
An Implementation of the PCP, SRP, D-PCP, M-PCP, and
FMLP Real-Time Synchronization Protocols in LITMUSRT

Björn B. Brandenburg and James H. Anderson
The University of North Carolina at Chapel Hill

Abstract
We extend the FMLP to partitioned static-priority schedul-
ing and derive corresponding worst-case blocking bounds.
Further, we present the first implementation of the PCP,
SRP, D-PCP, M-PCP, and FMLP synchronization proto-
cols in a unified framework in a general-purpose OS and
discuss design issues that were beyond the scope of prior
algorithmic-oriented work on real-time synchronization.

1 Introduction
With the continued push towards multicore architectures by
most (if not all) major chip manufacturers [22, 28], the com-
puting industry is facing a paradigm shift: in the near fu-
ture, multiprocessors will be the norm. While current off-
the-shelf systems already routinely contain processors with
two, four, and even eight cores (examples include the Intel
Core 2 Duo, the AMD Phenom, and SUN UltraSPARC T1
processors), systems with up to 80 cores are projected to be-
come available within a decade [28]. Not surprisingly, with
multicore platforms so widespread, (soft) real-time applica-
tions are already being deployed on them. For example, sys-
tems processing time-sensitive business transactions have
been realized by Azul Systems on top of the highly-parallel
Vega2 platform, which consists of up to 768 cores [5].

Motivated by these developments, research on multipro-
cessor real-time systems has intensified in recent years (see
[15] for a survey), with significant effort being focused on
both soft and hard real-time scheduling and synchroniza-
tion [16, 21]. So far, however, few proposed approaches
have actually been implemented in operating systems and
evaluated under real-world conditions.

In an effort to help bridge the gap between algorithmic
research and real-world systems, our group recently devel-
oped LITMUSRT, a multiprocessor real-time extension of
Linux [9, 13]. The development of LITMUSRT has oc-
curred at an auspicious time, given the increasing interest
in real-time variants of Linux (see, for example, [1]). These
variants will undoubtedly be ported to multicore platforms
and thus could benefit from recent algorithmic advances in
scheduling-related research. LITMUSRT has been used to
assess the performance of various dynamic-priority schedul-
ing policies with real-world overheads considered [13].
More recently, a study was conducted to compare synchro-

nization alternatives under global and partitioned earliest-
deadline-first (EDF) scheduling [10].

The versions of LITMUSRT published so far have exclu-
sively focused on dynamic-priority scheduling algorithms.
In this paper, we extend this work by presenting an in-
tegrated implementation that supports five major real-time
synchronization algorithms under partitioned static-priority
(P-SP) scheduling. To our knowledge, this is the first such
implementation effort to be conducted on a modern general-
purpose multiprocessor operating system. Moreover, includ-
ing support for P-SP scheduling in LITMUSRT is impor-
tant, as static-priority scheduling is widely used.

Prior Work. Sha et al. were the first to propose protocols
for uniprocessors to bound priority inversion — the priority
inheritance protocol — and also avoid deadlock — the pri-
ority ceiling protocol (PCP) [27]. As an alternative to the
PCP, Baker proposed the stack resource policy (SRP) [4].
Both the SRP and the PCP have received considerable at-
tention and have been applied to both EDF and rate mono-
tonic (RM) scheduling.

Rajkumar et al. presented two extensions of the PCP for
multiprocessor real-time systems under partitioned static-
priority scheduling: the distributed priority ceiling protocol
(D-PCP) [26], which does not require shared memory and
thus can be used in distributed systems as well as tightly-
coupled multiprocessors, and the multiprocessor priority
ceiling protocol (M-PCP) [24], which relies on globally-
shared semaphores.

Several multiprocessor synchronization protocols have
been proposed for partitioned EDF scheduling. Chen and
Tripathi [14] proposed a solution that only applies to syn-
chronous periodic tasks. Additionally, multiprocessor ex-
tensions of the SRP for partitioned EDF were proposed by
Lopez et al. [21] and Gai et al. [16]. Given the experimental
focus of this paper, it is worth noting that Gai et al. not only
introduced a new locking protocol, the multiprocessor stack
resource policy (M-SRP), but also discussed an implemen-
tation of it. Their study showed that the M-SRP outperforms
the M-PCP. In recent work, Block et al. proposed the flexi-
ble multiprocessor locking protocol (FMLP) for both global
and partitioned EDF and showed that it outperforms the M-
SRP [6].

Contributions. The contributions of our work are three-
fold: (i) we extend the FMLP to P-SP scheduling and derive
corresponding worst-case blocking bounds; (ii) we present

1

and discuss in detail the first implementation of the SRP,
PCP, M-PCP, D-PCP, and FMLP in one unified frame-
work (which is available publicly under an open source li-
cense [17] and, we hope, will serve as a guide for practi-
tioners); and (iii) we discuss implementation and software
design issues not fully considered in earlier algorithmic-
oriented work on real-time locking protocols.

The rest of this paper is organized as follows: Sec. 2 pro-
vides an overview of needed background, Sec. 3 presents the
FMLP for P-SP, Sec. 4 discusses the implementation of the
synchronization protocols listed above in LITMUSRT, and
Sec. 5 concludes. Bounds for worst-case blocking under the
FMLP are derived in an appendix in the online version of
the paper [11].

2 Background
In this section, we describe background necessary for dis-
cussing the implementation of the aforementioned synchro-
nization protocols in LITMUSRT.

2.1 System Model
In this paper, we consider the problem of scheduling a sys-
tem T of sporadic tasks that share resources upon a multi-
processor platform consisting of m identical processors. A
sporadic task Ti releases a sequence of jobs T j

i and is char-
acterized by its worst-case execution cost, e(Ti), and its pe-
riod, p(Ti). A job T j

i becomes available for execution at its
release time, r(T j

i), and should complete execution before
its absolute deadline, d(T j

i) = r(T j
i) + p(Ti). A task Ti’s

jobs are ordered by release time and must be separated by at
least p(Ti) time units, i.e., j < k ⇔ r(T j

i)+p(Ti) ≤ r(T k
i).

On uniprocessors, both the EDF and the RM policies are
commonly used to schedule sporadic task systems [19]. Un-
der EDF, jobs with earlier deadlines have higher priority;
under RM, tasks with smaller periods have higher priority.

There are two fundamental approaches to scheduling spo-
radic tasks on multiprocessors — global and partitioned.
With global scheduling, processors are scheduled by select-
ing jobs from a single, shared queue, whereas with parti-
tioned scheduling, each processor has a private queue and
is scheduled independently using a uniprocessor scheduling
policy (hybrid approaches exist, too [12]). Tasks are stati-
cally assigned to processors under partitioning. As a conse-
quence, under partitioned scheduling, all jobs of a task exe-
cute on the same processor, whereas migrations may occur
in globally-scheduled systems. A discussion of the trade-
offs between global and partitioned scheduling is beyond the
scope of this paper and the interested reader is referred to
prior studies [9, 13, 15].

In this paper, we consider only partitioned static-priority
(P-SP) scheduling (the use of the FMLP under global and
partitioned EDF has been investigated previously [6, 9]).

scheduled
(no resource)

X
scheduled
(with resource)!X

blocked
(resource unavailable)

waiting for response
from agent

job completionjob release

Figure 1: Legend.

Under P-SP, each task is statically assigned to a proces-
sor and each processor is scheduled independently using a
static-priority uniprocessor algorithm such as RM.

We assume that tasks are indexed from 1 to n by decreas-
ing priority, i.e., a lower index implies higher priority. We
refer to Ti’s index i as its base priority. A job is scheduled
using its effective priority, which can sometimes exceed its
base priority under certain resource-sharing policies (e.g.,
priority inheritance may raise a job’s effective priority).

After its release, a job T j
i is said to be pending until it

completes. While it is pending, T j
i is either runnable or

suspended. A suspended job cannot be scheduled. When
a job transitions from suspended to runnable (runnable to
suspended), it is said to resume (suspend). While runnable,
a job is either preemptable or non-preemptable. A newly-
released or resuming job T l

k can only preempt a scheduled
lower-priority job T j

i if T j
i is preemptable.

Resources. When a job T j
i requires a shared resource `, it

issues a request R for `. R is satisfied as soon as T j
i holds

`, and completes when T j
i releases `. |R| denotes the max-

imum duration that T j
i will hold `. A resource can only be

held by one job at any time. Thus, T j
i may become blocked

on ` if R cannot be satisfied immediately. A resource ` is
local to a processor p if all jobs requesting ` execute on p,
and global otherwise.

If T j
i issues another request R′ before R is complete,

then R′ is nested within R. In such cases, |R| includes the
cost of blocking due to requests nested in R. Note that not
all synchronization protocols allow nested requests. If al-
lowed, nesting is proper, i.e.,R′ must complete no later than
R completes. An outermost request is not nested within any
other request. Fig. 2 illustrates the different phases of a re-
source request. In this and later figures, the legend shown in
Fig. 1 is assumed.

Resource sharing introduces a number of problems that
can endanger temporal correctness. Priority inversion oc-
curs when a high-priority job T i

h cannot proceed due to a
lower-priority job T j

l either being non-preemptable or hold-
ing a resource requested by T i

h. T i
h is said to be blocked by

T j
l . Another source of delay is remote blocking, which oc-

curs when a global resource requested by a job is already

2

issued satisfied

R1

|R1|

T j
i

nested
R2

1 1,2 1

complete

Figure 2: The different phases of a resource request. T j
i issuesR1

and blocks since R1 is not immediately satisfied. T j
i holds R1.`

for |R1| time units. Note that |R1| includes blocking incurred due
to nested requests.

in use on another processor. If the maximum duration of
priority inversion and remote blocking is not bounded, then
timing guarantees cannot be given.

2.2 Local Synchronization Protocols
Requests for local resources are arbitrated using uniproces-
sor synchronization protocols. Such protocols are preferable
to global protocols (where applicable) because their worst-
case blocking delays are generally shorter. In LITMUSRT,
we have implemented both the PCP and the SRP. Note that
at most one local protocol can be in use.

The PCP and the SRP both are based on the notion of
a priority ceiling.1 The priority ceiling of a resource ` is
the highest priority of any job that requests `. The system
ceiling (on processor p) is the maximum priority ceiling of
all (local) resources currently in use. The system ceiling is
∞ if none are in use (on processor p).

Under the PCP, the system ceiling is used to arbitrate
(local) resource requests directly. When a job T j

i requests
a resource, T j

i ’s priority is compared to the current system
ceiling. If T j

i ’s priority exceeds the system ceiling (or if T j
i

holds the resource that raised the system ceiling last), then
the request is satisfied, otherwise T j

i suspends. The PCP
also uses priority inheritance — while a lower-priority job
T l

k blocks a higher-priority job T j
i (directly or indirectly),

T l
k’s effective priority is raised to (at least) T j

i ’s effective
priority. Note that priority inheritance is transitive.

Under the SRP, resource requests are always satisfied
immediately. Blocking only occurs on release — a job T j

i

may not execute after its release until it’s priority exceeds
the system ceiling. Thus, jobs are blocked at most once and
there is no need for priority inheritance. (If jobs suspend,
then they can also block each time they resume.)

The nesting of local resources is permitted under both
the PCP and the SRP. Both protocols avoid deadlock and
bound the maximum length of priority inversions [4, 27].

1This section is intended as a brief reminder and assumes familiarity
with the discussed protocols. For a full discussion, the interested reader is
referred to [20].

Example. In Fig. 3, two schedules for three resource-
sharing jobs are shown. Inset (a) depicts resource sharing
under the PCP. T 1

3 issues a request for R1 at t = 1, which
is satisfied immediately. This raises the system ceiling from
∞ to two. At t = 2, T 1

2 is released and preempts T 1
3 . T 1

2 re-
questsR2 at t = 4, but since its priority does not exceed the
system ceiling, it becomes blocked and suspends until t = 6
when R1 is released, which momentarily lowers the system
ceiling to∞. The system ceiling is raised to one again when
T 1

2 ’s request is satisfied. T 1
1 arrives at time 7 and preempts

T 1
2 . T 1

1 requestsR2 at t = 8 and suspends, since the system
ceiling is still one. This gives T 1

2 a chance to request R2

(which is satisfied since T 1
2 raised the system ceiling last),

to finish its critical section, and to release bothR1 andR2 at
time 9. This allows T 1

1 to proceed. Finally, all jobs complete
in order of priority.

Inset (b) depicts a similar schedule for the same task
system under the SRP. Note that all blocking has been
“moved” to occur immediately after a job has been released.
For example, when T 1

2 is released at t = 2, the current sys-
tem ceiling is already two. Thus, T 1

2 is blocked until t = 4,
when the system ceiling is lowered to∞.

2.3 Global Synchronization Protocols

A global synchronization protocol is required if jobs execut-
ing on different processors may request a resource concur-
rently. In this paper (and in the LITMUSRT kernel), we fo-
cus on three global synchronization protocols: the D-PCP,
the M-PCP, and the FMLP. The D-PCP and the M-PCP
are reviewed next; the FMLP is discussed in greater detail
in Sec. 3.

The D-PCP extends the PCP by providing local agents
that act on behalf of requesting jobs. A local agent Aq

i , lo-
cated on remote processor q where jobs of Ti request re-
sources, carries out requests on behalf of Ti on processor
q. Instead of accessing a global remote resource ` on pro-
cessor q directly, a job T j

i submits a request R to Aq
i and

suspends. T j
i resumes when Aq

i has completed R. To expe-
dite requests, Aq

i executes with an effective priority higher
than that of any normal task (see [20, 25] for details). How-
ever, agents of lower-priority tasks can still be preempted
by agents of higher-priority tasks. When accessing global
resources residing on Ti’s assigned processor, T j

i serves as
its own agent. Note that, because jobs do not access remote
global resources directly, the D-PCP is suitable for use in
distributed systems where processors do not share memory.

The M-PCP is an extension of the PCP that relies on
shared memory to support global resources. In contrast to
the D-PCP, global resources are not assigned to any partic-
ular processor but are accessed directly. Local agents are not
required since jobs execute requests themselves on their as-
signed processors. Competing requests are satisfied in order

3

1 2 3 54 6 7 8 109 11 12 13 140

T3

T2

T1

t

1

2 1,2

2

1

(a)

1 2 3 54 6 7 8 109 11 12 13 140

T3

T2

T1

t

1

2 1,2

2

(b)

Figure 3: Two example schedules in which three tasks share two local resources (only initial jobs shown, deadlines omitted). The priority
ceiling of R1 is two, and the priority ceiling of R2 is one. (a) PCP schedule. (b) SRP schedule.

of job priority. When a request is not satisfied immediately,
the requesting job suspends until its request is satisfied. Un-
der the M-PCP, jobs holding global resources execute with
an effective priority higher than that of any normal task.

Both the D-PCP and the M-PCP avoid global deadlock
by prohibiting the nesting of global resource requests — a
global request R cannot be nested within another request
(either local or global) and no other request (local or global)
may be nested withinR.

Example. Fig. 4 depicts global schedules for four jobs
(T 1

1 ,. . . ,T 1
4) sharing two resources (`1, `2) on two proces-

sors. Inset (a) shows resource sharing under the D-PCP.
Both resources reside on processor 1. Thus, two agents (A1

2,
A1

4) are also assigned to processor 1 in order to act on behalf
of T2 and T4 on processor 2. A1

4 becomes active at time 2
when T 1

4 requests `1. However, since T 1
3 already holds `1,

A1
4 is blocked. Similarly, A1

2 becomes active and blocks at
time 4. When T 1

3 releases `1, A1
2 gains access next because

it is the highest-priority active agent on processor 1. Note
that, even though the highest-priority job T 1

1 is released at
t = 2, it is not scheduled until t = 7 because agents and
resource holding jobs have an effective priority that exceeds
the base priority of T 1

1 . A1
2 becomes active at t = 9 since

T 1
2 requests `2. However, T 1

1 is accessing `1 at the time,
and thus has an effective priority that exceeds A1

2’s priority.
Therefore, A1

2 is not scheduled until t = 10.
Inset (b) shows the same scenario under the M-PCP. Lo-

cal agents are no longer required since T 1
2 and T 1

4 access
global resources directly. T 1

4 suspends at t = 2 since T 1
2

already holds `1. Similarly, T 1
2 suspends at t = 4 until it

holds `1 one time unit later. Meanwhile, on processor 1, T 1
1

is scheduled at t = 5 after T 1
2 returns to normal priority and

also requests `1 at t = 6. Since resource requests are satis-
fied in priority order, T 1

1 ’s request has precedence over T 1
4 ’s

request, which was issued much earlier at t = 2. Thus, T 1
4

must wait until t = 8 to access `1. Note that T 1
4 preempts

T 1
2 when it resumes at time 8 since it is holding a global

resource.

3 The FMLP under P-SP

The flexible multiprocessor locking protocol (FMLP) is a
global real-time synchronization protocol that was recently
proposed by Block et al. [6]. It is intended to overcome
shortcomings of prior protocols such as the inability to nest
resources and overly pessimistic analysis. Block et al. orig-
inally proposed the FMLP for global and partitioned EDF.
In this paper, we show how to adapt the FMLP to P-SP
scheduling.

3.1 Design Choices
The FMLP is based on two fundamental design principles —
flexibility and simplicity. We desire flexibility so as to not
unnecessarily restrict the range of options available to ap-
plication designers. We favor simple mechanisms because
they allow us to bound worst-case scenarios more tightly.
The latter is especially critical — our ability to analyze a
real-time system is a more important than raw performance.
Based on these two principles, the FMLP was originally de-
signed — and adapted for P-SP here — by focusing on three
issues that every global synchronization protocol must ad-
dress: how to block, how to limit remote blocking, and how
to handle nested requests.

Blocking. When a resource request cannot be satisfied im-
mediately, the requesting job cannot proceed to execute: it is
blocked. On a multiprocessor, there are two ways to handle
such a situation. The blocked job can either remain sched-
uled and busy-waits until its request is satisfied, or it can
relinquish its processor and let other jobs execute while it
is suspended. Traditionally, busy-waiting has mostly been
used in scenarios where resources are held only for very
short times, since busy-waiting clearly wastes processing ca-
pacity. (Under the D-PCP and the M-PCP, jobs block by
suspending.) However, recent studies have shown that, for
real-time systems, busy-waiting is often preferable [10]. In
the interest of flexibility, the FMLP allows both.

In the FMLP, global resources are classified as either

4

1 2 3 54 6 7 8 109 11 12 13 140

Processor 1
Processor 2

t15

T3

T2

T1

1

2

T4

1

1

1

2

A1
2

A1
4

(a)

1 2 3 54 6 7 8 109 11 12 13 140
Processor 1

Processor 2
t15

T3

T2

T1

1

2

T4

1

1

1

2

(b)

1 2 3 54 6 7 8 109 11 12 13 140

Processor 1
Processor 2

t15

T3

T2

T1

1

2

T4

1

1

1

2

(c)

1 2 3 54 6 7 8 109 11 12 13 140

Processor 1
Processor 2

t15

T3

T2

T1

1

2

T4

1

1

1

2

(d)

Figure 4: Example schedules of four tasks sharing two global re-
sources. (a) D-PCP schedule. (b) M-PCP schedule. (c) FMLP
schedule (`1, `2 are long). (d) FMLP schedule (`1, `2 are short).

short

issued satisfied complete

blocked, job spins critical section

long

blocked, job suspends critical section

non-preemptive execution

non-preemptive
execution

resumed,
but blocked

priority boosted

Figure 5: The phases of short and long resource requests.

short or long — tasks busy-wait when blocked on short re-
sources and suspend when blocked on long resources. Re-
sources are classified by the application designer. However,
requests for long resources cannot be nested within requests
for short resources.

Remote blocking. When all tasks are independent, pro-
cessors can be analyzed individually (under partitioning). In
the presence of globally-shared resources, remote blocking
may occur. As a result, processors are no longer indepen-
dent and potentially pessimistic assumptions must be made
to bound worst-case delays. To minimize the impact of re-
mote blocking, resource-holding jobs should complete their
requests as quickly as possible. The D-PCP and M-PCP ex-
pedite the completion of requests by letting resource-holding
jobs (or agents) execute at elevated priorities that exceed
normal job priorities — a resource holding job cannot be
preempted by a job that does not hold a resource. How-
ever, preemptions may occur among resource-holding jobs
(and agents). The FMLP uses a simplified approach. To
minimize the delay a job experiences when resuming, the
FMLP boosts the priority of resuming jobs equally — a
resource-holding job is scheduled with effective priority 0 to
preempt any non-resource holding job. Contending priority-
boosted jobs are scheduled on a FIFO basis. (Note that pri-
ority boosting was not used in prior FMLP variants.) Ad-
ditionally, to avoid delays due to preemptions, all requests
(both short and long) are executed non-preemptively, i.e.,
a job that executes a request cannot be preempted by any
other job. Note that, in the case of short resources, spin-
ning is carried out non-preemptively, too. Priority boosting
is not required for short resources since requesting jobs do
not suspend when blocked. Fig. 5 illustrates the differences
between long and short requests.

Nesting. Nested resource requests may lead to deadlock
and negatively affect worst-case delay bounds. To avoid
these problems, the D-PCP and the M-PCP disallow nest-

5

ing (for global resources) altogether. However, nesting does
occur in practice (albeit infrequently) [8]. The FMLP strikes
a balance between supporting nesting and optimizing for the
common case (no nesting) by organizing resources into re-
source groups, which are sets of resources (either short or
long, but not both) that may be requested together. Two
resources are in the same group iff there exists a job that
requests both resources at the same time. We let G(`) de-
note the group that contains `. Each group is protected by a
group lock, which is either a non-preemptive queue lock [3]
(for a group of short resources) or a semaphore (for a group
of long resources). Under the FMLP, a job always acquires
a resource’s group lock before accessing the resource. Note
that, with the introduction of groups, the term “outermost”
is interpreted with respect to groups. Thus, a short resource
request that is nested within a long resource request but not
within any short resource request is considered to be outer-
most.

Fig. 6 shows an example wherein seven resources (two
long, five short) are grouped into three resource groups.
Note that, even though a request for `l2 may contain a re-
quest for `s7, the two resources belong to different groups
since one is short and one is long.

3.2 Request Rules
Based on the discussion above, we now define the rules
for how resources are requested in the FMLP under P-SP
scheduling.

We assume that resources have been grouped appropri-
ately beforehand, and that non-preemptive sections can be
nested, i.e., if a job enters a non-preemptive section while
being non-preemptive, then it only becomes preemptable af-
ter leaving the outermost non-preemptive section. Let T j

i be
a job that issues a request R for resource `. First, we only
consider outermost requests.

Short requests. If R is short and outermost, then T j
i be-

comes non-preemptable and attempts to acquire the queue
lock protecting G(`). In a queue lock, blocked processes
busy-wait in FIFO order. R is satisfied once T j

i holds `’s
group lock. When R completes, T j

i releases the group lock
and leaves its non-preemptive section.

Long requests. If R is long and outermost, then T j
i at-

tempts to acquire the semaphore protecting G(`). Under a
semaphore lock, blocked jobs are added to a FIFO queue
and suspend. As soon as R is satisfied (i.e., T j

i holds `’s
group lock), T j

i resumes (if it suspended) and enters a non-
preemptive section (which becomes effective as soon as T j

i

is scheduled). When R completes, T j
i releases the group

lock and becomes preemptive.

Priority boost. If R is long and outermost, then T j
i ’s pri-

ority is boosted when R is satisfied (i.e., T j
i is scheduled

!s
3

!s
4

!s
7

G(!s
7) = G(!s

3)
= G(!s

4)

!l
2!l

1

G(!l
1) = G(!s

2l)

!s
5!s

6

G(!s
6) = G(!s

5)

Figure 6: Grouping of two long resources (`l1, `l2) and five short
resources (`s3,. . . ,`s7) under the FMLP. If a request for ` may con-
tain a request for `′, then this is indicated by a directed edge from
` to `′.

with effective priority 0). This allows it to preempt jobs exe-
cuting preemptively at base priority. If two or more priority-
boosted jobs are ready, then they are scheduled in the order
in which their priorities were boosted (FIFO).

Nesting. Nesting is handled in the same manner for long
and short resources: when a job T j

i issues a request R for
a resource ` and T j

i already holds `’s group lock, then R is
satisfied immediately and no further action is taken whenR
completes.

Example. Insets (c) and (d) of Fig. 4 depict FMLP sched-
ules for the same scenario previously considered in the con-
text of the D-PCP and the M-PCP. In (c), `1 and `2 are
classified as long resources. As before, T 1

3 requests `1 first
and forces the jobs on processor 2 to suspend (T 1

4 at t = 2
and T 1

2 at t = 4). In contrast to both the D-PCP and the M-
PCP, contending requests are satisfied in FIFO order. Thus,
when T 1

3 releases `1 at t = 5, T 1
4 ’s request is satisfied before

that of T 1
2 . Similarly, T 1

1 ’s request for `1 is only satisfied af-
ter T 1

2 completes its request at t = 7. Note that, since jobs
suspend when blocked on a long resource, T 1

3 can be sched-
uled for one time unit at t = 6 when T 1

1 blocks on `1.
Inset (d) depicts the schedule that results when both `1

and `2 are short. The main difference to the schedule de-
picted in (c) is that jobs busy-wait non-preemptively when
blocked on a short resource. Thus, when T 1

2 is released at
t = 3, it cannot be scheduled until t = 6 since T 1

4 executed
non-preemptively from t = 2 until t = 6. Similarly, T 1

4

cannot be scheduled at t = 7 when T 1
2 blocks on `2 because

T 1
2 does not suspend. Note that, due to the waste of process-

ing time caused by busy-waiting, the last job only finishes at
time 15. Under suspension-based synchronization methods,
the last job finishes at either time 13 (M-PCP and FMLP for
long resources) or 14 (D-PCP).

Local resources. The FMLP can be integrated with the
SRP. When a job blocks at release time due to the SRP, it
cannot have requested a global resource yet (and thus does
not impact the FMLP analysis). Global short requests can be
nested within local requests since jobs do not suspend when
blocked on short resources. However, global long requests
cannot be nested within local requests since a job must not

6

hold local resources when it suspends. Local requests can
be nested within global requests since a task never blocks on
a local request under the SRP. However, care must be taken
to properly account for the interaction between the FMLP
and the SRP— every time a job resumes, it is subject to
blocking from local resources.

Properties. The FMLP avoids deadlock — by construc-
tion, resources within a group cannot contribute to a dead-
lock, and the constraint that long requests cannot be nested
within short requests prohibits cyclic nesting of resource
groups. Bounds for worst-case blocking under the FMLP
are derived in an appendix of the online version of this pa-
per [11].

4 Implementation
Due to space constraints, we are unable to discuss ev-
ert detail of each implemented protocol. Instead, we fo-
cus on interesting architectural issues that we encountered
when designing LITMUSRT. The interested reader is re-
ferred to [9], which contains a detailed description of the
LITMUSRT framework and its capabilities and limitations,
and to LITMUSRT’s source code, which is publicly avail-
able online [17].

Developed by UNC’s real-time group, LITMUSRT is an
extension of Linux that supports a variety of real-time mul-
tiprocessor scheduling policies [13]. However, prior to this
paper, LITMUSRT did not support static-priority schedul-
ing. The contribution discussed in this paper is the addi-
tion of static-priority scheduling and implementations of the
PCP, the D-PCP, the M-PCP, and the FMLP (under P-SP)
in LITMUSRT.

Real-time Linux. Critics have argued that, due to inherent
non-determinism in the kernel’s architecture, Linux is fun-
damentally not capable of providing (hard) real-time guar-
antees. In practice, however, variants of Linux are increas-
ingly being adopted in (soft) real-time settings [1] — the
predictability of Linux is sufficient for many applications
most of the time. Thus, while no absolute timing guarantees
can be given in Linux, it is desirable that neither schedul-
ing nor resource sharing are the weakest links in terms of
predictability.

When implemented in a general-purpose OS, real-time
algorithms face a real-world requirement that is often
glanced over in algorithmic-oriented research — they must
degrade gracefully when faced with misbehaving applica-
tions. In a real OS, especially during development and
testing, jobs may unexpectedly suspend due to page faults,
perform diagnostic logging, accidentally request wrong re-
sources, fail to properly deallocate resources, and “get
stuck” in non-preemptive sections (among many other pos-
sible failures). While real-time guarantees cannot be given

for misbehaving jobs, in practice, (partial) resilience to fail-
ure is a very desirable property for a well-designed OS. We
revisit this issue in more detail in the following paragraphs.

Real-time tasks. A fundamental design decision is how
the sporadic task model is mapped onto the Linux process
model. In Linux, one or more sequential threads of execu-
tion that share an address space are called a process. There
are three obvious ways to implement sporadic tasks: (i) a
sporadic task is a process, and each job is a thread; (ii) a
sporadic task is a thread, and each job is the iteration of a
loop; and (iii) a sporadic task is just a concept, and jobs are
the invocation of interrupt service routines. Approach (iii),
while popular in embedded systems, suffers from a gen-
eral lack of robustness and the limitations that are imposed
on code executing in kernel space (e.g., absence of floating
point arithmetic, etc.). Approach (i) suffers from high job
release overheads due to forking. This may be alleviated by
recycling threads by means of a thread pool, but determin-
ing the maximum number of threads required in the face of
deadline overruns is non-trivial. Approach (ii) limits how
deadline overruns can be handled — late jobs cannot be eas-
ily aborted and jobs of the same task cannot be scheduled
concurrently. Nonetheless, in LITMUSRT, we chose this ap-
proach because it most closely resembles the familiar UNIX
programming model. When sporadic tasks are threads, the
question arises as to whether all real-time tasks should re-
side in the same process. From an efficiency point of view,
a single-process solution may be beneficial, whereas from a
robustness point of view, address space separation is clearly
favorable. In LITMUSRT, we support both.

Resource references. Blocking-by-suspending requires
kernel support, as does maintaining and enforcing priority
ceilings and enacting priority inheritance. Thus, each re-
source is modeled as an object in kernel space, which con-
tains state information such as the associated priority ceiling,
unsatisfied requests, etc. (The exception are short FMLP re-
sources, which are unknown to the kernel, since they are
realized almost entirely in user space. See [9] for details.)

All tasks that share a given resource must obtain a refer-
ence to the same in-kernel object. Since LITMUSRT is com-
mitted to not unnecessarily restricting the application design
space, references must be (transparently) obtainable across
process boundaries. For performance reasons, resource ref-
erences must be resolved by the kernel with as little over-
head as possible. Further, in a general-purpose OS such
as Linux, security concerns such as visibility of resources
and access control must also be addressed — the resource
namespace must be managed by the kernel.

Prior versions of LITMUSRT simply allocated a pre-
defined number of resources statically and let real-time pro-
grams refer to objects by their offset. While this interim
method had low overheads, it was also completely insecure
and brittle. Further, the lack of flexibility inherent in static

7

allocation also quickly proved to be troublesome. As part
of the FMLP under P-SP implementation effort, we intro-
duced a new solution to manage resources in a secure, re-
liable, and efficient matter. Instead of introducing a new
namespace (which would require appropriate access policies
and semantics to be defined), we opted to reuse the filesys-
tem to provide access control by attaching LITMUSRT re-
sources at run-time to inodes (an inode is the in-kernel rep-
resentation of a file). When a task attempts to obtain a ref-
erence to a resource, it specifies a file descriptor to be used
as the naming context. By specifying the same file, synchro-
nization across process boundaries is possible (but only if
allowed by the appropriate permissions). If permitted, the
kernel locates the requested resource and stores its address
in a lookup table in the thread control block (TCB). Simi-
lar to the concept of the file descriptor table, the resource
lookup table enables fast reference-to-address translation in
the performance critical path of synchronization-related sys-
tem calls. With the new method, LITMUSRT resources are
created dynamically on demand.

Priority ceilings. It is commonly claimed that protocols
such as the PCP are hard to use in practice because priority
ceilings must be determined offline and specified manually
at runtime. However, that is not the case, as ceilings can be
computed automatically when threads obtain references to
resources.

The priority ceiling of a resource is initially∞ (INT MAX
in practice) and raised (if necessary) when a real-time task
obtains a reference to it. To ensure correctness, no thread
may request a resource before all tasks that share the re-
source have obtained a reference (for that resource). Oth-
erwise, the computed ceiling may be incorrect. In practice,
this problem does not occur since it is ensured that the ini-
tialization of all real-time tasks is complete by the time the
first job of any task is released.

A processor’s system ceiling is maintained as a stack of
the local resources that are currently in use. Under the SRP,
when a task releases a new job or a job resumes, the kernel
checks whether the task’s priority exceeds the priority ceil-
ing of the top-most resource on the system ceiling stack (un-
less the stack is empty). If the job’s priority does not exceed
the ceiling, then it is added to a per-processor wait queue (a
wait queue is a standard Linux component used to suspend
jobs; see below). When an SRP resource is popped off the
system ceiling stack, jobs with priorities exceeding the new
system ceiling are resumed. Under the PCP, the top-most
resource’s priority ceiling is checked every time a resource
is requested.

In our experience, automatic determination of priority
ceilings facilitates task system setup greatly and eliminates
the possibility for human error.

Priority inheritance. Transitive priority inheritance, as
mandated by the PCP, requires the kernel to be able to tra-

verse the “wait-for” dependency graph to arbitrary depths.
The necessary state information is kept partially in the TCBs
and partially in the resource objects. When a thread is
blocked, the address of the resource is stored in its TCB.
Similarly, the address of the holding thread is stored in the
resource object.

When a job T j
i blocks on a PCP resource ` held by T l

k (as
determined by the address stored in the resource object) and
T j

i has a higher effective priority than T l
k, then T l

k’s TCB
is updated to reflect that it inherits T j

i ’s effective priority. If
T l

k is already blocked on another PCP resource (as indicated
by its TCB), then transitive priority inheritance is triggered.
T l

k’s effective priority is recomputed when it releases ` by
examining all PCP resources that T l

k holds at the time of
release.

Wait queues. In Linux, threads suspend by enqueuing
themselves in a wait queue, which is a reusable component
used throughout the kernel. However, the standard Linux
API does not enforce any ordering of blocked threads. Mod-
ifications were required to ensure strict ordering under the
FMLP (FIFO order), and the M-PCP and D-PCP (priority
order).

Under the PCP, each resource has its own wait queue
to control priority inheritance. (The SRP only requires a
single wait queue per processor). When a PCP resource is
released, all jobs in its wait queue are resumed — static-
priority scheduling ensures that the highest-priority blocked
job will proceed next. This has the great benefit that the
PCP does not actually require sorted priority queues.

Sha et al. [27] and Rajkumar [25] note that an implemen-
tation of the PCP does not necessarily require per-resource
wait queues. Instead, they propose to keep blocked jobs in
the ready queue since the priority order will ensure that they
do not execute prematurely. This may be a valid approach
for an OS in a closely controlled setting (e.g., in embed-
ded systems), but for a general purpose OS such as Linux,
it is not a sufficiently robust approach. This is because it
relies on correct behavior on the part of resource-holding
jobs. What happens if resource-holding jobs suspend unex-
pectedly? If blocked tasks are kept on the run queue, such
an event would allow two or more jobs to execute in a crit-
ical section — a behavior that is clearly not correct. One
might argue that in a correct real-time system the resource
holding job does not block. However, in real-world systems
such behavior cannot be ruled out. Even a simple printf
statement, maybe inserted for debugging purposes, can lead
to (very short) suspensions. Similarly, an unexpected page
fault due to the omission of disabling demand paging might
also cause a lock-holding task to suspend. Again, such an
event will not occur in a correct real-time system, but cannot
be ruled out completely (especially during development). In
the interest of robustness, a kernel-based mutual-exclusion
primitive should not rely on the correctness of user-space

8

programs. Instead, it should react as gracefully as possible
when facing incorrect applications.

Atomicity of resource requests. Since the FMLP re-
quires jobs holding a long resource to be non-preemptable
(under partitioned scheduling), care must be taken to ensure
that group lock acquisition and non-preemptivity are enacted
atomically, i.e., if a job were to enter its critical section in a
second step, then it could be preempted in the time between
these two events. The LITMUSRT kernel avoids this race
condition by marking the resource-holding thread as non-
preemptable before returning to user space.

D-PCP. Due to the use of local agents, the D-PCP imple-
mentation differs significantly from the M-PCP and FMLP
implementations. There are two approaches for realizing
the concept of a local agent: (i) since LITMUSRT sup-
ports exclusively shared-memory architectures, the request-
ing thread could be migrated to the processor where the re-
source resides; or (ii) an additional thread is provided to
serve as the local agent. Since we conjecture that losing
cache affinity due to a migration is more expensive than
sending a request, we chose to implement approach (ii) in
LITMUSRT. Note that, since only one local agent can ex-
ecute at any time, providing a local agent thread for each
remote task is unnecessary — it suffices to provide one lo-
cal agent thread per address space that contains global re-
sources. In practice, we provide a local agent for each re-
source anyway — assuming that every resource resides in
its own address space is always correct and simplifies the
implementation significantly.

Performance comparison. Due to space constraints, we
are unable to thoroughly compare the implemented synchro-
nization approaches. A detailed study incorporating real-
word overheads is currently in preparation [7].

However, to give a rough estimate of relative perfor-
mance, Table 1 shows average and maximum observed sys-
tem call overheads, which were recorded on a system con-
sisting of four Intel Xeon processors clocked at 2.7 GHz. For
each protocol, we measured the request and release over-
head based on over 300,000 pairs of timestamps that were
recorded just before and after the system calls of interest.
The worst-case and average overheads were determined af-
ter discarding the top one percent of data points to filter for
interrupts and other noise (similar to the methodology used
in [10]). Note that the system was mostly idle during these
measurements. The obtained values thus are only meaning-
ful relative to each other, but do not necessarily reflect a
worst-case scenario. We are currently engaged in experi-
ments to obtain more realistic worst-case overheads [7].

Based on these results, we conclude that local synchro-
nization protocols are slightly more efficient to implement
than suspension-based global shared-memory synchroniza-
tion protocols. Of great interest are the costs associated with

Protocol Request Release
SRP 0.36 (0.56) 0.43 (0.50)
PCP 0.38 (0.49) 0.46 (0.52)
M-PCP 0.58 (0.66) 0.52 (0.59)
D-PCP 6.91 (8.08) 5.91 (6.57)
FMLP (long) 0.51 (0.56) 0.59 (0.61)
FMLP (short) 0.19 (0.21) 0.09 (0.09)

Table 1: Average (maximum) overheads encountered for invoking
kernel-based synchronization protocols. All times are in µs.

the D-PCP. Due to its distributed nature (which requires
IPC), its overhead is an order of magnitude larger than that
of shared-memory global synchronization protocols. This
discrepancy makes it unlikely that the D-PCP is a favorable
choice for synchronization on shared-memory multiproces-
sors. However, more detailed studies are required to obtain
a definitive answer.

5 Conclusion
In this paper, we have extended the FMLP to P-SP schedul-
ing and bounded its worst-case blocking behavior (in the
online version of the paper). Further, we have presented
the first implementation that integrates the SRP, the PCP,
the M-PCP, the D-PCP, and the FMLP in a single frame-
work in a general-purpose OS. We also discussed some of
the architectural design issues that arise when implement-
ing real-time synchronization protocols in such an OS. We
are currently preparing an extensive performance compari-
son of the aforementioned synchronization protocols, which
will be presented in a companion paper to this work [7].
Lessons learned. In our ongoing work with Linux and
LITMUSRT in particular, we have come to recognize three
principles that were not readily apparent to us prior to our
implementation efforts.

1. Robustness is essential. Algorithms that produce
mostly correct results when faced with small “glitches”
are always preferable to algorithms that have superior
theoretical performance but fail catastrophically when
assumptions are violated. In practice, it is impossible to
foresee all possible interactions in a complex general-
purpose OS such as Linux.

2. Algorithmic performance dominates. On our platform,
the impact of non-determinism inherent in Linux (such
as interrupt handlers) is small compared to the impact
that real-time algorithms have on determinism — inter-
rupts rarely execute for longer than 100µs. In contrast,
even a single-quantum priority-inversion will delay a
thread by (at least) 1ms (which is the quantum size in
many variants of Linux). Thus, for the vast majority
of time-sensitive applications that do not require sub-
millisecond response times, a lack of proper real-time

9

scheduling and synchronization support has far greater
consequences than other sources of OS latency.

3. Design for change. Linux is a fast-moving target.
The rate of change can be overwhelming for an aca-
demic research group. When implementing prototypes
in Linux, always choose the least-intrusive implemen-
tation possible. In our experience, architectures that are
structured as a layer of patches work best.

Several interesting avenues for the future present them-
selves. While the FMLP now supports several major multi-
processor scheduling algorithms, it would beneficial to ex-
tend the FMLP to PD2 [2], Earliest-Deadline-until-Zero-
Laxity [23], and utility-based [18] scheduling. Finally, we
would like to analyze the impact of multicore architectures
on the performance of real-time resoure sharing algorithms.

References
[1] IBM and Red Hat announce new development innovations

in Linux kernel. Press release. http://www-03.ibm.com/
press/us/en/pressrelease/21232.wss, 2007.

[2] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair schedul-
ing of asynchronous periodic tasks. Journal of Computer and
System Sciences, 68(1):157–204, 2004.

[3] T. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Transactions on Par-
allel and Distributed Systems, 1(1):6–16, 1990.

[4] T. Baker. Stack-based scheduling of real-time processes.
Journal of Real-Time systems, 3(1):67–99, 1991.

[5] S. Bisson. Azul announces 192 core Java appliance.
http://www.itpro.co.uk/serves/news/99765/azul-announces-1
92-core-java-app liance.html, 2006.

[6] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson.
A flexible real-time locking protocol for multiprocessors. In
Proceedings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applica-
tions, pages 71–80, 2007.

[7] B. Brandenburg and J. Anderson. A comparison of the M-
PCP, D-PCP and the FMLP on LITMUSRT. In preparation.

[8] B. Brandenburg and J. Anderson. Feather trace: A light-
weight event tracing toolkit. In Proceedings of the Third
International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, pages 19–28, 2007.

[9] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leon-
tyev, and J. Anderson. LITMUSRT: A status report. In
Proceedings of the 9th Real-Time Workshop, pages 107–123.
Real-Time Linux Foundation, 2007.

[10] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and
J. Anderson. Synchronization on real-time multiprocessors:
To block or not to block, t o suspend or spin? In Proceedings
of the 14th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2008 (to appear).

[11] B. Brandenburg and J.Anderson. An implementation of the
PCP, SRP, D-PCP, M-PCP, and FMLP real-time syn-
chronization protocols in LITMUSRT (extended version).
http://www.cs.unc.edu/˜/anderson/papers.html.

[12] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid
real-time scheduling approach for large-scale multicore plat-
forms. In Proceedings of the 19th Euromicro Conference on
Real-Time Systems, pages 247–256, 2007.

[13] J. Calandrino, H., A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time
multiprocessor schedulers. In Proceedings of the 27th IEEE
Real-Time Systems Symposium, pages 111–123, 2006.

[14] Chia-Mei Chen and Satish K. Tripathi. Multiprocessor prior-
ity ceiling based protocols. Technical Report CR-TR-3252,
University of Maryland, 1994.

[15] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD
thesis, University of North Carolina, Chapel Hill, NC, 2006.

[16] P. Gai, M. di Natale, G. Lipari, A. Ferrari, C.Gabellini, and
P. Marceca. A comparison of MPCP and MSRP when shar-
ing resources in the Janus multiple processor on a chip plat-
form. In Proceedings of the 9th IEEE Real-Time And Em-
bedded Technology Application Symposium, pages 189–198,
2003.

[17] UNC Real-Time Group. LITMUSRT homepage. http://
www.cs.unc.edu/ ˜anderson/litmus-rt.

[18] E. Jensen, C. Locke, and H. Tokuda. A time-driven schedul-
ing model for real-time systems. In 6th IEEE Real-Time Sys-
tems Symposium, pages 112–122, 1985.

[19] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 30:46–61, 1973.

[20] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000.
[21] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization bounds

for edf scheduling on real-time multiprocessor systems. Real-
Time Systems, 28(1):39–68, 2004.

[22] SUN Microsystems. SUN UltraSPARC T1. Marketing mate-
rial. http://www.sun.com/processors/UltraSPARC-T1/, 2008.

[23] X. Piao, S. Han, H. Kim, M. Park, Y. Cho, and S. Cho. Pre-
dictability of earliest deadline zero laxity algorithm for mul-
tiprocessor real-time systems. 9th International Symposium
on Object and Component-Oriented Real-Time Distributed
Computing, 2006.

[24] R. Rajkumar. Real-time synchronization protocols for shared
memory multiprocessors. 10th International Conference on
Distributed Computing Systems, pages 116–123, 1990.

[25] R. Rajkumar. Synchronization In Real-Time Systems – A Pri-
ority Inheritance Approach. Kluwer Academic Publishers,
1991.

[26] R. Rajkumar, L. Sha, and J.P. Lehoczky. Real-time synchro-
nization protocols for multiprocessors. Real-Time Systems
Symposium, 1988., Proceedings., pages 259–269, 1988.

[27] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

[28] S. Shankland and M. Kanellos. Intel to elaborate on new
multicore processor. http://news.zdnet.co.uk/hardware/chips/
0,39020354,39116043 ,00.htm, 2003.

10

