
Implementing Hard Real-Time Transactions on

Multiprocessors�

James H. Anderson, Rohit Jain, and Srikanth Ramamurthy

Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

We present a new approach to implementing real-time transactions on memory-resident data on shared-

memory multiprocessors. This approach allows hard deadlines to be supported without undue overhead.

In our approach, transactions are implemented by invoking wait-free library routines. Concurrency control

is embedded within these routines, so no special support for data management is required of the kernel or

from underlying server processes. These routines reduce the overhead involved in executing transactions by

exploiting the way transactions are interleaved on priority-based real-time systems. We present evidence that

shows that our approach often entails substantially less overhead than more conventional priority inheritance

schemes.

1 Introduction

Many applications exist in which hard real-time transactions must be supported; examples include embed-

ded control applications, defense systems, and avionics systems. With the recent advent of workstation-class

multiprocessor systems, multiprocessor-based implementations of these systems are of growing importance. Un-

fortunately, the problem of implementing hard real-time transactions on multiprocessors has received relatively

�Work supported, in part, by NSF grants CCR 9216421 and CCR 9510156, and by a Young Investigator Award from the U.S.

Army Research O�ce, grant number DAAH04-95-1-0323. The �rst author was also supported by an Alfred P. Sloan Research
Fellowship.

1

little attention. As explained in the next section, with most (if not all) previously proposed schemes for im-

plementing such transactions, the kinds of transactions that can be supported is often severely limited, and

worst-case performance (either actual or estimated) is often very poor, adversely impacting schedulability.

In this paper, we present a new scheme for implementing hard real-time transactions on multiprocessors that

does not place undue restrictions on the kinds of transactions that can be supported. This scheme gives rise

to worst-case performance bounds that can be expected to be much lower than those arising from alternative

schemes in many applications. In our approach, transactions are implemented by invoking wait-free library

routines. Concurrency control is embedded within these routines, so no special support for data management

is required of the kernel or from underlying server processes. These routines reduce the overhead involved in

executing transactions by exploiting the way transactions are interleaved on priority-based real-time systems.

As a result, they perform much better than previous implementations of wait-free transactions proposed for

asynchronous systems [1].

Since transactions in our implementation are executed in a wait-free manner, they are not susceptible to

deadlock or priority inversion, and schedulability can be checked using scheduling conditions for independent

tasks. In applying these conditions, the di�erence between the execution cost of a wait-free transaction and

that of a sequential implementation of that transaction is essentially an overhead term. This overhead term

bears a resemblance to blocking factors associated with priority inversions that arise in lock-based schemes.

However, these overhead terms arise for di�erent reasons, and in many applications, overhead terms when using

our approach can be expected to be much smaller than blocking factors when using lock-based schemes. The

avoidance of locks in our implementations has other important consequences. For example, there is no need

for kernel-level information (e.g., priority ceilings) used for dealing with priority inversions. As a result, mode

changes are simpli�ed because kernel-level information does not have to be recalculated. Also, a measure of

fault-tolerance is provided: a failed transaction cannot cannot hold locks on any object and therefore cannot

prevent object accesses by other transactions.

Our transaction implementation is described in detail in subsequent sections. Before presenting this descrip-

tion, we �rst review previous work on implementing hard real-time transactions on multiprocessors. This review

appears in Section 2. After reviewing previous work, we present an overview of some of the key mechanisms

used in our work in Section 3. Our transaction implementation is then described in detail in Section 4. In

2

our approach, transactions are performed using a novel synchronization primitive, which we call conditional

compare-and-swap. We explain how to implement this primitive from simpler primitives in Section 5. We end

with a brief discussion of some preliminary performance results and other concluding remarks in Section 6.

2 Previous Work

Previous work on implementing hard real-time transactions on multiprocessors has assumed data to be memory

resident and has focused on the use of lock-based concurrency control schemes. Data is assumed to be memory-

resident because the unpredictability of page faults and the relatively long I/O latencies for disk accesses make

supporting hard deadlines impractical. In this paper, we consider only memory-resident real-time databases.

Lock-based concurrency control schemes have been the focus of previous work because, with optimistic schemes,

transactions may abort and restart due to con
icts, and repeated restarts can cause a transaction to miss its

deadline. On uniprocessors, the number of transaction restarts over an interval of time can be bounded (assuming

memory-resident data) [3], and thus hard-deadline transactions can be supported. However, bounding the e�ects

of repeated restarts due to con
icts across processors in a multiprocessor system does not seem practical.

When using lock-based concurrency control schemes on multiprocessors, mechanisms are needed to bound

the e�ects of priority inversion. The most well-known solution to this problem in uniprocessors is the priority

ceiling protocol (PCP) [15, 16]. To ensure predictability in multiprocessor systems, Rajkumar et al. proposed

the distributed PCP (DPCP) and the multiprocessor PCP (MPCP), both of which extend the PCP [12, 13, 14].

Both approaches assume a model in which a task can perform one or more transactions. In the DPCP, global

resources are guarded by synchronization processors. A task accesses a global resource by making an RPC-like

call to a global critical section (GCS) server, which executes on its behalf on the synchronization processor.

The DPCP can be used in either multiprocessors or distributed systems. In contrast, the MPCP is intended

for use only in shared-memory multiprocessors. In the MPCP, a task executes a GCS on its own processor.

Synchronization is achieved by using read-modify-write instructions to obtain global semaphores, which reside

in shared memory.

With either the MPCP or the DPCP, tasks are susceptible to very large blocking factors, and correspondingly

low processor utilizations. In addition, these schemes require a priori knowledge of all transactions' resource

3

access requirements, which makes it di�cult, if not impossible, to support dynamically-generated transactions

and mode changes. Large blocking factors are partially the result of the fact that high-priority tasks on one

processor can be repeatedly blocked by low-priority tasks on other processors. Blocking factors are also increased

by task suspensions; a task suspends itself in the DPCP, for example, whenever it accesses a GCS server. In

e�ect, such suspensions break a task into a sequence of subtasks, and each subtask may experience a priority

inversion. In contrast, an instance of a task can experience at most one priority inversion when using the PCP

on a uniprocessor. To the best of our knowledge, neither the DPCP nor the MPCP has been implemented in

real systems. This is certainly due to the fact that these schemes give rise to such large blocking overheads.

Researchers at the University of Illinois have proposed an \end-to-end" approach for sharing resources in

multiprocessors, in which tasks are converted into a sequence of periodic subtasks using heuristics [7, 17]. Each

subtask can perform either local computation or a single-processor transaction. Heuristics are used to deduce

appropriate release times and deadlines for the subtasks of a task based on the timing requirements of that task.

Subtasks are scheduled on a per-processor basis, using uniprocessor scheduling schemes. Resources are accessed

through the use of the PCP or a similar scheme. The end-to-end approach is based on the observation that,

since subtasks are executed sequentially, there is no need to execute accesses to remote global resources at a

higher priority level than local tasks. Like the DPCP, the end-to-end approach requires a binding of resources

to processors. This complicates the job of assigning the components (tasks and resources) of an application

to processors, and restricts the kind of transactions that can be supported (e.g., a transaction cannot access

resources mapped to two di�erent processors). In addition, the heuristics that are applied to determine subtask

release times and deadlines can be overly pessimistic for certain task sets, leading to poor schedulability. Finally,

if a PCP-like scheme is used to access resources on a processor in the end-to-end approach as proposed, then

supporting dynamically-generated transactions and mode changes is problematic.

Lortz and Shin have implemented a hard real-time database system called MDARTS (Multiprocessor Database

Architecture for Real-Time Systems), in which both RPC transactions and concurrent shared-memory-based

transactions are supported [11]. This was the �rst (and perhaps only) actual implementation of a hard real-

time multiprocessor database server with reasonable performance. However, concurrency control in MDARTS

is somewhat limiting. In MDARTS, critical sections are implemented by disabling preemptions (to deal with

con
icts within a processor) and by using queue-based spin locks (to deal with con
icts across processors). As

4

type Qtype = record data: valtype; next : pointer to Qtype end

shared variable Head , Tail: pointer to Qtype

private variable old , new : pointer to Qtype ; addr : pointer to pointer to Qtype

procedure Enqueue(input : valtype)

�new := (input, NULL);
repeat old := Tail;

if old 6= NULL then addr := &(old�>next) else addr := &Head �

until CAS2(&Tail; addr ; old ;NULL;new;new)

Figure 1: Lock-free enqueue implementation.

a result, only transactions of very short duration can be e�ectively supported.

3 Overview of our Approach

In this section, we present an overview of our approach to implementing transactions. In the remainder of

the paper, we assume that transactions are invoked by periodic tasks. For simplicity, we assume that all tasks

are subject to hard deadlines. Each task consists of one or more phases. Each phase is either a computation

phase (which doesn't access shared data) or a transaction phase. All data is assumed to be memory-resident.

Before explaining the key techniques used in our transaction implementation, we �rst explain the notion of

a \wait-free" shared object in some detail. In a wait-free object implementation, operations must be imple-

mented using bounded, sequential code fragments, with no blocking synchronization constructs. This is often

accomplished by combining a \retry loop" structure with a \helping" scheme. If a retry loop structure is used

without a helping scheme, then the resulting object implementation is called \lock-free". Figure 1 depicts a

lock-free enqueue operation that is implemented in this way. An item is enqueued in this implementation by us-

ing a two-word compare-and-swap (CAS2) instruction1 to atomically update a tail pointer and either the \next"

pointer of the last item in the queue or a head pointer, depending on whether the queue is empty. This loop is

executed repeatedly until the CAS2 instruction succeeds. An important property of lock-free implementations

such as this is that operations may repeatedly interfere with each other. An interference results in the queue

example when a successful CAS2 by one task results in failed CAS2 by another task.

As mentioned above, wait-free objects are often implemented by adding a helping scheme to a retry loop

1The �rst two parameters of CAS2 specify addresses of two shared variables, the next two parameters are values to which these
variables are compared, and the last two parameters are new values to assign to the variables if both comparisons succeed.

5

Announce

Announce

Announce

Perform own tr.

Quit helping

Return

Perform own tr..

.
.

Help T3

Help T3

T3

T
2

T
1

Figure 2: Task T3 detects no previously announced task, so it announces its transaction. Before T3 can complete its

transaction, it is preempted by task T2. Task T2 begins to help T3 to complete its transaction, but before it �nishes, it

is preempted by task T1. Task T1 detects that T3's transaction has been announced but is not �nished, so it too helps

T3. It then announces its own transaction, executes it, and relinquishes the processor to task T2. Task T2 detects that

T3's transaction is complete, so it announces its own transaction, executes it, and relinquishes the processor to T3. Task

T3 detects that its transaction has been completed, so it returns. Note that the overall execution is similar to what one

might �nd in a lock-based system, with helping taking the place of blocking.

structure. Before beginning an operation, a task �rst \announces" its intentions by storing information about

its operation in a shared \announce variable". While in its retry loop, a task attempts to \help" other tasks

with announced operations by performing their operations in addition to its own. If a task experiences repeated

interferences, then its operation is eventually completed by another task. Care must be taken to ensure that

each operation is executed at most once, and that a helped task can retrieve its return values from memory.

With most helping implementations that have been proposed [1, 2, 9], performance is at least linear in the

number of tasks sharing an object.

In a recent paper [4], we showed that the cost of helping can be greatly reduced on priority-based real-

time uniprocessor systems by using a technique called incremental helping . The general idea of incremental

helping is illustrated in Figure 2. Before beginning a transaction, a task must �rst announce its intentions

by updating a shared announce variable. Before a task is allowed to do this, however, it must �rst help any

previously announced transaction (on its processor) to complete execution. This scheme requires only one

announce variable per processor. In contrast, previous constructions for asynchronous systems require one

announce variable per task [1, 2, 9]. In addition, with incremental helping, each task helps at most one other

task, while in helping schemes for asynchronous systems, each task helps all other tasks in the worst case.

With incremental helping, the worst-case time to perform a transaction is only 2 �T , where T is the execution

time of one transaction in the absence of preemption. Thus, this scheme scales well with transaction size and

the number of tasks in the system (in fact, its performance is independent of the latter). Of the 2 �T worst-case

execution cost, a factor of T represents the overhead associated with helping. This overhead term is similar

6

to blocking factors that arise in scheduling conditions when using priority inheritance schemes. However, with

incremental helping, kernel overhead is avoided. Like the priority inheritance protocol, information about

which tasks access which objects is not required, either for implementing the helping scheme or for applying

schedulability tests to tasks. (PCP-like schemes do require such information.) This is because con
icts are

recorded dynamically through the use of the announce variable, and because worst-case time bounds do not

depend on access information. Because object access requirements do not have to be predeclared, incremental

helping can be used to handle hard-deadline transactions that are generated dynamically.

The notion incremental helping can be extended for application on multiprocessors. The resulting scheme,

which we call cyclic helping , is illustrated in Figure 3. With cyclic helping, the processors are thought of as

if they were part of a logical ring. Tasks are helped through the use of a \help counter", which cycles around

the ring. To advance the help counter from processor R to the next processor on the ring, a task must �rst

help the currently announced task on processor R. In order to perform a transaction, a task does the following:

it �rst repeatedly advances the help counter until any pending announced (lower-priority) transaction on its

own processor has been completed; it then announces its own transaction; it then repeatedly advances the

help counter until is own transaction has been completed. With cyclic helping implemented on a P -processor

system, the time to perform a transaction is proportional to 2 �P �T , where T is the time required for the longest

transaction. Thus, this scheme also scales well with transaction size and the number of tasks in the system. For

task sets with even a modest number of objects shared across processors, 2 �P � T would typically be much less

than corresponding blocking factors that arise when using the MPCP or the DPCP. In addition, the MPCP

and the DPCP require object access requirements to be predeclared, while cyclic helping does not.

The cyclic helping scheme just described is very similar to the circulation of a token in a token ring system,

where to perform a transaction, a task �rst requests the token. One may wonder whether the same technique

could be applied in a lock-based system. When implementing objects on a real-time multiprocessor, the main

problem to be faced is that of ensuring that worst-case object access times are reasonably short in the face of

untimely task preemptions. In a lock-based implementation, the progress of the token could be stalled if it is

\held" by a preempted task. If the preempted task has only partially executed its critical section, then it must

resume execution before the token can be forwarded. This requires a mechanism by which a task requesting

the token on one processor may force a preempted task on another processor to resume execution. We know of

7

Processor 1

Processor 2
Processor 3

Processor 4

Processor 5

Processor 6

Help Counter
Task
Priorities

Low

High

Figure 3: Cyclic helping. Processors are arranged in a logical ring. A \help counter" indicates the next processor on

which a transaction will be helped. To perform a transaction, the ring must be traversed twice in the worst case (as

depicted).

no way to e�ciently implement such a mechanism. With our cyclic helping scheme, the requesting task itself

ensures that the \token" makes progress around the ring.

As the discussion above shows, there is an interesting connection between wait-free and lock-based object-

sharing schemes from a schedulability standpoint. In a sense, wait-free synchronization is a \pessimistic" notion

of nonblocking user-level synchronization, and lock-free synchronization is its \optimistic" counterpart.

4 Transaction Implementation

In this section, we present a detailed description of our transaction implementation. The implementation

is based on a lock-free transaction implementation for real-time uniprocessors presented previously in [3]. This

previous implementation has been modi�ed for application on shared-memory multiprocessors by using a cyclic

helping scheme.

Our implementation is de�ned by four procedures, Exec, Help, Read , and Write, which are given in Figure

5. Variable declarations that are used in these procedures are given in Figure 4. The procedures given in Figure

5 support the \illusion" of a contiguous shared array MEM of memory words. In reality, data is not stored in

8

=� Assume: (At most) N tasks executing on P processors; MEM array consists of B blocks of S words each; : : :
: : : each task has C copy blocks; version number ranges over f0; : : : ;D � 1g �=

type

blktype = array [0::S � 1] of memwdtype;

wdtype = 0::B+NC � 1;
vertype = record cnt : 0::D� 1; needhelp: boolean end =� These �elds are stored in one word �=

shared variable

Bank : array[0::B� 1] of wdtype; =� Bank of \pointers" to array blocks �=
Blk : array[0::B+NC � 1] of blktype; =� Array and copy blocks �=
V : vertype; =� V:cnt is the version number; V:cnt mod P is the help counter; V:needhelp indicates : : :

: : : if help is needed on processor currently pointed to �=
Ann: array[0::P � 1] of 0::N ; =� Ann[R] is the announce variable for processor R; : : :

: : : equals N if no currently announced transaction on R �=

Trans : array[0::N] of pointer to function; =� Used to announce transactions �=
Status : array[0::N] of �1::N ; = Status[p] is used to announce the status of task Tp's latest transaction: : : : �=

=� : : : = �1 if �rst phase is not complete; 2 [0; : : : ; N � 1] if �rst phase is complete; = N if second phase is complete �=
Addrlist: array[0::N;0::B � 1] of pointer to wdtype ; =� List addresses for CCAS's in second phase �=
Oldlist, Newlist : array[0::N � 1;0::B� 1] of wdtype; =� List of old and new values for CCAS's in second phase �=
Numblks : 0::B =� Number of words to perform CCAS on in second phase �=

initially (8k : 0 � k < B :: Bank [k] = ((NC + k; 0);0;0; true; 0) ^ Blk [NC + k] = (kth block of initial value)) ^

(8n : 0 � n < P :: Ann [n] = N) ^ Status[N] = N

private variable =� For task Tp �=
copy: array[0::C � 1] of wdtype; =� Indices for copy blocks of task Tp �=
curr : array[0::B� 1] of wdtype; =� Task Tp's current view of the MEM array �=

blklist: array[0::B� 1] of 0::B� 1; =� List of blocks that have been accessed �=
dirty: array[0::B� 1] of 0::2; =� 0 if block not accessed, 1 if read, 2 if modi�ed �=

mypr : 0::P � 1; =� Task Tp's processor �=
hid, lid , wid: 0::N ; =� Task identi�ers: hid is the id of a task to help; lid is the id of a local task on Tp's processor; : : :

: : : wid is the id of the task that \wins" �rst phase by successfully updating Status �=

ver : vertype; =� A value read from V �=

addr : pointer to wdtype; =� Address to perform CCAS on �=

old, new : wdtype; =� Old and new value for performing CCAS �=
dirtycnt : 0::C � 1; m: 0::1; i, j, numblks, blk : 0::B; ret: boolean; =� Counters, loop indices, block indices, return value �=

env : jmp buf =� Used by setjmp and longjmp system calls �=

initially (8k : 0 � k < C :: copy [k] = pC + k) ^ (8k : 0 � k < B :: dirty[k] = 0)

Figure 4: Variable declarations.

contiguous locations of memory, but is composed of a number of blocks. The Read (Write) procedure is invoked

when executing a transaction to read words from (write words to) the MEM array. As explained below, the

Exec procedure is called by a task to perform a transaction of that task. A pointer to a function is passed as

an input parameter. This function is assumed to contain sequential code implementing the transaction to be

executed. The Help procedure is invoked when one task helps another.

When a transaction of task T accesses a word in the implemented array of memory words, say MEM [x],

the block containing the xth word is identi�ed. If T's transaction writes into MEM [x], then T must replace

the corresponding block. The details of identifying blocks and replacing modi�ed blocks are hidden from the

programmer by means of the Read and Write routines, which perform all necessary address translation and

bookkeeping. These routines are called within the programmer's transaction code in order to read or write a

9

procedure Exec(tr : pointer to function)

1: Trans [p] := tr ;
2: Status [p] := �1;
3: for m := 0 to 1 do
4: lid := Ann[mypr];
5: if lid < N then

6: while true do

7: ver := V ;
8: if Status[lid] = N ^

(ver :cnt mod P 6= mypr _ :ver :needhelp) then
break

�;

9: if ver .needhelp then Help(ver) �;
10: hid := Ann [ver :cnt + 1 mod P];
11: if hid = N _ Status[hid] = N then

12: CAS(&V ; ver ; ((ver :cnt + 1) mod C; false));
13: else CAS(&V ; ver ; ((ver :cnt + 1) mod C; true));

�

od

�;
14: Ann [mypr] := p

od;
15: Ann [mypr] := N

procedure Help(ver : vertype)

16: hid := Ann [ver :cnt mod P];
17: if Status[hid] = N then return �;
18: if Status[hid] = �1 then

=� Perform �rst phase �=
19: dirtycnt; numblks := 0; 0;
20: if setjmp(env) 6= 1 then
21: �Trans[hid]();
22: for j := 0 to numblks � 1 do
23: Newlist[p; j] := curr [blklist[j]]

od;
24: Numblks [p] := numblks;

25: ret := CCAS(&V; ver ; &Status[hid]; �1; p);
26: i := 0;
27: for j := 0 to numblks � 1 do

28: if dirty[blklist[j]] = 2 ^ ret then

29: copy [i] := Oldlist[p; j];

30: i := i+ 1
�;

31: dirty [blklist[j]] := 0
od

�

�;
32: wid := Status[hid];

33: if wid = �1 _ wid = N then return �;
=� Perform second phase �=

34: numblks := Numblks [wid];
35: for j := 0 to numblks � 1 do

36: if V 6= ver then return �;
37: if Status[hid] = N then return �;
38: addr := Addrlist[wid; j];

39: old := Oldlist[wid; j];
40: new := Newlist[wid; j];

41: CCAS(&V; ver ; addr ; old ; new)
od;

42: CCAS(&V; ver ; &Status[hid]; wid; N)
�

procedure Read(memwd : 0::BS � 1) returns memwdtype

43: if V 6= ver then longjmp(env ; 1) �;
44: if Status[hid] � 0 then longjmp(env ;1) �;
45: blk := memwd div S;
46: if dirty[blk] = 0 then
47: dirty [blk] := 1;

48: curr [blk] := Bank [blk];
49: addr := &Bank [blk];
50: Addrlist [p;numblks] := addr ;
51: blklist [numblks] := blk ;
52: Oldlist[p;numblks] := curr [blk];

53: numblks := numblks + 1
�;

54: v := Blk [curr [blk]][memwd mod S];
55: return(v)

procedureWrite(memwd : 0::BS � 1; value : memwdtype)

56: if V 6= ver then longjmp(env ; 1) �;
57: if Status[hid] � 0 then longjmp(env ; 1) �;
58: blk := memwd div S;

59: if dirty[blk] = 0 then
60: curr [blk] := Bank [blk];

61: addr := &Bank [blk];
62: Addrlist[p; numblks] := addr ;
63: blklist[numblks] := blk ;
64: Oldlist[numblks] := curr [blk];
65: numblks := numblks + 1

�;
66: if dirty[blk] 6= 2 then
67: dirty[blk] := 2;
68: memcpy(Blk [copy [dirtycnt]];Blk [curr [blk]]; sizeof (blktype));

69: curr [blk] := copy [dirtycnt];
70: dirtycnt := dirtycnt + 1

�;
71: Blk [curr [blk]][memwd mod S] := value

Figure 5: Transaction implementation. For each procedure, p is the index of the invoking task. All private variables
refer to those of Tp.

10

constant Head = n; Tail = n + 1
private variable newtail: 0::n� 1

procedure Enqueue(input : valtype) returns fFULL;SUCCESSg
Write(Read(Tail); input);
newtail := (Read(Tail) + 1) mod n;
ifnewtail = Read(Head) then return(FULL) �;
Write(Tail ; newtail);
return(SUCCESS)

Figure 6: Example transaction.

MEM array made up
of S−word blocks

Block 1

Current Blocks

 BANK
 of
Pointers Replacement Blocks

Writes block 2

Reads block 3

Writes block 1

Reads blocks 3,5

Writes block 5

Reads block 4

Block 2

Block 3

Block 4

Block 5

Block 1
Copy of

Block 2
Copy of

Block 5
Copy of

Modified Block Pointers

Unmodified Block Pointers

Transaction T Transaction T Transaction T
1 2 3

Figure 7: Implementation of the MEM array for lock-free transactions (depicted for B = 5).

word of the MEM array. Thus, instead of writing \MEM [1] := MEM [10]", the programmer would write

\Write(1;Read(10))". Figure 6 shows a simple example transaction, which enqueues an item onto a shared

queue. This transaction would be executed by calling Exec(Enqueue).

The implemented array MEM is partitioned into B blocks of size S. (We assume a constant block size

here for simplicity.) Figure 7 depicts this arrangement for B = 5. The �rst block contains memory locations 0

through S � 1, the second contains locations S through 2S � 1, and so on. A bank of pointers | one for each

block | is used to point to the blocks that make up the array. (These are really array indices, not pointers.) In

order to modify the contents of MEM , a task makes a copy of each block to be modi�ed, and then attempts to

atomically replace the old blocks with their modi�ed copies. The details of how this is done is explained below

in conjunction with the helping scheme.

In Figure 4, Bank is a B-word shared array. Each element of Bank contains a pointer to a block of size S.

11

The B blocks pointed to by Bank constitute the current version of the MEM array. We assume that an upper

bound C is known on the number of blocks modi�ed by any transaction. Because a task's transaction copies

a block before modifying it, C \copy" blocks are required per task. Therefore, a total of B + NC blocks are

used, where N is the number of tasks. These blocks are stored in the array Blk . Initially, blocks Blk [NC] to

Blk [NC+B�1] are the blocks of the MEM array, and Blk [pC] to BLK [(p+1)C�1] are task Tp's copy blocks.

However, the roles of these blocks are not �xed. If Tp's copy blocks are installed as part of the MEM array,

then Tp reclaims the replaced blocks as copy blocks (lines 26-30). Thus, some of Tp's copy blocks become part

of the current array, and vice versa.

As mentioned above, user-supplied transaction code accesses the MEM array in a sequential manner using

the Read and Write procedures. After performing a consistency check that we will describe later (lines 43-44),

the Read procedure computes the index of the block containing the accessed word (line 45). If the block has not

yet been read by the transaction invoking Read , then it is marked as having been read (line 47), and is recorded

in the transaction's curr array (line 48). This array gives the transaction's \current view" of MEM . The block

index is also recorded in an array blklist (line 51), which is used later in reclaiming copy blocks. In addition, the

address and old value of the block pointer are saved in arrays (lines 50 and 52) that are later used to update

the MEM array (see below). The Read procedure completes by retrieving a value from the appropriate o�set

within the block that is accessed (line 54). The Write procedure is similar to the Read procedure, except that,

when a block is �rst modi�ed, it is recorded as having been modi�ed (line 67), and a local copy of the block is

made (line 68).

We now explain the Exec and Help procedures. Synchronization is achieved in these procedures by using

two primitives: compare-and-swap (CAS) and conditional compare-and-swap (CCAS). CAS is widely available,

but CCAS is not. CCAS is a restriction of the more well-known two-word compare-and-swap (CAS2) instruction

in which one word is a compare-only version number; it's semantics is formally de�ned in Figure 8(a). The

version number is incremented after each transaction and is assumed to not cycle during any single transaction.2

This ensures that a \late" CCAS operation executed by a preempted task has no e�ect. Unfortunately, CAS2 is

directly provided on only a few existing processors (e.g., Motorola 68030 and 68040 processors). Algorithms for

2This is reasonable for the kinds of applications targeted by our work. For example, in real-time systems, each task must
complete execution by a speci�ed deadline. Unless deadlines are unrealistically large, it would be impossible for a 32- or 64-bit
counter to cycle during the execution of one task.

12

implementing CAS2 from simpler primitives are known [1, 5, 10], but none are e�cient enough to be practically

applied. An e�cient hardware-based implementation of CAS2 was recently proposed by Greenwald and Cheriton

[8], but no current machines support this implementation. An operating-system-based approach to implementing

CAS2 has been proposed by Bershad [6], but this approach can be problematic to actually implement (see [8] for

details). Fortunately, as shown in Section 5, CCAS appears to be much easier to implement than CAS2. If CAS is

available, then CCAS can be implemented in just a few instructions.

We continue our description of the Exec and Help procedures by considering the shared variables that are

referenced in these procedure. Ann[R] is the announce variable for processor R. Incremental helping is used on

each processor, so only one announce variable per processor is required. Ann [R] equals N when there is no task

to help on processor R (task identi�ers are assumed to range over f0; : : : ; N � 1g). Trans[p] is used to store a

pointer to a function that implements a transaction of task Tp. Status[p] records the \status" of a transaction

of task Tp. Each transaction is executed in two phases, the details of which are described below. Status [p] is

initialized to �1, is modi�ed to hold a value in f0; : : : ; N � 1g when the �rst phase completes, and is assigned

the value N when the second phase completes.

The shared variable V is a compare-only version number that is passed to CCAS. It consists of a counter

�eld cnt and a boolean �eld needhelp. V:cnt is assumed to not cycle during any transaction. Our transaction

implementation is based on the idea of cyclic helping described in Section 3. With this helping scheme, processors

are considered in turn, as if they formed a logical ring. A \help counter" is used to indicate the current processor

under consideration. The value of the help counter is given by V:cnt mod P . P here is de�ned to be the total

number of processors in the system. When the help counter is advanced to point to processor R, V:needhelp

is set to true i� there is a task on processor R that needs to be helped. A task is allowed to help a task on

processor R only if it detects that (V:cnt mod P = R) ^ V:needhelp holds. Thus, the decision whether or not

to help a task on processor R is �xed when the help counter is advanced to point to R. Since this decision is

made atomically when the help counter is advanced, there can be no disagreement among tasks as to whether

a task on processor R should be helped.

As mentioned previously, Exec is invoked by a task Tp to perform a transaction. After some initialization

(lines 1-2), two rounds of cyclic helping are performed (lines 4-14). During the �rst round, Tp repeatedly

advances the help counter until any pending announced (lower-priority) transaction on its processor has been

13

completed. It then announces its own transaction (line 14) and performs a second round of cyclic helping in

order to complete its own transaction. The loop at lines 6-13 performs one round of cyclic helping. The test

at line 8 causes the loop to terminate once the currently announced transaction on Tp's processor has been

completed and the help counter has been advanced. If the help counter points to a processor that has a task

that needs help, then the Help procedure is invoked at line 9. Lines 10-13 advance the help counter to the next

processor on the logical ring. Line 15 sets the announce variable on Tp's processor to indicate that no task

currently requires helping.

The Help procedure is called to help a transaction of some task Tq that is executing on the processor that

is pointed to by the help counter. It can be shown that the Help procedure is invoked at most P times during

each round of cyclic helping (2P times in total). As mentioned previously, each transaction is executed in two

phases. During the �rst phase (lines 19-31), modi�cations to the MEM array are determined by executing the

user-supplied transaction code (line 21). In the second phase (lines 34-42), the MEM array is actually updated

by performing a sequence of CCAS operations. When executing lines 19-24, a task Tp updates three shared

arrays, Addrlist[p], Newlist[p], and Oldlist[p], and the shared variable Numblks[p]. (Addrlist[p] and Oldlist[p]

are actually updated in the Read and Write routines, which are invoked when the input transaction is executed

at line 21.) The shared arrays give lists of addresses, new values, and old values to be used in performing CCAS

operations in the second phase. Each address speci�es a particular entry in Bank . Such an entry corresponds

to a block that has been read or written while executing a transaction. The variable Numblks[p] speci�es

the number of such blocks. It should be noted that, due to the helping scheme employed, several tasks may

concurrently attempt to perform the �rst phase of a transaction of some task Tq . One of these tasks | call

it Tr | will successfully update Status [q] at line 25, signifying the end of the �rst phase. Task Tr reclaims

blocks that have been modi�ed as its own copy blocks for the next transaction it executes (lines 26-31). The

addresses, new values, old values, and number of blocks recorded by Tr are used by all tasks that attempt to

perform the second phase of Tq's transaction (lines 34-41). In this phase, each Bank entry corresponding to a

block accessed by Tq's transaction is modi�ed in turn. (An optimization could be added to lines 38-41 so that

only blocks that are written are considered. This optimization has been omitted for brevity.) When the second

phase is completed, Status [q] is updated to indicate that Tq 's latest transaction is complete (line 42).

Before concluding this description, one subtlety that we have glossed over must be mentioned. If the Bank

14

variable is modi�ed by a task Tq during the execution of a transaction executed by some other task Tp (Tp may

be executing its own transaction or that of another task), then Tp may read inconsistent values from the MEM

array. Task Tp cannot possibly perform a successful CCAS operation in its second phase in this case, so Tp will

not be able to install corrupted data. However, there is a risk that Tp's execution of the transaction code might

cause an error, such as a division by zero or a range error. This problem is solved by performing a consistency

check at the beginning of the Read andWrite procedures (lines 43-44 and 56-57). If an inconsistency is detected,

then control is returned from the Read or Write procedure to line 20 in the Help procedure using Unix-like

longjmp calls. In this event, Tp discontinues executing the �rst phase of the transaction it is performing, and

proceeds directly to attempt to execute its second phase (lines 32-42).

Many optimizations of the basic implementation just described are possible. For example, with a slight

modi�cation, read-only transactions can be executed with greater concurrency, which is very desirable if only a

small percentage of transactions are updates. This involves adding a (P + 1)st \virtual" processor to the cyclic

helping ring. While the help counter points to the virtual processor, any read-only transaction can be performed

without helping other transactions. If updates are rare, then the help counter would almost always point to

the virtual processor, and read-only transactions would execute with very little synchronization overhead. This

scheme penalizes updates, but only slightly (the cyclic ring has grown, but only by one processor). Details of

this and other optimizations are omitted here due to space limitations.

5 Implementing Conditional Compare-and-Swap

We now explain how to implement CCAS. The semantics of CCAS is formally de�ned in Figure 8(a). The angle

brackets in this �gure indicate that CCAS is atomic. As the �gure shows, CCAS is a restriction of the more well-

known two-word compare-and-swap (CAS2) instruction in which one word is a compare-only version number

(given by V in the �gure). This version number is incremented after each transaction and is assumed to

not cycle during any single transaction, i.e., it can be viewed as an unbounded integer.3 Unfortunately, as

mentioned in the previous section, CAS2 is not widely available in hardware and is di�cult to implement in

software. However, CCAS appears to be much easier to implement than CAS2. Figures 8(b) and 8(c) give two

3In our transaction implementation, the version number and a control bit (needhelp) are packed together in one word. However,
for ease of explanation, we simply consider �V to be an integer here.

15

procedure CCAS(� � �)
h if �V 6= ver then return false �;
if �X 6= old then return false �;
�X := new ;
return true i

(a)

procedure CCAS(� � �)
1: x := �X;
2: if x 6= old then return false �;
3: hh if �V 6= ver then return false �;
4: return(CAS(X; x ; (new:val ; x :cnt + 1))ii

(b)

procedure CCAS(� � �)
1: if �X 6= old then return false �;
2: hh if �V 6= ver then return false �;
3: return(CAS(X;old ;new))ii

(c)

Figure 8: Parameters to CCAS are CCAS(V : pointer to integer; ver : integer; X: pointer to valtype; old;new : valtype),
where valtype is some single-word type. (a) De�nition of CCAS. (b) Implementation using small counter �eld. (c)

Implementation using delays.

possible implementations.

In Figure 8(b), the �X parameter is tagged with a small counter �eld. X is assumed here to point to a

shared variable that is updated during a round of cyclic or priority helping by means of CCAS operations | it

is only updated by such operations. The double angle brackets around lines 3 and 4 indicate that these lines

are executed without preemption. This could be ensured in practice by either disabling interrupts or by having

the operating system roll back a task to line 3 if it is preempted at line 4. The counter X�>cnt is assumed to

be large enough so that it does not cycle during a single round of helping or between the execution of lines 3

and 4 by any task. Note that, because lines 3 and 4 are executed without preemption, only a small number of

bits for X�>cnt are required (e.g., on an 8-processor machine, three or four bits would probably su�ce). This

is obviously important, since the counter value is being packed within a word.

It is clearly in accordance with the semantics of CCAS to return from either line 2 or line 3 or to return false

from line 4, so consider the case in which the CAS at line 4 returns true. Note that line 4 is reached only after

passing the test at line 3. In our transaction implementation, passing this test signi�es that other tasks have

not yet advanced the help counter to another processor. Because X�>cnt cannot cycle during a single round

of helping or between lines 3 and 4, it follows that the CAS at line 4 succeeds only when it should.

Our transaction implementation has the property that a variable �X that is modi�ed by means of CCAS

operations is assigned a sequence of distinct values during a single round of helping. Thus, it is really not

necessary to de�ne X�>cnt to be large enough so that it does not cycle in one round. For applications with

this property, it is possible to go a step further and completely eliminate the cnt �eld. This is accomplished

by inserting a delay(�) statement after any code that attempts to increment �V , where � in the worst case

execution time of lines 3 and 4 in Figure 8(b). With this change, if �V = ver holds when line 3 is executed,

then �X cannot be modi�ed between lines 3 and 4 by any task engaged in a round of helping where �V > ver .

(In our transaction implementation, the delay(�) statement is not even necessary: enough code is executed

16

between any increment of �V and subsequent CCAS that modi�es �X to ensure that at least � time units have

passed.) The result is the CCAS implementation of Figure 8(c). A very desirable property of this implementation

is that it does not require certain bits of �X to be reserved for control information.

6 Concluding Remarks

The explanation of our transaction implementation would seem to imply that one centralized help counter is

always required when implementing a real-time database system. This is not the case. In many applications,

transactions can be grouped into classes such that transactions in di�erent classes cannot possibly con
ict with

each other. Only one help counter per class is required in this case. Transactions in di�erent classes may execute

with complete concurrency. Moreover, the help counter for a class really only needs to cycle around the set of

processors with tasks that execute transactions in that class; this set may include fewer than the total number

of processors.

The research outlined above leaves many opportunities for further research. Of foremost importance are

experimental studies that compare our wait-free transaction implementation with more conventional lock-based

implementations. Such studies require a real-time multiprocessor testbed. We are currently developing such

a testbed at UNC, but it is not yet operational. Simulation studies are an alternative to experimentation.

However, simulation studies will be de�nitive only if they are conducted using meaningful parameter values.

The parameters that a�ect schedulability when using wait-free and lock-based transaction implementations are

very di�erent. Wait-free schemes are sensitive to such factors as copying overhead and the cost of performing

synchronization instructions. Lock-based schemes are sensitive to such factors as context switching costs and

kernel overhead. It is very di�cult to select meaningful values for such parameters without examining actual

implementations, which again requires an operational testbed.

Despite our current limitations in conducting de�nitive performance studies, we have conducted a preliminary

study to evaluate the e�ectiveness of cyclic helping. In this study, a wait-free linked-list implementation based on

cyclic helping presented by us elsewhere [4] was compared with a lock-free list implementation presented recently

by Greenwald and Cheriton [8]. These experiments were performed on a �ve-processor SGI-R10000 machine.

The priority-based preemption model was simulated at the user level. The wait-free list implementation that

17

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

Processors

Multiprogramming Level = 1

"Lockfree"
"Waitfree"

(a)

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

Processors

Multiprogramming Level = 3

"Lockfree"
"Waitfree"

(b)

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

Processors

Multiprogramming Level = 5

"Lockfree"
"Waitfree"

(c)

Figure 9: Comparison of wait-free and lock-free list implementations.

was tested is similar to the transaction implementation presented in this paper, with optimizations that allow

list operations to be performed with no copying overhead. (Such optimizations appear to be possible for many

single-object transactions.)

Our algorithm uses CCAS and Greenwald and Cheriton's uses CAS2, while the SGI-R10000 provides only

CAS. However, we were able to e�ciently implement CCAS and CAS2 using the approach given in Figure 8(c) in

Section 5. (In the lock-free list implementation, CAS2 is used in manner that is similar to how CCAS is used.)

In our experiments, the total time for the tasks to perform a total of 50,000 insertion/deletion operations

on a sorted list was measured. Figure 9 depicts the relative performance (in tens of milliseconds) of the two

implementations for di�erent multiprogramming levels. These �gures indicate that, as the multiprogramming

level is increased, our algorithm outperforms Greenwald and Cheriton's. Our algorithm also outperforms theirs

as the length of the list is increased, although graphs showing this have been omitted due to space limitations.

Another lock-free list implementation, which uses only CAS, was recently proposed by Valois [18]. Although we

did not test against Valois' algorithm, Greenwald and Cheriton report that their algorithm is faster than his

algorithm by a factor of about three under low contention, and about ten under high contention [8]. Greenwald

and Cheriton also reported that their algorithm outperformed a fast spin lock algorithm with backo�. We

believe it is highly doubtful that OS-based multiprocessor locking protocols like the MPCP and the DPCP

could exhibit performance close to that of either our algorithm or Greenwald and Cheriton's.

While our algorithm does not dramatically outperform Greenwald and Cheriton's, one should keep in mind

that our algorithm is wait-free, whereas their algorithm and Valois' algorithm are only lock-free. This has

important implications for hard real-time systems. In such systems, tasks must be guaranteed to meet their

deadlines, and such guarantees require that tight worst-case execution times for object accesses be known. With

18

lock-free algorithms, determining such bounds is not easy, because accurately bounding the cost of interferences

that can occur across processors is di�cult. With wait-free algorithms, worst-case execution times are easily

computed. The only other means of implementing wait-free linked lists that we know of is to use universal

constructions [2, 9]. Although we did not test against such constructions, they entail very high helping overhead.

As a result, they would likely perform much worse than our list implementation.

References

[1] J. Anderson and M. Moir, \Universal Constructions for Multi-Object Operations", Proceedings of the 14th

Annual ACM Symposium on Principles of Distributed Computing , 1995, pp. 184-193.

[2] J. Anderson and M. Moir, \Universal Constructions for Large Objects", Proceedings of the Ninth Inter-

national Workshop on Distributed Algorithms, Lecture Notes in Computer Science 972, Springer-Verlag,

September 1995, pp. 168-182.

[3] J. Anderson, S. Ramamurthy, M. Moir, and K. Je�ay, \Lock-Free Transactions for Real-Time Systems",

Proceedings of the First International Workshop on Real-Time Databases: Issues and Applications, March

1996, pp. 107-114. Expanded version to appear in Real-Time Database Systems: Issues and Applications,

Kluwer Academic Publishers.

[4] J. Anderson, S. Ramamurthy, and R. Jain \Implementing Wait-Free Objects on Priority-Based Systems",

manuscript, January 1997.

[5] H. Attiya and E. Dagan, \Universal Operations: Unary versus Binary", Proceedings of the 15th ACM

Symposium on Principles of Distributed Computing , 1996, pp. 223-232.

[6] B. Bershad, \Practical Considerations for Non-Blocking Concurrent Objects", Proceedings of the 13th in-

ternational Conference on Distributed Computing Systems, May 1993, pp. pages 264-274.

[7] R. Bettati, End-to-End Scheduling to Meet Deadlines in Distributed Systems, Ph.D. Thesis, Computer

Science Department, University of Illinois at Urbana-Champaign, March 1994.

19

[8] M. Greenwald and D. Cheriton, \The Synergy Between Non-blocking Synchronization and Operating Sys-

tem Structure", Proceedings of the USENIX Association Second Symposium on Operating Systems Design

and Implementation, 1996, pp. 123-136

[9] M. Herlihy, \A Methodology for Implementing Highly Concurrent Data Objects", ACM Transactions on

Programming Languages and Systems, Vol. 15, No. 5, 1993, pp. 745-770.

[10] A. Israeli and L. Rappoport, \Disjoint-Access-Parallel Implementations of Strong Shared Memory Primi-

tives", Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing , August

1994, pp. 151-160.

[11] V. Lortz, An Object-Oriented Real-Time Database System for Multiprocessors, Ph.D. Thesis, Computer

Science Department, University of Michigan, 1994.

[12] R. Rajkumar, \Real-Time Synchronization Protocols for Shared Memory Multiprocessors", Proceedings of

the International Conference on Distributed Computing Systems, May 1990, pp. 116-123.

[13] Raghunathan Rajkumar, Synchronization In Real-Time Systems - A Priority Inheritance Approach, Kluwer

Academic Publications, 1991.

[14] R. Rajkumar, L. Sha, and J. Lehoczky, \Real-Time Synchronization Protocols for Multiprocessors", Pro-

ceedings of the IEEE Real-Time Systems Symposium, December 1988, pp. 259-269.

[15] L. Sha, R. Rajkumar, and J. Lehoczky, \Priority Inheritance Protocols: An Approach to Real-Time System

Synchronization", IEEE Transactions on Computers, Vol. 39, No. 9, September 1990, pp. 1175-1185.

[16] L. Sha, R. Rajkumar, S. Son, and C. Chang, \A Real-Time Locking Protocol", IEEE Transactions on

Computers, Vol. 40, No. 7, 1991, pp. 793-800.

[17] J. Sun, R. Bettati, and J. W.-S. Liu, \Using End-to-End Scheduling Approach to Schedule Tasks with

Shared Resources in Multiprocessor Systems", Proceedings of the 11th IEEE Workshop on Real-Time Op-

erating Systems and Software, May 1994.

[18] J. Valois, \Lock-Free Linked Lists using Compare-and-Swap", Proceedings of the 14th ACM Symposium on

Principles of Distributed Computing , 1995, pp. 214-222.

20

