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Abstract

Multicore platforms, which include several processing
cores on a single chip, are being widely touted as a so-
lution to heat and energy problems that are impediments
to single-core chip designs. To accommodate both paral-
lelizable and inherently-sequential applications on the same
platform, heterogeneous multicore designs with faster and
slower cores have been proposed. In this paper, we consider
the problem of scheduling soft real-time workloads on such
a platform.

1. Introduction

Given the thermal and power problems that plague
single-processor chip designs, most major chip manufactur-
ers are investing in multicore technologies to achieve higher
system performance. A number of systems with a modest
number of cores are currently available, and in the coming
years, the number of cores per chip is expected to increase
significantly. In fact, chips with hundreds of cores are en-
visioned. It remains to be seen, however, whether such an
extensive degree of parallelism can be effectively exploited.
Indeed, many applications exist that areinherentlysequen-
tial. In light of this, one approach, which is being advo-
cated by many chip designers, is to provide a mix of faster
and slower cores on the same platform [7]. On such a plat-
form, an inherently-sequential application would benefit by
executing on a faster core, while parallizable applications
could execute across many slower cores. While having only
fast cores would obviously be desirable, faster cores require
greater chip area, so such an approach would adversely limit
the number of cores per chip.

Large multicore platforms will likely be used in settings
where timing constraints are required. For example, one en-
visioned use of such platforms is as a central server within

∗Work supported by a grant from Intel Corp., by NSF grants CNS
0408996, CCF 0541056, and CNS 0615197 and by ARO grant W911NF-
06-1-0425.

the home that multiplexes interactive applications that re-
quire best-effort service with multimedia applications that
have real-time requirements [3]. Such applications might
include streaming movies over the Internet, providing ca-
ble television, or executing custom programs such as video
games. Timing constraints in these applications are typi-
cally soft: missed deadlines, though undesirable, are usually
not disastrous. Such constraints are far more common than
hard constraints in many settings [8]. Unfortunately, prior
work on scheduling real-time workloads on heterogeneous
multiprocessors has focused only on hard real-time systems.
While such work can be applied to schedule soft real-time
applications, this comes at the price of overly conservative
system designs.

In this paper, we show that such conservatism can be
eliminated if deadline misses are permissible. We show this
by presenting an algorithm for multi-speed systems called
EDF-ms, which is a variant of the globalEDF (GEDF)
scheduling algorithm. LikeGEDF [4], deadline tardiness
underEDF-ms is bounded when scheduling sporadic tasks.
Further, such bounds do not require severe caps on total
utilization. In contrast, even with same-speed cores, if
deadlines cannot be missed, then caps that can approach
50% of the available processing capacity are required un-
der all known scheduling algorithms, except for Pfair al-
gorithms [2]. Pfair algorithms, which have not been stud-
ied in the context of multi-speed systems, schedule tasks
one quautum at a time, and thus preempt and migrate tasks
frequently. EDF-ms preempts and migrates tasks less fre-
quently, does not require same-speed cores, and can accom-
modate tasks with high execution costs for which utilization
exceeds one on slower cores.

Prior work. Work on scheduling in heterogeneous multi-
processor real-time systems was initiated by Funk and col-
leagues, who presented a number of scheduling algorithms
and associated analysis methods for systems with hard tim-
ing constraints. References concerning this work can be
found in Funk’s Ph.D. dissertation [6] (and are not included
here due to space constraints). As noted earlier, our empha-
sis onsoft real-time systems distinguishes our work from



these earlier efforts.
In work that is more experimental in nature, Kumaret

al. [7] measured throughput and job response times on a
two-speed multicore system with partitioned scheduling,
and presented dynamic load-balancing heuristics that max-
imize throughput. This work is of relevance to research on
soft real-time systems, as job response times are considered,
but it does not include any analysis for validating deadlines
or deadline tardiness.

Our algorithm,EDF-ms, has been devised by utilizing
ideas from two prior papers concerning symmetric multi-
processor systems by Deviet al. [1, 5]. In [1], an EDF-
based algorithm calledEDF-fm is presented that limits
task migrations without restrictive caps on total utilization.
EDF-fm is a hybrid of partitionedEDF and GEDF. In
EDF-fm, tasks are categorized as either “fixed” or “migrat-
ing” (hence the suffix “fm”). A fixed task exclusively exe-
cutes on a specific processor. On the other hand, eachmi-
grating task executes on two processors, with each of its in-
vocations executing exclusively on one of its assigned pro-
cessors. Individual task utilizations must be capped at 1/2,
but total utilization is not restricted (other than being atmost
the system’s total processing capacity). Invocations of each
migrating task are distributed between its assigned proces-
sors so that these processors are not overloaded in the long
run; however, short-term overloads are possible. Such over-
loads can cause fixed tasks to miss their deadlines. How-
ever, such misses are by bounded amounts only.

BecauseEDF-ms is a variant of GEDF, tardiness
bounds established forGEDF are of relevance to our work.
Such bounds were first established by Devi and Anderson
in [4]. These bounds apply to any sporadic task system
with total utilization at mostM scheduled onM symmetric
processors. Any task can have maximum tardiness. Such
behavior might not be acceptable for certain applications.
In [5], the analysis in [4] is extended to allow up toM
“privileged” tasks to have any predefined tardiness value,
including zero. The resulting variant ofGEDF is called
EDF-hl. (The suffix “hl” signifies that privileged tasks are
given higher priority, and others lower.)

Our approach. In the problem considered herein, cores
are organized into groups, where cores in the same group
have the same speed. In the earlierEDF-fm algorithm, mi-
grating tasks are prioritized over fixed tasks to ensure that
the former have zero tardiness. This allows schedulability
to be analyzed on each processor independently. (If a mi-
grating task were to miss a deadline on one of its proces-
sors, then this might delay its next invocation on its other
processor. As a result, the two processors could not be an-
alyzed independently.) We desire to maintain a similar in-
dependence property acrossgroupsof cores. To do this, we
categorize tasks as either “fixed” or “intergroup.” Afixed
task executes only on the cores in one group, while anin-

tergrouptask may be executed on two groups of cores. We
use the term “intergroup” instead of “migrating” because a
fixed task in our case may migrate (among the cores in its
group). We distribute the invocations of an intergroup task
between its two assigned core groups in the same way as
invocations of migrating tasks are distributed inEDF-fm.
Further, we treat intergroup tasks specially when schedul-
ing, as in the earlierEDF-hl algorithm, so that they can be
guaranteed zero tardiness. This enables each group of cores
to be analyzed independently. However, one key difference
arises in our analysis: the distribution pattern used for in-
tergroup tasks allows short-term overloads to occur (for the
same reason that such overloads occur inEDF-fm). Thus,
the analysis of tardiness in [5] must be adjusted to allow
privileged tasks to create short-term overloads.

Summary of contributions. The main contributions of
this paper include devisingEDF-ms and establishing tar-
diness bounds for it. In addition, we present an experimen-
tal evaluation ofEDF-ms’s effectiveness in limiting tardi-
ness. To our knowledge,EDF-ms is the first algorithm
proposed for multi-speed platforms that can schedule soft
real-time tasks with bounded tardiness without severe uti-
lization restrictions. Because the ideas underlyingEDF-ms
were originally proposed in completely different settings,
new analysis for integrating these ideas had to be devised.
EDF-ms, its analysis, and evaluation are presented in de-
tail in Secs. 3–5, after first presenting our system model in
Sec. 2.

2. System Model

We consider the problem of scheduling a set of sporadic
tasks onM ≥ 4 cores ofg ≥ 2 speeds. We will group cores
by speed: we letmh denote the number of cores in Group
h, where1 ≤ h ≤ g, and we letsh denote their speed. We
assumes1 = 1 andsj < sk if j < k. We also assume that
mh ≥ 2 holds for eachh. (Given that our main focus is
large multicore platforms, this is a reasonable assumption.
However, we briefly consider later how to handle groups
with only one core.)

We let τ denote the sporadic task system to be sched-
uled, and assume that it consists ofn independent tasks,
T1, . . . , Tn. Each task is invoked orreleasedrepeatedly,
with each such invocation called ajob. Associated with
each taskTi are two parameters,ei and pi: ei gives the
maximumexecution timeof one job ofTi on a unit-speed
core, while,pi, called theperiodof Ti, gives the minimum
time between two consecutive job releases ofTi. On a core
with speedsh, a job ofTi completes inei/sh time units.
For brevity,Ti’s parameters are sometimes denoted using
the notationTi = (ei, pi).

Thekth job of Ti, wherek ≥ 1, is denotedTi,k. A task’s
first job may be released at any time at or after time zero.



The release time of the jobTi,k is denotedri,k and its (ab-
solute) deadlinedi,k is defined asri,k + pi. Each task is
sequential, so at any time, it may execute on at most one
core. When a job of a task misses its deadline, the release
time of the next job of that task is unaltered. This ensures
that each task receives a processor share in accordance with
its utilization (defined below) in the long term. Thus, a task
may release a new job when prior job(s) of that task have
not been completed. Such a new job cannot commence ex-
ecution until the prior jobs have completed. If a jobTi,j

with a deadline atdi,j completes at timet, then itstardi-
nessis defined asmax(0, t− di,j). A task’s tardiness is the
maximum of the tardiness of any of its jobs.

The utilization of taskTi is defined asui = ei/pi, and
the utilization of the task systemτ asUsum =

∑

Ti∈τ ui.
We require

∑

ui>sj
ui ≤

∑

k>j mk · sk and Usum ≤
∑g

h=1 mh · sh. Otherwise, tardiness can grow unbound-
edly. Note that the first of these requirements implies
ui ≤ max(sj). Note also that it is possible thatui > sj

holds for somej.
In this paper, we assume that time is continuous, but ex-

ecution costs, periods, and core speeds are rational.

3. Algorithm EDF-ms

The nameEDF-ms stands forEDF multi-speed. Like
EDF-fm [1], mentioned earlier, the algorithm consists of
two phases: an offlinetask assignmentphase and an online
executionphase. When the task assignment phase is applied
to some task setτ , at mostg groups of tasks are created. In
addition, there may be up tog − 1 tasks that do not belong
to any group. Each of these tasks may execute on the cores
of two groups. For each pair of consecutive groups, say
Grouph and Grouph + 1, at most one task that migrates
between them may exist. We denote this task (if it exists)
as Th,h+1 and call it anintergroup task. All other tasks
are calledfixed tasks, as each executes within one group
only. The assignment algorithm (which is not shown, due
to space constraints) sorts tasks by utilization and assigns
tasks to groups by exhausting the capacity of faster groups
first.

The assignment algorithm returns a set of valuesZk,h,
where1 ≤ k ≤ n and1 ≤ h ≤ g. The valueZk,h denotes
the fraction ofTk’s utilization that is assigned to Grouph.
For any fixed taskTk assigned to Grouph, Zk,h = uk holds.
For any intergroup taskTk = Th,h+1, Zk,h + Zk,h+1 = uk

holds. If taskTk may not execute on Grouph, thenZk,h =
0. The assignment algorithm ensures the following.

∑

h

Zi,h = ui ∧
∑

i

Zi,h ≤ mh · sh (1)

Example 1. Fig. 1 shows the assignment determined for
the task setτ = {T1, . . . , T13}. For conciseness, we will
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Figure 1. Mapping of the task set onto groups
of cores in Example 1. Different shadings are
used for tasks with utilization at most one,
two, and three.

use the notationTi−j to denoteTi, . . . , Tj in describing this
task set.τ consists ofT1−5 = (8, 10), T6−9 = (3, 2), and
T10−13 = (4, 2). TasksT1−5, T6−9, andT10−13 have uti-
lization 0.8, 1.5, and2.0, respectively. The system is com-
prised of three groups of cores of speeds one, two, and three.
That is,m1 = 3, s1 = 1, m2 = 3, s2 = 2, m3 = 3, and
s3 = 3. In Fig. 1, each core group is depicted as a “bin”
with its height proportional tomh · sh, i.e., the total pro-
cessing capacity of the group. As seen, tasksT1−3 are as-
signed to Group1, tasksT5−8 to Group2, and tasksT10−13

to Group3. TasksT4 = T 1,2 andT9 = T 2,3 are intergroup
tasks.

For each Grouph, we can define a set of tasksτh with
jobs to be scheduled by this group:

τh = {Ti : Zi,h > 0}.

As with migrating tasks inEDF-fm [1], if an intergroup
taskTh,h+1 were to miss its deadline in the schedule for ei-
ther Grouph or Grouph + 1, then this would create a non-
trivial linkage between these two groups that complicates
scheduling analysis. This is because, if a job ofTh,h+1

misses its deadline, then the processing of the next job of
Th,h+1 may be delayed untilafter its release, and this may
increase the chance that it will miss as well. Thus, missed
deadlines in one group could lead to missed deadlines in an-
other group. Thus, our scheduling policy must achieve two
goals: (i) allow us to analyze the schedule in each group
independently, and(ii) not overload any group in the long
run (for otherwise, tardiness in such a group would grow
unboundedly).

These goals are accomplished as follows. During the ex-
ecution phase ofEDF-ms, jobs of tasks inτh are scheduled
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Figure 2. Assignment of jobs of the task T9

from Example 2.

on the cores in Grouph usingGEDF, with the jobs of in-
tergroup tasks treated specially. As we shall see, the special
treatment given to intergroup tasks ensures that their jobs
always have zero tardiness. This allows us to analyze each
core group as a separate (same-speed) system. The jobs of
each intergroup taskTk = Th,h+1 are distributed between
its assigned Groupsh andh + 1 using a special determin-
istic pattern first described in [1], which ensures that the
total workload from these jobs assigned to these two groups
over the long term is in accordance with the sharesZk,h and
Zk,h+1, respectively.

In order to describe this assignment pattern, we introduce
some additional notation. For each intergroup taskTk =
Th,h+1, we letfk,h andfk,h+1 denote the fraction ofTk ’s
jobs that are processed by Groupsh andh+1, respectively.
These two quantities are defined as follows.

fk,h = Zk,h/uk ∧ fk,h+1 = Zk,h+1/uk

Note that, by (1),fk,h + fk,h+1 = 1.
To explain the assignment pattern, we consider a single

group, Grouph. Assume that there exist two intergroup
tasksTh−1,h andTh,h+1. If we were to depict Grouph as
a “bin” as done in Fig. 1, thenTh−1,h would be thetop task
in Grouph, andTh,h+1 would be thebottomtask. Different
(complementary) assignment rules are needed for these two
cases. LetTk denote eitherTh−1,h or Th,h+1. Let j ≥ 1
be the index of the latest job released byTk at or after time
t and letja be the number of jobs ofTk assigned to Group
h beforet. For the case whereTk = Th−1,h, i.e., Tk is
the top task, thejth job of Tk is assigned to Grouph iff
j − 1 6= bj − ja/(1 − fk,h)c. We call this assignment rule
the top rule. For the case whereTk = Th,h+1, i.e., Tk is
the bottom task, thejth job of Tk is assigned to Grouph iff
j − 1 = bja/fk,hc. We call this assignment rule thebottom
rule.

Example 2. Fig. 2 shows the assignment pattern for the
jobs of taskT9 from Example 1, which has frequencies
f9,2 = Z9,2/u9 = 0.5/1.5 = 1/3 andf9,3 = Z9,3/u9 =
1/1.5 = 2/3. Jobs ofT9 are assigned to Group 2 using the
bottom rule and to Group 3 using the top rule. Here, we will

focus on Group 2. Consider the time instantt = 6 when the
fourth job ofT9 is released. When considering this fourth
job in the bottom rule,j = 4. Prior to timet, one job of
T9 was assigned to Group 2, soja = 1. Applying these
values via the bottom rule, we obtainj − 1 = 3 = b1 · 3c =
bja/f9,2c, so the job is assigned to Group 2. Note that, by
time6, three jobs ofT9 are released and one of them is pro-
cessed by Group 2, which is in accordance with the fraction
f9,2 = 1/3.

As shown in [1], this assignment strategy ensures that the
maximum number of jobs of an intergroup taskTk released
during an interval of lengtht and assigned to Grouph is
at mostdfk,hd

t
pk
ee. Thus, the maximum demand due to

jobs of Tk that must be processed by Grouph during an

interval of lengtht is at most
⌈

fk,h

⌈

t
pk

⌉⌉

ek, which is ap-

proximatelyZk,h · t. Because the demand of each fixed task
Tk ∈ τh during the interval[0, t) is at mostuk · t, and the
demand of each intergroup taskTk assigned to Grouph is
approximatelyZk,h · t, Grouph will not be overloaded in
the long run. For example, for Group 2 in Fig. 1, these val-
ues sum to6t, which matches the group’s overall computing
capacity within[0, t), as given bym2 · s2 · t.

Because no group is overloaded in the long term, the
scheduling policy we give below for each group will ensure
that the jobs of intergroup tasks never miss their deadlines.
As such, we no longer need to consider multiple groups,
but can concentrate our analysis efforts on just one, say
Grouph. Furthermore, Grouph’s per-core speed ofsh is no
longer an issue, since all cores in the group have the same
speed. We therefore assume that all cores in Grouph have
a speed of one and that all execution costs, utilizations, and
Zk,h values of tasks executing on the cores of Grouph have
been scaled by dividing them bysh.

We further simplify the problem notationally by assum-
ing that we have havem (unit-speed) processors upon
which we must schedule a set ofn + 2 sporadic tasks,
τ = {T0, T1, . . . , Tn+1}. T0 andTn+1 represent, respec-
tively, the top and bottom intergroup tasks for this core
group. (Later, we explain how to adjust our results if either
of these tasks does not exist.)T1, . . . , Tn are the fixed tasks
for the group. Our scheduling policy treatsT0 andTn+1

specially so that their jobs do not miss their deadlines, so
we call themprivileged tasks. Jobs of the privileged tasks
are assigned to the system using the top and bottom rules
discussed earlier. We letZ0 < u0 andZn+1 < un+1 denote
the part of the utilization of tasksT0 andTn+1, respectively,
that must be processed by the system. IfT0 andTn+1 both
exist, as assumed here, thenZ0 + Zn+1 +

∑n

i=1 ui = m.
More generally,Z0 + Zn+1 +

∑n

i=1 ui ≤ m. We let
f0 = Z0/u0 andfn+1 = Zn+1/un+1.

Jobs of privileged tasks are treated specially in schedul-
ing by using an approach presented in [5]. In this approach,



the concept of slack is used: if jobTk,j executes forδk,j

time prior to timet ≤ dk,j , then itsslack at t, given by
dk,j − t − (ek − δk,j), represents the maximum amount of
time thatTk,j can remain idle (i.e., not execute) and still
meet its deadline. This concept is used in scheduling tasks
in the following way: all jobs are scheduled usingGEDF,
with the exception that, if a job of a privileged task has
zero slack, then it is executed continuously until its dead-
line. This policy clearly ensures that privileged tasks do not
miss their deadlines. (Recall that each core group consists
of at least two cores.)

4. Tardiness Bounds

We describe the tardiness-bound derivation forEDF-ms
for tasks in one group, which is based upon the techniques
from [4, 5]. Due to space constraints it is not possible to
present it here in detail, these details can be found online at
http://www.cs.unc.edu/˜ anderson/papers.

We say that the system isnon-concreteif the release
times of jobs are not specified, andconcrete, otherwise.
Given an arbitrary non-concrete task systemτN , we want
to determine the maximum tardiness of any job of any non-
privileged task in any concrete instantiation ofτN . Let
τH = {T0, Tn+1} be the set of privileged tasks, and let
τL = {T1, . . . , Tn} denote the remaining tasks. Letτ be
a concrete instantiation ofτN . All jobs of non-privileged
tasks are processed by the system, and the jobs of privileged
tasks are processed according to top and bottom rules. Let
T`,j be a job of a non-privileged task inτ , let td = d`,j ,
and letS be anEDF-ms schedule forτ with the following
property.

The tardiness of every job of every non-privileged task
Tk in τ with deadline less thantd is at mostx + ek in
S, wherex ≥ 0.

Our goal is to determine the smallestx, independent of the
parameters ofT`, such that the tardiness ofT`,j remains at
mostx + e`. Such a result would by induction imply a tar-
diness of at mostx + ek for all jobs of every non-privileged
taskTk ∈ τ . Becauseτ is arbitrary, the tardiness bound will
hold for every concrete instantiation ofτN .

Assume thatT`,j misses its deadline (for otherwise, its
tardiness is zero). The completion time ofT`,j then depends
on the amount of work that can compete withT`,j after td.
Hence, a value forx can be determined via the following
steps.

• Compute an upper bound (UB) on the work pending
for tasks inτ (including that due toT`,j) that can com-
pete withT`,j aftertd.

• Determine a lower bound (LB) on the amount of such
work required for the tardiness ofT`,j to exceedx+e`.

• Determine the smallestx such that the tardiness ofT`,j

is at mostx + e` usingUB andLB.

The value ofx so obtained is characterized in the follow-
ing theorem.

Theorem 1. Let U(τ, y) denote the set of at mosty tasks
of highest utilization from the task setτ . Let E(τ, y) de-
note the set of at mosty tasks with the highest execution
costs fromτ . Let EL =

∑

ui∈E(τL,m−1) ei and UL =
∑

ei∈U(τL,min(m−2,|τL|)) ui. Let emax = max(ei) and
emin = min(ei), let

x1 =

EL + e0 +
X

k∈{0,n+1}

ek(1 + fk − 2Zk) − emin

m − |τH | − UL

, (2)

x2 =

e0+EL+
X

k∈{0,n+1}

ek(3−Zk) + A

m−max(|τH |−1, 0)maxTi∈τL
ui−UL−Z0−Zn+1

, (3)

where

A =

{

(Z0 + Zn+1 − 1)emin if Z0 + Zn+1 ≤ 1
(Z0 + Zn+1 − 1)emax otherwise.

With x = min(x1, x2), tardiness for a non-privileged
taskTk scheduled underEDF-ms is at mostx + ek.

Note that, for tardiness to be bounded underEDF-ms,
the denominators in the right-hand-side expressions in (2)
and (3) must not be zero. This gives us two require-
ments, m − |τH | − UL > 0, and m − max(|τH | −
1, 0)(maxTi∈τL

ui) − Z0 − Zn+1 − UL > 0. Thus, to
ensure bounded tardiness, some slight restrictions on task
utilizations are required. (The impact of these restrictions is
assessed in the next section.)

We have assumed above that there are two privileged
tasks. If only one such task exists, then we can assume
there are two, with the execution cost, utilization, andZ
andf values for one of them being zero. Of course, if there
are no privileged tasks, then tardiness can be analyzed using
the results from [4].

We have also required that there be at least two cores per
group. A group with one core can be handled in three ways.

• We can use the same approach described above, but
limit the group to have at most one privileged task. In
this case, the group’s lone core may not be fully uti-
lized.

• We can schedule the tasks within the group likeEDF-
fm schedules tasks on one processor. Note thatEDF-
fm requires that if two privileged tasks exist, then they
have a combined share on the processor of at most one.
On the other hand, the processor can be fully utilized.



• We can combine the lone core in the group with slower
cores to create a group of at least two cores. This
comes at the expense of not utilizing the full process-
ing capacity of the core added to the slower group.

The best approach will depend on the workload to be sched-
uled.

5. Experimental Evaluation

In this section, we present an experimental evaluation
of EDF-ms. We performed two sets of experiments. In
the first, we assessed tardiness within a single group. In
the second, we assessed the impact of several variants of
the task-assignment method discussed in Sec. 2 on overall
tardiness.

5.1. Tardiness Bounds for a Single Group

In this set of experiments, we computed per-task tardi-
ness bounds for random task sets onm = 2, 4, 8, and 16
unit-speed processors in the presence of one or two priv-
ileged tasks (top or bottom). Each task set consisted of at
leastm+1 tasks. Tasks within each set were generated with
utilizations uniformly distributed in[0, umax), whereumax

ranged from0.1 to 1 in steps of0.05. For each value of
umax, 1,000 task sets were generated. Task execution costs
were uniformly distributed over[10, 20). Tasks were added
to the generated task set until total utilization exceededm.
The shares of the privileged tasks were then defined so that
Z0 + Zn+1 +

∑

i=1,...n ui = m. The top (bottom) task
(if either existed) was taken to be the task with the smallest
(largest) utilization.

Fig. 3 shows the averagemaximumtask tardiness plotted
against the average task utilization,uavg, for different val-
ues ofm. Note that tardiness grows asuavg grows, with the
exception of the case of two processors and one privileged
task, shown in inset (a). In this case, if we apply Theorem 1
for m = 2, thenUL = 0, and only one ofZ0 andZn+1

is non-zero and it is at most one. In this case, the denom-
inators of (2) and (3) are independent of the utilizations of
non-privileged tasks.

The situation form = 2 changes drastically if there are
two privileged tasks. During some time intervals, both pro-
cessors in the group must execute jobs of privileged tasks.
During such intervals, non-privileged tasks cannot execute
at all. If the number of non-privileged tasks is small, and
they have high utilizations, then these tasks recover slowly
from this shortage of processing capacity, as demand due
to privileged tasks lessens. This situation is depicted in the
right part of inset (a), where non-privileged tasks have high
utilizations.

As seen in insets (b)–(d), this effect eases as the number
of processors grows. This is because, with more than
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Figure 3. Tardiness bounds versus uavg for (a)
m = 2, (b) m = 4, (c) m = 8, and (d) m = 16.



two processors, at least one processor is always available to
execute non-privileged tasks. As the number of processors
grows, more processing capacity is available for executing
the jobs of non-privileged tasks. Hence, tardiness decreases.
This suggests thatEDF-ms may be very effective in large
multicore systems, the main focus of our work.

Note that the curves in insets (a) and (b) for the case
of two privileged tasks do not continue to increase at the
right. This is because, whenm is only two or four but two
privileged tasks exist, the number of samples with highuavg

is small.
As remarked earlier, bounded tardiness is guaranteed un-

der EDF-ms only if the two conditionsm − max(|τH | −
1, 0)maxTi∈τL

(ui)−Z0−Zn+1−UL > 0 andm−|τH |−
UL > 0 hold. These conditions are not very restrictive. As
evidence of this, no task set generated in this set of experi-
ments had to be rejected because of these conditions.

5.2. Task Assignments, Revisited

Because tardiness within a group depends on the param-
eters of the privileged tasks in that group, it might be pos-
sible to lower overall tardiness by using a task-assignment
policy that lessens the impact of privileged tasks on other
tasks. To see if this is so, we considered two such policies
and compared them to the one described in Sec. 2. In that
which follows, we refer to original policy described earlier
asSIMPLE.

According to Theorem 1, if the privileged tasks within a
group either require large shares within the group or have
high execution costs, then tardiness within the group may
be high. This suggests two alternative assignment policies,
one that seeks to minimize the shares of privileged tasks,
and a second that seeks to minimize their execution costs.
Both policies function in a similar way: after runningSIM-
PLE, consider the groups in decreasing index order, and for
each group, select as the bottom task the task in the group
with nonzero share that has the smallest utilization or exe-
cution cost. We call the former schemeMIN-UTIL, and the
latter,MIN-EXEC. (If a task with a lower utilization is se-
lected as the bottom task in Grouph, then it may actually
fit within Grouph + 1. Thus, in both schemes, the process
of assigning tasks to groups is in fact iterative.)

To evaluate the impact ofMIN-UTIL andMIN-EXEC,
we considered three system configurationsC1, C2, andC3,
which have a small, medium, and large total number of
coresM . Each configuration consists of cores with speeds
one, two, and three. The number of cores of each type is
shown in Table 1. For each configuration, we evaluated 60
task sets. The tasks in each set were generated as follows.
First, tasks with utilizations distributed randomly in[0, 2.1)
were generated until the processing capacity of Group 3
would be exceeded. Then, tasks with utilizations in[0, 1.4)

Core groups
s1 = 1 s2 = 2 s3 = 3 M

C1 12 4 2 18
C2 24 8 4 36
C3 48 16 8 72

Table 1. Three evaluated configurations.

were generated until the combined processing capacities of
Groups 2 and 3 would be exceeded. Finally, the remaining
tasks were generated with utilizations in[0, 0.7) until the re-
maining capacity of the system was exhausted. All task ex-
ecution costs were distributed uniformly over[1, 100). For
each generated task system, we used Theorem 1 to compute
the maximum tardiness of the non-privileged tasks in each
group under each assignment scheme.

Fig. 4 shows the maximum tardiness per group for each
configuration. Each point in each group gives the maxi-
mum tardiness of one of the generated task sets. As the
graphs show,MIN-EXEC results in significantly lower tar-
diness for Group 2 and slightly lower tardiness for the other
groups. On the other hand, the use ofMIN-UTIL did not re-
sult in better tardiness thanSIMPLE. However, this could
be an artifact of our task-generation methodology. The
overall conclusion to be drawn from these results is that the
significant flexibility that exists in the task-assignment pro-
cess can be exploited to realize certain benefits in some sys-
tems. (In particular, this assignment process is not rigid like
the bin-packing strategies used in partitioning schemes.)
Other benefits beyond lowering tardiness are possible. For
example, some hard real-time tasks could be supported by
choosing them as intergroup tasks. Also, the response times
of certain tasks could be lowered by assigning them to faster
cores, as long as the resulting assignment is valid and uti-
lization constraints are met.

6 Conclusion

We have presented a new algorithm,EDF-ms, which can
be used for scheduling sporadic soft real-time task systems
on asymmetric multicore platforms with cores of different
speeds. To our knowledge, this paper is the first to propose a
scheduling approach for such heterogeneous platforms that
is suitable for soft real-time workloads that require bounded
deadline tardiness. Our algorithm is capable of fully uti-
lizing the processing capacity of the system, provided cer-
tain very slight restrictions on task utilizations hold. This
property comes at the price of needing to migrate tasks, as
required in global scheduling approaches such asGEDF.
Note that the main cost of a migration is a loss of cache
affinity. Thus, in a multicore platform, the need to migrate
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Figure 4. Tardiness bounds under different
assignment schemes for three core groups in
three different configurations: (a) C1, (b) C2,
and (c) C3.

tasks is less of a concern than for a traditional SMP, due to
the presence of shared on-chip caches. Although we have
not directly included migration costs in our task model, they
can be accounted for by inflating task execution costs to
include the cost of migrations, as is commonly done in real-
time scheduling analysis.

Several interesting avenues for further work exist. For
example, it would be interesting to extend our results to
include tasks with synchronization requirements. It would
also be interesting to consider workloads with both soft real-
time and non-real-time tasks. Finally, in this paper we have
considered heterogeneous platforms where the cores only
differ in speed. This is different fromfunctional asymme-
try, where each core has a different set of “capabilities” and
tasks must be matched with cores possessing the capabili-
ties they need. It would be interesting to extend our results
to apply to such platforms.
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