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Abstract

The processing graph method (PGM) is a widely
used framework for modeling applications with pro-
ducer/consumer precedence constraints. PGM was origi-
nally developed by the U.S. Navy to model signal-processing
applications where data communications exist among con-
nected tasks. Prior work has shown how to schedule PGM-
specified systems on uniprocessors and globally-scheduled
multiprocessors. In this paper, this work is extended to en-
able such systems to be supported in a distributed collection
of multicore machines. In such a context, pure global and
partitioned scheduling approaches are problematic. More-
over, data communication costs must be considered. In this
paper, a clustered scheduling algorithm is proposed for soft
real-time PGM-specified distributed task systems for which
bounded deadline tardiness is acceptable. This algorithm
is effective in reducing data communication costs with little
utilization loss. This is shown both analytically and via ex-
periments conducted to compare it with an optimal integer
linear programming solution.

1 Introduction

In work on real-time scheduling in distributed systems, task
models where no inter-task precedence constraints exist,
such as the periodic and the sporadic task models, have re-
ceived much attention. However, in many real-time systems,
applications are developed using processing graphs [7, 10],
where vertices represent sequential code segments and edges
represent precedence constraints. For example, multime-
dia applications and signal-processing algorithms are of-
ten specified using directed acyclic graphs (DAGs) [9, 10].
With the growing prevalence of multicore platforms, it is
inevitable that such DAG-based real-time applications will
be deployed in distributed systems where multicore ma-
chines are used as per-node computers. One emerging ex-
ample application where such a deployment is expected is
fractionated satellite systems [8]. Such a system consists
of a number of wirelessly-connected small satellites, each
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Figure 1: Example DAG.

of which may be controlled by a multicore machine. The
overall collection of such machines is expected to support
DAG-based real-time workloads such as radar and signal-
processing subsystems. To support such workloads, effi-
cient scheduling algorithms are needed. Motivated by ap-
plications such as this, this paper is directed at supporting
real-time DAG-based applications in distributed systems.

We view a distributed system as a collection of clusters of
processors, where all processors in a cluster are locally con-
nected (i.e., on a multicore machine). A DAG-based task
system can be deployed in such a setting by (i) assigning
tasks to clusters, and (ii) determining how to schedule the
tasks in each cluster. In addressing (i), overheads due to data
communications among connected tasks must be considered
since tasks within the same DAG may be assigned to dif-
ferent clusters. In addressing (ii), any employed scheduling
algorithm should seek to minimize utilization loss.

Within a cluster, precedence constraints can easily be
supported by viewing all deadlines as hard and executing
tasks sporadically (or periodically), with job releases ad-
justed so that successive tasks execute in sequence. Fig. 1
shows an example multimedia application, which transforms
an input AVI video file into a FLV video file (AVI and FLV
are two types of multimedia container formats). This ap-
plication is represented by a DAG with four sporadic tasks.
(DAG-based systems are formerly defined in Sec. 2.) Fig. 1
shows a global-earliest-deadline-first (GEDF) schedule for
this application on a two-processor cluster. (It suffices to
know here that the kth job of the AVI splitter task, the video
processing task [or the audio processing task], and the FLV
filter task, respectively, must execute in sequence.) As seen
in this example, the timing guarantees provided by the spo-
radic model ensure that any DAG executes correctly as long
as no deadlines are missed.
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Unfortunately, if all deadlines of tasks assigned to the
same cluster must be viewed as hard, then significant pro-
cessing capacity must be sacrificed, due to either inherent
schedulability-related utilization loss—which is unavoid-
able under most scheduling schemes [6]—or high runtime
overheads—which typically arise in optimal schemes that
avoid schedulability-related loss [4]. In systems where less
stringent notions of real-time correctness suffice, such uti-
lization loss can be avoided by viewing deadlines as soft.
In this paper, such systems are our focus; the notion of soft
real-time correctness we consider is that deadline tardiness
is bounded.

To the best of our knowledge, in all prior work on sup-
porting DAG-based applications in systems with multiple
processors (multiprocessors or distributed systems), either
global or partitioned scheduling has been assumed. Un-
der global scheduling, tasks are scheduled from a single run
queue and may migrate across processors; in contrast, un-
der partitioned schemes, tasks are statically bound to pro-
cessors and per-processor schedulers are used. Partitioned
approaches are susceptible to bin-packing-related schedula-
bility limitations, which global approaches can avoid. In-
deed, if bounded deadline tardiness is the timing constraint
of interest, then global approaches can often be applied on
multiprocessor platforms with no loss of processing capac-
ity [13]. However, the virtues of global scheduling come
at the expense of higher runtime overheads. In work on
ordinary sporadic (not DAG-based) task systems, clustered
scheduling, which combines the advantages of both global
and partitioned scheduling, has been suggested as a com-
promise [3, 5]. Under clustered scheduling, tasks are first
partitioned onto clusters of cores, and intra-cluster schedul-
ing is global.

In distributed systems, clustered scheduling algorithms
are a natural choice, given the physical layout of such a sys-
tem. Thus, such algorithms are our focus here. Our spe-
cific objective is to develop clustered scheduling techniques
and analysis that can be applied to support DAGs, assum-
ing that bounded deadline tardiness is the timing guarantee
that must be ensured. Our primary motivation is to develop
such techniques for use in distributed systems, where dif-
ferent clusters are physically separated; however, our results
are also applicable in settings where clusters are tightly cou-
pled (e.g., each cluster could be a socket in a multi-socket
system). Our results can be applied to systems with rather
sophisticated precedence constraints. To illustrate this, we
consider a particularly expressive DAG-based formalism,
the processing graph method (PGM) [12]. PGM was first de-
veloped by the U.S. Navy to model signal-processing appli-
cations where producer/consumer relationships exist among
tasks. In a distributed system, it may be necessary to trans-
fer data from a producer in one cluster to a consumer in an-
other through an inter-cluster network, which could cause a
significant amount of data communication overhead. Thus,

any proposed scheduling algorithm should seek to minimize
such inter-cluster data communication.

Related work. To our knowledge, DAGs have not been
considered before in the context of clustered real-time
scheduling algorithms, except for the special cases of par-
titioned and global approaches.1 An overview of work on
scheduling DAGs in a distributed system under partitioned
approaches (which we omit here due to space constraints)
can be found in [14]. The issue of scheduling PGM graphs
on a uniprocessor was extensively considered by Goddard
in his dissertation [10]. Goddard presented techniques for
mapping PGM nodes to tasks in the rate-based-execution
(RBE) task model [11], as well as conditions for verifying
the schedulability of the resulting task set under a rate-based,
earliest-deadline-first (EDF) scheduler.

In recent work [14], we extended Goddard’s work and
showed that a variety of global scheduling algorithms can
ensure bounded deadline tardiness in general DAG-based
systems with no utilization loss on multiprocessors, includ-
ing algorithms that are less costly to implement than optimal
algorithms.

Contributions. In this paper, we show that sophisticated
notions of acyclic precedence constraints can be efficiently
supported under clustered scheduling in a distributed sys-
tem, provided bounded deadline tardiness is acceptable. The
types of precedence constraints we consider are those al-
lowed by PGM. We propose a clustered scheduling algo-
rithm called CDAG that first partitions PGM graphs onto
clusters, and then uses global scheduling approaches within
each cluster. We present analysis that gives conditions under
which each task’s maximum tardiness is bounded. Any clus-
tered approach is susceptible to some bin-packing-related
utilization loss; however, the conditions derived for CDAG
show that for it, such loss is small. To assess the effec-
tiveness of CDAG in reducing inter-cluster data communi-
cations, we compare it with an optimal integer linear pro-
gramming (ILP) solution that minimizes inter-cluster data
communications when partitioning PGM graphs onto clus-
ters. We assume that tasks are specified using a rate-based
task model that generalizes the periodic and sporadic task
models.

Organization. The rest of this paper is organized as fol-
lows. Sec. 2 describes our system model. In Sec. 3, the ILP
formulation of the problem and the polynomial-time CDAG
algorithm and its analysis are presented. Sec. 4 evaluates
the proposed algorithm via an experimental study. Sec. 5
concludes.

1The problem of non-real-time DAG scheduling in parallel and dis-
tributed systems has been extensively studied. An overview on such work
can be found in [15].
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2 Preliminaries

In this section, we present an overview of PGM and describe
the assumed system architecture. For a complete description
of the PGM, please see [12].

PGM specifications. An acyclic PGM graph system [12]
consists of a set of acyclic PGM graphs (DAGs), each with
a distinct source node. Each PGM graph contains a number
of nodes connected by edges. A node can have outgoing or
incoming edges. A source node, however, can only have out-
going edges. Each directed edge in a PGM graph is a typed
first-in-first-out queue, and all nodes in a graph are assumed
to be reachable from the graph’s source node. A producing
node transports a certain number of data units2 to a consum-
ing node, as indicated by the data type of the corresponding
queue. Data is appended to the tail of the queue by the pro-
ducing node and read from the head by the consuming node.
A queue is specified by three attributes: a produce amount,
a threshold, and a consume amount. The produce amount
specifies the number of data units appended to the queue
when the producing node completes execution. The thresh-
old amount specifies the minimum number of data units re-
quired to be present in the queue in order for the consuming
node to process any received data. The consume amount is
the number of data units dequeued when processing data.
We assume that the queue that stores data is associated with
the consuming node. That is, data is stored in memory local
to the corresponding consuming node.3 The only restriction
on queue attributes is that they must be non-negative integral
values and the consume amount must be at most the thresh-
old. In the PGM framework, a node is eligible for execution
when the number of data units on each of its input queues is
over that queue’s threshold. Overlapping executions of the
same node are disallowed. For any queue connecting nodes
T jl and T kl in a PGM graph Tl, we let ρjkl denote its produce
amount, θjkl denote its threshold, and σjkl denote the con-
sume amount. If there is an edge from task T kl to task Thl in
graph Tl, then T kl is called a predecessor task of Thl . We let
pred(Thl ) denote the set of all predecessor tasks of Thl . We
define the depth of a task within a graph to be the number of
edges on the longest path between this task and the source
task of the corresponding graph.

Example. Fig. 2(a) shows an example PGM graph system
consisting of two graphs T1 and T2 where T1 contains four
nodes with four edges and T2 contains two nodes with one
edge. We will use this example to illustrate other concepts
throughout the paper.

In the PGM framework, it is often assumed that each
source node executes according to a rate-based pattern (see

2We assume that data units are defined so that the number of such units
produced reflects the total size of the data produced.

3It is more reasonable to associate a queue with the corresponding con-
suming node than with the producer node because this enables the consumer
to locally detect when the queue is over threshold and react accordingly.
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Figure 2: Example system used throughout the paper.

below). Note that, even if all source nodes execute according
to a periodic/sporadic pattern, non-source nodes may still
execute following a rate-based pattern [10, 14]. The execu-
tion rate of a node within a PGM graph can be calculated
based upon the attributes of the node’s incoming edges us-
ing techniques presented in [10, 14].

According to the rate-based task model [11,14], each task
Thl within a PGM graph Tl is specified by four parameters:
(xhl , y

h
l , d

h
l , e

h
l ). The pair (xhl , y

h
l ) represents the maximum

execution rate of Thl : xhl is the maximum number of invoca-
tions of the task in any interval [j ·yhl , (j+1) ·yhl ) (j ≥ 0) of
length yhl ; such an invocation is called a job of Thl . xhl and
yhl are assumed to be non-negative integers. Additionally,
dhl is the task’s relative deadline, and ehl is its worst-case
execution time. dhl is defined to be

dhl = yhl /x
h
l . (1)

The jth job of Thl is denoted Thl,j . We denote its release time
(when Thl is invoked) as rhl,j and its (absolute) deadline as

dhl,j = rhl,j + dhl . (2)

The utilization of Thl , uhl , is defined to be ehl ·
xh
l

yhl
. The

utilization of a PGM graph Tl is defined to be ul =∑
Th
l ∈Tl

uhl . The widely-studied sporadic task model is a
special case of the rate-based task model. In the sporadic
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task model, a task is released no sooner than every p time
units, where p is the task’s period. In the rate-based task
model, the notion of a “rate” is much more general.

Example. Fig. 2(b) shows the rate-based counterpart of the
PGM graphs in Fig. 2(a). Fig. 3 shows job release times for
task T 1

1 (1, 4, 4, 1) of graph T1. In inset (a), jobs are released
sporadically, once every four time units in this case. Inset (b)
shows a possible job-release pattern that is not sporadic. As
seen, the second job is released at time 7.5 while the third
job is released at time 9.5. The separation time between
these jobs is less than that seen in the sporadic schedule.

A job Thl,j may be restricted from beginning execution
until certain jobs of tasks in pred(Thl ) have completed (i.e.,
Thl,j cannot start execution until receiving the required data
from these jobs). We denote the set of such predecessor
jobs as pred(Thl,j). pred(Thl,j) can be defined precisely by
examing the execution rates of all tasks on any path from
the source node of Tl to Thl [14]. We require that for any job
Thl,j and one of its predecessor jobs, Twi,v ,

rhl,j ≥ rwi,v (3)

holds.
If a job Thl,j completes at time t, then its tardiness is de-

fined as max(0, t− dhl,j) and its response time is defined as
max(0, t− rhl,j). A PGM graph’s tardiness is the maximum
of the tardiness of any job of any of its tasks. Note that,
when a job of a task misses its deadline, the release time of
the next job of that task is not altered. However, jobs of the
same task still cannot execute in parallel.

System architecture. We consider the problem of schedul-
ing a set of n acyclic PGM graphs on ϕ clusters
C1, C2, ..., Cϕ. Each cluster Ci contains λi processors.
Clusters are connected by a network. Let B denote the min-
imum number of data units that can be transferred between
any two clusters per time unit. Similarly, let b denote the
minimum number of data units that can be transferred be-
tween any two processors within the same cluster per time
unit. If the system is a distributed collection of multicore
machines, thenB is impacted by the speed and bandwidth of
the communication network and b is impacted by the speed
of the data transfer bus on a multicore chip. In this case,
b � B, as local on-chip data communication is generally
much faster than communication across a network.

Example. An example distributed system containing two
clusters each with two processors interconnected by a net-
work is shown in Fig. 2(c).

3 Algorithm CDAG

In this section, we propose Algorithm CDAG, a clustered-
scheduling algorithm that ensures bounded tardiness for
DAG-based systems on distributed clusters. Since inter-
cluster data communication can be expensive, CDAG is de-
signed to reduce such communication.

CDAG consists of two phases: an assignment phase and
an execution phase. The assignment phase executes offline
and assigns each PGM graph to one or more clusters. In the
execution phase, PGM graphs are first transformed to ordi-
nary sporadic tasks (where no precedence constraints arise),
and then scheduled under a proposed clustered scheduling
algorithm.

3.1 Assignment Phase

The assignment phase assigns acyclic PGM graphs (or
DAGs for short) to clusters in a way such that the inter-
cluster data communication cost is reduced. Note that the
total utilization of the DAGs (or portions of DAGs) assigned
to a cluster must not exceed the total capacity of that cluster.
CDAG contains an assignment algorithm that is designed to
partition DAGs onto clusters such that both the inter-cluster
data communication cost and any bin-packing-related uti-
lization loss are minimized.

To provide a better understanding of the problem of parti-
tioning DAGs onto clusters with minimum inter-cluster data
communication cost, we first formulate it as an ILP, which
provides an optimal solution. (Note that, due to potential
utilization loss arising from partitioning DAGs, the ILP ap-
proach may not find a feasible assignment. However, if the
ILP approach cannot find a feasible solution, then the given
task set cannot be assigned to clusters under any partitioning
algorithm.)

Definition 1. For any edge ejki of DAG Ti, its edge data

weight, wjki , is defined to be ρjki ·
xji
yji

. A larger edge data

weight indicates a larger data communication cost between
tasks connected by the corresponding edge. For any edge
ejki of DAG Ti , its communication cost $jk

i is defined to
be wjki if the corresponding connected nodes T ji and T ki are
assigned to different clusters, and 0 otherwise.

Note that the above definition does not consider data con-
suming rates. This is because data is stored in memory local
to the consuming node, as discussed in Sec. 2. Thus, only
produced data needs to be transferred.

Example. For task T 1
1 of DAG T1 in Fig. 2, we can use

previous techniques [10, 14] to calculate its execution rates,
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which are x11 = 1 and y11 = 4. Thus, for edge e121 of T1, its
edge data weight w12

1 = ρ121 · x
1
1

y11
= 4 · 14 = 1. Intuitively,

node T 1
1 produces one data unit on average on edge e121 per

time unit, given its execution rate (x11, y
1
1) = (1, 4).

Definition 2. The total communication cost of any
given DAG-based system τ , denoted $sum, is given by∑
Ti∈τ

∑
ejki ∈Ti

$jk
i .

ILP formulation. We are given a set τ of tasks (each task
corresponds to a node in a DAG) and a set ξ of clusters. To
reduce clutter in the ILP formulation, we denote tasks more
simply as T1, T2, ..., and let wi,j be the data weight of the
edge connecting tasks Ti and Tj (wi,j = 0 if i and j are not
connected). (This simplified notation is used only for the
ILP formulation.)

For all Ti ∈ τ , let xi,k be a binary decision variable that
equals 1 when task Ti is assigned to cluster Ck, and 0 other-
wise. For all (Ti, Tj) ∈ τ × τ , let yi,j be a binary decision
variable that equals 1 if tasks Ti and Tj are assigned to the
same cluster, and 0 otherwise.

Our goal is to minimize the total communication cost. An
ILP formulation of this optimization problem is then:

Minimize

∑
i∈τ
∑
j∈τ wi,j · (1− yi,j) (4)

subject to the constraints below. Note that by Defs. 1 and 2,
(4) represents the total communication cost.
• Each task must be assigned to one cluster:

∑
Ck∈ξ xi,k = 1,∀Ti ∈ τ.

• The total utilization of all tasks assigned to a cluster
must not exceed the total capacity of that cluster:

∑
Ti∈τ xi,k · ui ≤ λk,∀Ck ∈ ξ.

• yi,j should be 1 when two tasks are assigned to the
same cluster, and 0 otherwise:

yi,j ≤ xi,k − xj,k + 1,∀(Ti, Tj) ∈ τ × τ,∀Ck ∈ ξ,

yi,j ≤ −xi,k + xj,k + 1,∀(Ti, Tj) ∈ τ × τ,∀Ck ∈ ξ.

By solving the ILP above, we obtain an optimal assign-
ment that gives the minimum total communication cost as
long as there exists a feasible assignment.

Example. Consider assigning DAGs T1 and T2 in Fig. 2 to
two clusters. T1 has a utilization of 1/4+2/3+1/3+1/3 =
19/12 and T2 has a utilization of 1/2 + 2/3 = 7/6. By
formulating this assignment problem as an ILP according to
the above approach, an optimal solution is to assign all tasks
of T1 to the first cluster and all tasks of T2 to the second
cluster, which leads to $sum = 0.

ASSIGN
u(Ci): CAPACITY OF CLUSTER Ci, INITIALLY u(Ci) = λi
ξ: A LIST OF CLUSTERS {C1, C2, ..., Cϕ}
ζ : A LIST OF DAGS {T1, T2, ..., Tn}

PHASE 1:
1 Order DAGs in ζ by largest average data weight first
2 Order clusters in ξ by smallest capacity first
3 for each DAG Ti in ζ in order
4 for each cluster Cj in ξ in order
5 if ui ≤ u(Cj)
6 Assign all tasks of Ti to Cj
7 Remove Ti from ζ; u(Cj) := u(Cj)− ui

PHASE 2:
8 for each DAG Ti in ζ in order
9 Order tasks within Ti by smallest depth first, then

order tasks within Ti and at the same depth by
largest task data weight first

10 Order clusters in ξ by largest capacity first
11 for each task T ki of DAG Ti in ζ in order
12 for each cluster Cj in ξ in order
13 if uki ≤ u(Cj) then
14 Assign T ki to Cj ; u(Cj) := u(Cj)− uki
15 else Remove Cj from ξ

Algorithm description. Algorithm ASSIGN assigns DAGs
to clusters in two phases. In the first phase (lines 1-7), it
assigns DAGs in largest-average-data-weight-first order to
clusters in smallest-capacity-first order, which gives a higher
possibility for DAGs with larger average data weight to be
fully assigned to a cluster. DAGs that cannot be assigned to
clusters in the first phase are considered in the second phase
(lines 8-15). For each unassigned DAG in order, its tasks
are ordered by depth and then tasks at the same depth are
ordered by data weight, which gives tasks with larger data
weight a higher possibility to be assigned to the same cluster
as their predecessor tasks (lines 8-9). Then each task in order
is assigned to clusters in largest-capacity-first order (lines
10-15). Task T ki is assigned to cluster Cj if T ki can receive
its full share of its utilization from Cj (lines 13-14). If not,
then Cj is excluded from being considered for any of the
later tasks, and the next cluster in order will be considered
for scheduling T ki (line 15).

Example. Consider the example DAG system in Fig. 2 to
be partitioned under the proposed algorithm. By Defs. 1
and 2, T1 has an average data weight of 3/4 and T2 has an
average data weight of 1. Thus, T2 is ordered before T1.
Since T2 has a utilization of 7/6 and T1 has a utilization of
19/12, the tasks of T2 are assigned to the first cluster, and the
tasks of T1 are assigned to the second cluster, which leads to
$sum = 0.

Time complexity. The time complexity of Phase 1 of AS-
SIGN depends on (i) the sorting process (lines 1-2), which is

O(n · logn) +O(ϕ · logϕ), and (ii) the two for loops (lines
3-4), which isO(n ·ϕ). Thus, Phase 1 has a time complexity
ofO(n · logn)+O(ϕ · logϕ)+O(n ·ϕ). Moreover, the time
complexity of Phase 2 of ASSIGN depends on (i) the sorting
process (lines 9-10), which is O(n ·µ · logµ) +O(ϕ · logϕ),
where µ is the maximum number of tasks per-DAG, and
(ii) the two for loops (lines 11-12), which is O(N · ϕ),
where N is the number of tasks in the system (each task
corresponds to a node in a DAG). Thus, Phase 2 has a time
complexity of O(n · µ · logµ + O(ϕ · logϕ) + O(N · ϕ).
Since N > n, the time complexity of ASSIGN is given by
O(n · logn) +O(ϕ · logϕ) + n · µ · logµ+O(N · ϕ).

Partitioning condition. The following theorem gives a
condition for ASSIGN to successfully partition any given
DAG-based task system onto clusters. For conciseness, let
us denote tasks (each task corresponds to a node in a DAG)
after ordering by T1, T2, ..., TN (note that tasks within DAGs
that are fully assigned to clusters in the first phase are as-
sumed to be ordered before all other tasks here). Let u(Ti)
denote the utilization of task Ti under this notation. Before
stating the theorem, we first prove the following lemma.
Lemma 1. Under Algorithm ASSIGN, if a task Ti is the
first task that cannot be assigned to any cluster, then∑i
k=1 u(Tk) > m− uϕ−1, where uϕ−1 is the sum of ϕ− 1

largest task utilizations.

Proof. Due to the fact that some task Ti cannot be assigned
to any cluster, the second phase of Algorithm ASSIGN is
executed. In the second phase, if Algorithm ASSIGN fails
to assign the ith task Ti to any cluster, then the last clus-
ter Cϕ does not have enough capacity to accommodate Ti.
Moreover, for each previous cluster Cj , where j ≤ ϕ − 1,
there exists a task, denoted T j , that could not be assigned to
Cj , and thus the next cluster in order was considered to ac-
commodate T j and Cj was removed from being considered
again for any of the later tasks (line 15). That is, for each
such cluster Cj , its remaining capacity is strictly less than
the utilization of T j (for the last cluster, we know that Tϕ is
Ti). Thus, for any clusterCj , its allocated capacity is strictly
greater than λj − u(T j). Since tasks {T1, T2, ..., Ti−1}
have been successfully assigned, the total utilization of these
tasks is equal to the total allocated capacity of clusters,
which is given by

∑i−1
k=1 u(Tk). Hence, we have

∑i−1
k=1 u(Tk) >

∑ϕ
j=1(λj − u(T j))

⇔ {adding u(Ti) on both sides}
∑i
k=1 u(Tk) >

∑ϕ
j=1(λj − u(T j)) + u(Ti)

⇔ {because
∑ϕ
j=1 λj = m and u(Tϕ) = u(Ti)}

∑i
k=1 u(Tk) > m−∑ϕ−1

j=1 u(T j)

⇒ {by the definition of uϕ−1}∑i
k=1 u(Tk) > m− uϕ−1.
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Figure 4: Psuedocode of the assignment algorithm.

A polynomial-time assignment algorithm. Although the
ILP solution is optimal, it has exponential time complex-
ity. We now propose a polynomial-time algorithm to assign
DAGs to clusters. This algorithm tries to minimize the total
communication cost, which is achieved by locally minimiz-
ing communication costs when assigning each DAG.

Definition 3. For any task T ji of DAG Ti, its task data
weight, wji , is defined to be

∑
T j
i→Tk

i
wjki , where T ji → T ki

denotes that T ji has an outgoing edge to T ki .

Definition 4. For any DAG Ti, its average data weight, wi,

is defined to be

∑
ejki ∈Ti

wjki

Ei
, where Ei is the total number

of edges in Ti. A DAG Ti’s data weight is defined to be∑
ejki ∈Ti

wjki .

Example. For DAG T1 in Fig. 2, by Def. 1, w12
1 = w13

1 =
1, w24

1 = 1/3, and w34
1 = 2/3. Thus, by Def. 4, T1 has an

average data weight of 3
4 . By Def. 3, task T 1

1 of T1 has a
data weight of w1

1 = w12
1 + w13

1 = 2. Intuitively, node T 1
1

produces two data units on average on its outgoing edges per
time unit, given its execution rate (x11, y

1
1) = (1, 4).

The proposed DAG assignment algorithm, denoted AS-
SIGN, is shown in Fig. 4.

Algorithm description. Algorithm ASSIGN assigns DAGs
to clusters in two phases. In the first phase (lines 1-7), it
assigns DAGs in largest-average-data-weight-first order to

5



clusters in smallest-capacity-first order, which gives a higher
possibility for DAGs with larger average data weight to be
fully assigned to a cluster. DAGs that cannot be assigned to
clusters in the first phase are considered in the second phase
(lines 8-15). For each unassigned DAG in order, its tasks
are ordered by depth and then tasks at the same depth are
ordered by data weight, which gives tasks with larger data
weight a greater chance to be assigned to the same cluster as
their predecessor tasks (lines 8-9). Then each task in order
is assigned to clusters in largest-capacity-first order (lines
10-15). Task T ki is assigned to cluster Cj if T ki can receive
its full share of its utilization from Cj (lines 13-14). If not,
then Cj is excluded from being considered for any of the
later tasks, and the next cluster in order will be considered
for scheduling T ki (line 15).

Example. Consider the example DAG system in Fig. 2 to
be partitioned under the proposed algorithm. By Defs. 1
and 2, T1 has an average data weight of 3/4 and T2 has an
average data weight of 1. Thus, T2 is ordered before T1.
Since T2 has a utilization of 7/6 and T1 has a utilization of
19/12, the tasks of T2 are assigned to the first cluster, and the
tasks of T1 are assigned to the second cluster, which leads to
$sum = 0.

Time complexity. The time complexity of Phase 1 of AS-
SIGN depends on (i) the sorting process (lines 1-2), which
is O(n · logn + ϕ · logϕ), and (ii) the two for loops (lines
3-4), which is O(N · ϕ), where N is the number of tasks
in the system (each task corresponds to a node in a DAG).
Thus, Phase 1 has a time complexity of O(n · logn + ϕ ·
logϕ + N · ϕ). The time complexity of Phase 2 of AS-
SIGN depends on (i) the sorting process (lines 9-10), which
isO(n·µ·logµ+ϕ·logϕ), where µ is the maximum number
of tasks per-DAG, and (ii) the two for loops (lines 11-12),
which is O(N · ϕ). Thus, Phase 2 has a time complexity of
O(n·µ·logµ+ϕ·logϕ+N ·ϕ). The overall time complexity
of ASSIGN is thusO(n·logn+ϕ·logϕ+n·µ·logµ+N ·ϕ).

Partitioning condition. The following theorem gives a
condition for ASSIGN to successfully partition any given
DAG-based task system onto clusters. For conciseness, let
us denote tasks (each task corresponds to a node in a DAG)
after ordering by T1, T2, ..., TN (note that tasks within DAGs
that are fully assigned to clusters in the first phase are as-
sumed to be ordered before all other tasks here). Let u(Ti)
denote the utilization of task Ti under this notation. Before
stating the theorem, we first prove the following lemma.

Lemma 1. Under Algorithm ASSIGN, if a task Ti is the
first task that cannot be assigned to any cluster, then∑i
k=1 u(Tk) > m− uϕ−1, where uϕ−1 is the sum of ϕ− 1

largest task utilizations.

Proof. Due to the fact that some task Ti cannot be assigned
to any cluster, the second phase of Algorithm ASSIGN is
executed. In the second phase, if Algorithm ASSIGN fails

to assign the ith task Ti to any cluster, then the last clus-
ter Cϕ does not have enough capacity to accommodate Ti.
Moreover, for each previous cluster Cj , where j ≤ ϕ − 1,
there exists a task, denoted T j , that could not be assigned to
Cj , and thus the next cluster in order was considered to ac-
commodate T j and Cj was removed from being considered
again for any of the later tasks (line 15). That is, for each
such cluster Cj , its remaining capacity is strictly less than
the utilization of T j (for the last cluster, we know that Tϕ is
Ti). Thus, for any clusterCj , its allocated capacity is strictly
greater than λj − u(T j). Since tasks {T1, T2, ..., Ti−1}
have been successfully assigned, the total utilization of these
tasks is equal to the total allocated capacity of clusters,
which is given by

∑i−1
k=1 u(Tk). Hence, we have

∑i−1
k=1 u(Tk) >

∑ϕ
j=1(λj − u(T j))

⇔ {adding u(Ti) on both sides}∑i
k=1 u(Tk) >

∑ϕ
j=1(λj − u(T j)) + u(Ti)

⇔ {because
∑ϕ
j=1 λj = m and u(Tϕ) = u(Ti)}∑i

k=1 u(Tk) > m−∑ϕ−1
j=1 u(T j)

⇒ {by the definition of uϕ−1}∑i
k=1 u(Tk) > m− uϕ−1.

Theorem 1. Algorithm ASSIGN successfully partitions any
DAG-based task system τ on ϕ clusters for which usum ≤
m− uϕ−1.

Proof. Let us suppose that Algorithm ASSIGN fails to as-
sign the ith task Ti to any cluster. Then by Lemma 1,∑i
k=1 u(Tk) > m− uϕ−1 holds. Therefore, we have

∑i
k=1 u(Tk) > m− uϕ−1

⇒ ∑N
k=1 u(Tk) = usum > m− uϕ−1.

Hence, any system that Algorithm ASSIGN fails to partition
must have usum > m− uϕ−1.

If ϕ is much smaller than m, which will often be the case
in practice, then the proposed assignment algorithm results
in little utilization loss even in the worst case.

Bounding $sum. For any given DAG system, if all DAGs
can be assigned in the first phase, then $sum = 0. In the
second phase, each DAG is considered in order, and if a clus-
ter fails to accommodate a task (line 15), then it will never
be considered for later tasks. Thus, it immediately follows
that at most ϕ − 1 DAGs can contribute to $sum. Due to
the fact that in the worst case all edges of a DAG can cause
inter-cluster communication (as illustrated by the example
below), an upper-bound on $sum under Algorithm ASSIGN
is given by the sum of ϕ− 1 largest DAG data weights.

Example. Consider a scenario where three DAGs Ti, Tj ,
and Tk are assigned to three clusters in a way as shown in
Fig. 5. Note that all edges of ϕ − 1 = 2 DAGs Tj and Tk
contribute to $sum.
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Figure 5: Example worst-case scenario where all edges of
ϕ− 1 DAGs contribute to the total communication cost.

3.2 Scheduling Phase

After executing the assignment phase, every task is mapped
to a cluster. The scheduling phase of CDAG ensures that
each task is scheduled with bounded tardiness. The schedul-
ing phase consists of two steps: (i) transform each PGM
graph into ordinary sporadic tasks by redefining job re-
leases, and (ii) apply any window-constrained scheduling
policy [13] such as GEDF to globally schedule the trans-
formed tasks within each cluster.

Transforming PGM graphs into sporadic tasks. Our re-
cent work has shown that on a multiprocessor, any PGM
graph system can be transformed into a set of ordinary spo-
radic tasks without utilization loss (see [14] for details).
The transformation process ensures that all precedence con-
straints in the original PGM graphs are met. This is done
by redefining job releases properly. However, data commu-
nication delays (inter-cluster or intra-cluster) were not con-
sidered in this previous work. In this paper, for each cluster,
we apply the same approach but redefine job releases in a
way such that data communications are considered. Later
we shall show that this process still ensures bounded tardi-
ness for any graph.

Definition 5. Let Fmax(pred(Thl,j), υ
h
l,j) denote the latest

completion time plus the data communication time among
all predecessor jobs of Thl,j , where υhl,j denotes the time to
transfer data from the corresponding predecessor job of Thl,j
to Thl,j . For any predecessor job T kl,i of Thl,j , υ

h
l,j can be com-

puted by dividing ρkhl (the number of produced data units
on the corresponding edge) by the corresponding network
bandwidth (i.e.,B for inter-cluster data communications and
b for intra-cluster data communications).

Definition 6. Let tf (Thl,j) denote the completion time of job
Thl,j .

The following equations can be applied to redefine job re-
leases and deadlines in an iterative way (job Thl,j’s redefined
release depends on the redefined release of Thl,j−1 where
j > 1).

For any job Thl,j where j > 1 and h > 1, its redefined

release time, denoted r(Thl,j), is given by

r(Thl,j) = max
(
rhl,j , r(T

h
l,j−1) + dhl ,

Fmax(pred(Thl,j), υ
h
l,j)
)
. (5)

Given that a source task has no predecessors, the rede-
fined release of any job T 1

l,j (j > 1) of such a task, r(T 1
l,j),

is given by

r(T 1
l,j) = max

(
r1l,j , r(T

1
l,j−1) + d1l

)
. (6)

For the first job Thl,1 (h > 1) of any non-source task, its
redefined release, r(Thl,1), is given by

r(Thl,1) = max
(
rhl,1, Fmax(pred(Thl,j), υ

h
l,j)
)
. (7)

Finally, for the first job T 1
l,1 of any source task, its release

time is not altered, i.e.,

r(T 1
l,1) = r1l,1. (8)

(Note that when redefining job releases in our previous
work, the term υhl,j did not appear in Eqs. (5)-(7) since data
communications were not considered.)

After redefining job releases according to (5)-(7), any job
Thl,j’s redefined deadline, denoted d(Thl,j), is given by

d(Thl,j) = r(Thl,j) + dhl . (9)

Note that these definitions imply that each task’s utiliza-
tion remains unchanged. In particular, as shown in Sec. 3.3,
bounded tardiness can be ensured for every transformed task
in any cluster. Thus, Eqs. (5)-(7) delay any job release by a
bounded amount, which implies that the execution rate and
the relative deadline of each task is unchanged. Note also
that the release time of any job Thl,j with predecessor jobs
is redefined to be at least Fmax(pred(Thl,j), υ

h
l,j). Hence,

the schedule preserves the precedence constraints enforced
by the PGM model. Furthermore, since the release time of
each Thl,j (j > 1) is redefined to be at least that of Thl,j−1
plus dhl , Tl executes as a sporadic task with a period of dhl .

Example. Suppose that DAG T2 in Fig. 2 is to be assigned
to clusters in a way such that T 1

1 and T 2
1 are assigned to

different clusters. For any job T 2
2,j of T2, its predecessor job

is T 1
2,j . Thus, assuming B = 2 as in Fig. 1(c), by Def. 5,

for any job T 2
2,j , we have v22,j =

ρ122
B = 4

2 = 2. Fig. 6(a)
shows the original job releases for T 1

2 and T 2
2 and Fig. 6(b)

shows the redefined job releases according to Eqs. (5)-(7)
and the corresponding job executions. (Insets (c) and (d)
are considered later.) Given that job T 1

2,1 completes at time
4, according to Eq. (7), the release of T 2

2,1 is redefined to
be at time 6. According to Eq. (6), the release of T 1

2,2 is
redefined to be at time 6. Then, T 1

2,2 completes at time 8.
According to Eq. (5), the release of T 2

2,2 is redefined to be at
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Figure 6: Illustrating various ideas on redefining job releases
for DAG T2 in Fig. 2.

time 10, which is the completion time of its predecessor job
T 1
2,2 plus the data communication time. Similarly, releases

of other jobs can be defined by Eqs. (5)-(7). Note that the
redefined job releases are in accordance with the sporadic
task model. Moreover, T 1

2 and T 2
2 execute as if they were

ordinary sporadic tasks, and yet all precedence constraints
are satisfied.

3.3 Tardiness Bound

Given a PGM-specified system, by applying the strategy
presented above, we obtain a transformed task system τ con-
taining only independent sporadic tasks. Then, we can use
any window-constrained global scheduling algorithm [13]
to schedule tasks within each cluster. It has been shown
in [13] that any window-constrained global scheduling al-
gorithm can ensure bounded tardiness for sporadic tasks on
multiprocessors with no utilization loss.

In our previous work [14], we derived a tardiness bound
for any PGM system scheduled on a multiprocessor (which
can be considered as a single cluster, as a special case of our
multi-cluster system) under GEDF, without considering the
communication time, as stated in the following theorem.

Theorem 2. [14] The tardiness of any job Thl,j of any task
Thl at depth k within a DAG Tl scheduled under GEDF on a
multiprocessor is at most (k + 1) · ∆ + 3(k + 1) · ymaxl ,

where ymaxl = max(y1l , y
2
l , ..., y

z
l ) (z is the number of

nodes within Tl) and ∆ denotes the tardiness bound of Tl
with respect to its redefined deadlines, as specified in [14]
(omitted here due to space constraints), i.e.,

tf (Thl,j)− d(Thl,j) ≤ ∆. (10)

Fig. 6(b) shows the redefined releases and the job execu-
tions after considering data communication times (as cov-
ered earlier). Fig. 6(c) shows the redefined releases and the
corresponding job executions assuming no data communica-
tion time for DAG T2. As seen, the data communication fur-
ther delays the redefined releases to later points of time. By
bounding such data communication times and appropriately
incorporating them into the prior tardiness bound (i.e., the
one assuming no communication time), we are able to de-
rive a final tardiness bound for every task in the given PGM
system scheduled under CDAG, as stated in the following
theorem.

Theorem 3. The tardiness of any job Thl,j of any task Thl
at depth k within a DAG Tl scheduled under CDAG with
respect to its original deadline is at most

(k + 1) ·∆ + 3(k + 1) · (ymaxl +max(υhl,j)), (11)

wheremax(υhl,j) denotes the maximum data communication
time between any predecessor job of Thl,j and Thl,j .

Proof. The proof is given in an appendix.

Note that a per-task response time bound can be obtained
from the above tardiness bound by adding the task’s relative
deadline. Such bounds are useful in settings where response
time is used as the performance metric.4 Note also that since
no utilization loss occurs during the scheduling phase, any
PGM system is schedulable with bounded response times as
long as it can be partitioned onto clusters under CDAG.

3.4 Improving Job Response Times

According to Eqs.(5)-(7), we delay job releases to trans-
form DAGs into sporadic tasks. However, excessive release
delays are actually unnecessary and actual response times
can be improved by applying a technique called “early-
releasing,” which allows jobs to execute before their speci-
fied release times [1]. The earliest time at which job Thl,j may
execute is defined by its early-release time ε(Thl,j), where
ε(Thl,j) ≤ r(Thl,j). For any job Thl,j , its early-releasing time
can be defined as

ε(Thl,j) =

{
rhl,j if h = 1

Fmax(pred(Thl,j), υ
h
l,j) if h > 1.

4In some PGM-specified applications, deadlines are not specified but
bounded response times are still required [10].
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An unfinished job Thl,j is eligible for execution at time t
if Thl,j−1 has completed by t (if j > 1) and t ≥ ε(Thl,j). The
tardiness bounds in Theorem 2 (as shown in [14]) and The-
orem 3 continue to hold if early-releasing is allowed. Intu-
itively, this is reflective of the fact that schedulability mainly
hinges on the proper spacing of consecutive job deadlines of
a task, instead of its releases.

Example. Consider again the scheduling of T2 as shown in
Fig. 6(b). Fig. 6(d) shows early releases as defined above
and the corresponding GEDF schedule. As seen, most jobs’
response times are improved. For instance, T 2

2,2 now com-
pletes at time 10, two time units earlier than the case without
early-releasing.

4 Experiments

In this section, we describe experiments conducted using
randomly-generated DAG sets to evaluate the effectiveness
of CDAG in minimizing utilization loss and total communi-
cation cost. We do this by comparing CDAG with the op-
timal ILP solution. The experiments focus on three perfor-
mance metrics: (i) utilization loss, (ii) total communication
cost, and (iii) each test’s runtime performance.

In our experiments, we selected a random target size
for DAGs, from at least one task to 100 per DAG. Then
tasks within each DAG were generated based upon distri-
butions proposed by Baker [2]. The source task of each
DAG was assumed to be released sporadically, with a pe-
riod uniformly distributed over [10ms, 100ms]. The pro-
duce amount of each edge was varied from 10 data units to
1000 data units. For every edge of each DAG, its produce
amount, threshold, and consume amount were assumed to
be the same. Valid execution rates were calculated for non-
source tasks within each DAG using results from [10, 14].
Task utilizations were distributed using four uniform dis-
tributions, [0.05, 0.2] (light), [0.2, 0.5] (medium), [0.5, 0.8]
(heavy), and [0.05, 0.8] (uniform). Task execution costs
were calculated from execution rates and utilizations. We
generated six clusters, each with a random processor count
from 4 to 16, with a total processor count of 48. We assumed
B = 10 and b = 1000. For each choice of utilization distri-
bution, a cap on overall utilization was systematically varied
within [16, 48]. For each combination of utilization cap and
utilization distribution, we generated 100 DAG sets. Each
such DAG set was generated by creating DAGs until total
utilization exceeded the corresponding utilization cap, and
by then reducing the last DAG’s utilization so that the total
utilization equalled the utilization cap.

The schedulability results that were obtained are shown
in Fig. 7. In all insets of Fig. 7, “CDAG” denotes the schedu-
lability results achieved by CDAG, “Thm. 1 Bound” de-
notes the worst-case utilization bound of CDAG as stated
in Theorem 1, and “ILP” denotes the schedulability results

achieved by ILP. Each curve in each figure plots the frac-
tion of the generated DAG sets that the corresponding ap-
proach successfully scheduled, as a function of total utiliza-
tion. (Note that the range of the x-axis in all insets is given
by [43, 48].) As Fig. 7 shows, under all four utilization dis-
tributions, CDAG yields schedulability results that are very
close to that achieved by ILP. Moreover, the worst-case uti-
lization bound in Theorem 1 is reasonable. For example, un-
der the light per-task utilization distribution, the worst-case
utilization bound of CDAG ensures that any DAG set with a
total utilization up to 47 can be successfully scheduled in a
distributed system containing 48 processors.

Table 1 shows the total communication cost achieved by
both approaches categorized by the total utilization Usum
using the light per-task utilization distribution (we omit the
results using other utilization distributions because they all
show similar trends). In these experiments, all DAG sets
were guaranteed to be schedulable since the total utilization
of any DAG set (at most 44) is less than the worst-case uti-
lization bound of CDAG, which is 47. In Table 1, for each
Usum, the total communication cost under ILP or CDAG
was computed by taking the average of the total commu-
nication cost over the 100 generated DAG sets. The total
communication cost for each generated DAG set is given
by $sum as defined in Def. 2. The label “Total” represents
the maximum communication cost of the DAG set, which is
given by

∑
Ti∈ζ

∑
ejki ∈Ti

wjki where (as noted earlier) ζ rep-
resents the corresponding DAG set. As seen, CDAG is effec-
tive in minimizing the total communication cost. The total
communication costs achieved by CDAG are close to the op-
timal ones achieved by ILP and are significantly smaller than
the maximum communication costs. For example, when
Usum = 44, CDAG achieves a total communication cost of
248.7 data units while ILP gives an optimal solution of 32.6
data units, both of which are almost negligible compared to
the maximum communication cost, which is 93775.9 data
units.

Regarding runtime performance, Table 2 shows the aver-
age time to run an experiment as a function of the number of
tasks N using the light per-task utilization distribution (we
again omit the results using other utilization distributions be-
cause they all show similar trends). For each N in the set
{100, 200, 300, 400, 500}, we generated ten DAG sets and
recorded the average running time of both ILP and CDAG.
CDAG consistently took less than 1 ms to run while ILP ran
for a significantly longer time, sometimes prohibitively so.
For instance, when N = 500, ILP took more than 10 hours
on average per generated DAG set.

5 Conclusion

In this paper, we have shown that DAG-based systems
with sophisticated notions of acyclic precedence constraints
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Figure 7: Schedulability results. (a) Light per-task utiliza-
tion distribution. (b) Medium per-task utilization distribu-
tion. (c) Heavy per-task utilization distribution. (d) Uniform
per-task utilization distribution.

can be efficiently supported under the proposed clustered
scheduling algorithm CDAG in a distributed system, pro-

Table 1: Total communication cost.

Usum=16 Usum=20 Usum=24 Usum=28 Usum=32 Usum=36 Usum=40 Usum=44

ILP 6.4 9.2 13.3 21.2 22.5 26.2 24.8 32.6

CDAG-
runtime 78.1 87.2 130.5 146.3 173.1 187.7 281.2 248.7

CDAG-
bound

6221.6 7950.4 9416.2 10264.8 9879.8 12001 11731.2 11015.1

Total 34588.9 45048.8 52968.1 58895.3 69895.9 77125.5 86741.4 93775.9

DAG set 
           utilization

Method

Usum=16 Usum=20 Usum=24 Usum=28 Usum=32 Usum=36 Usum=40 Usum=44

ILP 6.4 7.5 10.6 17 22.5 26.2 29.8 32.6

CDAG 78.1 87.2 130.5 146.3 173.1 187.7 231.2 248.7

Total 34588.9 45048.8 52968.1 58895.3 69895.9 77125.5 86741.4 93775.9

DAG set 
           utilization

Method

Table 2: Runtime performance.

N=100 N=200 N=300 N=400 N=500

ILP 51.9 (s) 165.9 (s) 412.2 (s) 2848.1 (s) 37791.8 (s)

CDAG 0.48 (ms) 0.58 (ms) 0.62 (ms) 0.56 (ms) 0.71 (ms)

# of tasks

Method

vided bounded deadline tardiness is acceptable. We assessed
the effectiveness of CDAG in minimizing both utilization
loss and total communication cost by comparing it with an
optimal ILP solution. CDAG was analytically and experi-
mentally shown to be effective in both respects and has low
time complexity.

In future work, we would like to investigate more expres-
sive resource models. For example, a distributed system
may contain heterogeneous resources (such as CPUs and
GPUs) and some tasks may need to access certain types of
resources, which makes the task assignment problem more
constrained. Moreover, it would be interesting to investi-
gate other scheduling techniques such as semi-partitioned
scheduling to achieve no utilization loss.
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Appendix A

Proof for Theorem 3.

Before proving Theorem 3, we first state two lemmas that
have been proved in [14] for systems without considering
data communications.

Lemma 2. For any job T 1
l,j , r(T

1
l,j)− r1l,j < 2 · y1l .

Proof. By (6), r(T 1
l,j) is lndependent of the data communi-

cation time. Thus, the proof is exactly the same as the one
for proving Lemma 3 in [14].

Lemma 3. For any two jobs Thl,j and Thl,k of Thl , where j <
k, i · yhl ≤ rhl,j < (i + 1) · yhl (i ≥ 0), and (i + w) · yhl ≤
rhl,k < (i + w + 1) · yhl (w ≥ 0), we have rhl,k − rhl,j >

(k − j) · dhl − 2 · yhl .

Proof. The objective of this lemma is to prove the stated
properties on rhl,k and rhl,j , which are the original releases of
any two jobs Thl,j and Thl,k of any task Thl . Thus, the proof
does not involve any data communication time. Therefore,
the proof is exactly the same as the one for proving Lemma 4
in [14].

Now we prove Theorem 3.

Proof. This theorem can be proved by induction on task
depth. In the base case, by Theorem 2 and the fact that
T 1
l has no predecessors, its tardiness with respect to its

newly-defined deadline, d(T 1
l,j), is at most ∆. By Lemma 2,

r(T 1
l,j) − rT 1

l,j < 2 · y1l . Thus, with respect to its original
deadline, dT 1

l,j , T
1
l,j has a tardiness bound of ∆ + 2 · y1l <

∆ + 3 · ymaxl .
For the induction step, let us assume (11) holds for any

task Twl at depth at most k−1, k ≥ 1. Then, the tardiness of
any job Twl,v of Twl is at most k ·∆+3k ·(ymaxl +max(υhl,j)),
i.e.,

tf (Twl,v)− dwl,v ≤ k ·∆ + 3k · (ymaxl +max(υhl,j)). (12)

We want to prove that for any job Thl,j of any task Thl at depth
k, tf (Thl,j)−dhl,j ≤ (k+1)·∆+3(k+1)·(ymaxl +max(υhl,j)).
According to (5) and (7), there are three cases to consider
regarding Thl,j’s newly-defined release time r(Thl,j).

Case 1. r(Thl,j) = rhl,j . By Theorem 2, we know that
tf (Thl,j) − d(Thl,j) ≤ ∆. Given that d(Thl,j) = dhl,j , we have
tf (Thl,j) − dhl,j ≤ ∆ < (k + 1) · ∆ + 3(k + 1) · (ymaxl +

max(υhl,j)).

Case 2. r(Thl,j) = Fmax(pred(Thl,j), υ
h
l,j). Let Twl,v be the

predecessor of Thl,j that has the latest completion time among
all predecessors of Thl,j (Twl,v exists because the depth of Thl
is at least one). Thus, we have

r(Thl,j) = Fmax(pred(Thl,j), υ
h
l,j) ≤ tf (Twl,v) +max(υhl,j).

(13)
Therefore,

tf (Thl,j)− dhl,j
{by (2)}

= tf (Thl,j)− rhl,j − dhl
= tf (Thl,j)− r(Thl,j) + r(Thl,j)− rhl,j − dhl
{by (9)}

= tf (Thl,j)− d(Thl,j) + dhl + r(Thl,j)− rhl,j − dhl
{by (10)}

≤ ∆ + dhl + r(Thl,j)− rhl,j − dhl
= ∆ + r(Thl,j)− rhl,j
{by (3) and (13)}

≤ ∆ + tf (Twl,v) +max(υhl,j)− rwl,v
{by (2)}

= ∆ + tf (Twl,v) +max(υhl,j)− dwl,v + dwl
{by (12)}

≤ ∆ + k ·∆ + 3k · (ymaxl +max(υhl,j))

+max(υhl,j) + dwl
{by (1)}

< (k + 1) ·∆ + 3(k + 1) · (ymaxl +max(υhl,j)).
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Case 3. j > 1 ∧ r(Thl,j) = r(Thl,j−1) + dhl . Let Thl,q
(q < j) denote the last job of Thl released before Thl,j such
that r(Thl,q) = rhl,q or r(Thl,q) = Fmax(pred(Thl,q), υ

h
l,j).

Thl,q exists because according to (7) and (8), there exists at
least one job, Thl,1, such that r(Thl,1) = rhl,1 or r(Thl,1) =

Fmax(pred(Thl,1), υhl,j). Depending on the value of r(Thl,q),
we have two subcases.

Case 3.1. r(Thl,q) = rhl,q. By the definition of Thl,q, the re-
lease time of any job Thl,k, where q < k ≤ j, is redefined to
be r(Thl,k) = r(Thl,k−1) + dhl . Thus, we have

r(Thl,j) = r(Thl,q) + (j − q) · dhl . (14)

Therefore, we have

tf (Thl,j)− dhl,j
{by (2)}

= tf (Thl,j)− rhl,j − dhl
= tf (Thl,j)− r(Thl,j) + r(Thl,j)− rhl,j − dhl
{by (9)}

= tf (Thl,j)− d(Thl,j) + dhl + r(Thl,j)− rhl,j − dhl
{by (10)}

≤ ∆ + dhl + r(Thl,j)− rhl,j − dhl
= ∆ + r(Thl,j)− rhl,j
{by (14) and Lemma 3}

< ∆ + (r(Thl,q) + (j − q) · dhl )− (rhl,q
+(j − q) · dhl − 2 · yhl )
{by the case condition}

= ∆ + 2 · yhl
< (k + 1) ·∆ + 3(k + 1) · (ymaxl +max(υhl,j)).

Case 3.2. r(Thl,q) = Fmax(pred(Thl,q), υ
h
l,j). Let

Twl,v denote a predecessor job of Thl,q with tf (Twl,v) =

Fmax(pred(Thl,q), υ
h
l,j)−dchl,q(Twl,v) = r(Thl,q)−dchl,q(Twl,v),

where dchl,q(T
w
l,v) denotes the data communication time be-

tween Twl,v and Thl,q. We have

tf (Thl,j)− dhl,j
{similarly to the derivation in Case 3.1}

< ∆ + (r(Thl,q) + (j − q) · dhl )− (rhl,q
+(j − q) · dhl − 2 · yhl )

= ∆ + r(Thl,q)− rhl,q + 2 · yhl
{by the case condition and (3)}

≤ ∆ + tf (Twl,v) + dchl,q(T
w
l,v)− rwl,v + 2 · yhl

{by (2)}dl
= ∆ + tf (Twl,v) + dchl,q(T

w
l,v)− dwl,v + dwl + 2 · yhl

{by (12)}
≤ ∆ + k ·∆ + 3k · (ymaxl +max(υhl,j)) + dchl,q(T

w
l,v)

+dwl + 2 · yhl
{by (1)}

< (k + 1) ·∆ + 3(k + 1) · (ymaxl +max(υhl,j)).
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