofly are released and one of them is pro-
cessed by Group 2, which is in accordance with the fraction
fo2=1/3.

0 2 4 6 8 10 12 14 16

Figure 2. Assignment of jobs of the task Ty
from Example 2.

As shown in [1], this assignment strategy ensures that the

maximum number of jobs of an intergroup tégkreleased
on the cores in Group using GEDF, with the jobs of in- during an interval of length and assigned to Group is
tergroup tasks treated specially. As we shall see, theapeci at most [fk,h[ﬁ—l—‘- Thus, the maximum demand due to
treatment given to intergroup tasks ensures that their jobsiobs of 7}, that must be processed by Grotipduring an
always have zero tardiness. This allows us to analyze eachnterval of lengtht is at most fr,n L,% ek, Which is ap-
core group as a separate (same-speed) system. The jobs '
each intergroup task, = 7""*! are distributed between
its assigned Groups and’ + 1 using a special determin- yamand of each intergroup ta%k assigned to Group is
istic pattern first described in [1], which ensures that the approximatelyZy 5, - ¢, Grouph will not be overloaded in
total workload from tr_lesejobs assigngd to these two groupsipe long run. Fof example, for Group 2 in Fig. 1, these val-
over the long term is in accordance with the shafgs and o5 sum t@¢, which matches the group’s overall computing
Zih+1, respectively. _ _ capacity within[0,), as given bym, - s - t.

In order_tp descr|be.th|s aSS|gnmen_t pattern, we introduce Because no group is overloaded in the long term, the
sc;er;iladdltlonal notation. For each mtergroup t‘%k,: scheduling policy we give below for each group will ensure
T, we letfy., and fi.n41 denote the fraction afy's that the jobs of intergroup tasks never miss their deadlines
jobs that are proqgssed by G_roupanthrl, respectively. As such, we no longer need to consider multiple groups,
These two quantities are defined as follows. but can concentrate our analysis efforts on just one, say
Grouph. Furthermore, Group’s per-core speed 6f, is no
longer an issue, since all cores in the group have the same

_ speed. We therefore assume that all cores in Gfobpve
Note that, by (1)fi.r + fun1 = 1. a speed of one and that all execution costs, utilizatiors, an

‘f:}froximatelka,h -t. Because the demand of each fixed task
Ty € 13, during the interval0, ¢) is at mostuy, - ¢, and the

Jeh = Zin/ue N foner = Ziohg1/uk

To explain the assignment pattern, we consider a single .
group, Grouph. Assume that there exist two intergroup Zn values of tas'k's gxecutlng on the cores of Grauave
tasksT"—1" andT™"+1, If we were to depict Group as been scaled by, d“"?"”g them by ,

a “bin” as done in Fig. 1, thei"~-» would be thetop task We further simplify the problem notationally by assum-
in Grouph, andT""+! would be thebottomtask. Different ~ Nd that we have haven (unit-speed) processors upon
(complementary) assignment rules are needed for these twd/hich we must schedule a set of+ 2 sporadic tasks,
cases. Lefl}, denote eithef” 1" or T +1, Letj > 1 7 ={Io, T3, ..., Tns1}. To andT,, represent, respec-
be the index of the latest job releasedyat or after time ~ UVely, the top and bottom intergroup tasks for this core
¢ and letj, be the number of jobs &f, assigned to Group ~ 97OUP- (Later, we explain how to adjust our results if either
h beforet. For the case wher&, = Th-1" ie, T} is of these tasks does not exist)), . . ., T}, are the fixed tasks
the top task, thg™ job of T}, is assigned to Group iff for the group. Our scheduling policy tredfs and T,
=1 —ju/(1 = fun)]. We call this assignment rule specially so that their jobs do not miss their deadlines, so
the top rule Faor the caéie wher&, = Thh+1 ie, T, is we call themprivilegedtasks. Jobs of the privileged tasks

the bottom task, thg®” job of T} is assigned to Group iff are assigned t_o the system using the top and bottom rules
j—1=|ja/fr.n]. We call this assignment rule tiettom discussed earlier. We & < upandZ,, 1 < u,41 denote
rule. ' the part of the utilization of taskg, and7,, 1, respectively,

that must be processed by the systeniylandT,, ., both
Example 2. Fig. 2 shows the assignment pattern for the exist, as assumed here, thép+ Z, 11 + > ., u; = m.
jobs of taskT, from Example 1, which has frequencies More generally,Zy + Zn41 + Y1 ju; < m. We let
f9,2 = Z972/U9 = 05/15 = 1/3 andf973 = 2973/’11,9 = fo = ZQ/UO andfn+1 = Zn+1/un+1.
1/1.5 = 2/3. Jobs ofTy are assigned to Group 2 using the Jobs of privileged tasks are treated specially in schedul-
bottom rule and to Group 3 using the top rule. Here, we will ing by using an approach presented in [5]. In this approach,

the concept of slack is used: if jdb, ; executes fod, ; ¢ Determine the smallestsuch that the tardiness & ;

time prior to timet < dj, ;, then itsslackat ¢, given by is at mostr + e, usingUB andLB.
di,; —t — (ex — Jk,;), represents the maximum amount of
time that7}, ; can remain idlei(e., not execute) and still The value ofr so obtained is characterized in the follow-

meet its deadline. This concept is used in scheduling taskgng theorem.

in the following way: all jobs are scheduled usiGdDF, Theorem 1. LetU(, y) denote the set of at mogttasks
with the exception that, if a job of a privileged task has ¢ highest utilization7 from the task set Let E(r,y) de-
zero slack, then it is executed continuously until its dead- hote the set of at most tasks with the highest execution
line. This policy clearly ensures that privileged tasks do n costs fromr. Let E;, = Zu:EE(TL m_1y € andUp =
miss their deadlines. (Recall that each core group consisti ' ’

) Wi Let ey = max(e;) and
of at least two cores.)

e; €U (tp,min(m—2,|7L|)
emin = min(e;), let

4. Tardiness Bounds Er+eot+ Y ex(l+ fr—2Zk) — emin
z) = kel)
We describe the tardiness-bound derivationEBF-ms m—|tu| — UL
for tasks in one group, which is based upon the techniques
from [4, 5]. Due to space constraints it is not possible to co+EL+ Z ex(3—Zi) + A
present it here in detail, these details can be found ontine a ke{0m+1}
http://www.cs.unc.edlianderson/papers. T2 = m—maz(|ra|— 1, 0)ymazr, ery i — UL — Zo— Znt1 ®)

We say that the system ison-concreteif the release
times of jobs are not specified, amoncrete otherwise. ~ Where

Given an arbitrary non-concrete task systef, we want = { (Zo+ Znss — Vemm it Zo+ Znsa < 1

to determine the maximum tardiness of any job of any non- (Zo + Znsr — e otherwise
n -“max .

privileged task in any concrete instantiation of . Let

o = {To,Tn41} be the set of privileged tasks, and let Wjth » = min(z:,2.), tardiness for a non-privileged

7, = {Th,...,T,} denote the remaining tasks. Letbe t55k7} scheduled undgEDF-ms is at most: -+ e.
a concrete instantiation ofV. All jobs of non-privileged

tasks are processed by the system, and the jobs of privileged Note that, for tardiness to be bounded unB&t-ms,
tasks are processed according to top and bottom rules. Lethe denominators in the right-hand-side expressions in (2)

Ty,; be a job of a non-privileged task in lett; = dy,;, and (3) must not be zero. This gives us two require-
and letS be anEDF-ms schedule forr with the following ~ ments,m — |ry| — Uy > 0, andm — max(|7g| —
property. 1,0)(mazr,er ;) — Zo — Zny1 — U, > 0. Thus, to

ensure bounded tardiness, some slight restrictions on task
utilizations are required. (The impact of these restridits
assessed in the next section.)

We have assumed above that there are two privileged
Our goal is to determine the smallestindependent of the tasks. If only one such task exists, then we can assume
parameters of, such that the tardiness @} ; remains at ~ there are two, with the execution cost, utilization, arid
mostz + e,. Such a result would by induction imply a tar- andf values for one of them being zero. Of course, if there
diness of at most + e;, for all jobs of every non-privileged ~ are no privileged tasks, then tardiness can be analyzed usin
taskT}, € 7. Because is arbitrary, the tardiness bound will the results from [4].
hold for every concrete instantiation of'. We have also required that there be at least two cores per

Assume thafl; ; misses its deadline (for otherwise, its group. A group with one core can be handled in three ways.
tardiness is zero). The completion timelof; then depends
on the amount of work that can compete with; aftert,.
Hence, a value for can be determined via the following
steps.

The tardiness of every job of every non-privileged task
T, in 7 with deadline less thaty, is at mostz + ¢, in
S, wherex > 0.

e We can use the same approach described above, but
limit the group to have at most one privileged task. In
this case, the group’s lone core may not be fully uti-
lized.

e Compute an upper bound)B) on the work pending
for tasks inr (including that due td7 ;) that can com-
pete withTy ; aftert,.

e We can schedule the tasks within the group Ed@F-
fm schedules tasks on one processor. Note Hi-
fm requires that if two privileged tasks exist, then they

e Determine a lower bound.B) on the amount of such have a combined share on the processor of at most one.
work required for the tardiness &7 ; to exceedc+e;. On the other hand, the processor can be fully utilized.

e We can combine the lone core in the group with slower
cores to create a group of at least two cores. This
comes at the expense of not utilizing the full process-
ing capacity of the core added to the slower group.

The best approach will depend on the workload to be sched-
uled.

5. Experimental Evaluation

In this section, we present an experimental evaluation
of EDF-ms. We performed two sets of experiments. In
the first, we assessed tardiness within a single group. In
the second, we assessed the impact of several variants of
the task-assignment method discussed in Sec. 2 on overall
tardiness.

5.1. Tardiness Bounds for a Single Group

In this set of experiments, we computed per-task tardi-
ness bounds for random task setsron= 2, 4, 8, and 16
unit-speed processors in the presence of one or two priv-
ileged tasks (top or bottom). Each task set consisted of at
leastm + 1 tasks. Tasks within each set were generated with
utilizations uniformly distributed if0, w42), Whereu,, ..
ranged from0.1 to 1 in steps 0f0.05. For each value of
Umaz, 1,000 task sets were generated. Task execution costs
were uniformly distributed ovelil0, 20). Tasks were added
to the generated task set until total utilization exceeded
The shares of the privileged tasks were then defined so that
Zo + Znt1 + 3y, ,ui = m. The top (bottom) task
(if either existed) was taken to be the task with the smallest
(largest) utilization.

Fig. 3 shows the averageaximuntask tardiness plotted
against the average task utilizatian,,,, for different val-
ues ofm. Note that tardiness grows as,, grows, with the
exception of the case of two processors and one privileged
task, shown in inset (a). In this case, if we apply Theorem 1
form = 2, thenU, = 0, and only one o7, and Z,,,
is non-zero and it is at most one. In this case, the denom-
inators of (2) and (3) are independent of the utilizations of
non-privileged tasks.

The situation forn = 2 changes drastically if there are
two privileged tasks. During some time intervals, both pro-
cessors in the group must execute jobs of privileged tasks.
During such intervals, non-privileged tasks cannot ex@cut
at all. If the number of non-privileged tasks is small, and
they have high utilizations, then these tasks recover glowl
from this shortage of processing capacity, as demand due
to privileged tasks lessens. This situation is depictedhén t
right part of inset (a), where non-privileged tasks havéhig
utilizations.

As seen in insets (b)—(d), this effect eases as the number
of processors grows. This is because, with more than

Average tardiness vs. average util. m=2

w
o
o

—— Two privileged tasks
—&—0One top task
t | ——One bottom task

N
o
o

[
o
o

Avg. tardiness

= + At
TS5 0066060000000

0 0.2 0.4 0.6 0.8 1
Avg. utilization

@

Average tardiness vs. average util. m=4

w
o
o

—<— Two privileged tasks
—o—0One top task
t | ——One bottom task

N
o
o

=
o
o

Avg. tardiness

0 0.2 0.4 0.6 0.8 1
Avg. utilization

(b)

Average tardiness vs. average util. m=8

800 ——Two privileged tasks

—s—One top task
200} | —— One bottom task

100

943&**

Avg. tardiness

0 0.2 0.4 0.6 0.8 1
Avg. utilization

(©

Average tardiness vs. average util. m=16

800~ Two privileged tasks

—<—One top task
200} | —— One bottom task

100

Avg. tardiness

0 0.2 0.4 0.6 0.8 1
Avg. utilization

(d)

Figure 3. Tardiness bounds versus w4 for (a)
m = 2, (b) m =4, (¢) m =8, and (d) m = 16.

two processors, at least one processor is always available t Core groups
execute non-privileged tasks. As the number of processors s51=1|s9=2|s3=3| M
grows, more processing capacity is available for executing Ch 12 4 2 18
the jobs of non-privileged tasks. Hence, tardiness deeseas Co 24 8 4 36
This suggests th&DF-ms may be very effective in large Cs 48 16 8 72
multicore systems, the main focus of our work.

Note that the curves in insets (a) and (b) for the case Table 1. Three evaluated configurations.

of two privileged tasks do not continue to increase at the
right. This is because, when is only two or four but two

privileged tasks exist, the number of samples with higl, . . . "
is small. were generated until the combined processing capacities of

As remarked earlier, bounded tardiness is guaranteed un&Sroups 2 and 3 would be exceeded. Finally, the remaining

der EDF-ms only if the two conditionsn — maz(|rg| — tasks were generated with utilizationg0.7) until the re-
1,0)mazrcr, (u;) — Zo — Zns1 —Ur > 0 andm — |rg| — maining capacity of the system was exhausted. All task ex-
Uy, > 0 hold. These conditions are not very restrictive. As €cution costs were distributed uniformly over 100). For
evidence of this, no task set generated in this set of experi-Sach generated task system, we used Theorem 1 to compute

ments had to be rejected because of these conditions. the maximum tardiness of the non-privileged tasks in each
group under each assignment scheme.

Fig. 4 shows the maximum tardiness per group for each
configuration. Each point in each group gives the maxi-
_ o mum tardiness of one of the generated task sets. As the

Because tardiness within a group depends on the paramyaphs showMIN-EXEC results in significantly lower tar-
eters of the privileged tasks in that group, it might be pos- giness for Group 2 and slightly lower tardiness for the other
sible to lower overall tardiness by using a task—assignmentgroups_ On the other hand, the us@iN-UTIL did not re-
policy that lessens the impact of privileged tasks on other g it in petter tardiness tha®IMPLE. However, this could
tasks. To see if this is so, we considered two such policiesye an artifact of our task-generation methodology. The
and compared them to the one described in Sec. 2. In thapyera|| conclusion to be drawn from these results is that the
which follows, we refer to original policy described earlie gignjficant flexibility that exists in the task-assignmerdp
asSIMPLE. cess can be exploited to realize certain benefits in some sys-

According to Theorem 1, if the privileged tasks within @ tems. (In particular, this assignment process is not rig |
group either require large shares within the group or havethe pin-packing strategies used in partitioning schemes.)
high execution costs, then tardiness within the group may other benefits beyond lowering tardiness are possible. For
be high. This suggests two alternative assignment policies example, some hard real-time tasks could be supported by
one that seeks to minimize the shares of privileged tasks.choosing them as intergroup tasks. Also, the response times
and a second that seeks to minimize their execution costsqf certain tasks could be lowered by assigning them to faster

Both policies function in a similar way: after runniigM- cores, as long as the resulting assignment is valid and uti-
PLE, consider the groups in decreasing index order, and for|ization constraints are met.

each group, select as the bottom task the task in the group

with nonzero share that has the smallest utilization or exe- .
cution cost. We call the former scherviN-UTIL, andthe ~ © Conclusion
latter, MIN-EXEC. (If a task with a lower utilization is se-

5.2. Task Assignments, Revisited

lected as the bottom task in Groap then it may actually We have presented a new algoritHB)F-ms, which can

fit within Grouph + 1. Thus, in both schemes, the process be used for scheduling sporadic soft real-time task systems

of assigning tasks to groups is in fact iterative.) on asymmetric multicore platforms with cores of different
To evaluate the impact dflIN-UTIL and MIN-EXEC, speeds. To our knowledge, this paper is the first to propose a

we considered three system configuratiohs Cs, andCs, scheduling approach for such heterogeneous platforms that

which have a small, medium, and large total nhumber of is suitable for soft real-time workloads that require boeshd
coresM . Each configuration consists of cores with speeds deadline tardiness. Our algorithm is capable of fully uti-
one, two, and three. The number of cores of each type islizing the processing capacity of the system, provided cer-
shown in Table 1. For each configuration, we evaluated 60tain very slight restrictions on task utilizations hold. i§h
task sets. The tasks in each set were generated as followgroperty comes at the price of needing to migrate tasks, as
First, tasks with utilizations distributed randomly[in 2.1) required in global scheduling approaches suclGEDF.
were generated until the processing capacity of Group 3Note that the main cost of a migration is a loss of cache
would be exceeded. Then, tasks with utilization§0in .4) affinity. Thus, in a multicore platform, the need to migrate

Max tardiness of tasks in C1

o
>
<]
(o))
o
2 200 g®00%i¢§?%>@é’e+
c O fan ot
£ ORI o+‘3’@
@ 150t SBEFL R
Q o %t“’+%><x*ﬁ©
% x X’“Xxxxaxxxxg(bi o g+
x0Exx X o
= 100} % < kA fg@%%q%u
x Fioe @, BH 1 o
% + SIMPLE B oo e
= 50 « MIN-EXEC S ey
o MIN-UTIL El
Group 1 Group 2 Group 3
Groups

(@)

Max tardiness of tasks in C2

o
3 3
o ° P &
£ 200 + Foodog
= Q'* 04‘9 +
£ oo
@ 1501 Segab oy,
. .
£ 5 *‘M‘;‘@o
S 100/ P gl ot
= i +
3 + SIMPLE L ety
50 ™ Xk xR R
= x MIN-EXEC X%k
o MIN-UTIL
Group 1 Group 2 Group 3
Groups

(b)

Max tardiness of tasks in C3

N
o
o

Max tardiness in the group
&
o

100}
+ SIMPLE
501« MIN-EXEC
o MIN-UTIL
Group 1 Group 2 Group 3
Groups

(©)

Figure 4. Tardiness bounds under different
assignment schemes for three core groups in
three different configurations: (& Cq, (b) Cy,
and (c) Cs.

tasks is less of a concern than for a traditional SMP, due to
the presence of shared on-chip caches. Although we have
not directly included migration costs in our task modelythe
can be accounted for by inflating task execution costs to
include the cost of migrations, as is commonly done in real-
time scheduling analysis.

Several interesting avenues for further work exist. For
example, it would be interesting to extend our results to
include tasks with synchronization requirements. It would
also be interesting to consider workloads with both softrea
time and non-real-time tasks. Finally, in this paper we have
considered heterogeneous platforms where the cores only
differ in speed. This is different frorfunctional asymme-
try, where each core has a different set of “capabilities” and
tasks must be matched with cores possessing the capabili-
ties they need. It would be interesting to extend our results
to apply to such platforms.

References

[1] J. Anderson, V. Bud, and U. Devi. An EDF-based scheduling
algorithm for multiprocessor soft real-time systems.Phac.
of the 17th Euromicro Conf. on Real-Time Systepps 199—
208, 2005.

[2] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation.
Algorithmica 15:600-625, 1996.

[3] J. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. Ander-
son. Soft real-time scheduling on performance asymmetric
multicore platforms. IrProc. of the 13th IEEE Real-Time and
Embedded Technology and Applications Symp. 101-110,
2007.

[4] U. Devi and J. Anderson. Tardiness bounds for global EDF
scheduling on a multiprocessor. Rroc. of the 26th IEEE
Real-Time Systems Symmp. 330—-341, 2005.

[5] U. Devi and J. Anderson. Flexible tardiness bounds for spo-
radic real-time task systems on multiprocessorsPtoc. of
the 20th IEEE International Parallel and Distributed Process-
ing Symp.2006.

[6] S. Funk. Implementing Real-time Systems on Heterogeneous
Multiprocessors Ph.D. dissertation, The University of North
Carolina at Chapel Hill, 2004.

[7] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and
K. Farkas. Single-ISA heterogeneous multi-core architectures
for multithreaded workload performanderoc. of the 31st In-
ternational Symp. on Computer Architecture (IS@f) 64—

75, 2004.

[8] R. Rajkumar. Resource Kernels: Why Resource Reservation
should be the Preferred Paradigm of Construction of Embed-
ded Real-Time Systems. Keynote talk, 18th Euromicro Con-
ference on Real-Time Systems, Dresden, Germany, 2006.

