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Abstract
The importance of accounting for interrupts in multiproces-
sor real-time schedulability analsysis is discussed. Three in-
terrupt accounting methods, two of which are newly described
here, are analyzed and compared.

1 Introduction
System overheads such as time lost to task switches and
scheduling decisions must be accounted for in real-time sys-
tems if temporal correctness is to be guaranteed [12, 24]. Of
these overheads, interrupts are notoriously troublesome for
real-time systems since they are not subject to scheduling and
can significantly delay real-time tasks.

In work on uniprocessor real-time systems, methods have
been developed to account for interrupts under the two most-
commonly considered real-time scheduling policies: un-
der static-priority scheduling, interrupts can be analyzed as
higher-priority tasks [24], and under earliest-deadline-first
(EDF) scheduling, schedulability can be tested by treating
time lost to processing interrupts as a source of blocking [19].

Properly—but not too pessimistically—accounting for in-
terrupts is even more crucial in multiprocessor real-time sys-
tems. Due to their increased processing capacity, such systems
are likely to support much higher task counts, and since real-
time tasks are usually invoked in response to interrupts, mul-
tiprocessor systems are likely to service interrupts much more
frequently. Further, systematic pessimism in the analysis has
a much larger impact on multiprocessors (see below).

Unfortunately, interrupts have not received sufficient atten-
tion in work on multiprocessor real-time systems. The first
and, to the best of our knowledge, only published approach to
date was proposed by Devi [13]. Devi presented a quantum-
centric accounting method in which the length of the system’s
scheduling quantum is reduced to reflect time lost to over-
heads. In this paper, we consider this method, as well as two
others, in the context of global scheduling algorithms. When
the quantum-centric method is applied in this context, it is
usually necessary to assume that all possible interrupts occur
on all processors in every quantum. This assumption is ob-
viously quite pessimistic and motivates the consideration of
other approaches.
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Figure 1: Hard real-time schedulability under G-EDF on a 32-
processor platform assuming reduced release overhead, which is ac-
counted for using the task-centric method. Note that all task sets
are schedulable if all overheads are assumed to be negligible. (This
graph corresponds to Figure 2(a) in [9]; see Sec. 5.)

Motivating example. In a recent case study on a 32-
processor platform involving up to 600 light1 tasks [9], the
release overhead (i.e., the time taken to process a timer in-
terrupt and invoke a real-time task) of a global EDF (G-
EDF) implementation was measured to exceed 50µs in the
worst case. Given the system’s quantum size of 1000µs, the
quantum-centric method would have deemed any task set of
20 or more tasks unschedulable—with fewer tasks than pro-
cessors, this is clearly excessively pessimistic.

In the above case study, a new, less pessimistic “task-
centric” accounting method (see Sec. 4) was developed. How-
ever, even with “task-centric” accounting, G-EDF performed
worse than expected. Suspecting high release overhead to
be the cause, we conducted simulations to estimate perfor-
mance assuming reduced overhead. Surprisingly, we found
that even with a 75% reduction in release overhead, schedu-
lability increases very little (see Fig. 1). However, the experi-
ments also confirmed release overhead as the leading cause of
reduced schedulability—performance improved dramatically
assuming overhead-free releases. This discrepancy stems
from quadratically-growing pessimism in the “task-centric
method” (this phenomenon and a “processor-centric” account-
ing method that eliminates it are discussed in detail in Sec. 4).

This example shows that accurate accounting for overheads
is crucial to multiprocessor real-time performance. Further,

1The utilization of the tasks was distributed uniformly in [0.001, 0.1].
Please see [9] for a detailed description of these experiments.



systematic pessimism has a large impact on multiprocessor
systems due to high task counts.

Contributions. The contributions of this paper are as fol-
lows: (i) We highlight the importance of accurate interrupt
accounting for multiprocessor real-time systems; (ii) we dis-
cuss a range of commonly-encountered interrupt sources in
current multiprocessor systems; (iii) we show how interrupt
accounting is fundamentally different from previous work on
reduced-capacity scheduling; and (iv) we propose two new
interrupt accounting methods (“task-centric” and “processor-
centric”) for both hard and soft real-time systems and briefly
evaluate their effectiveness. Note that even though the “task-
centric” method has been used in previous studies [8, 9], this
paper is the first to present it in detail and argue its correctness.

The rest of the paper is organized as follows. Sec. 2 pro-
vides a detailed discussion of interrupts on multiprocessor sys-
tems, Sec. 3 formalizes the system model, Sec. 4 presents
three approaches to accounting for interrupts, Sec. 5 provides
a brief comparison of the quantum-centric and the proposed
accounting methods, and Sec. 6 concludes.

2 Interrupts
To motivate our system model, we begin by providing a high-
level overview of interrupts in a modern multiprocessor archi-
tecture. We focus on Intel’s x86 architecture because it is in
widespread use and well-documented [16, 17], but the discus-
sion similarly applies to other multiprocessor architectures as
well [25, 27].

Interrupts notify processors of asynchronous events and
may occur between (almost) any two instructions. If an inter-
rupt is detected, the processor temporarily pauses the execu-
tion of the currently-scheduled task and executes a designated
interrupt service routine (ISR) instead. Obviously, this can
lead to undesirable delays of the interrupted task; this must be
accounted for in real-time schedulability analysis.

Most interrupts are maskable, i.e., the processor can be in-
structed by the OS to delay the invocation of ISRs until inter-
rupts are unmasked again. However, non-maskable interrupts
(NMIs), which can be used for “watch dog” functionality to
detect system hangs, cannot be suppressed by the OS [17].

In multiprocessor systems, some interrupts may be local to
a specific processor (e.g., register-based timers [27]), whereas
others may be serviced by multiple or all processors.

Interrupts differ from normal preemptions in that a task
cannot migrate while it is being delayed by an ISR, i.e., a task
cannot resume execution on another processor to reduce its
delay. This limitation arises due to the way context switch-
ing is commonly implemented in OSs. For example, in Linux
(and Linux-derived systems such as the one considered in [9]),
there is only a single function in which context switching can
be performed, and it is only invoked at the end of an ISR (if
a preemption is required). From a software engineering point

of view, limiting context switches in this way is desirable be-
cause it significantly reduces code complexity. In terms of per-
formance, ISRs tend to be so short (in well-designed systems)
that context-switching and migration costs dominate ISR exe-
cution times. Hence, delaying tasks is usually preferable to
allowing migrations unless either migration and scheduling
costs are negligible or ISR execution times are excessive.

Delays due to ISRs are fundamentally different from
scheduling and preemption overheads: the occurrence of
scheduling and preemption overheads are controlled by the
OS and can be carefully scheduled not to occur at inoppor-
tune times. In contrast, ISRs execute with a statically-higher
priority than any real-time task in the system and cannot be
scheduled, i.e., while interrupts can be temporarily masked by
the OS, they cannot be selectively delayed2 and are hence not
subject to the scheduling policy of the OS.

Interrupt categories. Interrupts can be broadly categorized
into four classes: device interrupts (DIs), timer interrupts
(TIs), cycle-stealing interrupts (CSIs), and inter-processor in-
terrupts (IPIs). We briefly discuss the purpose of each next.

DIs are triggered by hardware devices when a timely re-
action by the OS is required or to avoid costly “polling” (see
below).

TIs are used by the OS to initiate some action in the fu-
ture. For example, TIs are used to support high-resolution
delays (“sleeping”) in Linux, and can be used for periodic job
releases and to enforce execution time budgets.

CSIs are an artifact of how modern hardware architectures
are commonly implemented and differ from the other cate-
gories in that they are neither controlled nor handled by the
OS. CSIs are used to “steal” processing time for some compo-
nent that is—from the point of view of the OS—hardware, but
that is implemented as a combination of hardware and soft-
ware (so called “firmware”) and that lacks its own processor.
CSIs are intended to be transparent from a logical correctness
point of view, but of course do affect temporal correctness.3

CSIs are usually non-maskable and the OS is generally un-
aware if and when CSIs occur. A well-known example for the
use of CSIs is the system management mode (SMM) in Intel’s
x86 architecture [16, 17]: when a system management inter-
rupt (SMI) occurs, the system switches into the SMM to exe-
cute ISRs stored in firmware. For example, on some chip sets
the SMM is entered to control the speed of fans for cooling
purposes. CSIs can also occur in architectures in which raw
hardware access is mediated by a hypervisor (such as Sony’s
PlayStation 3 [20] and SUN’s sun4v architecture [25])—the
hypervisor may become active at any time to handle interrupts
or perform services for devices “invisible” to the OS.

2Masking may create non-trivial timing dependencies because it usually
affects physical interrupt lines, which are oftentimes shared among multiple
interrupt sources.

3CSIs are especially problematic if the code that is being executed is
unknown—for example, a CSI could flush instruction and data caches and
thereby unexpectedly increase task execution costs.



In contrast to DIs, TIs, and CSIs, the final category con-
sidered, IPIs, are specific to multiprocessor systems. IPIs are
used to synchronize state changes across processors and are
generated by the OS. For example, the modification of mem-
ory mappings (i.e., changes to address spaces) on one pro-
cessor can require software-initiated TLB flushes on multiple
processors [17, 18]. IPIs are also commonly used to cause a
remote processor to reschedule.

Avoiding delays. There are three implementation choices
that help to limit interrupt-related delays: Split interrupt han-
dling, polling, and interrupt masking.

Split interrupt handling can be used to reduce the length of
ISRs. With split interrupt handling, the work required to han-
dle an interrupt is divided into two parts: a short ISR only
acknowledges the interrupt and does the minimum amount
of work necessary for correct operation, whereas the main
work is carried out by an interrupt thread that is subject to
OS scheduling [24]. However, even with split interrupt han-
dling, some work, such as releasing jobs or activating interrupt
threads, must be carried out in the ISRs themselves, and this
work must be accounted for.

DIs can be avoided altogether through polling, whereby
hardware devices are probed periodically for state changes and
pending events. However, TIs are still required to invoke the
scheduler and initiate polling periodically.

In embedded systems that execute real-time tasks in priv-
ileged mode, interrupts can be masked whenever a real-time
job is executing. Once a job completes, interrupts are un-
masked and pending interrupts handled. While this helps to
make interrupts more predictable, it does not reduce the time
lost to ISRs. Further, this approach does not apply to NMIs
and, for security and safety reasons, it is highly undesirable to
run real-time tasks in privileged mode. Additionally, if timing
constraints are stringent, then increased latencies may be pro-
hibitive. If IPIs are masked for prolonged times, then concur-
rency may be reduced while processors wait to synchronize.

Both polling and masking interrupts for prolonged times
can drastically reduce the maximum I/O throughput by in-
creasing device idle time. Such throughput losses may be eco-
nomically undesirable or even unacceptable (especially in soft
real-time systems). Finally, neither approach is a viable choice
in the increasingly-relevant class of general purpose operating
systems with real-time properties (such as real-time variants
of Linux). Further, if a hardware platform makes use of CSIs,
then, by definition, they cannot be avoided by any OS design.

To summarize, interrupts can delay real-time tasks and can-
not be avoided completely on most (if not all) modern multi-
processor architectures; hence, they must be accounted for in
schedulability analysis.

Bounding interference. Bounding ISR activations may be
difficult in practice. The number of distinct interrupts is often
limited (to reduce hardware costs), and hence interrupts may
be shared among devices. Further, many devices and inter-

rupts are commonly multiplexed among many logical tasks.
For example, a single timer (and its corresponding ISR) is
likely to be shared among multiple real-time tasks and poten-
tially even best-effort tasks.

As a result, it may be impractical to characterize a sys-
tem’s worst-case interrupt behavior by modeling the individ-
ual (hardware) interrupts. Instead, it may be more illuminating
to consider logical “interrupt sources” that cause one or more
ISRs to be invoked in some pattern, but do not necessarily cor-
respond to any particular device. This approach is formalized
in the next section.

3 System Model
We consider the problem of scheduling a set of n implicit-
deadline sporadic tasks τ = {T1, . . . , Tn} on m processors;
we let Ti(ei, pi) denote a task where ei is Ti’s worst-case per-
job execution time and pi is its period. Ti,j denotes the jth job
(j ≥ 1) of Ti. Ti,j is released at ri,j ≥ 0 and should complete
by its absolute deadline di,j = ri,j + pi. If j > 1, then ri,j ≥
ri,j−1 + pi. If Ti,j completes at time t, then its tardiness is
max(0, t − di,j). A task’s tardiness is the maximum of the
tardiness of any of its jobs. Even if Ti,j misses its deadline
ri,j+1 is not altered. However, tasks are sequential: Ti,j+1

cannot start execution until Ti,j completes. Ti’s utilization is
ui =ei/pi; τ ’s total utilization isU(τ)=

∑n
i=1 ui. We assume

U(τ) ≤ m; otherwise, tardiness may grow unboundedly [13].

Scheduler. In this paper, we assume preemptive G-EDF
scheduling (i.e., jobs with smaller di,j values have higher
priority). In an event-driven system, the scheduler is in-
voked whenever a job is released (to check if a preemption
is required) or completes (to select the next job, if any). In
contrast, in a quantum-driven system (see [13, 24] for an
overview), the scheduler is invoked only at integer multiples
of a scheduling quantum Q. Hence, job releases and comple-
tions may be processed with a delay of up to Q time units4

and all task parameters must be integer multiples of Q.

Interrupts. An interrupt source causes ISRs to be invoked.
An interrupt source is local if all invoked ISRs are serviced
on the same processor, and global otherwise. When an ISR is
invoked on a processor, the job currently running on that pro-
cessor is temporarily stopped and its completion is delayed. In
contrast to a regular preemption, a stopped job cannot migrate
to another processor while the interfering ISR executes.

We consider a system with r global interrupt sources
I1, . . . , Ir. Further, on each processor h, where 1 ≤ h ≤ m,
there are rh local interrupt sources Ih

1 , . . . , I
h
rh

. We assume
that for each interrupt source Ix (either global or local) there
is a monotonic function dbf(Ix,∆) that bounds the maximum
service time required by all ISRs invoked by Ix over an in-

4This delay can be accounted for by shortening a task’s period (and hence
relative deadline) by Q time units. A choice of Q = 1ms is common [13].
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terval of length ∆ ≥ 0. Additionally, we assume that, for
each interrupt source (either local or global) Ix, dbf(Ix,∆)
is upper-bounded by a linear function of ∆, i.e., there exist
P (Ix) ≤ 1 and R(Ix) ≥ 0 such that (1) below holds for each
∆ ≥ 0.

dbf(Ix,∆) ≤ P (Ix) ·∆ +R(Ix) (1)

As an example, if a sporadic interrupt source Ix invokes an
ISR of maximum length cx at most once every px time units,
then its demand bound function is given by

dbf(Ix,∆) =
⌊

∆
px

⌋
· cx + min

(
cx, ∆−

⌊
∆
px

⌋
· px

)
, (2)

as illustrated in Fig. 2, in which case, P (Ix) = cx/px and
R(Ix) = cx.

We require that, in total, the time spent on interrupt han-
dling does not exceed the capacity of one processor for suffi-
ciently long time intervals. This assumption holds if

r∑
k=1

P (Ik) +
m∑

h=1

rh∑
k=1

P (Ih
k ) < 1. (3)

Note that systems that violate (3) likely consist of sufficiently
high processor and task counts to render global scheduling
impractical. We expect such large systems to be scheduled
using a clustered [9, 10] approach, wherein (3) applies only
on a per-cluster basis (and hence is not a serious limitation).

Schedulability. In a hard real-time system, each job must
complete before its absolute deadline and, in a soft real-time
system, each job must have bounded maximum deadline tardi-
ness. We are interested in developing a validation procedure—
or schedulability test—for determining whether hard or soft
real-time constraints are met for a task set τ that is scheduled
on m processors using G-EDF in the presence of interrupts.

Many hard and soft real-time schedulability tests for G-
EDF without interrupts have been proposed in prior work [1,
3, 6, 5, 14, 22]. In the next section, we describe three meth-
ods for incorporating interrupts in existing analysis, Devi’s
“quantum-centric” method and two new methods.

4 Schedulability Analysis
Because interrupt handlers effectively have higher priority
than ordinary jobs, they may delay job completions. This
can be accounted for in three different ways. Under quantum-
centric accounting [13], interrupts are understood to reduce
the “effective quantum length,” i.e., the service time available
in each quantum to real-time jobs. Each task’s worst-case ex-
ecution cost is inflated to ensure completion given a lower-
bound on the effective quantum length. Under task-centric ac-
counting, interrupts are considered to extend each job’s actual
execution time and worst-case execution times are inflated ac-
cordingly. Under processor-centric accounting, task parame-
ters remain unchanged and interrupts are considered to reduce
the processing capacity available to tasks.

The first two methods are not G-EDF-specific—a task sys-
tem is deemed schedulable if it passes an existing sustain-
able [4] schedulability test assuming inflated worst-case ex-
ecution times for all tasks. Processor-centric accounting re-
quires a two-step process: (i) reduce the processing capacity
of the platform by accounting for the time consumed by inter-
rupt handlers in the worst case; and (ii) analyze the schedula-
bility of the original task set on the reduced-capacity platform.
While general in principle, the reduced-capacity analysis used
in Step (ii) has been developed only for a limited number of
scheduling algorithms to date (G-EDF among them [21, 26]).

4.1 Quantum-Centric Accounting

Recall from Sec. 3 that under quantum-based scheduling all
task parameters are multiples of a quantum size Q and that
scheduling decisions are only made at multiples of Q. In
practice, some processor time is lost due to system overheads
during each quantum; the remaining time is called the effec-
tive quantum length Q′. With Devi’s quantum-based account-
ing method [13], Q′ is derived by assuming that all interrupt
sources require maximum service time in each quantum, i.e.,
on processor h

Q′h = Q−
rh∑

k=1

dbf(Ih
k , Q)−

r∑
k=1

dbf(Ik, Q). (4)

Under G-EDF, it generally cannot be predicted on which pro-
cessor(s) a job will execute, hence the system-wide effective
quantum length is the minimum of the per-processor effective
quantum lengths, i.e., Q′ = min{Q′h}. If Q′ > 0, then task
Ti’s inflated worst-case execution time e′i is given by

e′i = Q ·
⌈
ei

Q′

⌉
. (5)

Obviously, τ is deemed unschedulable if Q′ ≤ 0 or e′i > pi

for any Ti. This technique does not depend on the scheduling
algorithm in use—in fact, it has been used by Devi to ana-
lyze a range of algorithms [13]. A major limitation of the



quantum-centric method is that it tends to overestimate inter-
rupt frequencies due to the short analysis interval Q.

4.2 Task-Centric Accounting
Based on the observation that Ti,j is delayed by at most the
total duration of ISRs that are invoked while Ti,j executes,
the task-centric method analyzes the complete interval dur-
ing which a job Ti,j can execute (instead of focusing on an
individual quantum). In this paper, we describe this method
in conjunction with G-EDF scheduling, but it can be applied
similarly to other scheduling algorithms. Since the length
of the analysis interval depends on Ti,j’s tardiness, the task-
centric method is more involved in the soft real-time case. We
start by first considering the hard real-time case.

The key concept behind the task-centric method is that, if
jobs of Ti(ei, pi) are delayed by at most δi, then Ti will meet
all of its deadlines if T ′i (ei + δi, pi) meets all of its dead-
lines assuming no delays [15]. Hence, schedulability in the
presence of ISR invocations can be checked with an existing
schedulability test oblivious to interrupts if a bound on δi can
be derived.

Definition 1. Let

C(∆) =
r∑

k=1

dbf(Ik,∆) +
m∑

h=1

rh∑
k=1

dbf(Ih
k ,∆)

be a bound on the maximum time consumed by local and
global ISRs during a time interval of length ∆.

Obviously, if Ti,j completes by its deadline (i.e., it is not
tardy), then it can be directly delayed by ISRs for at most
C(di,j − ri,j) = C(pi) time units.5 However, Ti,j can also
be indirectly delayed by ISRs that were invoked prior to ri,j
by “pushing” processor demand of higher-priority jobs into
[ri,j , di,j). Both sources of delay can be accounted for by
(pessimistically) assuming that all jobs are maximally de-
layed.

Theorem 1. A task system τ = {T1, . . . , Tn} is hard real-
time schedulable with G-EDF in the presence of interrupts if
τ ′ = {T ′1, . . . , T ′n}, where e′i = ei + C(pi), passes a sustain-
able [4] hard real-time schedulability test.
Proof. Follows from the preceding discussion.

Soft real-time schedulability. Our notion of soft real-time
schedulability requires jobs to have bounded deadline tardi-
ness. If all ISRs have zero cost, then the following holds.

Theorem 2. (Proved in [13].) If U(τ) ≤ m, then for each
Ti ∈ τ there exists bi ≥ 0 such that Ti’s maximum tardiness
under G-EDF is at most bi (bi is given in [13]).

5Note that in upper-bounding δi by C(pi), local interrupts on all proces-
sors are considered. A tighter bound on δi can be derived if Ti is known
to migrate at most η < m times: only the η + 1 processors for whichPrh

k=1 dbf(Ih
k ,∆) is maximized must be accounted for in this case.

In the absence of interrupts, every job Ti,j is known to only
execute within [ri,j , di,j +bi). However, in contrast to the hard
real-time case, the analysis interval changes in the presence of
interrupts since inflating ei also inflates bi. Thus, an iterative
approach such as the following procedure is required to break
the cyclic dependency between the tardiness bound and delays
due to ISRs in the soft real-time case.

initialize b′i := 0 for all i
do

set boi := b′i for all i
set e′i := ei + C(pi + boi ) for all i
set τ ′ := {T ′1, . . . , T ′n} where T ′i = (e′i, pi)
compute b′i for all i with Theorem 2 based on τ ′

while (b′i 6= boi and e′i < pi) for all i and U(τ ′) ≤ m

Theorem 3. If U(τ ′) ≤ m and e′i ≤ pi for all Ti ∈ τ after the
above procedure terminates, then deadline tardiness of each
Ti is at most b′i under G-EDF scheduling in the presence of
interrupts.
Proof. Follows from the preceding discussion.

Discussion. While often less pessimistic than the quantum-
centric method, the task-centric method is also likely to over-
charge for interrupts. In fact, the cause of the disappointing
(lack of significant) performance improvements observed in
Fig. 1 is utilization loss inherent in the task-centric method.
This loss is quadratic in the number of tasks, as is shown next.

Definition 2. Let cr > 0 denote the worst-case execution time
of a job-releasing ISR, i.e., the worst-case overhead incurred
due to a single job release.

Theorem 4. Consider an event-triggered system τ of n spo-
radic tasks, where each job is released by an interrupt of cost
cr, where min{pi} > cr > 0 and max{pi} is bounded
by some constant. Under task-centric interrupt accounting,
U(τ ′) = U(τ) + Ω(n2), where τ ′ denotes the inflated task set
as defined in Theorems 1 and 3 (respectively).

Proof. First, we consider the hard real-time case. By Theo-
rem 1 and Definition 1,

e′i = ei +C(pi) = ei +
r∑

k=1

dbf(Ik, pi)+
m∑

h=1

rh∑
k=1

dbf(Ih
k , pi).

Without loss of generality, assume that the only sources of
interrupts I1, . . . , In are sporadic job releases by T1, . . . , Tn,
where Ii corresponds to releases of Ti. Hence e′i = ei +∑n

k=1 dbf(Ik, pi) and thus

U(τ ′) = U(τ) +
n∑

i=1

∑n
k=1 dbf(Ik, pi)

pi
.

By (2) and Definition 2,

dbf(Ik, pi) =
⌊
pi

pk

⌋
· cr + min

(
cr, pi −

⌊
pi

pk

⌋
· cr
)
.
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If pi < pk, then dbf(Ik, pi) = min (cr, pi) = cr; otherwise,
dbf(Ik, pi) ≥

⌊
pi

pk

⌋
· cr ≥ cr. Hence, dbf(Ik, pi) ≥ cr, and

therefore

U(τ ′) ≥ U(τ) +
n∑

i=1

n · cr
pi
≥ U(τ) +

n2 · cr
max{pi}

.

This establishes a lower bound for the hard real-time case.
The same lower bound applies in the soft real-time case as
well since C(pi + bi) ≥ C(pi) due to the monotonicity of
dbf(Ik,∆) (recall that, by definition, bi ≥ 0).

If each (of n) tasks releases a constant number of jobs over
some interval, then the time lost to job releases over the in-
terval is O(n). Hence, Theorem 4 shows that the task-centric
method asymptotically overestimates the time lost to interrupt
processing. For sufficiently large n, reducing the release over-
head cr has comparably little impact—that is, optimizing the
OS implementation does not help to mitigate asymptotic in-
efficiencies in the analysis. Next, we discuss the remaining
processor-centric interrupt accounting method, which is de-
signed to overcome this problem.

4.3 Processor-Centric Accounting
The final method, which involves subtracting the ISR time
from the total available processing capacity, introduces sev-
eral difficulties.

First, even though an ISR makes a processor unavailable to
ordinary real-time jobs, the currently-running job cannot mi-
grate to another processor. This differs from how limited pro-
cessing capacity has been treated in prior work [21, 23, 26].
Second, if a job is released as a result of an ISR, then it cannot
be scheduled on any processor before the respective ISR com-
pletes. Both aspects are illustrated by the following example,
in which tardiness may grow unboundedly even though tar-
diness is deemed bounded using traditional reduced-capacity
analysis [21].

Example 1. Consider the task set τ = {T1(999, 1000)}
scheduled on two processors. Suppose that the only ISR in the
system, which releases T1’s jobs, is invoked every 1000 time

units and executes for at most 2 time units. In the schedule
shown in Fig. 3(a), job T1,1, released at time 0, is not avail-
able for scheduling before time 2. At time 2, T1,1 is scheduled
on processor P2 and completes at time 1001, so its tardiness
is 1. At time 1000, job T1,2 arrives and the ISR is invoked on
processor P1 so job T1,2 becomes available to the scheduler
at time 1002 and completes at time 2001. Also, running jobs
of task T1 are not paused in this schedule. In contrast to this,
in the schedule in Fig. 3(b), the second interrupt is handled
by processor P2 and thus preempts job T1,1, rendering both
processors unavailable to T1. If the ISR is invoked on the pro-
cessor that schedules a job of T1, then the tardiness will grow
unboundedly because only 998 execution units are available
to T1 while it requests 999 time units every 1000 time units
(assuming that future jobs are released periodically).

In order to re-use results for platforms with limited proces-
sor availability, we assume that, when an interrupt occurs, all
processors become unavailable to jobs in τ for the duration of
an ISR. While pessimistic, the above example illustrates that
this global capacity reduction is required in order to achieve
general applicability of the analysis. We next introduce some
definitions to reason about platforms with limited processing
capacity.

Definition 3. Let supplyh(t,∆) be the total amount of pro-
cessor time available on processor h to the tasks in τ during
the interval [t, t+ ∆).

Definition 4. To deal with limited processor supply, the no-
tion of service functions has been proposed [11]. The service
function βl

h(∆) lower-bounds supplyh(t,∆) for each time
t ≥ 0. We require

βl
h(∆) ≥ max(0, ûh · (∆− σh)), (6)

for ûh ∈ (0, 1] and σh ≥ 0.

In the above definition, the superscript l stands for “lower
bound,” ûh is the total long-term utilization available to the
tasks in τ on processor h, and σh is the maximum length of
time when the processor can be unavailable. Note that, if pro-
cessor h is fully available to the tasks in τ , then βl

h(∆) = ∆.
Some schedulability tests for limited processing capacity

platforms require that the total time available on all processors
be known [26].

Definition 5. Let Supply(t,∆) =
∑m

h=1 supplyh(t,∆) be the
cumulative processor supply during the interval [t, t+∆). Let
B(∆) be the guaranteed total time that all processors can pro-
vide to the tasks in τ during any time interval of length ∆ ≥ 0.

If lower bounds on individual processor supply are known,
then we can compute a lower bound on the total supply using
the following trivial claim.

Claim 1. If individual processor service functions βl
h(∆)

are known, then Supply(t,∆) ≥ B(∆), where B(∆) =∑m
h=1 β

l
h(∆).



In the remainder of this section, we assume that individual
processor service functions are known. We will derive expres-
sions for them later in Sec. 4.4.

Hard real-time schedulability of τ on a platform with lim-
ited supply can be checked using results from [26]. This pa-
per presents a sufficient pseudo-polynomial test that checks
whether the time between any job’s release time and its com-
pletion time does not exceed a pre-defined bound. This test
involves calculating the minimum guaranteed supply for dif-
ferent values of ∆.

To test soft real-time schedulability of τ on a platform with
limited supply we use the following definition and theorem.

Definition 6. Let UL(y) be the sum of min(|τ |, y) largest task
utilizations.

Theorem 5. (Proved in [21]) Tasks in τ have bounded dead-
line tardiness if the inequalities (7) and (8) below hold.

U(τ) ≤
m∑

h=1

ûh (7)

m∑
h=1

ûh > max(H − 1, 0) ·max(ui) + UL(m− 1), (8)

where H is the number of processors for which βl
h(∆) 6= ∆.

In the above theorem, if (7) does not hold, then the long-
term execution requirement for tasks will exceed the total
long-term guaranteed supply, and hence, the system will be
overloaded. On the other hand, (8) implicitly restricts the
maximum per-task utilization in τ due to the term max(H −
1, 0) ·max(ui), which could be large if the maximum per-task
utilization is large. This is especially the case if all proces-
sors can be unavailable to tasks in τ , i.e., H = m. Since we
assumed that all processors are unavailable to τ for the dura-
tion of an ISR, this may result in pessimistically claiming a
system with large per-task utilizations to be unschedulable. In
the next section, in Example 2, we show that such a penalty
may be unavoidable.

4.4 Deriving β Service Functions
We now establish a lower bound on the supply provided by
processor h to τ over an interval of length ∆.

Definition 7. Let F =
∑r

k=1 P (Ik) +
∑m

h=1

∑rh

k=1 P (Ih
k )

and G =
∑r

k=1R(Ik) +
∑m

h=1

∑rh

k=1R(Ih
k ).

Lemma 1. If interrupts are present in the system, then any
processor h can supply at least

βl
h(∆) = max (0,∆− C(∆)) (9)

time units to the tasks in τ over any interval of length ∆. Ad-
ditionally, (6) holds for ûh = 1− F and σh = G

1−F .

Proof. We first prove (9). By Definition 3, processor h
provides supplyh(t,∆) time units to τ during the interval
[t, t + ∆). By our assumption, processor h is unavailable for
the total duration of all local and global ISRs invoked during
the interval [t, t+ ∆). From this and Definition 1, we have

supplyh(t,∆) ≥ ∆− C(∆)

Because supplyh(t,∆) cannot be negative, (9) follows from
Definition 4. Our remaining proof obligation is to find ûh and
σh such that (6) holds. From (9), we have

βl
h(∆) = max (0,∆− C(∆))

{by Definition 1}

≥ max

(
0,∆−

[
r∑

k=1

dbf(Ik) +
m∑

h=1

rh∑
k=1

dbf(Ih
k )

])
{by (1)}

≥ max

(
0,∆−

[
r∑

k=1

(P (Ik) ·∆ +R(Ik))

+
m∑

h=1

rh∑
k=1

(P (Ih
k ) ·∆ +R(Ih

k ))

])
{by Definition 7}

= max (0,∆− (F ·∆ +G))
{by the definition of ûh and σh

in the statement of the lemma}
≥ max (0, ûh · (∆− σh)) .

By Definition 7 and (3), ûh as defined in the statement of the
lemma is positive.

We next illustrate soft real-time schedulability analysis of
a system with interrupts using Lemma 1 and Theorem 5.

Example 2. Consider the system from Example 1. The max-
imum tardiness for T1’s jobs may or may not be bounded de-
pending on how interrupts are dispatched. We now analyze
this task system using Theorem 5. By (2), the only global in-
terrupt source I1 considered has dbf(I1,∆) =

⌊
∆

1000

⌋
· 2 +

min
(
2, ∆−

⌊
∆

1000

⌋
· 2
)
. The parameters P (I1) and R(I1)

for which (1) holds are 0.002 and 2, respectively. Setting
these parameters into Lemma 1, we find ûh = 0.998, and
σh = 2.004 for h = 1 and 2. Applying Theorem 5 to
this configuration, we find that (8) does not hold because∑m

h=1 ûh = 2 · 0.998 < max(2− 1, 0) · u1 + u1 = 2 · 0.999.
Thus, bounded tardiness is not guaranteed for τ .

5 Experimental Evaluation
To assess the effectiveness of the three interrupt accounting
approaches described above, we conducted an experimental
evaluation in which the methods were compared based on how



many randomly generated task sets could be claimed schedu-
lable (both hard and soft) if interrupts are accounted for using
each method.

Experimental setup. Similarly to the experiments previously
performed in [9], we used distributions proposed by Baker [2]
to generate task sets randomly. Task periods were uniformly
distributed over [10ms, 100ms]. Task utilizations were dis-
tributed differently for each experiment using three uniform
and three bimodal distributions. The ranges for the uniform
distributions were [0.001, 0.1] (light), [0.1, 0.4] (medium), and
[0.5, 0.9] (heavy). In the three bimodal distributions, utiliza-
tions were distributed uniformly over either [0.001, 0.5) or
[0.5, 0.9] with respective probabilities of 8/9 and 1/9 (light),
6/9 and 3/9 (medium), and 4/9 and 5/9 (heavy).

We considered ISRs that were previously measured on a
32-processor platform in [9]; namely, the job release ISR
(global) and the per-processor tick ISR signaling the begin-
ning of a new quantum (local; Q = 1000µs). We assumed
worst-case (average-case) ISR costs (from [9]) as given in Ta-
ble 1 when testing hard (soft) schedulability. As we are only
concerned with interrupt accounting, all other sources of over-
head (scheduling, cache-related, etc.) were considered negli-
gible.6

To assess the impact (or lack thereof) of possible im-
provements in the OS implementation, we tested each method
twice: once assuming full ISR costs as given in Table 1, and
once assuming ISR costs had been reduced by 80%.

For each task set, we applied each of the accounting meth-
ods as described in Sec. 4. To determine whether an in-
flated task system τ ′ is hard real-time schedulable under the
quantum-centric and task-centric methods, we used all major
published sufficient (but not necessary) hard real-time schedu-
lability tests for G-EDF [1, 3, 5, 6, 14] and deemed τ ′ to be
schedulable if it passes at least one of these five tests. To deter-
mine hard real-time schedulability under the processor-centric
method, we used Shin et al.’s Multiprocessor Resource (MPR)
test [26] and chose max{pi} as the MPR period for analy-
sis purposes. As an optimization, we used the supply-bound
function given in (10) below, which is less pessimistic than the
(more general) one given in [26].

sbf(∆) = m

(
∆−

m∑
h=1

rh∑
k=1

dbf(Ih
k ,∆)−

r∑
k=1

dbf(Ik,∆)

)
(10)

Note that in [26] the supply-bound function is derived based
on a given period and supply. In contrast, we compute the
supply for a chosen period with (10) (for ∆ = max{pi}).

Our experimental results (discussed next) are shown in
Figs. 4 and 5. Sampling points were chosen such that the sam-
pling density is high in areas where curves change rapidly. For

6An implementation study considering full overheads including interrupts
(and other implementation choices beyond the scope of this paper) has re-
cently been completed [7].

ISR Worst-Case Average-Case
tick 3.043 + 0.003 · n 2.080 + 0.002 · n
job release 45.025 + 0.314 · n 5.840 + 0.127 · n

Table 1: Worst-case and average-case ISR invocation costs under
G-EDF (in µs) as a function of the task set size n (from [9]).

each sampling point, we tested 1,000 task sets, for a total of
1,736,000 task sets.

Results (100%). Fig. 4 shows the ratio of task sets claimed
hard real-time schedulable by the three methods. In all sce-
narios, the quantum-centric method shows consistently dis-
appointing performance. In Fig. 4(a), which corresponds to
the motivating example in Sec. 1, even with utilization less
than two, most task sets were deemed unschedulable using
this method. The processor-centric method works best if there
are no heavy tasks (see Fig. 4(a)). The task-centric method un-
der these conditions is pessimistic due to large inflation costs
in accordance with Theorem 4. As the number of tasks de-
creases (the average per-task utilization increases), the perfor-
mance of the task-centric method improves significantly—in
fact, it is the best choice for all but one of the tested distribu-
tions (see insets (b)–(f) of Fig. 4).

Fig. 5 shows soft real-time schedulability results. For
the uniform light and medium utilization ranges, the perfor-
mance of the processor-centric method is superior (see insets
(a) and (c) of Fig. 5). This is because (7) and (8) in The-
orem 5 are likely to hold in the absence of heavy tasks. In
contrast, the processor-centric method is exceptionally pes-
simistic in the case of the uniform heavy distribution (see
Fig. 5(e)). This is because we assumed that all processors
are not available for the duration of an ISR, which leads to
a violation of (8) if heavy tasks are present, due to the term
max(H−1, 0)·max(ui) (note thatH = m). For the same rea-
son, task sets are pessimistically claimed unschedulable under
the bimodal utilization distributions ((b), (d), and (f) of Fig. 5).
In fact, the processor-centric method offers no advantage over
the quantum-centric method in the soft real-time case if heavy
tasks are present at all. This is in stark contrast to the task-
centric method, which consistently performs best unless task
counts are high.

Results (20%). The experiments assuming reduced release
overhead reveal four major trends: (i) reducing overhead helps
only little to overcome the task-centric method’s asymptotic
growth (Fig. 4(a) and Fig. 5(a)); (ii) the processor-centric
method performs equally badly assuming either 100% or 20%
overhead if heavy tasks are present (see insets (b) and (d)–(f)
of both Fig. 4 and Fig. 5); (iii) even with reduced overhead, the
quantum-centric method is not competitive in the hard real-
time case; and (iv) the quantum-centric method is very com-
petitive in the soft real-time case if overhead is reduced.

The results show that the choice of interrupt accounting
method can have significant impact on schedulability. Further,
it appears worthwhile to improve both OS implementations



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32ra
ti
o

 o
f 

s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 [
h

a
rd

]

task set utilization cap (prior to inflation)

uniformly distributed in [0.001, 0.1]

[1]

[2]

[3]

[4]

[5] [6]

task set utilization cap (prior to accounting for overheads)
(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32ra
ti
o

 o
f 

s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 [
h

a
rd

]

task set utilization cap (prior to inflation)

bimodially distributed in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9)

[1] [2][3] [4] [5]

[6]

task set utilization cap (prior to accounting for overheads)
(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32ra
ti
o

 o
f 

s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 [
h

a
rd

]

task set utilization cap (prior to inflation)

uniformly distributed in [0.1, 0.4]

[1]

[2]

[3] [4] [5][6]

task set utilization cap (prior to accounting for overheads)
(c)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32ra
ti
o

 o
f 

s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 [
h

a
rd

]
task set utilization cap (prior to inflation)

bimodially distributed in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9)

[1] [2][3] [4] [5][6]

task set utilization cap (prior to accounting for overheads)
(d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32ra
ti
o

 o
f 

s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 [
h

a
rd

]

task set utilization cap (prior to inflation)

uniformly distributed in [0.5, 0.9]

[1] [2]

[3]

[4] [5][6]

task set utilization cap (prior to accounting for overheads)
(e)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32ra
ti
o

 o
f 

s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 [
h

a
rd

]

task set utilization cap (prior to inflation)

bimodially distributed in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9)

[1] [2]

[3]

[4] [5][6]

task set utilization cap (prior to accounting for overheads)
(f)

[3] processor-centric (100%)[1] quantum-centric (100%) [2] task-centric (100%)

[4] quantum-centric (  20%) [5] task-centric (  20%) [6] processor-centric (  20%)

Figure 4: Hard schedulability results for (a)–(b) light, (c)–(d) medium, and (e)–(f) heavy utilization distributions. Results assuming uniform
distributions are depicted in the left column (insets (a), (c), and (e)); results assuming bimodal utilization distributions are depicted in the right
column (insets (b), (d), and (f)).

and analysis techniques to reduce inherent pessimism.

6 Conclusion

This paper discussed various interrupt sources in multipro-
cessor real-time systems. Two new approaches to account-
ing for interrupt-related delays under G-EDF scheduling for
both hard and soft real-time systems were presented: the task-
centric method and the processor-centric method. In an em-
pirical comparison, the task-centric method performed well
in most of the tested scenarios; however, it is subject to uti-
lization loss that is quadratic in the number of tasks. Hence,

it has inferior performance for large task sets. In contrast,
the processor-centric method performed well for task sys-
tems with many light tasks, but yielded overly pessimistic
results in the presence of heavy tasks. In all scenarios as-
suming 100% overhead, at least one of the two new methods
performed significantly better than the previously-proposed
quantum-centric method.

In future work, we would like to explore how the OS im-
plementation can be adjusted to better work with existing mul-
tiprocessor real-time analysis—if accounting for delays due to
interrupts is problematic, then how can we prevent interrupts
from delaying real-time tasks? Further, we would like to refine
the processor-centric method to be less pessimistic with regard
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Figure 5: Soft schedulability results for (a)–(b) light, (c)–(d) medium, and (e)–(f) heavy utilization distributions. Results assuming uniform
distributions are depicted in the left column (insets (a), (c), and (e)); results assuming bimodal utilization distributions are depicted in the right
column (insets (b), (d), and (f)).

to both maximum task utilization and reductions in supply.
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A An Optimization for Timer Ticks
In this appendix, we present an improved accounting method
for periodic, replicated interrupts (e.g., timer ticks) to be used
in conjunction with the task-centric method. An interrupt is
periodic if its minimum invocation separation equals its max-
imum invocation separation, and replicated if a corresponding
ISR is invoked on each processor. Note that we do not assume
that ISRs are invoked on each processor simultaneously (i.e.,
“staggered” ISR invocations are allowed), but invocations on
each processor must be periodic (i.e., the “staggering” is con-
stant).

Recall from Sec. 4.2 that under task-centric accounting, the
execution cost of a task Ti = (ei, pi) is inflated to account for
all local ISR invocations on all processors that may occur dur-
ing the maximum interval in which a single job of Ti can be
active, i.e., a job of Ti is charged for all delays in the inter-
val in which it might execute. In the general case, this (likely
very pessimistic) charge is unavoidable because a job may ex-
ecute on all processors (due to migrations) and be delayed by
all invoked ISRs on each processor (due to adverse timing of
ISR invocations). In fact, such a scenario is trivial to construct
assuming sporadic interrupt sources (i.e., no maximum sepa-
ration of ISR invocations) and sporadic job releases.

Periodic ISR delays. Periodic interrupts differ from the more
general model discussed in Sec. 3 in that we can assume an ex-
act separation of ISR invocations, which enables us to apply
techniques of classic response-time analysis (see [24] for an
introduction). Let Ix denote a periodic, replicated interrupt
source that, on each processor, triggers every px time units an
ISR that executes for at most cx time units. Initially assume
that a job Ti,j is not preempted while it executes, and assume
that ei already accounts for all other sources of delays (e.g.,
global and local interrupts). Then, based on the response-time
analysis of an equivalent two-task system under static-priority
scheduling, Ti,j’s inflated execution cost is given by the small-
est e′i that satisfies

e′i = ei +
⌈
e′i
px

⌉
· cx. (11)

Migrations. If Ti,j migrates, then (11) does not hold
anymore—each time Ti,j migrates, it might incur one addi-
tional ISR invocation due to ISR invocations not occurring
simultaneously on all processors. Similarly, if Ti,j is pre-
empted, then it might also incur one additional ISR invocation
when it resumes because its completion was delayed. Hence,
if Ti,j is preempted or migrates at most η times, then Ti,j’s
inflated execution cost is given by the smallest e′i that satisfies

e′i = ei +
(⌈

e′i
px

⌉
+ η

)
· cx (12)

(formal proof—via induction over the number of intervals of
consecutive execution—omitted due to space constraints).


