
Tardiness Bounds for EDF Scheduling on Multi-Speed Multicore
Platforms∗

Hennadiy Leontyev and James H. Anderson
Department of Computer Science, University of North Carolinaat Chapel Hill

Abstract

Multicore platforms, which include several processing cores

on a single chip, are being widely touted as a solution to heat

and energy problems that are impediments to single-core chip

designs. To accommodate both parallelizable and inherently-

sequential applications on the same platform, heterogeneous

multicore designs with faster and slower cores have been

proposed. In this paper, we consider the problem of scheduling

soft real-time workloads on such a platform.

1 Introduction

Given the thermal and power problems that plague single-

processor chip designs, most major chip manufacturers are

investing in multicore technologies to achieve higher system

performance. A number of systems with a modest number

of cores are currently available, and in the coming years, the

number of cores per chip is expected to increase significantly.

In fact, chips with hundreds of cores are envisioned. It

remains to be seen, however, whether such an extensive degree

of parallelism can be effectively exploited. Indeed, many

applications exist that areinherently sequential. In light of

this, one approach, which is being advocated by many chip

designers, is to provide a mix of faster and slower cores on

the same platform [7]. On such a platform, an inherently-

sequential application would benefit by executing on a faster

core, while parallizable applications could execute across many

∗Work supported by a grant from Intel Corp., by NSF grants CNS 0408996,
CCF 0541056, and CNS 0615197 and by ARO grant W911NF-06-1-0425.

slower cores. While having only fast cores would obviously

be desirable, faster cores require greater chip area, so such an

approach would adversely limit the number of cores per chip.

Large multicore platforms will likely be used in settings

where timing constraints are required. For example, one

envisioned use of such platforms is as a central server within

the home that multiplexes interactive applications that require

best-effort service with multimedia applications that have

real-time requirements [3]. Such applications might include

streaming movies over the Internet, providing cable television,

or executing custom programs such as video games. Timing

constraints in these applications are typicallysoft: missed

deadlines, though undesirable, are usually not disastrous. Such

constraints are far more common than hard constraints in many

settings [8]. Unfortunately, prior work on scheduling real-time

workloads on heterogeneous multiprocessors has focused only

on hard real-time systems. While such work can be applied to

schedule soft real-time applications, this comes at the price of

overly conservative system designs.

In this paper, we show that such conservatism can be

eliminated if deadline misses are permissible. We show thisby

presenting an algorithm for multi-speed systems calledEDF-

ms, which is a variant of the globalEDF (GEDF) scheduling

algorithm. Like GEDF [4], deadline tardiness underEDF-

ms is bounded when scheduling sporadic tasks. Further, such

bounds do not require severe caps on total utilization. In

contrast, even with same-speed cores, if deadlines cannot be

missed, then caps that can approach 50% of the available

1

processing capacity are required under all known scheduling

algorithms, except for Pfair algorithms [2]. Pfair algorithms,

which have not been studied in the context of multi-speed

systems, schedule tasks one quautum at a time, and thus

preempt and migrate tasks frequently.EDF-ms preempts and

migrates tasks less frequently, does not require same-speed

cores, and can accommodate tasks with high execution costs

for which utilization exceeds one on slower cores.

Prior work. Work on scheduling in heterogeneous

multiprocessor real-time systems was initiated by Funk

and colleagues, who presented a number of scheduling

algorithms and associated analysis methods for systems with

hard timing constraints. References concerning this work can

be found in Funk’s Ph.D. dissertation [6] (and are not included

here due to space constraints). As noted earlier, our emphasis

on soft real-time systems distinguishes our work from these

earlier efforts.

In work that is more experimental in nature, Kumaret al. [7]

measured throughput and job response times on a two-speed

multicore system with partitioned scheduling, and presented

dynamic load-balancing heuristics that maximize throughput.

This work is of relevance to research on soft real-time systems,

as job response times are considered, but it does not includeany

analysis for validating deadlines or deadline tardiness.

Our algorithm,EDF-ms, has been devised by utilizing ideas

from two prior papers concerning symmetric multiprocessor

systems by Deviet al. [1, 5]. In [1], anEDF-based algorithm

calledEDF-fm is presented that limits task migrations without

restrictive caps on total utilization.EDF-fm is a hybrid of

partitionedEDF andGEDF. In EDF-fm, tasks are categorized

as either “fixed” or “migrating” (hence the suffix “fm”). A

fixed task exclusively executes on a specific processor. On the

other hand, eachmigrating task executes on two processors,

with each of its invocations executing exclusively on one of

its assigned processors. Individual task utilizations must be

capped at 1/2, but total utilization is not restricted (other

than being at most the system’s total processing capacity).

Invocations of each migrating task are distributed betweenits

assigned processors so that these processors are not overloaded

in the long run; however, short-term overloads are possible.

Such overloads can cause fixed tasks to miss their deadlines.

However, such misses are by bounded amounts only.

BecauseEDF-ms is a variant ofGEDF, tardiness bounds

established forGEDF are of relevance to our work. Such

bounds were first established by Devi and Anderson in [4].

These bounds apply to any sporadic task system with total

utilization at mostM scheduled onM symmetric processors.

Any task can have maximum tardiness. Such behavior might

not be acceptable for certain applications. In [5], the analysis

in [4] is extended to allow up toM “privileged” tasks to have

any predefined tardiness value, including zero. The resulting

variant ofGEDF is calledEDF-hl. (The suffix “hl” signifies

that privileged tasks are given higher priority, and otherslower.)

Our approach. In the problem considered herein, cores are

organized into groups, where cores in the same group have the

same speed. In the earlierEDF-fm algorithm, migrating tasks

are prioritized over fixed tasks to ensure that the former have

zero tardiness. This allows schedulability to be analyzed on

each processor independently. (If a migrating task were to miss

a deadline on one of its processors, then this might delay its

next invocation on its other processor. As a result, the two

processors could not be analyzed independently.) We desire

to maintain a similar independence property acrossgroupsof

cores. To do this, we categorize tasks as either “fixed” or

“intergroup.” A fixed task executes only on the cores in one

group, while anintergrouptask may be executed on two groups

of cores. We use the term “intergroup” instead of “migrating”

because a fixed task in our case may migrate (among the cores

in its group). We distribute the invocations of an intergroup

task between its two assigned core groups in the same way

as invocations of migrating tasks are distributed inEDF-fm.

Further, we treat intergroup tasks specially when scheduling, as

2

in the earlierEDF-hl algorithm, so that they can be guaranteed

zero tardiness. This enables each group of cores to be analyzed

independently. However, one key difference arises in our

analysis: the distribution pattern used for intergroup tasks

allows short-term overloads to occur (for the same reason

that such overloads occur inEDF-fm). Thus, the analysis of

tardiness in [5] must be adjusted to allow privileged tasks to

create short-term overloads.

Summary of contributions. The main contributions of this

paper include devisingEDF-ms and establishing tardiness

bounds for it. In addition, we present an experimental

evaluation ofEDF-ms’s effectiveness in limiting tardiness. To

our knowledge,EDF-ms is the first algorithm proposed for

multi-speed platforms that can schedule soft real-time tasks

with bounded tardiness without severe utilization restrictions.

Because the ideas underlyingEDF-ms were originally

proposed in completely different settings, new analysis for

integrating these ideas had to be devised.EDF-ms, its analysis,

and evaluation are presented in detail in Secs. 3–5, after first

presenting our system model in Sec. 2.

2 System Model

We consider the problem of scheduling a set of sporadic tasks

on M ≥ 4 cores ofg ≥ 2 speeds. We will group cores by

speed: we letmh denote the number of cores in Grouph, where

1 ≤ h ≤ g, and we letsh denote their speed. We assumes1 = 1

andsj < sk if j < k. We also assume thatmh ≥ 2 holds for

eachh. (Given that our main focus is large multicore platforms,

this is a reasonable assumption. However, we briefly consider

later how to handle groups with only one core.)

We let τ denote the sporadic task system to be scheduled,

and assume that it consists ofn independent tasks,T1, . . . , Tn.

Each task is invoked orreleasedrepeatedly, with each such

invocation called ajob. Associated with each taskTi are two

parameters,ei andpi: ei gives the maximumexecution timeof

one job ofTi on a unit-speed core, while,pi, called theperiod

of Ti, gives the minimum time between two consecutive job

releases ofTi. On a core with speedsh, a job ofTi completes

in ei/sh time units. For brevity,Ti’s parameters are sometimes

denoted using the notationTi = (ei, pi).

The kth job of Ti, wherek ≥ 1, is denotedTi,k. A task’s

first job may be released at any time at or after time zero. The

release time of the jobTi,k is denotedri,k and its (absolute)

deadlinedi,k is defined asri,k + pi. Each task is sequential, so

at any time, it may execute on at most one core. When a job

of a task misses its deadline, the release time of the next job

of that task is unaltered. This ensures that each task receives

a processor share in accordance with its utilization (defined

below) in the long term. Thus, a task may release a new job

when prior job(s) of that task have not been completed. Such

a new job cannot commence execution until the prior jobs have

completed. If a jobTi,j with a deadline atdi,j completes at

timet, then itstardinessis defined asmax(0, t−di,j). A task’s

tardiness is the maximum of the tardiness of any of its jobs.

The utilization of taskTi is defined asui = ei/pi, and the

utilization of the task systemτ as Usum =
∑

Ti∈τ ui. We

require
∑

ui>sj
ui ≤

∑

k>j mk·sk andUsum ≤
∑g

h=1 mh·sh.

Otherwise, tardiness can grow unboundedly. Note that the first

of these requirements impliesui ≤ max(sj). Note also that it

is possible thatui > sj holds for somej.

In this paper, we assume that time is continuous, but

execution costs, periods, and core speeds are rational.

3 Algorithm EDF-ms

The nameEDF-ms stands forEDF multi-speed. Like EDF-

fm [1], mentioned earlier, the algorithm consists of two phases:

an offlinetask assignmentphase and an onlineexecutionphase.

When the task assignment phase is applied to some task setτ ,

at mostg groups of tasks are created. In addition, there may be

up tog− 1 tasks that do not belong to any group. Each of these

tasks may execute on the cores of two groups. For each pair of

consecutive groups, say Grouph and Grouph + 1, at most one

3

task that migrates between them may exist. We denote this task

(if it exists) asTh,h+1 and call it anintergrouptask. All other

tasks are calledfixed tasks, as each executes within one group

only. The assignment algorithm (which is not shown, due to

space constraints) sorts tasks by utilization and assigns tasks to

groups by exhausting the capacity of faster groups first.

The assignment algorithm returns a set of valuesZk,h, where

1 ≤ k ≤ n and 1 ≤ h ≤ g. The valueZk,h denotes the

fraction ofTk ’s utilization that is assigned to Grouph. For any

fixed taskTk assigned to Grouph, Zk,h = uk holds. For any

intergroup taskTk = Th,h+1, Zk,h + Zk,h+1 = uk holds. If

task Tk may not execute on Grouph, thenZk,h = 0. The

assignment algorithm ensures the following.

∑

h

Zi,h = ui ∧
∑

i

Zi,h ≤ mh · sh (1)

Example 1. Fig. 1 shows the assignment determined for the

task setτ = {T1, . . . , T13}. For conciseness, we will use the

notationTi−j to denoteTi, . . . , Tj in describing this task set.

τ consists ofT1−5 = (8, 10), T6−9 = (3, 2), andT10−13 =

(4, 2). TasksT1−5, T6−9, andT10−13 have utilization0.8, 1.5,

and2.0, respectively. The system is comprised of three groups

of cores of speeds one, two, and three. That is,m1 = 3, s1 = 1,

m2 = 3, s2 = 2, m3 = 3, and s3 = 3. In Fig. 1, each

core group is depicted as a “bin” with its height proportional to

mh ·sh, i.e., the total processing capacity of the group. As seen,

tasksT1−3 are assigned to Group1, tasksT5−8 to Group2, and

tasksT10−13 to Group3. TasksT4 = T 1,2 andT9 = T 2,3 are

intergroup tasks.

For each Grouph, we can define a set of tasksτh with jobs

to be scheduled by this group:

τh = {Ti : Zi,h > 0}. (2)

As with migrating tasks inEDF-fm [1], if an intergroup task

Th,h+1 were to miss its deadline in the schedule for either

9T

0

1

2

3

4

5
6

7

8

9

4T

Group 1 Group 2 Group 3

u =210

u =211

u =212

u =213

Z =19,3

Z =0.59,2

u =1.58

u =1.57

u =1.56

u =0.85

Z =0.24,2

Z =0.64,1

u =0.81

u =0.82

u =0.83

Figure 1: Mapping of the task set onto groups of cores
in Example 1. Different shadings are used for tasks with
utilization at most one, two, and three.

Grouph or Grouph + 1, then this would create a nontrivial

linkage between these two groups that complicates scheduling

analysis. This is because, if a job ofTh,h+1 misses its deadline,

then the processing of the next job ofTh,h+1 may be delayed

until after its release, and this may increase the chance that it

will miss as well. Thus, missed deadlines in one group could

lead to missed deadlines in another group. Thus, our scheduling

policy must achieve two goals:(i) allow us to analyze the

schedule in each group independently, and(ii) not overload any

group in the long run (for otherwise, tardiness in such a group

would grow unboundedly).

These goals are accomplished as follows. During the

execution phase ofEDF-ms, jobs of tasks inτh are scheduled

on the cores in Grouph using GEDF, with the jobs of

intergroup tasks treated specially. As we shall see, the special

treatment given to intergroup tasks ensures that their jobs

always have zero tardiness. This allows us to analyze each

core group as a separate (same-speed) system. The jobs of

each intergroup taskTk = Th,h+1 are distributed between

its assigned Groupsh andh + 1 using a special deterministic

pattern first described in [1], which ensures that the total

workload from these jobs assigned to these two groups over the

long term is in accordance with the sharesZk,h andZk,h+1,

respectively.

In order to describe this assignment pattern, we introduce

4

Group 2

Group 3

T9,1 T9,4
T9,7

T9,2
T9,3 T9,5 T9,6 T9,8

0 2 4 6 8 10 12 14 16

Figure 2: Assignment of jobs of the taskT9 from Example 2.

some additional notation. For each intergroup taskTk =

Th,h+1, we letfk,h andfk,h+1 denote the fraction ofTk’s jobs

that are processed by Groupsh andh + 1, respectively. These

two quantities are defined as follows.

fk,h = Zk,h/uk ∧ fk,h+1 = Zk,h+1/uk (3)

Note that, by (1),fk,h + fk,h+1 = 1.

To explain the assignment pattern, we consider a single

group, Grouph. Assume that there exist two intergroup tasks

Th−1,h and Th,h+1. If we were to depict Grouph as a

“bin” as done in Fig. 1, thenTh−1,h would be thetop task

in Grouph, andTh,h+1 would be thebottomtask. Different

(complementary) assignment rules are needed for these two

cases. LetTk denote eitherTh−1,h or Th,h+1. Let j ≥ 1 be the

index of the latest job released byTk at or after timet and letja

be the number of jobs ofTk assigned to Grouph beforet. For

the case whereTk = Th−1,h, i.e., Tk is the top task, thejth job

of Tk is assigned to Grouph iff j − 1 6= bj − ja/(1 − fk,h)c.

We call this assignment rule thetop rule. For the case where

Tk = Th,h+1, i.e., Tk is the bottom task, thejth job of Tk

is assigned to Grouph iff j − 1 = bja/fk,hc. We call this

assignment rule thebottom rule.

Example 2. Fig. 2 shows the assignment pattern for the jobs

of task T9 from Example 1, which has frequenciesf9,2 =

Z9,2/u9 = 0.5/1.5 = 1/3 andf9,3 = Z9,3/u9 = 1/1.5 =

2/3. Jobs ofT9 are assigned to Group 2 using the bottom

rule and to Group 3 using the top rule. Here, we will focus

on Group 2. Consider the time instantt = 6 when the fourth

job of T9 is released. When considering this fourth job in the

bottom rule,j = 4. Prior to timet, one job ofT9 was assigned

to Group 2, soja = 1. Applying these values via the bottom

rule, we obtainj − 1 = 3 = b1 · 3c = bja/f9,2c, so the job is

assigned to Group 2. Note that, by time6, three jobs ofT9 are

released and one of them is processed by Group 2, which is in

accordance with the fractionf9,2 = 1/3.

As shown in [1], this assignment strategy ensures that the

maximum number of jobs of an intergroup taskTk released

during an interval of lengtht and assigned to Grouph is at most

dfk,hd
t

pk
ee. Thus, the maximum demand due to jobs ofTk that

must be processed by Grouph during an interval of lengtht is

at most
⌈

fk,h

⌈

t

pk

⌉⌉

ek, (4)

which is approximatelyZk,h · t. Because the demand of each

fixed taskTk ∈ τh during the interval[0, t) is at mostuk · t, and

the demand of each intergroup taskTk assigned to Grouph is

approximatelyZk,h · t, Grouph will not be overloaded in the

long run. For example, for Group 2 in Fig. 1, these values sum

to 6t, which matches the group’s overall computing capacity

within [0, t), as given bym2 · s2 · t.

Because no group is overloaded in the long term, the

scheduling policy we give below for each group will ensure

that the jobs of intergroup tasks never miss their deadlines.

As such, we no longer need to consider multiple groups, but

can concentrate our analysis efforts on just one, say Grouph.

Furthermore, Grouph’s per-core speed ofsh is no longer an

issue, since all cores in the group have the same speed. We

therefore assume that all cores in Grouph have a speed of one

and that all execution costs, utilizations, andZk,h values of

tasks executing on the cores of Grouph have been scaled by

dividing them bysh.

We further simplify the problem notationally by assuming

that we have havem (unit-speed) processors upon which

we must schedule a set ofn + 2 sporadic tasks,τ =

{T0, T1, . . . , Tn+1}. T0 andTn+1 represent, respectively, the

5

top and bottom intergroup tasks for this core group. (Later,we

explain how to adjust our results if either of these tasks does

not exist.) T1, . . . , Tn are the fixed tasks for the group. Our

scheduling policy treatsT0 andTn+1 specially so that their jobs

do not miss their deadlines, so we call themprivileged tasks.

Jobs of the privileged tasks are assigned to the system usingthe

top and bottom rules discussed earlier. We letZ0 < u0 and

Zn+1 < un+1 denote the part of the utilization of tasksT0 and

Tn+1, respectively, that must be processed by the system. If

T0 andTn+1 both exist, as assumed here, thenZ0 + Zn+1 +
∑n

i=1 ui = m. More generally,Z0 + Zn+1 +
∑n

i=1 ui ≤ m.

We letf0 = Z0/u0 andfn+1 = Zn+1/un+1.

Jobs of privileged tasks are treated specially in scheduling

by using an approach presented in [5]. In this approach, the

concept of slack is used: if jobTk,j executes forδk,j time prior

to timet ≤ dk,j , then itsslackatt, given bydk,j−t−(ek−δk,j),

represents the maximum amount of time thatTk,j can remain

idle (i.e., not execute) and still meet its deadline. This concept

is used in scheduling tasks in the following way: all jobs are

scheduled usingGEDF, with the exception that, if a job of a

privileged task has zero slack, then it is executed continuously

until its deadline. This policy clearly ensures that privileged

tasks do not miss their deadlines. (Recall that each core group

consists of at least two cores.)

4 Tardiness Bounds

In this section, we derive a tardiness bound forEDF-ms. We

begin by digressing to consider a related bound, proved for

EDF-hl in [5]. Several properties established there forEDF-

hl hold forEDF-ms as well.

4.1 Comparison ofEDF-ms and EDF-hl

EDF-hl is the same asEDF-ms except for three differences.

First, there may be up tom privileged tasks inEDF-hl, instead

of just two (wherem is the number of processors). Second,

all jobs of each privileged task are scheduled by the system.

t

(a)

t

(b)

Privileged execution Non-privileged execution

Job release Job deadline

Figure 3: Schedules(a) without and (b) with temporary
overloads.

In contrast, inEDF-ms, only jobs assigned to the system by

the top and bottom rules are considered. Third, each privileged

taskTk has a specified tardiness bound∆k ≥ 0 that must be

ensured. In our case,∆k = 0.

Of these difference, the second is the most significant. In

the analysis ofEDF-hl, it is assumed that
∑

ui ≤ m holds.

For EDF-ms, we have insteadZ0 + Zn+1 +
∑n

i=1 ui ≤

m. Thus, under both schemes, long-term overloads cannot

happen. However, underEDF-ms, short-term overloadscan

occur. This is not possible underEDF-hl. Thus, the analysis

associated withEDF-hl must be adjusted to deal with short-

term overloads. We illustrate this issue with an example.

Example 3. We consider two similar task setsτ1 andτ2 to be

scheduled byEDF-hl and EDF-ms, respectively. Both have

two non-privileged tasksT1 = (3, 4) and T2 = (7, 8). τ1

has an addition privileged taskT3 = (3, 8), while τ2 has an

additional privileged taskT ′
3 = (1, 1) for which Z ′

3 = 3/8. In

τ1, total utilization is two, so this system can be scheduled on

two processors. Inτ2, the expressionZ ′
3 +

∑2
i=1 ui is also two.

However, whileT3 in τ1 submits jobs at a steady rate according

to its utilization, T ′
3 submits jobs at an unsteady rate, which

leads to temporary overloads. To see this, consider the two

6

schedules forτ1 (a) andτ2 (b) in Fig. 3. Becausee′3 = p′3 holds

for T ′
3, its jobs that are assigned to the system by the bottom rule

commence execution immediately after being released. The

resulting temporary overloads cause some deadlines of non-

privileged tasks to be missed. While such overloads can occur

underEDF-ms, in both schedules, the amount of computation

required by privileged tasks every eight time units is the same.

4.2 Tardiness Bound forEDF-hl

Because several of the properties established forEDF-hl by

Devi and Anderson [5] are used in our analysis ofEDF-ms,

an overview of theEDF-hl analysis is in order. We begin by

stating a number of definitions that are used in the analysis.

4.2.1 Definitions

The system start time is assumed to be zero. For any timet > 0,

t− denotes the timet − ε in the limit ε → 0+.

Definition 1 (active tasks and active jobs): A task Ti is

activeat timet if there exists a jobTi,j (calledTi’s active job

at t) such thatri,j ≤ t < di,j . By our task model, every task

has at most one active job at any time.

Definition 2 (pending jobs): Ti,j is pendingatt in a schedule

S if ri,j ≤ t andTi,j has not completed execution byt in S.

Note that a job with a deadline at or beforet is not considered

to be active att even if it is pending att.

A task system isconcreteif the release times of all jobs are

specified, andnon-concrete, otherwise. The tardiness bound

established forEDF-hl is derived by comparing the allocations

to a concrete task systemτ in an ideal processor-sharing (PS)

schedule to those in anEDF-hl schedule. In aPS schedule,

each job of a taskTi is executed at a constant rate ofui between

its release and deadline. As an example, consider Fig. 4, which

shows thePS schedule for the task systems in Example 3.

Note that, in aPS schedule, each job completes exactly at its

deadline. Thus, if a job misses its deadline, then it is “lagging

1t

Privileged execution Non-privileged execution

Job release Job deadline

Processor-sharing schedule for

t

0.5

0

1.0

1.5

2.0

T or T3 3

’

0 4 8 12 16 20 24

Figure 4:PS schedule forτ1 andτ2 in Example 3.

behind” thePS schedule—this concept of “lag” is instrumental

in the analysis and is formalized below.

So that we may compare allocations in different schedules,

let A(Ti,j , t1, t2,S) denote the total allocation to the job

Ti,j in an arbitrary scheduleS in [t1, t2). Similarly, let

A(Ti, t1, t2,S) =
∑

j≥1 A(Ti,j , t1, t2,S) denote the total time

allocated to all jobs ofTi in [t1, t2) in S.

The difference between the allocations to a jobTi,j up to

time t in aPS schedule and an arbitrary scheduleS, termed the

lag of jobTi,j at timet in scheduleS, is given by

lag(Ti,j , t,S) = A(Ti,j , 0, t,PS) − A(Ti,j , 0, t,S).

The lag of a taskTk at timet in scheduleS is defined by

lag(Ti, t,S) =
∑

j≥1

lag(Ti,j , t,S)

= A(Ti, 0, t,PS)−A(Ti, 0, t,S).

Task lags and job lags are related as follows.

lag(Ti, t,S) =
∑

{Ti,j is pending or

active att−}

lag(Ti,j , t,S)

Finally, thelag for a finite job setΨ at timet in the schedule

7

S is defined by

LAG(Ψ, t,S) =
∑

Ti,j∈Ψ

lag(Ti,j , t,S).

The concept of lag is important because, if it can be shown

that lags remain bounded, then tardiness is bounded as well.

Definition 3 (busy and non-busy intervals): A time interval

[t1, t2), wheret2 > t1, is said to bebusyfor any job setΨ if all

m processors are executing some job inΨ at each instant in the

interval,i.e., no processor is ever idle in the interval or executes

a job not inΨ. An interval[t1, t2) that is not busy forΨ is said

to benon-busyfor Ψ.

We are interested in non-busy intervals (for a job set) because

total lag (for that job set) can increase only across such

intervals. Such increases can lead to deadline misses. We

illustrate this point with an example.

Example 4. The intervals[3, 4) and[7, 8) in the schedule forτ2

in Fig. 3 are non-busy for the set of jobs with deadlines at most

8. The total lag for these jobs increases by one across each of

these intervals. In effect, two units of processing capacity are

“lost” during these intervals. As a result, the first job ofT2

misses its deadline at time 8 by two time units.

4.2.2 Tardiness-Bound Derivation

We describe the tardiness-bound derivation forEDF-hl for the

case where each privileged task is ensured zero tardiness, as

in EDF-ms. In this case, given an arbitrary non-concrete task

systemτN , we want to determine the maximum tardiness of

any job of any non-privileged task in any concrete instantiation

of τN . Let τ be a concrete instantiation ofτN . Let τH ⊆ τ

be the set of at mostm privileged tasks inτ , and letτL denote

the remaining tasks. We remind the reader that all tasks are

sporadic and each job of every privileged task is processed by

the system. LetT`,j be a job of a non-privileged task inτ ,

let td = d`,j , and letS be anEDF-hl schedule forτ with the

following property.

(P) The tardiness of every job of every non-privileged taskTk

in τ with deadline less thantd is at mostx+ek in S, where

x ≥ 0.

Our goal is to determine the smallestx, independent of the

parameters ofT`, such that the tardiness ofT`,j remains at most

x + e`. Such a result would by induction imply a tardiness of

at mostx + ek for all jobs of every non-privileged taskTk ∈ τ .

Becauseτ is arbitrary, the tardiness bound will hold for every

concrete instantiation ofτN .

Assume thatT`,j misses its deadline (for otherwise, its

tardiness is zero). The completion time ofT`,j then depends on

the amount of work that can compete withT`,j aftertd. Hence,

a value forx can be determined via the following steps.

(S1) Compute an upper bound (UB) on the work pending for

tasks inτ (including that due toT`,j) that can compete

with T`,j aftertd.

(S2) Determine a lower bound (LB) on the amount of such work

required for the tardiness ofT`,j to exceedx + e`.

(S3) Determine the smallestx such that the tardiness ofT`,j is

at mostx + e` usingUB andLB.

With the exception of some jobs of privileged tasks, jobs

with deadlines beyondtd cannot affectT`,j . Thus, our analysis

focuses mostly on the following set of jobs.

Ψ
def
= set of all jobs of tasks inτ with deadlines

at mosttd

So that we can analyze the impact of jobs of privileged tasks,

let thecarry-in job Tk,j of a privileged taskTk be defined as

the job, if any, for whichrk,j ≤ td < dk,j . At most one such

job could exist for each privileged taskTk. Similarly, let the

job Tk,j′ of a privileged taskTk, if any, for whichrk,j′ ≤ td +

x + e` < dk,j′ , be defined as thecarry-out job of Tk.

8

The competing work forT`,j beyondtd is given by the sum

of (i) the amount of work pending attd for jobs inΨ, plus(ii)

the amount of work demanded by jobs of privileged tasks that

are not inΨ but can compete with jobs inΨ during[td, td +x+

e`). By upper bounding these two components and summing

them, we can obtain an upper boundUB.

Let D(Tk, td,S) be an upper bound (to be determined) on

the work considered in (ii) generated by one privileged taskTk.

Then, an upper bound on all the work considered in (ii) is given

by

D(td,S) =
∑

Tk∈τH

D(Tk, td,S). (5)

Turning now to the pending work mentioned in (i), because

jobs from Ψ have deadlines at mosttd, they do not execute

in the PS schedule beyondtd. Thus, this pending work is

given byLAG(Ψ, td,S). Let δk denote the amount of time the

carry-in job (if one exists) of some taskTk has executed before

td. The presence of carry-in jobs can causeLAG(Ψ, td,S) to

be higher than it otherwise would have been by an additive

factor of at most
∑

Ti∈τH
δi(1 − ui). This is because carry-

in jobs have deadlines beyondtd, and thus when they execute

prior to td, they deprive the jobs inΨ of processor time that

may otherwise have been available to them. If a carry-in job

executes prior totd in the actual scheduleS for δi time, then

while it is executing, it receives an allocation ofui · δi in the

PS schedule. This means its lag changes byui · δi − δi, which

is a decrease. This lag decrease for carry-in jobs translates into

a corresponding increased lag for the jobs inΨ. It remains to

understand how lags change in the absence of carry-in jobs.

In this case,LAG(Ψ, td,S) is at mostLAG(Ψ, t′,S), where

t′ is the end of the latest non-busy interval forΨ before td.

In particular,LAG for Ψ cannot increase betweent′ and td,

because all processors are busy in[t′, td) in the actual schedule

S. Combining these ideas, we have the following upper bound.

LAG(Ψ, td,S) ≤ LAG(Ψ, t′,S) +
∑

Ti∈τH

δi(1 − ui) (6)

This upper bound is formally established in Lemmas 6 and 7

in [5]. It is important to note that the proofs of these lemmas

only depend on Property (P) and the definition of a carry-in

job (particularly, the termδi). In particular, the proofs do not

depend on the exact manner in which the jobs of privileged

tasks are scheduled. Note that Property (P) makes a very strong

assumption about the execution of jobs fromΨ prior to td.

To continue, we partition the jobs inΨ into two disjoint

subsets:ΨH , which includes all jobs inΨ of privileged tasks,

andΨL, which includes all remaining jobs inΨ. Then, we have

LAG(Ψ, t′,S)

= LAG(ΨL, t′,S) + LAG(ΨH , t′,S). (7)

Let U(τ, y) denote the set of at mosty tasks of highest

utilization from the task setτ . Let E(τ, y) denote the set of at

mosty tasks with the highest execution costs fromτ . LetEL =
∑

ui∈E(τL,m−1) ei and UL =
∑

ei∈U(τL,min(m−2,|τL|)) ui.

Using this notation, Lemma 6 from [5] establishes the

following upper bound onLAG(ΨL, t′, td).

LAG(ΨL, t′,S) ≤ EL + xUL (8)

As before, only Property (P) is used in establishing this bound.

The exact manner in which privileged tasks are scheduled does

not arise.

Let L(τH , t′,S) be an upper bound (to be determined) on the

otherLAG term in (7),LAG(ΨH , t′,S). Then, from (7) and (8),

we have the following.

LAG(Ψ, t′,S) ≤ EL + xUL + L(τH , t′,S) (9)

Combining (5), (6), and (9), the desired upper boundUB is

LAG(Ψ, td,S) + D(td,S)

≤ EL + xUL +
∑

Ti∈τH

δi(1 − ui) + L(τH , t′,S) +

9

D(td,S). (10)

Lemma 11 from [5] shows that the tardiness ofT`,j is at most

x + e` if one of the following conditions holds.

• |τH | < m andLAG(Ψ, td,S) ≤ (m − |τH |)x + e`.

• |τH | > 0 and LAG(Ψ, td,S) + D(td,S) ≤ (m −

max(|τH | − 1, 0)u`)x + e`.

As before, these results only depend on Property (P). Thus, for

tardiness toexceedx + e`, we must haveLAG(Ψ, td,S) >

(m− |τH |)x + e` for the case|τH | < m, andLAG(Ψ, td,S) +

D(td,S) > (m − max(|τH | − 1, 0)u`)x + e` for the case

|τH | > 0. These expressions give us the desired lower bound

LB (for two different cases).

Now, if we set the upper bound on eitherLAG(Ψ, td,S) +

D(td,S) or LAG(Ψ, td,S) implied by (10) to be at most its

corresponding lower bound above, then the tardiness ofT`,j

will be at mostx+e`. (An upper bound onLAG(Ψ, td,S) alone

is obtained from (10) by cancelingD(td,S) from both sides.)

By solving for the minimumx that satisfies both resulting

inequalities, we obtain a value ofx that is sufficient for ensuring

a tardiness of at mostx + e`; we explain later how to obtain a

value ofx that is independent of the parameters ofT`,j when

we considerEDF-ms. The two inequalities are as follows.

L(τH , t′,S)

≤ (m − |τH | − UL)x − EL

−
∑

Ti∈τH

δi(1 − ui) + e` (11)

D(td,S) + L(τH , t′,S)

≤ (m − max(|τH | − 1, 0)u` − UL)x − EL

−
∑

Ti∈τH

δi(1 − ui) + e` (12)

In [5], it is shown thatL(τH , t′,S) = 0 holds forEDF-hl. This

will not necessarily be the case forEDF-ms.

4.3 Tardiness Bound forEDF-ms

A tardiness bound forEDF-ms can be derived in a way that

is similar to that used forEDF-hl. Several aspects of the

derivation remain the same. For example, we use the same

notion of aPS schedule here. In addition, all of the reasoning

concerning non-privileged tasks in the derivation forEDF-hl

applies toEDF-ms. This is because, as noted earlier, Property

(P) allows us to reason about the scheduling of non-privileged

tasks beforetd (and, in particular, their lags) without concern

for exactly how the privileged tasks were scheduled prior totd.

The only changes that are therefore required are those aspects

of the derivation involving privileged tasks. Specifically, we

must derive upper bounds of the two termsD(td,S) and

L(τH , t′,S). These bounds are derived separately below.

4.3.1 An Upper Bound ofD

The desired upper bound is provided in the following lemma.

Lemma 1. LetTk be one of the two privileged tasks scheduled

byEDF-ms. Letδk be as defined earlier. Then,D(Tk, td,S) ≤

Zk · x + ek(3 − fk) + Zk · e` − δk(1 − Zk).

Proof. If no job of Tk has a deadline in[td, td + x + e`), then

D(Tk, td,S) is at mostek −δk, which proves the lemma. In the

remainder of the proof, we assume thatTk has one or more job

deadlines in[td, td + x + e`). In this case, the demand given

by D(Tk, td,S) is comprised of three parts:(i) demand due to

the carry-in job, which we denoteTk,ci: (ii) demand due to the

carry-out job, which we denoteTk,co; and(iii) demand due to

other jobs ofTk that have deadlines within[td, td + x + e`).

Note that, in considering the demand created by these various

jobs, we only have to consider those jobs assigned to the system

by either the top or bottom rule (as the case may be). Also

note that, if no carry-in or carry-out job exists, then the demand

component mentioned in (i) or (ii), respectively, is simplyzero.

Carry-in demand. If the carry-in jobTk,ci has a deadline at

td + ξ, then demand due to it is at mostmin(ek − δk, ξ). In

10

the rest of the proof, we assume thattd + ξ is so defined if the

carry-in job exists, and if it does not exist, thenξ = 0.

Carry-out demand. Assume that the carry-out jobTk,co is

released at timerk,co and its (absolute) deadline is at time

dk,co = rk,co + pk. SinceTk,co is a carry-out job,dk,co ≥

td + x + e`. Since the carry-out job has a deadline aftertd, it

cannot be prioritized over jobs inΨ unless its slack is zero. The

earliest time this can happen isdk,co − ek = rk,co + pk − ek.

If dk,co − ek ≥ td + x + e`, then the carry-out job is never

prioritized overT`,j in [td, td + x + e`), i.e., the carry-out

demand is zero. Ifdk,co−ek < td +x+e`, then this demand is

td +x+ e` −dk,co + ek = td +x+ e` − rk,co −pk + ek. (13)

Let Tk,co−1 be the job ofTk that precedes the carry-out job and

let dk,co−1 ≥ td be its deadline—note thatTk,co−1 may or may

not have been assigned to the system by the top or bottom rule.

Let φ = td + x + e` − dk,co−1. Then, becausedk,co−1 ≤ rk,co,

we haveφ ≥ td + x + e` − rk,co. Thus, the demand in (13)

is at mostφ − pk + ek. Combining these cases together, the

carry-out demand is at mostmax(0, ek − (pk − φ)).

Remaining demand. Jobs of Tk that are released and

assigned to the system betweentd + ξ and td + x + e` − φ

create the remaining demand. By (4), this demand is at most

⌈

fk

⌈

x + e` − φ − ξ − pk

pk

⌉⌉

ek.

Having upper bounded the three relevant sources of demand,

we now show that their sum is upper bounded by the expression

given in the lemma. Ifx + e` − φ − ξ − pk ≤ 0, then the third

demand component is zero, and we havemax(0, ek − (pk −

φ)) + min(ek − δk, ξ) ≤ 2ek − δk. It can be shown that this

last expression is at mostek(3−fk)+Zk·x+Zk·e`−δk(1−Zk).

The remaining possibility is thatx + e` − φ − ξ − pk > 0.

In this case, we have the following.

D(Tk, td,S)

≤ min(ek − δk, ξ)

+

⌈

fk

⌈

x + e` − φ − ξ − pk

pk

⌉⌉

ek

+ max(0, ek − (pk − φ))

≤ min(ek − δk, ξ) + ek + ekfk

(

x + e` − φ − ξ

pk

)

+ max(0, ek − (pk − φ))

= min(ek − δk, ξ) + ek + Zk(x + e` − φ − ξ)

+ max(0, ek − (pk − φ))

{because, by (3),fkek/pk = Zk}

= min(ek − δk, ξ) + ek

+ max(Zk(x + e` − φ − ξ),

Zk(x + e` − φ − ξ) + ek − (pk − φ))

Before continuing the derivation, note thatZk(x + e` − φ −

ξ) + ek − (pk − φ) = Zk(x + e` − ξ) − Zk · φ + ek − (pk −

φ) = Zk(x + e` − ξ) + (φ(1 − Zk) + ek − pk). Because

0 ≤ φ ≤ pk, this expression is maximized whenφ = pk. Thus,

Zk(x + e` − ξ) + (φ(1−Zk) + ek − pk) ≤ Zk(x + e` − ξ) +

ek −Zk · pk = Zk(x + e` − ξ) + ek(1− fk) ((3) is used in the

last step). BecauseZk(x + e` − ξ − φ) ≤ Zk(x + e` − ξ), we

can continue the derivation as follows to conclude the proof.

D(Tk, td,S)

≤ min(ek − δk, ξ) + ek + Zk(x + e` − ξ) +

ek(1 − fk)

≤ ek − δk + ek + Zk(x + e` − (ek − δk))

+ ek(1 − fk)

{becauseξ ≥ ek − δk}

≤ ek(3−fk) − δk + Zk · x + Zk · e` − Zk(ek−δk)

= ek(3 − fk) + Zk · x + Zk(e` − ek) − δk(1 − Zk)

≤ ek(3 − fk) + Zk · x + Zk · e` − δk(1 − Zk)

¥

11

Execution in PS Execution in S

T0,2 T0,3 T0,5
T0,6 T0,8

Tn+1,1 Tn+1,5

0 1 2 3 4 5 6 7 8 t

1/3

1/16

Job release Job deadline

Figure 5: Schedules for tasksT0 andTn+1 in Example 5.

4.3.2 An Upper Bound ofL

The remaining issue is to determine an upper bound of

L(τH , t′,S), which is simply the sum of the lags of the two

privileged tasks. In fact, we will show that the lag of each of

these tasks is bounded by a constant. This follows because the

top and bottom rules assign jobs of these tasks to the system in

a way that prevents long-term overloads, and also because such

jobs are scheduled in a way that ensures that they do not miss

their deadlines. The needed bounds are quite simple and are

given in the following lemma, which we state without proof.

Lemma 2. Let T0, Tn+1, and τ be as defined above. Then,

for any t ≥ 0, lag(T0, t,S) ≤ e0 + Z0(p0 − e0) and

lag(Tn+1, t,S) ≤ Zn+1(pn+1 − en+1).

Example 5. We illustrate the lemma by considering a system

with a top privileged taskT0 with e0 = 1/2, p0 = 1, and

Z0 = 1/3, and a bottom privileged taskTn+1 with en+1 = 1/4,

pn+1 = 1, andZn+1 = 1/16. The corresponding frequencies

are f0 = Z0/u0 = 2/3 and fn+1 = Zn+1/un+1 = 1/4.

Fig. 5 depicts both actual andPS schedules for each task. Let

us determinelag(T0, 4.5,S). Up to time 4.5,T0 is allocatedZ0 ·

t = 4.5 ·1/3 = 1.5 time units in thePS schedule, and2 ·1/2 =

1 time unit in the actual schedule. Therefore,lag(T0, 4.5,S) =

0.5. The upper bound in Lemma 2, applied toT0, is 2/3.

From Lemma 2, we have the desired upper bound.

Corollary 1. L(τH , t′,S) ≤ e0 +
∑

k∈{0,n+1} Zk(pk − ek).

4.3.3 Tardiness Bound Derivation

Applying the upper bound in Corollary 1 to (11), we get

e0 +
∑

k∈{0,n+1}

Zk(pk − ek)

≤ (m − |τH | − UL)x

−EL −
∑

k∈{0,n+1}

δk(1 − Zk) + e`.

Note that, in the last summation, we have usedZk instead ofuk

because underEDF-ms, Zk representsTk ’s actual utilization in

the system. If we upper boundδk by ek and solve forx, we get

x ≥

EL + e0 +
∑

k∈{0,n+1}

ek(1 + fk − 2Zk) − e`

m − |τH | − UL

(14)

Applying the upper bounds in Lemma 1 and Corollary 1

to (12), we get

∑

k∈{0,n+1}

(ek(3 − fk) + Zk · x + Zk · e`

−δk(1 − Zk)) + e0 +
∑

k∈{0,n+1}

Zk(pk − ek)

≤ (m − max(|τH | − 1, 0)u` − UL)x

−EL −
∑

k∈{0,n+1}

δk(1 − Zk) + e`.

As before, we have usedZk instead ofuk in the last summation.

Solving forx, we get

x ≥

e0+EL+
∑

k∈{0,n+1}

(ek(3−Zk) + Zk · e`) − e`

m−max(|τH |−1, 0)u`−UL−Z0−Zn+1
. (15)

If x is the smaller of the two values on the right-hand sides of

(14) and (15), then the tardiness ofT`,j will not exceedx + e`.

Let emax = max(ei) andemin = min(ei). Then, a value for

x that is independent of the parameters ofT` can be obtained

by replacingu` with maxTi∈τL
ui, e` with emin in (14), and

12

the expression(Z0 + Zn+1 − 1)e` with EL in (15), where

EL =







(Z0 + Zn+1 − 1)emin if Z0 + Zn+1 ≤ 1

(Z0 + Zn+1 − 1)emax otherwise.

Theorem 1. With x as defined as above, tardiness for a non-

privileged taskTk scheduled underEDF-ms is at mostx + ek.

Note that, for tardiness to be bounded underEDF-ms, the

denominators in the right-hand-side expressions in (14) and

(15) must not be zero. Upon substitutingmaxTi∈τL
ui for u`,

this gives us two requirements,m − |τH | − UL > 0, and

m−max(|τH | − 1, 0)(maxTi∈τL
ui)−Z0 −Zn+1 −UL > 0.

Thus, to ensure bounded tardiness, some slight restrictions on

task utilizations are required. (The impact of these restrictions

is assessed in the next section.)

We have assumed above that there are two privileged tasks.

If only one such task exists, then we can assume there are two,

with the execution cost, utilization, andZ andf values for one

of them being zero. Of course, if there are no privileged tasks,

then tardiness can be analyzed using the results from [5].

We have also required that there be at least two cores per

group. A group with one core can be handled in three ways.

• We can use the same approach described above, but limit

the group to have at most one privileged task. In this case,

the group’s lone core may not be fully utilized.

• We can schedule the tasks within the group likeEDF-

fm schedules tasks on one processor. Note thatEDF-fm

requires that if two privileged tasks exist, then they have a

combined share on the processor of at most one. On the

other hand, the processor can be fully utilized.

• We can combine the lone core in the group with slower

cores to create a group of at least two cores. This comes at

the expense of not utilizing the full processing capacity of

the core added to the slower group.

The best approach will depend on the workload to be scheduled.

5 Experimental Evaluation

In this section, we present an experimental evaluation ofEDF-

ms. We performed two sets of experiments. In the first, we

assessed tardiness within a single group. In the second, we

assessed the impact of several variants of the task-assignment

method discussed in Sec. 2 on overall tardiness.

5.1 Tardiness Bounds for a Single Group

In this set of experiments, we computed per-task tardiness

bounds for random task sets onm = 2, 4, 8, and 16 unit-speed

processors in the presence of one or two privileged tasks (top or

bottom). Each task set consisted of at leastm + 1 tasks. Tasks

within each set were generated with utilizations uniformly

distributed in[0, umax), whereumax ranged from0.1 to 1 in

steps of0.05. For each value ofumax, 1,000 task sets were

generated. Task execution costs were uniformly distributed

over [10, 20). Tasks were added to the generated task set until

total utilization exceededm. The shares of the privileged tasks

were then defined so thatZ0 + Zn+1 +
∑

i=1,...n ui = m. The

top (bottom) task (if either existed) was taken to be the task

with the smallest (largest) utilization.

Fig. 6 shows the averagemaximumtask tardiness plotted

against the average task utilization,uavg, for different values of

m. Note that tardiness grows asuavg grows, with the exception

of the case of two processors and one privileged task, shown in

inset (a). In this case, if we apply Theorem 1 form = 2, then

UL = 0, and only one ofZ0 andZn+1 is non-zero and it is at

most one. In this case, the denominators of (14) and (15) are

independent of the utilizations of non-privileged tasks.

The situation form = 2 changes drastically if there are two

privileged tasks. During some time intervals, both processors

in the group must execute jobs of privileged tasks. During

such intervals, non-privileged tasks cannot execute at all. If

the number of non-privileged tasks is small, and they have

high utilizations, then these tasks recover slowly from this

shortage of processing capacity, as demand due to privileged

13

tasks lessens. This situation is depicted in the right part of inset

(a), where non-privileged tasks have high utilizations.

As seen in insets (b)–(d), this effect eases as the number

of processors grows. This is because, with more than two

processors, at least one processor is always available to execute

non-privileged tasks. As the number of processors grows, more

processing capacity is available for executing the jobs of non-

privileged tasks. Hence, tardiness decreases. This suggests that

EDF-ms may be very effective in large multicore systems, the

main focus of our work.

Note that the curves in insets (a) and (b) for the case of two

privileged tasks do not continue to increase at the right. This is

because, whenm is only two or four but two privileged tasks

exist, the number of samples with highuavg is small.

As remarked earlier, bounded tardiness is guaranteed under

EDF-ms only if the two conditions m − max(|τH | −

1, 0)maxTi∈τL
(ui)−Z0−Zn+1−UL > 0 andm−|τH |−UL >

0 hold. These conditions are not very restrictive. As evidence

of this, no task set generated in this set of experiments had to

be rejected because of these conditions.

5.2 Task Assignments, Revisited

Because tardiness within a group depends on the parameters of

the privileged tasks in that group, it might be possible to lower

overall tardiness by using a task-assignment policy that lessens

the impact of privileged tasks on other tasks. To see if this is so,

we considered two such policies and compared them to the one

described in Sec. 2. In that which follows, we refer to original

policy described earlier asSIMPLE.

According to Theorem 1, if the privileged tasks within a

group either require large shares within the group or have high

execution costs, then tardiness within the group may be high.

This suggests two alternative assignment policies, one that

seeks to minimize the shares of privileged tasks, and a second

that seeks to minimize their execution costs. Both policies

function in a similar way: after runningSIMPLE, consider the

0 0.2 0.4 0.6 0.8 1
0

100

200

300

Avg. utilization

A
vg

. t
ar

di
ne

ss

Average tardiness vs. average util. m=2

Two privileged tasks
One top task
One bottom task

(a)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

Avg. utilization
A

vg
. t

ar
di

ne
ss

Average tardiness vs. average util. m=4

Two privileged tasks
One top task
One bottom task

(b)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

Avg. utilization

A
vg

. t
ar

di
ne

ss

Average tardiness vs. average util. m=8

Two privileged tasks
One top task
One bottom task

(c)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

Avg. utilization

A
vg

. t
ar

di
ne

ss

Average tardiness vs. average util. m=16

Two privileged tasks
One top task
One bottom task

(d)

Figure 6: Tardiness bounds versusuavg for (a) m = 2, (b)
m = 4, (c) m = 8, and(d) m = 16.

14

Group 1 Group 2 Group 3
0

50

100

150

200

250

300

Groups

M
ax

 ta
rd

in
es

s
in

 th
e

gr
ou

p
Max tardiness of tasks in C1

SIMPLE
MIN−EXEC
MIN−UTIL

(a)

Group 1 Group 2 Group 3
0

50

100

150

200

250

300

Groups

M
ax

 ta
rd

in
es

s
in

 th
e

gr
ou

p

Max tardiness of tasks in C2

SIMPLE
MIN−EXEC
MIN−UTIL

(b)

Group 1 Group 2 Group 3
0

50

100

150

200

250

300

Groups

M
ax

 ta
rd

in
es

s
in

 th
e

gr
ou

p

Max tardiness of tasks in C3

SIMPLE
MIN−EXEC
MIN−UTIL

(c)

Figure 7: Tardiness bounds under different assignment schemes
for three core groups in three different configurations:(a) C1,
(b) C2, and(c) C3.

Core groups
s1 = 1 s2 = 2 s3 = 3 M

C1 12 4 2 18
C2 24 8 4 36
C3 48 16 8 72

Table 1: Three evaluated configurations.

groups in decreasing index order, and for each group, selectas

the bottom task the task in the group with nonzero share that has

the smallest utilization or execution cost. We call the former

schemeMIN-UTIL, and the latter,MIN-EXEC. (If a task with a

lower utilization is selected as the bottom task in Grouph, then

it may actually fit within Grouph + 1. Thus, in both schemes,

the process of assigning tasks to groups is in fact iterative.)

To evaluate the impact ofMIN-UTIL and MIN-EXEC, we

considered three system configurationsC1, C2, andC3, which

have a small, medium, and large total number of coresM .

Each configuration consists of cores with speeds one, two,

and three. The number of cores of each type is shown in

Table 1. For each configuration, we evaluated 60 task sets.

The tasks in each set were generated as follows. First, tasks

with utilizations distributed randomly in[0, 2.1) were generated

until the processing capacity of Group 3 would be exceeded.

Then, tasks with utilizations in[0, 1.4) were generated until

the combined processing capacities of Groups 2 and 3 would

be exceeded. Finally, the remaining tasks were generated

with utilizations in[0, 0.7) until the remaining capacity of the

system was exhausted. All task execution costs were distributed

uniformly over [1, 100). For each generated task system, we

used Theorem 1 to compute the maximum tardiness of the non-

privileged tasks in each group under each assignment scheme.

Fig. 7 shows the maximum tardiness per group for each

configuration. Each point in each group gives the maximum

tardiness of one of the generated task sets. As the graphs

show, MIN-EXEC results in significantly lower tardiness for

Group 2 and slightly lower tardiness for the other groups. On

the other hand, the use ofMIN-UTIL did not result in better

tardiness thanSIMPLE. However, this could be an artifact of

15

our task-generation methodology. The overall conclusion to

be drawn from these results is that the significant flexibility

that exists in the task-assignment process can be exploitedto

realize certain benefits in some systems. (In particular, this

assignment process is not rigid like the bin-packing strategies

used in partitioning schemes.) Other benefits beyond lowering

tardiness are possible. For example, some hard real-time tasks

could be supported by choosing them as intergroup tasks.

Also, the response times of certain tasks could be lowered

by assigning them to faster cores, as long as the resulting

assignment is valid and utilization constraints are met.

6 Conclusion

We have presented a new algorithm,EDF-ms, which can

be used for scheduling sporadic soft real-time task systems

on asymmetric multicore platforms with cores of different

speeds. To our knowledge, this paper is the first to propose

a scheduling approach for such heterogeneous platforms that

is suitable for soft real-time workloads that require bounded

deadline tardiness. Our algorithm is capable of fully utilizing

the processing capacity of the system, provided certain very

slight restrictions on task utilizations hold. This property comes

at the price of needing to migrate tasks, as required in global

scheduling approaches such asGEDF. Note that the main cost

of a migration is a loss of cache affinity. Thus, in a multicore

platform, the need to migrate tasks is less of a concern than

for a traditional SMP, due to the presence of shared on-chip

caches. Although we have not directly included migration

costs in our task model, they can be accounted for by inflating

task execution costs to include the cost of migrations, as is

commonly done in real-time scheduling analysis.

Several interesting avenues for further work exist. For

example, it would be interesting to extend our results to include

tasks with synchronization requirements. It would also be

interesting to consider workloads with both soft real-timeand

non-real-time tasks. Finally, in this paper we have considered

heterogeneous platforms where the cores only differ in speed.

This is different fromfunctional asymmetry, where each core

has a different set of “capabilities” and tasks must be matched

with cores possessing the capabilities they need. It would be

interesting to extend our results to apply to such platforms.

References

[1] J. Anderson, V. Bud, and U. Devi. An EDF-based

scheduling algorithm for multiprocessor soft real-time

systems. InProc. of the 17th Euromicro Conf. on Real-

Time Systems, pp. 199–208, 2005.

[2] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel.

Proportionate progress: A notion of fairness in resource

allocation.Algorithmica, 15:600–625, 1996.

[3] J. Calandrino, D. Baumberger, T. Li, S. Hahn, and

J. Anderson. Soft real-time scheduling on performance

asymmetric multicore platforms. InProc. of the 13th IEEE

Real-Time and Embedded Technology and Applications

Symp., pp. 101–110, 2007.

[4] U. Devi and J. Anderson. Tardiness bounds for global EDF

scheduling on a multiprocessor. InProc. of the 26th IEEE

Real-Time Systems Symp., pp. 330–341, 2005.

[5] U. Devi and J. Anderson. Flexible tardiness bounds

for sporadic real-time task systems on multiprocessors.

In Proc. of the 20th IEEE International Parallel and

Distributed Processing Symp., 2006.

[6] S. Funk. Implementing Real-time Systems on

Heterogeneous Multiprocessors. Ph.D. dissertation,

The University of North Carolina at Chapel Hill, 2004.

[7] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi,

and K. Farkas. Single-ISA heterogeneous multi-core

architectures for multithreaded workload performance.

Proc. of the 31st International Symp. on Computer

Architecture (ISCA), pp. 64–75, 2004.

16

[8] R. Rajkumar. Resource Kernels: Why Resource

Reservation should be the Preferred Paradigm of

Construction of Embedded Real-Time Systems. Keynote

talk, 18th Euromicro Conference on Real-Time Systems,

Dresden, Germany, 2006.

17

