Tardiness Bounds for EDF Scheduling on Multi-Speed Multicore

Platforms*

Hennadiy Leontyev and James H. Anderson
Department of Computer Science, University of North Caroéin@hapel Hill

Abstract slower cores. While having only fast cores would obviously

be desirable, faster cores require greater chip area, $oasuc

Multicore platforms, which include several processingesor . .
P P g approach would adversely limit the number of cores per chip.

on a single chip, are being widely touted as a solution to heat
and energy problems that are impediments to single-coge chilarge multicore platforms will likely be used in settings
designs. To accommodate both parallelizable and inhgrenhere timing constraints are required. For example, one
sequential applications on the same platform, heterogene®nvisioned use of such platforms is as a central servermwithi
multicore designs with faster and slower cores have bebf home that multiplexes interactive applications thgtine
proposed. In this paper, we consider the problem of scheglulpest-effort service with multimedia applications that &av
softreal-time workloads on such a platform. real-time requirements [3]. Such applications might idelu
streaming movies over the Internet, providing cable tsiew,
1 Introduction or executing custom programs such as video games. Timing
constraints in these applications are typicadlgft missed
Given the thermal and power problems that plague singifeadlines, though undesirable, are usually not disast@ursh
processor chip designs, most major chip manufacturers @@straints are far more common than hard constraints ityman
investing in multicore technologies to achieve higher elyst settings [8]. Unfortunately, prior work on scheduling réiate
performance. A number of systems with a modest numk@srkloads on heterogeneous multiprocessors has focused on
of cores are currently available, and in the coming yeams, ¥h hard real-time systems. While such work can be applied to

number of cores per chip is expected to increase significaniichedule soft real-time applications, this comes at theepsf

In fact, ChipS with hundreds of cores are envisioned. d{/eﬂy conservative system designs_

remains to be seen, however, whether such an extensiveedegre
) , , In this paper, we show that such conservatism can be
of parallelism can be effectively exploited. Indeed, many
L .) , , eliminated if deadline misses are permissible. We showthis
applications exist that armherently sequential. In light of
) L) F11),resenting an algorithm for multi-speed systems cai&d--
this, one approach, which is being advocated by many chip
_)) . ms, which is a variant of the glob&DF (GEDF) scheduling
designers, is to provide a mix of faster and slower cores on
. algorithm. Like GEDF [4], deadline tardiness und&DF-
the same platform [7]. On such a platform, an inherently-
) o . . ms is bounded when scheduling sporadic tasks. Further, such
sequential application would benefit by executing on a faste
)) L bounds do not require severe caps on total utilization. In
core, while parallizable applications could execute axrmany
contrast, even with same-speed cores, if deadlines camnot b

*Work supported by a grant from Intel Corp., by NSF grants CM@3996,))
CCF 0541056, and CNS 0615197 and by ARO grant W911NF-06-5:042 missed, then caps that can approach 50% of the available

processing capacity are required under all known scheglulthan being at most the system’s total processing capacity).

algorithms, except for Pfair algorithms [2]. Pfair algbrits, Invocations of each migrating task are distributed betwieen

which have not been studied in the context of multi-speadsigned processors so that these processors are notolestlo

systems, schedule tasks one quautum at a time, and thuthe long run; however, short-term overloads are possible

preempt and migrate tasks frequentBDF-ms preempts and Such overloads can cause fixed tasks to miss their deadlines.

migrates tasks less frequently, does not require samalsgdewever, such misses are by bounded amounts only.

cores, and can accommodate tasks with high execution cosBecauseEDF-ms is a variant of GEDF, tardiness bounds

for which utilization exceeds one on slower cores. established foIGEDF are of relevance to our work. Such
bounds were first established by Devi and Anderson in [4].

Prior work. Work on scheduling in heterogeneous

. . . These bounds apply to any sporadic task system with total
multiprocessor real-time systems was initiated by Funk PPY y sp y

utilization at mostM scheduled o/ symmetric processors.
and colleagues, who presented a number of scheduling

ny task can have maximum tardiness. Such behavior might
algorithms and associated analysis methods for systents vﬁty :

not be acceptable for certain applications. In [5], the ysial
hard timing constraints. References concerning this wark c P PP 5] ¥o

. . . . in [4] is extended to allow up td/ “privileged” tasks to have
be found in Funk’s Ph.D. dissertation [6] (and are not inellid

.) ., any predefined tardiness value, including zero. The resplti
here due to space constraints). As noted earlier, our emsphasy P g e

i . variant of GEDF is calledEDF-hl. (The suffix ‘hl” signifies
on soft real-time systems distinguishes our work from these

that privileged tasks are given higher priority, and othenser.
earlier efforts. privileg g gher priority.)

In work that is more experimental in nature, Kunedal [7] Our approach. In the problem considered herein, cores are
measured throughput and job response times on a two-spgg@nized into groups, where cores in the same group have the
multicore system with partitioned scheduling, and presgéntsame speed. In the earliEDF-fm algorithm, migrating tasks
dynamic load-balancing heuristics that maximize throughpare prioritized over fixed tasks to ensure that the formeehav
This work is of relevance to research on soft real-time sgste zero tardiness. This allows schedulability to be analyzed o
as job response times are considered, but it does not inaydeeach processor independently. (If a migrating task wereigs m
analysis for validating deadlines or deadline tardiness. a deadline on one of its processors, then this might delay its

Our algorithm EDF-ms, has been devised by utilizing ideagext invocation on its other processor. As a result, the two
from two prior papers concerning symmetric multiprocessprocessors could not be analyzed independently.) We desire
systems by Devét al. [1, 5]. In [1], anEDF-based algorithm to maintain a similar independence property acigssipsof
calledEDF-fm is presented that limits task migrations withoutores. To do this, we categorize tasks as either “fixed” or
restrictive caps on total utilizationEDF-fm is a hybrid of “intergroup.” A fixedtask executes only on the cores in one
partitionedEDF andGEDF. In EDF-fm, tasks are categorizedgroup, while anintergrouptask may be executed on two groups
as either “fixed” or “migrating” (hence the suffifh”). A of cores. We use the term “intergroup” instead of “migrating
fixedtask exclusively executes on a specific processor. On bezause a fixed task in our case may migrate (among the cores
other hand, eacmigrating task executes on two processor# its group). We distribute the invocations of an intergrou
with each of its invocations executing exclusively on one tdsk between its two assigned core groups in the same way
its assigned processors. Individual task utilizations tnings as invocations of migrating tasks are distributedElDF-fm.

capped at 1/2, but total utilization is not restricted (oth&urther, we treat intergroup tasks specially when scheguéis

in the earliefEDF-hl algorithm, so that they can be guaranteesf 73, gives the minimum time between two consecutive job
zero tardiness. This enables each group of cores to be adalyeleases of ;. On a core with speesl,, a job of T; completes
independently. However, one key difference arises in dore;/s; time units. For brevity];'s parameters are sometimes
analysis: the distribution pattern used for intergroupk$éasdenoted using the notatidf) = (e;, p;).

allows short-term overloads to occur (for the same reasorThe k' job of T;, wherek > 1, is denotedl; . A task’s
that such overloads occur EDF-fm). Thus, the analysis offirst job may be released at any time at or after time zero. The
tardiness in [5] must be adjusted to allow privileged tasks ftelease time of the jolf; ;, is denotedr; ;, and its (absolute)
create short-term overloads. deadlined; \, is defined as; , + p;. Each task is sequential, so
at any time, it may execute on at most one core. When a job

Summary of contributions. The main contributions of this

paper include devisingEDF-ms and establishing tardinesf @ task misses its deadline, the release time of the next job

bounds for it. In addition, we present an experimentg‘ that task is unaltered. This ensures that each task exeiv

evaluation ofEDF-ms’s effectiveness in limiting tardiness. T Processor share in accordance with its utilization (ddfine

our knowledge,EDF-ms is the first algorithm proposed forbelow) in the long term. Thus, a task may release a new job

multi-speed platforms that can schedule soft real-timksta%’\'hen prior job(s) of that task have not been completed. Such

with bounded tardiness without severe utilization retities. & new job cannot commence execution until the prior jobs have

Because the ideas underlyinfDF-ms were originally completed. If a jotiT; ; with a deadline ati; ; completes at

proposed in completely different settings, new analysis fimet, then itstardinessis defined asnax(0, 1 —d; ;). Atasks

integrating these ideas had to be deviselF-ms, its analysis, tardiness is the maximum of the tardiness of any of its jobs.

and evaluation are presented in detail in Secs. 3-5, aftr fir The utilization of taskT; is defined asi; = e;/pi, and the

presenting our system model in Sec. 2. utilization of the task system as Usun = ZTfET ui. We

requirezui>sj i <3 s ke sg ANAU g < > Mp-Sh.
2 System Model Otherwise, tardiness can grow unboundedly. Note that the fir
.] _ of these requirements implies < max(s;). Note also that it
We consider the problem of scheduling a set of sporadic tasks
) is possible that;; > s; holds for somegj.

on M > 4 cores ofg > 2 speeds. We will group cores by))) _

] In this paper, we assume that time is continuous, but
speed: we letn;, denote the number of cores in Grolpnhere _ _ _

] execution costs, periods, and core speeds are rational.
1 < h < g, and we lets, denote their speed. We assume= 1
ands; < s, if 7 < k. We also assume that;, > 2 holds for .
SR = 3 Algorithm EDF-ms
eachh. (Given that our main focus is large multicore platforms,
this is a reasonable assumption. However, we briefly consid@e nameEDF-ms stands forEDF multi-speed Like EDF-
later how to handle groups with only one core.) fm [1], mentioned earlier, the algorithm consists of two plsase
We let 7 denote the sporadic task system to be schedulad,offlinetask assignmerghase and an onlirexecutiorphase.

and assume that it consistsiofndependent taskqy, ..., T,,. When the task assignment phase is applied to some task set
Each task is invoked oreleasedrepeatedly, with each suchat mostg groups of tasks are created. In addition, there may be
invocation called gob. Associated with each task are two up tog — 1 tasks that do not belong to any group. Each of these
parameters; andp;: e; gives the maximunexecution timef tasks may execute on the cores of two groups. For each pair of

one job ofT; on a unit-speed core, whilg;, called theperiod consecutive groups, say Grot@nd Grouph + 1, at most one

Group 3

task that migrates between them may exist. We denote tthis tas 9- Group 1 Group 2

(if it exists) asT™"*+1 and call it anintergrouptask. All other 8
tasks are callefixedtasks, as each executes within one group 7+ T, 7 0.2
only. The assignment algorithm (which is not shown, due to g: u,=0.8
space constraints) sorts tasks by utilization and assagks to 4 u,=1.5
groups by exhausting the capacity of faster groups first. ;7 =038 | u=15
The assignment algorithm returns a set of valdgg, where =038 —

g g @7% 14 1/1320.8 u8—1.5

1 <k <nandl < h < g. The valueZy, denotes the 0 Z,,=0.6 2,705

fraction of T},’s utilization that is assigned to Groudp For any)
Figure 1. Mapping of the task set onto groups of cores

fixed taskT}, assigned to Group, Z,, = uy, holds. For any in Example 1. Different shadings are used for tasks with
intergroup taskly, = T""+1, Zy , + Zy ps1 = uy holds. If utilization at most one, two, and three.
task 7, may not execute on Group, thenZ, , = 0. The Grouph or Grouph + 1, then this would create a nontrivial
assignment algorithm ensures the following. linkage between these two groups that complicates schmeduli
analysis. This is because, if a jobBf-"*+! misses its deadline,
zh: Zip=ui A zl: Zih S M Sh (@ then the processing of the next job B+ may be delayed
until after its release, and this may increase the chance that it

Example 1. Fig. 1 shows the assignment determined for the miss as well. Thus, missed deadlines in one group could

task setr = {T,...,Th3}. For conciseness, we will use thgeaq 1o missed deadlines in another group. Thus, our sdnedul
notation7;; to denote’;, ..., T} in describing this task set.sjicy must achieve two goals(i) allow us to analyze the
7 consists of1 5 = (8,10), Ts—9 = (3,2), andTio-13 = schedule in each group independently, &ifchot overload any

(4,2). TasksT 5, Ts—9, andTio-13 have utilization0.8, 1.5, group in the long run (for otherwise, tardiness in such a grou

and2.0, respectively. The system is comprised of three grougsg iq grow unboundedly).
f f t three. Thatis~= =1 . .
of cores of speeds one, two, and three. Thatis= 3, 5, ' These goals are accomplished as follows. During the

= 3, = 2, = 3, ands3 = 3. In Fig. 1, each . . .
my = 3, 52 my =3 53 =3 '9 execution phase dDF-ms, jobs of tasks inr, are scheduled

core group is depicted as a “bin” with its height proporticia on the cores in Groug: using GEDF, with the jobs of

-Sp,l.e, th | pr in ity of the group. A n . .
M- s, 1.8, the total processing capacity of the group ssePinifergroup tasks treated specially. As we shall see, theiape

tasksIy_3 are assigned to Group tasksls_g to Group2, and . . -
=3 g Up o8 P treatment given to intergroup tasks ensures that their jobs

tasksT}o_13 to Group3. TasksTy = T%2? andT, = T?3 are : .
10-13 P 4 ? always have zero tardiness. This allows us to analyze each

intergroup tasks. core group as a separate (same-speed) system. The jobs of

, . each intergroup tas}, = 7""*! are distributed between
For each Group, we can define a set of taskgs with jobs group F

its assigned Groups andh + 1 using a special deterministic
to be scheduled by this group: g ps * gasp
pattern first described in [1], which ensures that the total

o= 1{T;: Zip > 0} @) workload from these jobs assigned to these two groups oger th
long term is in accordance with the shatég; and Zj »1,
As with migrating tasks ifEDF-fm [1], if an intergroup task reSPectively.

Thh+1 were to miss its deadline in the schedule for eitherIn order to describe this assignment pattern, we introduce

bottom rule,; = 4. Prior to timet, one job ofTy was assigned
T, T, T, ﬁ>Group 2 v : ’ J

to Group 2, sgj, = 1. Applying these values via the bottom

T’Tw Tt)j T96 Tw in 1 i i
i ' ' i> Group 3 rule, we obtainj — 1 = 3 = [1-3] = |j,/fo,2), S0 the job is

0 2 4 6 8 10 12 14 16 assigned to Group 2. Note that, by tifethree jobs offy are

Figure 2: Assignment of jobs of the tagk from Example 2. released and one of them is processed by Group 2, which is in

accordance with the fractiofy o, = 1/3.
some additional notation. For each intergroup tdgk =

"1, we let fi. , and fr 11 denote the fraction dfy’s jobs As shown in [1], this assignment strategy ensures that the

that are processed by Groupsindh + 1, respectively. These maximum number of jobs of an intergroup ta%k released

two quantities are defined as follows. during an interval of lengthand assigned to Groupis at most
[fhh[ﬁﬂ. Thus, the maximum demand due to jobgpfthat
foh = Zinfue N frher = Zihr /un ®) must be processed by Groauring an interval of length is
at most
Note that, by (1) fx.n + fr,n+1 = 1. ’ka,h Lgik'H . @)

To explain the assignment pattern, we consider a single

group, Grouph. Assume that there exist two intergroup task¥niCh is approximatelyZ; , - t. Because the demand of each

Th-1h and Th"+1, If we were to depict Grough as a fixed taskT}, € 73, during the interval0, t) is at mostuy, - ¢, and
“bin” as done in Fig. 1, ther™ 1 would be thetop task the demand of each intergroup tdBk assigned to Group is

in Group h, and 7" would be thebottomtask. Different approximatelyZ, , - t, Grouph will not be overloaded in the

(complementary) assignment rules are needed for these |t9vr19 run. For example, for Group 2 in Fig. 1, these values sum

cases. Lef, denote eithe?” 1 or Th"+1. Letj > 1 be the to 6¢, which matches the group’s overall computing capacity
index of the latest job released By at or after timet and letj, Within [0,7), as given bymy - s, - t.

be the number of jobs df}, assigned to Group beforet. For ~ Because no group is overloaded in the long term, the
the case wher&,, = T"~1" i.e, T}, is the top task, thg job scheduling policy we give below for each group will ensure
of T}, is assigned to Group iff j — 1 # |[j — ju/(1 — fu.n)]. that the jobs of intergroup tasks never miss their deadlines

We call this assignment rule thep rule For the case whereAs such, we no longer need to consider multiple groups, but
T, = ThM1 ie., T is the bottom task, thg™ job of 7}, can concentrate our analysis efforts on just one, say Ghoup
is assigned to Group iff j — 1 = [ju/fr.n]. We call this Furthermore, Groug’s per-core speed of, is no longer an
assignment rule thieottom rule issue, since all cores in the group have the same speed. We
therefore assume that all cores in Grdupave a speed of one
Example 2. Fig. 2 shows the assignment pattern for the jolg§id that all execution costs, utilizations, a#gl; values of
of task Ty from Example 1, which has frequencigs, = tasks executing on the cores of Groufave been scaled by
Zgojug = 0.5/1.5 = 1/3 and fo5 = Zgs/uy = 1/1.5 = dividing them bys,.
2/3. Jobs ofTy are assigned to Group 2 using the bottom We further simplify the problem notationally by assuming
rule and to Group 3 using the top rule. Here, we will focubat we have haven (unit-speed) processors upon which
on Group 2. Consider the time instant= 6 when the fourth we must schedule a set of + 2 sporadic tasks,r =

job of Ty is released. When considering this fourth job in thglg, Ty, ..., 7,41} Tp and T, represent, respectively, the

top and bottom intergroup tasks for this core group. (Later, T Job release l Job deadline

explain how to adjust our results if either of these taskssdoe [l Privileged execution] Non-privileged execution

not exist.) 11, ..., T, are the fixed tasks for the group. OurTI ‘ _l | ¢ | ¢ | ¢ | l | l
scheduling policy treatsy andT;, 1 specially so that their jobs T2T | I B I | !_I
do not miss their deadlines, so we call thenivileged tasks. T, T_._- N - m -J
Jobs of the privileged tasks are assigned to the systemtgng 0 4 8 12 16 20 24
top and bottom rules discussed earlier. Wedgt< ug and deadline i(:) deadline miss

Zn+1 < upn+1 denote the part of the utilization of tasks and T, ‘+ u+ ‘ HF 1 | - T s
T,11, respectively, that must be processed by the system. 7|i2 ‘ H B | | l
Ty andT,, ., both exist, as assumed here, thén+ 7,1 + T3'A| s 4 I a4 i e w wl;
o u; = m. More generallyZy + Z,41 + Y iy u; < m. 0 4 8 12 16 20 24
We let fo = Zo/uop and fr41 = Znt1/uny1- (®)

Jobs of privileged tasks are treated specially in schegulifigure 3: Schedulega) without and (b) with temporary
by using an approach presented in [5]. In this approach, e rloads.
concept of slack is used: if jdbj, ; executes foby, ; time prior In contrast, iINEDF-ms, only jobs assigned to the system by
totimet < dy, ;, then itsslackatt, given bydy, ;—t—(ex—d%;), the top and bottom rules are considered. Third, each pgiede
represents the maximum amount of time tiiat; can remain task T} has a specified tardiness bouag > 0 that must be
idle (i.e., not execute) and still meet its deadline. This concegisured. In our casé;, = 0.
is used in scheduling tasks in the following way: all jobs are Of these difference, the second is the most significant. In
scheduled usingGEDF, with the exception that, if a job of athe analysis oEDF-hl, it is assumed tha} " «; < m holds.
privileged task has zero slack, then it is executed contislyo For EDF-ms, we have insteadZy + Z,41 + > . qu; <
until its deadline. This policy clearly ensures that pegéd m. Thus, under both schemes, long-term overloads cannot
tasks do not miss their deadlines. (Recall that each corgpgrbappen. However, undé&DF-ms, short-term overloadsan
consists of at least two cores.) occur. This is not possible und&DF-hl. Thus, the analysis

associated withEDF-hl must be adjusted to deal with short-

4 Tardiness Bounds term overloads. We illustrate this issue with an example.

In this section, we derive a tardiness bound ElWF-ms. We) o
Example 3. We consider two similar task sets and, to be

begin by digressing to consider a related bound, proved for _
scheduled byEDF-hl and EDF-ms, respectively. Both have
EDF-hl in [5]. Several properties established there E@F-

two non-privileged taskgd; = (3,4) andT> = (7,8). 7
hl hold for EDF-ms as well. - o]

has an addition privileged tasks = (3,8), while =, has an

_ additional privileged tasi} = (1,1) for which Z; = 3/8. In

4.1 Comparison ofEDF-ms and EDF-hl e .

71, total utilization is two, so this system can be scheduled on
EDF-hl is the same aEDF-ms except for three differences.two processors. Im, the expressiol}, + Zle u; IS also two.
First, there may be up ta privileged tasks ireDF-hl, instead However, whilel; in 7, submits jobs at a steady rate according
of just two (wherem is the number of processors). Seconth its utilization, T3 submits jobs at an unsteady rate, which

all jobs of each privileged task are scheduled by the systdeads to temporary overloads. To see this, consider the two

- o,
schedules for, (a) andr; (b) in Fig. 3. Because,, = pj; holds Processor-sharing schedule for T 1

for Ty, its jobs that are assigned to the system by the bottom rule—,

commence execution immediately after being released. The | T,

resulting temporary overloads cause some deadlines of non-.

privileged tasks to be missed. While such overloads can occw: L. '

underEDF-ms, in both schedules, the amount of computation, T;or T,
0 4 8 12 16 20 24 ¢

required by privileged tasks every eight time units is theesa T Tob release l Job deadline

B Privileged execution] Non-privileged execution

4.2 Tardiness Bound forEDF-hl _ ,
Figure 4:PS schedule forr; and, in Example 3.

Because several of the properties establishecEoF-hi by behind” thePS schedule—this concept of “lag” is instrumental

Devi and Anderson [5] are used in our analysiss@F-ms,
[5] y in the analysis and is formalized below.

an overview of theEDF-hl analysis is in order. We begin by
stating a number of definitions that are used in the analysis. S0 that we may compare allocations in different schedules,

let A(T;;,t1,t2,S) denote the total allocation to the job

4.2.1 Definitions T;; in an arbitrary schedule&S in [t1,t2). Similarly, let

The system start time is assumed to be zero. Foranyitime, A(T; ¢,,¢,,S) = > ;51 A(Ti j, t1,t2,5) denote the total time

t~ denotes the timé— ¢ in the limite — 0+. allocated to all jobs d_["l in [th t2) inS.

Definition 1 (active tasks and active jobs): A task T; is The difference between the allocations to a jal up to

activeat timet if there exists a joli; ; (calledTy’s active job ;0 i 3 ps schedule and an arbitrary schedSletermed the

att) such that-; ; <t < d; ;. By our task model, every taskIag of job T}, at timet in schedules, is given by

has at most one active job at any time.

Definition 2 (pending jobs): 7} ; is pendingatt in a schedule lag(T3,;,t,S) = A(Ti;,0,t,PS) = A(T;,;,0,t,5).
Sif r;; < tandT;; has not completed execution byn S.

Note that a job with a deadline at or befdres not considered Thelag of a taskT}, at timet in schedules is defined by

to be active at even if it is pending at.

Iag(ﬂvtas) = Zlag(TL,]at78)

j>1
A(T;,0,t,PS)—A(T;,0,t,S).

A task system igoncreteif the release times of all jobs are

specified, andhon-concrete otherwise. The tardiness bound

established foEDF-hl is derived by comparing the allocations
to a concrete task systemin an ideal processor-sharinB$)
schedule to those in aBDF-hl schedule. In &S schedule

Task lags and job lags are related as follows.

each job of a tasK; is executed at a constant rategbetween lag(T},t,S) = Z lag(T; ;. t,S)
its release and deadline. As an example, consider Fig. £¢hwhi {T;; is pending or
shows thePS schedule for the task systems in Example 3. active att~ }

Note that, in 8PS schedule, each job completes exactly at its

deadline. Thus, if a job misses its deadline, then itis “lagg Finally, thelag for a finite job setl at timet in the schedule

S is defined by following property.

P) The tardiness of every job of every non-privileged ta%k
LAG(T,£,8) = 3 lag(Ti;.t,S). P) Y y non-privileged ta%
Ti ;€Y in 7 with deadline less thaty is at most +-¢, in S, where

x > 0.
The concept of lag is important because, if it can be shown

that lags remain bounded, then tardiness is bounded as wel@ur goal is to determine the smallest independent of the

. . . . arameters dfy, such that the tardiness @f ; remains at most
Definition 3 (busy and non-busy intervals): A time interval P ¢ RE

11, £2), wheret, > 11, is said to bdusyfor any job setw if all x + e;. Such a result would by induction imply a tardiness of

. _— . . at mostz + ¢y, for all jobs of every non-privileged task; € .
m Processors are executing some jol¥imat each instant in the T ek : y P g koer

. . . o . Becauser is arbitrary, the tardiness bound will hold for every
interval,i.e., no processor is ever idle in the interval or executes

. : . , . concrete instantiation of".
ajob notinT. An interval[ty, t2) that is not busy fof is said

Assume thatT, ; misses its deadline (for otherwise, its
to benon-busyfor V. 63 (

tardiness is zero). The completion timeTof; then depends on

We are interested in non-busy intervals (for a job set) b&&awha amount of work that can compete with; aftert,. Hence,
total lag (for that job set) can increase only across sughaiye for: can be determined via the following steps.

intervals. Such increases can lead to deadline misses. We

illustrate this point with an example. (S1) Compute an upper boundB) on the work pending for

tasks in7 (including that due tdly ;) that can compete

Example 4. The intervald3, 4) and[7, 8) in the schedule for, with T, ; aftert,
3] .

in Fig. 3 are non-busy for the set of jobs with deadlines attmos

8. The total lag for these jobs increases by one across eaéf?'%)f Determine alower bound §) on the amount of such work

these intervals. In effect, two units of processing capaaie required for the tardiness G, ; to exceedr + e.

“lost” during these intervals. As a result, the first job™sf (S3) Determine the smallestsuch that the tardiness @ ; is

misses its deadline at time 8 by two time units. at mostz + ¢, usingUB andLB.

. o With the exception of some jobs of privileged tasks, jobs
4.2.2 Tardiness-Bound Derivation

with deadlines beyont}; cannot affectly ;. Thus, our analysis
We describe the tardiness-bound derivationE®f-hl for the focuses mostly on the following set of jobs.
case where each privileged task is ensured zero tardingss, a
in EDF-ms. In this case, given an arbitrary non-concrete task ¥ 4 setofall jobs of tasks im with deadlines
systemr¥, we want to determine the maximum tardiness of at mostt,
any job of any non-privileged task in any concrete instdiotia
of 7. Let 7 be a concrete instantiation of¥. Letty C 7 So that we can analyze the impact of jobs of privileged tasks,
be the set of at most privileged tasks inr, and letr;, denote let the carry-in job T}, ; of a privileged taskl}, be defined as
the remaining tasks. We remind the reader that all tasks e job, if any, for whichry, ; < t5 < di ;. At most one such
sporadic and each job of every privileged task is procesgedidib could exist for each privileged task,. Similarly, let the
the system. Lefl;; be a job of a non-privileged task in, job T}, ; of a privileged tasK, if any, for whichry, ;; <t;+

letty = de;, and letS be anEDF-hl schedule forr with the « + e, < di j/, be defined as thearry-outjob of Tj,.

The competing work fofly ; beyondt, is given by the sum This upper bound is formally established in Lemmas 6 and 7
of (i) the amount of work pending &4 for jobs in W, plus(ii) in [5]. It is important to note that the proofs of these lemmas
the amount of work demanded by jobs of privileged tasks tlatly depend on Property (P) and the definition of a carry-in
are not in¥ but can compete with jobs i during[tq,ts+x+ job (particularly, the ternd;). In particular, the proofs do not
e¢). By upper bounding these two components and summihgpend on the exact manner in which the jobs of privileged

them, we can obtain an upper boudB. tasks are scheduled. Note that Property (P) makes a vengstro

Let D(T}, t4,S) be an upper bound (to be determined) Oq?sumption about the execution of jobs fr@nprior to¢,.

the work considered in (ii) generated by one privileged thsk ~ To continue, we partition the jobs i into two disjoint

Then, an upper bound on all the work considered in (ii) isgiveubsets:¥ ;, which includes all jobs inF of privileged tasks,

by andV¥ ,, which includes all remaining jobs M. Then, we have
td, Z D Tk}a tda (5)
Tvern LAG(T, ¢/, S)
Turning now to the pending work mentioned in (i), because = LAG(¥,t',S) + LAG(¥ gy, t',S). 7

jobs from ¥ have deadlines at mosj, they do not execute

in the PS schedule beyond;. Thus, this pending work is Let U(r,y) denote the set of at most tasks of highest
given byLAG(V, t4,S). Letd;,, denote the amount of time theutilization from the task set. Let E(7,y) denote the set of at
carry-in job (if one exists) of some tagk has executed beforemosty tasks with the highest execution costs fronLet £, =
tq. The presence of carry-in jobs can calge:(V,¢,,S) to ZuieE(TL7m_1) e; and Uy, = ZezeU(mmin(m—sz) U
be higher than it otherwise would have been by an additiyging this notation, Lemma 6 from [5] establishes the
factor of at mosty ;. .. d:(1 — u;). This is because carry-following upper bound ohAG(¥ 1, t', t4).

in jobs have deadlines beyomng, and thus when they execute

prior to t4, they deprive the jobs i of processor time that LAG(¥r,t',S) < Ep +aUp (8)
may otherwise have been available to them. If a carry-in job

executes prior tag, in the actual schedul§ for §; time, then As before, only Property (P) is used in establishing thisriobu

while it is executing, it receives an allocation @f - d; in the The exact manner in which privileged tasks are schedules doe

PS schedule. This means its lag changesibyd; — d;, which not arise.
is a decrease. This lag decrease for carry-in jobs trasskattie LetL(7x,t’',S) be an upper bound (to be determined) on the
a corresponding increased lag for the jobslin It remains to otherLAG termin (7),LAG(V g, t',S). Then, from (7) and (8),
understand how lags change in the absence of carry-in jolg.have the following.

In this case,LAG(¥,t,,S) is at mostLAG(¥,t',S), where
t' is the end of the latest non-busy interval f&rbeforet,. LAG(Y, ', 8) < B+ aUL + L(7a, 1, S) ©)
In particular, LAG for ¥ cannot increase betweehandt,,

because all processors are busytint,) in the actual schedule Combining (5), (6), and (9), the desired upper boutilis
S. Combining these ideas, we have the following upper bound.

LAG(U,t4,8) + D(t4,S)

LAG(W,t4,8) < LAG(W,,8) + > 4 (6) < Ep+aUp+ Y 6i(1—u) +L(ry.t',S) +

T:€TH T;€TH

D(ta,S). (10) 4.3 Tardiness Bound forEDF-ms

)) A tardiness bound foEDF-ms can be derived in a way that
Lemma 11 from [5] shows that the tardinesgpf; is at most

) i " is similar to that used foEDF-hl. Several aspects of the
x + ¢y if one of the following conditions holds.

derivation remain the same. For example, we use the same
o [7r| <mandLAG(¥,tq,S) < (m — |t |)z + €. notion of aPS schedule here. In addition, all of the reasoning
o [ru| > 0 and LAG(,t4,S) + D(ts,S) < (m — concerning non-privileged tasks in the derivation EDF-hl
maz (|| — 1,0)ue)z + er. applies toEDF-ms. This is because, as noted earlier, Property

(P) allows us to reason about the scheduling of non-prigtleg

As before, these results only depend on Property (P). Tbus’tgsks before, (and, in particular, their lags) without concern

tardiness toexceedr + e;, we must havd AG(¥, 44, §) > for exactly how the privileged tasks were scheduled priayto

(m =7 [)a + e, for the casgry | < m, andLAG(Y, L4,)+ ¢ only changes that are therefore required are thosetaspec

D(ta,8) > (m — maz(jra| = 1,0)ue)z + e, for the case ;o qorvation involving privileged tasks. Specificallye

|7iz] > 0. These expressions give us the desired lower bour'ﬂ(ast derive upper bounds of the o termsty, S) and

LB (for two different cases). L(rm,t',S). These bounds are derived separately below.

Now, if we set the upper bound on eitheAG(¥, ¢4, S) +
D(t4,S) or LAG(¥,t4,S) implied by (10) to be at most its4.3.1 An Upper Bound ofD

corresponding lower bound above, then the tardiness; 6f The desired upper bound is provided in the following lemma.

will be at mostz+e,. (An upper bound ohAG(¥, ¢4, S) alone
is obtained from (10) by canceling(t,, S) from both sides.) Lemma 1. LetT) be one of the two privileged tasks scheduled

By solving for the minimumz that satisfies both resulting?y EDF-ms. Letd, be as defined earlier. TheB(T},, ¢4, S) <
inequalities, we obtain a value othat is sufficient for ensuring 2+ * © + €k (3 = fie) + Zi - ee = 8, (1 — Z).

a tardiness of at most + e4; we explain later how to obtain 3poof. If no job of T; has a deadline ifty, tq + o + e¢), then

value ofz that is independent of the parametersipf when D(T}, {4, S) is at mostey, — 6, which proves the lemma. In the

we consideEDF-ms. The two inequalities are as follows. remainder of the proof, we assume tiathas one or more job

) deadlines inty4, tq + « + e;). In this case, the demand given
L(tg,t',S . . .
(a) by D(T%, tq,S) is comprised of three part¢i) demand due to
< (m—lmu|-UL)z - Br the carry-in job, which we denotg, .;: (i) demand due to the

=Y Gl —w)+e (11) carry-out job, which we denotg .,; and(iii) demand due to
TL' TH
© other jobs ofT}, that have deadlines withifty, tq + = + ef).

Note that, in considering the demand created by these &ariou

D(ta,S) + L(7u,t',S) jobs, we only have to consider those jobs assigned to thersyst
< (m—max(|tg| — 1,0)uy — Ur)x — E, by either the top or bottom rule (as the case may be). Also
- Z 6i(1 — u;) + eg (12) note that, if no carry-in or carry-out job exists, then thended
Ti€rn component mentioned in (i) or (i), respectively, is simpéro.

In [5], it is shown that_(7x,t',S) = 0 holds forEDF-hl. This Carry-in demand. If the carry-in jobT} .; has a deadline at

will not necessarily be the case fBDF-ms. tq + &, then demand due to it is at mastin(ex, — g,). In

10

the rest of the proof, we assume that+ £ is so defined if the < min(eg — 0, &)
carry-in job exists, and if it does not exist, ther- 0. N [fk [x +er—¢—§— pkH o
Dk
Carry-out demand. Assume that the carry-out jdb; ., is + mazx(0,er, — (pr — b))
released at time, ., and its (absolute) deadline is at time < in(e), — 64, &) + ey, + er (x +e—¢— 5)
. . . B ’ Pk

di.co = co . SinceT; ., is a carry-out jobdy ., >

k, Tk, + Pk k, y] rdk, + mam(O,Ek o (pk . ¢))
tq + = + e4. Since the carry-out job has a deadline aftgrit

o L . . = min(ex — 0k, &) +ex + Zp(z +e0— ¢ —§)

cannot be prioritized over jobs i unless its slack is zero. The
earliest time this can happends ., — ex = T&.co + Pk — €k +maz (0, ex — (pr —)
If dy.co — ex > ta + = + e, then the carry-out job is never {because, by (3)frer/pr = Zi}
prioritized overTy; in [tq,tq + = + eg), i.e, the carry-out = min(ex — 0k, &) + ex
demand is zero. W ., —er < tq+x + e, then this demand is + maz(Z(z + ep — ¢ — €),

Zk($+€z*¢*€)+ek7(pkf¢))
tatz+er—dicoter =ta+x+er—rgco—pr+er (13)

. . Before continuing the derivation, note that(z + ey — ¢ —
Let T} .,—1 be the job ofl}, that precedes the carry-out job and
+tex—(pr—0)=Z(x+e—&) —Zi - o+ er — (P —

) ? = Zp(x + e — &) + (p(1 — Z) + er. — pi). Because
not have been assigned to the system by the top or bottom rule.) o o
0 < ¢ < pg, this expression is maximized when= p;. Thus,

. Zp(x+er— &)+ (d(1 = Zk) +ex —pr) < Zr(z+e0— &) +
we havep > tg + x + ep — Ti,co- Thus, the demand in (13)))
. o ek — Z - pr = Zi(x + e — &) +ex(1— fi) ((3) is used in the
is at mosty — pr + ex. Combining these cases together, the
last step). BecausBy (v +¢e; — & — @) < Zp(x + e — &), we

letdy,co—1 > tq be its deadline—note thdj;, .,_1 may or may

Letp =tqg+x+ep—dgco—1. Then, becausés co—1 < 7% co,

carry-out demand is at mostaz (0, ex, — (pr, — ¢)). i o
can continue the derivation as follows to conclude the proof

Remaining demand. Jobs of 7}, that are released and
assigned to the system betwelgn+ £ andty + x + ey — ¢ D(Tk,tq,S)

create the remaining demand. By (4), this demand is at most ~ _ min(ey — 0k, &) + ex + Zr(x +ep — &) +

{fk Fc+ee—¢—£—pkHek. ex(1— fr)

Pr < e —O0ktep+ Zi(z+ e — (e — k)
Having upper bounded the three relevant sources of demand, +er(l— fr)
we now show that their sum is upper bounded by the expression {becaus€ > ej, — 63}

given in the lemma. I 4+ ey — ¢ — £ — pi. < 0, then the third

< ex(B—fr)—Op+ Zy- v+ Zi-ep — Zp(ex—0x)
demand component is zero, and we haver(0, e, — (pr —
@) + min(ex — 9k, &) < 2e, — d;. It can be shown that this = @ fo)+ 2wt Zplee —en) — Ol - Zi)
last expression is at most(3— fi)+ Zy -2+ Zy-e0—01(1—Z,). < ek@—fu)+ Zrw+ Zp e = 0n(1 - Zi)
The remaining possibility isthat + e, — ¢ — & — pr > 0.
In this case, we have the following.
D(Ty,ta,S) n

11

T, T,; T0,5 T0,6 Tys Corollary 1. L(7,t',8) < €0 + > jeqons1y Zk(Prk — €k)-

Lxl 4.3.3 Tardiness Bound Derivation

T T
J mbl I il Applying the upper bound in Corollary 1 to (11), we get
1/16. I

0

D Execution in PS . Execution in §

1 2 3 4 5 6 7 8t cot Y, Zlpk —ex)
ke{0,n+1}

S (m—‘TH|—UL){L‘

\A Job release l Job deadline
—EL— Z 5k(1—Zk)+6g.
Figure 5: Schedules for tasi{§ andT’,; in Example 5. ke{0,n+1}
4.3.2 An Upper Bound ofL Note that, in the last summation, we have uggdnstead ofuy,

. . . . because und€tDF-ms, Z;, representd,’s actual utilization in
The remaining issue is to determine an upper bound of

the system. If boursg b d solve forr, we get
L(ryr. ', S), which is simply the sum of the lags of the o ¢ SYStem- If we upper bour by ¢, and solve forr, we ge

privileged tasks. In fact, we will show that the lag of each of EL +eo + Z er(L+ fr — 223) — eq

these tasks is bounded by a constant. This follows becaase thx > ke{0,n+1} (14)

_ T - -U,
top and bottom rules assign jobs of these tasks to the syatem i m = |7 L

a way that prevents long-term overloads, and also becaake SUApplying the upper bounds in Lemma 1 and Corollary 1
jobs are scheduled in a way that ensures that they do not niisgi2), we get

their deadlines. The needed bounds are quite simple and are

given in the following lemma, which we state without proof. Z (ex(B—fr)+ Z -+ Z-es
ke{0,n+1}
Lemma 2. Let Ty, 1,41, and T be as defined above. Then, —0k(1 = Z)) +eo + Z Zi(pr — ex)
ke{0,n+1}

for any t > 0, lag(7o,t,S) < eg + Zo(po — eo) and

(m —max(|tg| — 1,0)u, — Ur)x

—FEr — Z Or(l — Zy) + eq.
ke{0,n+1}

Iag(Tn+1> t, 8) < Zn+1(pn+1 - en+1)'

Example 5. We illustrate the lemma by considering a system
with a top privileged taskl, with e = 1/2, po = 1, and As before, we have uséeg, instead ofi, in the last summation.
Zy = 1/3, and a bottom privileged task, ; withe,, .1 = 1/4, Solving forz, we get

pnt1 = 1,andZ, ;1 = 1/16. The corresponding frequencies

are fo = Zo/up = 2/3 and fr1 = Zyy1/uny1 = 1/4. 60+EL+,€6{027;+1}(%(3Z]C) 2k o) — e
Fig. 5 depicts both actual a®S schedules for each task. Let T2 m_mam(|;H| —1,0)up—Up—Zo—Zny1
us determinéag(7y,4.5,S). Up totime 4.57 is allocatedZ-
t =4.5-1/3 = 1.5 time units in thePS schedule, and@-1/2 =
1 time unit in the actual schedule. Therefdeg(Ty,4.5,S) =

(15)

If = is the smaller of the two values on the right-hand sides of
(14) and (15), then the tardiness@f; will not exceedr + e,.
Letenar = i and min —) i) Then, a value for
0.5. The upper bound in Lemma 2, appliedfg, is 2/3. ¢ maz(e:) ¢ min(e)
x that is independent of the parametersipfcan be obtained

From Lemma 2, we have the desired upper bound. by replacingu, with maxr,cr, u;, e With e,,,;,, in (14), and

12

the expressionZ, + Z,+1 — 1)e, with EL in (15), where 5 EXperimental Evaluation

. In this section, we present an experimental evaluaticB#F-
(ZO + Zn+1 - 1)67717,77, if ZO + Zn+1 <1 i .
EL= _ ms. We performed two sets of experiments. In the first, we
(Zo+ Zns1 — Deman otherwise.
assessed tardiness within a single group. In the second, we

Theorem 1. With = as defined as above, tardiness for a nomssessed the impact of several variants of the task-assignm

privileged taskl}, scheduled undéEDF-ms is at mostz + ¢;,. Method discussed in Sec. 2 on overall tardiness.

Note that, for tardiness to be bounded unB&+-ms, the . .
denominators in the right-hand-side expressions in (14) a5n'1 Tardiness Bounds for a Single Group
(15) must not be zero. Upon substitutingixr, <, u; for ug, In this set of experiments, we computed per-task tardiness
this gives us two requirementsy — |ty| — U, > 0, and bounds for random task sets on= 2, 4, 8, and 16 unit-speed
m—max(|tg| —1,0)(mazt,er, i) — Zo — Zny1 — Ur > 0. processors in the presence of one or two privileged taskofto
Thus, to ensure bounded tardiness, some slight restriction bottom). Each task set consisted of at least 1 tasks. Tasks
task utilizations are required. (The impact of these retsbns within each set were generated with utilizations uniformly
is assessed in the next section.) distributed in[0, %42), Wherew,, ., ranged from0.1 to 1 in

We have assumed above that there are two privileged taskgps of0.05. For each value ofi,,q., 1,000 task sets were
If only one such task exists, then we can assume there are @anerated. Task execution costs were uniformly distribute
with the execution cost, utilization, arland f values for one over[10,20). Tasks were added to the generated task set until
of them being zero. Of course, if there are no privilegedgaskotal utilization exceedeth. The shares of the privileged tasks
then tardiness can be analyzed using the results from [5]. were then defined so thay + Z,+1 + 3, wi =m. The

We have also required that there be at least two cores & (bottom) task (if either existed) was taken to be the task
group. A group with one core can be handled in three ways.With the smallest (largest) utilization.

Fig. 6 shows the averagmaximumtask tardiness plotted

* We can use the same approach described above, but Igrg]]'glinst the average task utilizatien,,,, for different values of

the group to have at most one privileged task. In this a3’ Note that tardiness grows ag,, grows, with the exception

the group’s lone core may not be fully utilized. of the case of two processors and one privileged task, shown i

e We can schedule the tasks within the group IKBF- inset (a). In this case, if we apply Theorem 1 for= 2, then

fm schedules tasks on one processor. Note E#fE-fm Uw = 0, and only one o, andZy,., is non-zero and itis at

requires that if two privileged tasks exist, then they havenllos’t one. In this case, the denominators of (14) and (15) are

combined share on the processor of at most one. On W]%ependent of the utilizations of non-privileged tasks.

other hand, the processor can be fully utilized. The situation forn = 2 changes drastically if there are two
privileged tasks. During some time intervals, both prooess
e We can combine the lone core in the group with slowgr the group must execute jobs of privileged tasks. During
cores to create a group of at least two cores. This comes@th intervals, non-privileged tasks cannot execute at lall
the expense of not utilizing the full processing capacity ¢ie number of non-privileged tasks is small, and they have
the core added to the slower group. high utilizations, then these tasks recover slowly frons thi

shortage of processing capacity, as demand due to pridilege
The best approach will depend on the workload to be scheduled

13

tasks lessens. This situation is depicted in the right ganset
(a), where non-privileged tasks have high utilizations.

As seen in insets (b)—(d), this effect eases as the numbe
of processors grows. This is because, with more than two
processors, at least one processor is always availabletorex
non-privileged tasks. As the number of processors growse mo
processing capacity is available for executing the jobsooi-n
privileged tasks. Hence, tardiness decreases. This sisghas
EDF-ms may be very effective in large multicore systems, the
main focus of our work.

Note that the curves in insets (a) and (b) for the case of two
privileged tasks do not continue to increase at the righis Eh
because, whem is only two or four but two privileged tasks
exist, the number of samples with high,,, is small.

As remarked earlier, bounded tardiness is guaranteed unde
EDF-ms only if the two conditionsm — max(|7y| —
1,0)mazy,er, (u;)—Zo—Zpt1—Ur > 0andm—|rg|-Ur >
0 hold. These conditions are not very restrictive. As evigenc
of this, no task set generated in this set of experiments tvad t

be rejected because of these conditions.

5.2 Task Assignments, Revisited

Because tardiness within a group depends on the paraméters (
the privileged tasks in that group, it might be possible tedb
overall tardiness by using a task-assignment policy tisseles

the impact of privileged tasks on other tasks. To see if thi®j

we considered two such policies and compared them to the on
described in Sec. 2. In that which follows, we refer to orédin
policy described earlier &8IMPLE.

According to Theorem 1, if the privileged tasks within a
group either require large shares within the group or hagh hi
execution costs, then tardiness within the group may be. high
This suggests two alternative assignment policies, one tha

seeks to minimize the shares of privileged tasks, and a decon

that seeks to minimize their execution costs. Both policig§gure 6: Tardiness bounds versus,, for (a) m = 2, (b)
. g - 1

Avg. tardiness

Avg. tardiness

Avg. tardiness

Avg. tardiness

N w
o o
o o

=
o
o

w
o
o

N
o
o

=
o
o

N w
o o
o o

=
o
o

Average tardiness vs. average util. m=2

t | ——One bottom task

——Two privileged tasks
—e—One top task

w
o
o

N
o
o

=
o
o

— JE -t
Oo6-o660000660000

0.2 0.4 0.6 0.8 1
Avg. utilization

@

Average tardiness vs. average util. m=4

t | ——One bottom task

——Two privileged tasks
—o—0ne top task

b eI

0.2 0.4 0.6 0.8 1
Avg. utilization

(b)

Average tardiness vs. average util. m=8

t | ——One bottom task

——Two privileged tasks
—o—0ne top task

_—+
_ar
"
e NI

==

0.2 0.4 0.6 0.8 1
Avg. utilization

(©

Average tardiness vs. average util. m=16

[| ——Two privileged tasks

t | —— One bottom task

—e—One top task

I o M&

0.2 0.4 0.6 0.8 1
Avg. utilization

(d)

function in a similar way: after runnin§IMPLE, consider the ™ = 4, () m = 8, and(d) m = 16.

14

Max tardiness in the group Max tardiness in the group

Max tardiness in the group

N
al
o

N
o
o

150

100

[
o

Max tardiness of tasks in C1

Jrjgbor S
 SIMPLE Tsiscer i a8
MIN-EXEC x%%ﬁ"*;x ey %
o MIN-UTIL L
Group 1 Group 2 Group 3
Groups

@

Max tardiness of tasks in C2

25074

200r

1507

100

o
o

300

250}
200}
150}

1001

o
o

Oy
O
)
+ SIMPLE s
MIN-EXEC W x 0¥
o MIN-UTIL
Group 1 Group 2 Group 3
Groups

(b)

Max tardiness of tasks in C3

+ SIMPLE
MIN-EXEC
o MIN-UTIL

Group 2
Groups

Group 1

©

Group 3

Figure 7: Tardiness bounds under different assignmentsese
for three core groups in three different configuratio¢e: C,
(b) Cs, and(c) Cs.

Core groups
51 = 1 S9 = 2 S3 = M
C 12 4 2 18
Co 24 8 4 36
Cs 48 16 8 72

Table 1: Three evaluated configurations.

groups in decreasing index order, and for each group, satect
the bottom task the task in the group with nonzero share #sat h
the smallest utilization or execution cost. We call the ferm
schemeMIN-UTIL, and the lattedIN-EXEC. (If a task with a
lower utilization is selected as the bottom task in Gréuthen

it may actually fit within Grouph + 1. Thus, in both schemes,

the process of assigning tasks to groups is in fact iterative

To evaluate the impact dflIN-UTIL and MIN-EXEC, we
considered three system configurati@ns Cs, andCj3, which
have a small, medium, and large total number of carés
Each configuration consists of cores with speeds one, two,
and three. The number of cores of each type is shown in
Table 1. For each configuration, we evaluated 60 task sets.
The tasks in each set were generated as follows. First, tasks
with utilizations distributed randomly i), 2.1) were generated
until the processing capacity of Group 3 would be exceeded.
Then, tasks with utilizations if0, 1.4) were generated until
the combined processing capacities of Groups 2 and 3 would
be exceeded. Finally, the remaining tasks were generated
with utilizations in[0, 0.7) until the remaining capacity of the
system was exhausted. All task execution costs were distidb
uniformly over[1,100). For each generated task system, we
used Theorem 1 to compute the maximum tardiness of the non-

privileged tasks in each group under each assignment scheme

Fig. 7 shows the maximum tardiness per group for each
configuration. Each point in each group gives the maximum
tardiness of one of the generated task sets. As the graphs
show, MIN-EXEC results in significantly lower tardiness for
Group 2 and slightly lower tardiness for the other groups. On
the other hand, the use MIN-UTIL did not result in better

tardiness tharsIMPLE. However, this could be an artifact of

15

our task-generation methodology. The overall conclusin leterogeneous platforms where the cores only differ ingpee
be drawn from these results is that the significant flexipbiliThis is different fromfunctional asymmetrywhere each core
that exists in the task-assignment process can be explmtetias a different set of “capabilities” and tasks must be rmeatch
realize certain benefits in some systems. (In particulas, tlvith cores possessing the capabilities they need. It woeld b
assignment process is not rigid like the bin-packing stiiate interesting to extend our results to apply to such platforms
used in partitioning schemes.) Other benefits beyond logeri

tardiness are possible. For example, some hard real-tiske tiReferences

could be supported by choosing them as intergroup tasllﬁ.‘]. Anderson. V. Bud, and U. Devi. An EDF-based

Also, the response times of certain tasks could be lowered scheduling algorithm for multiprocessor soft real-time

by assigning them to faster cores, as long as the resulting systems. IrProc. of the 17th Euromicro Conf. on Real-

assignment is valid and utilization constraints are met. Time Systempp. 199-208, 2005

6 Conclusion [2] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel.
Proportionate progress: A notion of fairness in resource
We have presented a new algorith@DF-ms, which can jjlocation. Algorithmica 15:600-625, 1996.

be used for scheduling sporadic soft real-time task systems
]) .] [3] J. Calandrino, D. Baumberger, T. Li, S. Hahn, and
on asymmetric multicore platforms with cores of different
.) i J. Anderson. Soft real-time scheduling on performance
speeds. To our knowledge, this paper is the first to propose
) asymmetric multicore platforms. Broc. of the 13th IEEE
a scheduling approach for such heterogeneous platforms tha
Real-Time and Embedded Technology and Applications

Symp, pp. 101-110, 2007.

is suitable for soft real-time workloads that require boeohd
deadline tardiness. Our algorithm is capable of fully miflg
the processing capacity of the system, provided certaip vé4 U. Deviand J. Anderson. Tardiness bounds for global EDF
slight restrictions on task utilizations hold. This pragezomes scheduling on a multiprocessor. Rroc. of the 26th IEEE

at the price of needing to migrate tasks, as required in globa Real-Time Systems Symp. 330-341, 2005.

scheduling approaches such@EDF. Note that the main cost

[5] U. Devi and J. Anderson. Flexible tardiness bounds

of a migration is a loss of cache affinity. Thus, in a multicore for sporadic real-time task systems on multiprocessors.

platform, the need to migrate tasks is less of a concern than In Proc. of the 20th IEEE International Parallel and

for a traditional SMP, due to the presence of shared on-chip Distributed Processing Symi2006
caches. Although we have not directly included migration

costs in our task model, they can be accounted for by inflati@; S. Funk. Implementing ~ Real-time Systems on

task execution costs to include the cost of migrations, as is Heterogeneous Multiprocessors Ph.D. - dissertation,

commonly done in real-time scheduling analysis. The University of North Carolina at Chapel Hill, 2004.

Several interesting avenues for further work exist. Fpf] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi,
example, it would be interesting to extend our results ttithe and K. Farkas. Single-ISA heterogeneous multi-core
tasks with synchronization requirements. It would also be architectures for multithreaded workload performance.
interesting to consider workloads with both soft real-tiare Proc. of the 31st International Symp. on Computer

non-real-time tasks. Finally, in this paper we have conside Architecture (ISCA)pp. 64-75, 2004.

16

[8] R. Rajkumar. Resource Kernels: Why Resource
Reservation should be the Preferred Paradigm of
Construction of Embedded Real-Time Systems. Keynote
talk, 18th Euromicro Conference on Real-Time Systems,

Dresden, Germany, 2006.

17

