
1
IMPLEMENTING HARD REAL-

TIME TRANSACTIONS ON

MULTIPROCESSORS

James H. Anderson, Rohit Jain,

and Srikanth Ramamurthy

Department of Computer Science,

University of North Carolina at Chapel Hill

1 INTRODUCTION

Many applications exist in which hard real-time transactions must be sup-

ported; examples include embedded control applications, defense systems, and

avionics systems. With the recent advent of workstation-class multiprocessor

systems, multiprocessor-based implementations of these systems are of growing

importance. Unfortunately, the problem of implementing hard real-time trans-

actions on multiprocessors has received relatively little attention. With most

(if not all) previously-proposed schemes for implementing such transactions,

the kind of transactions that can be supported is often limited, and worst-case

performance is often poor, adversely impacting schedulability.

We present here a new scheme for implementing hard real-time transactions on

multiprocessors that does not place undue restrictions on the kinds of transac-

tions that can be supported. This scheme gives rise to worst-case performance

bounds that often will be lower than those arising from alternative schemes.

In our approach, transactions are implemented by invoking wait-free library

routines. Concurrency control is embedded within these routines, so no special

support for data management is required of the kernel or from underlying server

processes. These routines reduce overhead by exploiting the way transactions

are interleaved on priority-based real-time systems.

Since transactions in our implementation are executed in a wait-free manner,

they are not susceptible to deadlock or priority inversion, and they can be

scheduled as if they were independent. In checking schedulability, the dif-

ference between the execution cost of a wait-free transaction and that of a

sequential implementation of that transaction is essentially an overhead term.

1

2 Chapter 1

This overhead term bears a resemblance to blocking factors associated with

priority inversions that arise in lock-based schemes. However, these overhead

terms arise for di�erent reasons, and overhead terms when using our approach

are often much smaller than those of lock-based schemes [1].

Our transaction implementation is described in detail in subsequent sections.

First, in Section 2, we review previous work on implementing hard real-time

transactions on multiprocessors. We then present an overview of some of the

key mechanisms used in our work in Section 3. Our implementation is described

in detail in Section 4. We end with concluding remarks in Section 5.

2 PREVIOUS WORK

Previous work on implementing hard real-time transactions on multiprocessors

has assumed data to be memory resident. This is due to the di�culty of

supporting hard deadlines in the face of unpredictable page faults and relatively

long I/O latencies for disk accesses. Previous work has also focused on the use

of lock-based concurrency control schemes. This is because, with optimistic

schemes, transactions may abort and restart due to conicts, and repeated

restarts can cause a transaction to miss its deadline.1

When using lock-based concurrency control schemes on multiprocessors, mech-

anisms are needed to bound the e�ects of priority inversion. Rajkumar et al.

proposed two such mechanisms by extending the uniprocessor priority ceiling

protocol (PCP) [8, 10]. The resulting protocols are called the distributed PCP

(DPCP) and the multiprocessor PCP (MPCP), respectively [7, 8, 9]. Both pro-

tocols assume a model in which a task can perform one or more transactions. In

the DPCP, global resources are guarded by synchronization processors. A task

accesses a global resource by making an RPC-like call to a global critical section

(GCS) server, which executes on its behalf on the synchronization processor.

The DPCP can be used in either multiprocessors or distributed systems. In

contrast, the MPCP is intended for use only in shared-memory multiproces-

sors. In the MPCP, a task executes a GCS on its own processor by using global

semaphores, which are implemented using read-modify-write instructions.

With either the MPCP or the DPCP, tasks are susceptible to very large block-

ing factors, and correspondingly low processor utilizations. In addition, these

1On uniprocessors, the number of transaction restarts over an interval of time can be
bounded (assuming memory-resident data) [2]. However, bounding the e�ects of repeated
restarts due to conicts across processors in a multiprocessor system does not seem practical.

Implementing Hard Real-Time Transactions on Multiprocessors 3

schemes require a priori knowledge of all transactions' resource access require-

ments, which makes it di�cult, if not impossible, to support dynamically-

generated transactions and mode changes. Large blocking factors are partially

the result of the fact that high-priority tasks on one processor can be repeat-

edly blocked by low-priority tasks on other processors. Blocking factors are also

increased by task suspensions; a task suspends itself in the DPCP, for example,

whenever it accesses a GCS server. In e�ect, such suspensions break a task into

a sequence of subtasks, each of which may experience a priority inversion.

Researchers at the University of Illinois have proposed an \end-to-end" ap-

proach for sharing resources in multiprocessors, in which tasks are converted

into a sequence of periodic subtasks [4, 11]. Each subtask can perform either

local computation or a single-processor transaction. Subtasks are scheduled on

a per-processor basis, using uniprocessor scheduling schemes. Resources are

accessed through the use of the PCP or a similar scheme. Like the DPCP,

the end-to-end approach requires a binding of resources to processors. This re-

stricts the kind of transactions that can be supported (e.g., a transaction cannot

access resources mapped to two di�erent processors). In addition, precedence

constraints of subtasks are ensured by delaying the release of each subtask by

an amount equal to the sum of the worst-case responses of all subtasks that

must precede it. Such an approach could lead to poor schedulability. Finally,

if a PCP-like scheme is used on each processor as proposed, then supporting

dynamically-generated transactions and mode changes is problematic.

Lortz and Shin have implemented a hard real-time database system called

MDARTS (Multiprocessor Database Architecture for Real-Time Systems), in

which both RPC transactions and concurrent shared-memory-based transac-

tions are supported [6]. This was the �rst (and perhaps only) actual imple-

mentation of a hard real-time multiprocessor database server with reasonable

performance. However, in MDARTS, critical sections are implemented by dis-

abling preemptions (to deal with conicts within a processor) and by using

queue-based spin locks (to deal with conicts across processors). As a result,

only transactions of very short duration can be e�ectively supported.

3 OVERVIEW OF OUR APPROACH

In this section, we present an overview of our approach to implementing trans-

actions. We assume that transactions are invoked by periodic hard-deadline

tasks. Each task consists of one or more phases. Each phase is either a com-

4 Chapter 1

putation phase (which doesn't access shared data) or a transaction phase. All

data is assumed to be memory-resident.

Before explaining the key techniques used in our transaction implementa-

tion, we �rst explain the notion of a \wait-free" shared object in some de-

tail. In a wait-free object implementation, operations must be implemented

using bounded, sequential code fragments, with no blocking synchronization

constructs. This is often accomplished by using a helping scheme. Before

beginning an operation, a task �rst \announces" its intentions by storing infor-

mation about its operation in a shared \announce variable". While attempting

to perform its own operation, a task also attempts to \help" other tasks with

announced operations by performing their operations in addition to its own.

Care must be taken to ensure that each operation is executed exactly once, and

that a helped task can retrieve its return values from memory. This is usually

accomplished by using strong synchronization primitives like compare-and-swap

(CAS) when updating shared data so that tasks do not adversely interfere with

each other. In a sense, a helping-based wait-free scheme is a \pessimistic" no-

tion of nonblocking user-level synchronization that is similar to a lock-based

scheme, with helping taking the place of blocking. (This is illustrated quite

well by Figure 1, which is considered below.)2

In a recent paper [3], we showed that the cost of helping can be greatly reduced

on priority-based real-time uniprocessor systems by using a technique called

incremental helping . The general idea of incremental helping is illustrated

in Figure 1. Before beginning a transaction, a task must �rst announce its

intentions by updating a shared announce variable. Before a task is allowed to

do this, however, it must �rst help any previously-announced transaction (on

its processor) to complete execution. This scheme requires only one announce

variable per processor. In contrast, previous constructions for asynchronous

systems require one announce variable per task [5]. Also, with incremental

helping, each task helps at most one other task, while in helping schemes for

asynchronous systems, each task helps all other tasks in the worst case.

With incremental helping, the worst-case time to perform a transaction is only

2 � T , where T is the execution time of one transaction in the absence of pre-

emption. Of the 2 � T worst-case execution cost, a factor of T represents the

overhead associated with helping. (It is possible to reduce this overhead term

using priority ceiling information as explained in [1].) This overhead term is

similar to blocking factors that arise in scheduling conditions when using the

2The \optimistic" counterpart of a wait-free object is a lock-free object [5]. In a lock-free
object implementation, an operationmay be interferedwith, in which case it must be retried.
Repeated retries may be needed before an operation is successful.

Implementing Hard Real-Time Transactions on Multiprocessors 5

Announce
.T3

Help T3

T
2

Announce
.

Help T3

T
1 Do T

1

Return

AnnounceQuit helping
.

Do T
2

Figure 1 Task T3 detects no previously-announced transaction, so it
announces its transaction. Task T2 preempts T3 and begins to help T3 to
complete its transaction, but before it �nishes, it is preempted by task T1.
T1 detects that T3's transaction is un�nished, so it too helps T3. It then
announces its own transaction, executes it, and relinquishes the processor
to T2. T2 detects that T3's transaction is complete, so it announces and
executes its own transaction, and relinquishes the processor to T3. T3
detects that its transaction has been completed, so it returns.

priority inheritance protocol (PIP) [8, 10]. Like the PIP, information about

which tasks access which objects is not required for implementing the helping

scheme. (PCP-like schemes do require access information.) This is because

conicts are recorded dynamically through the use of the announce variable.

The fact that object-access requirements do not have to be predeclared makes

it easier to support mode changes and dynamically-generated transactions.

The notion of incremental helping can be extended for application on multipro-

cessors. We call the resulting scheme cyclic helping [1, 3]. With cyclic helping,

the processors are thought of as if they were part of a logical ring. Tasks are

helped through the use of a \help counter", which cycles around the ring. To

advance the help counter past a processor, a task must �rst help the currently-

announced transaction on that processor. To perform a transaction, a task

�rst repeatedly advances the help counter until any pending (lower-priority)

transaction on its own processor has been completed. It then announces its

own transaction and advances the help counter until its transaction has been

completed. On a ring of size P , the time to perform a transaction is therefore

at most 2 � P � T , where T is the largest sequential transaction cost. (Tighter

worst-case bounds are given in [1].) Unlike the MPCP and DPCP, informa-

tion about object-access requirements is not required for implementing cyclic

helping. (However, the tighter bounds in [1] do make use of such information.)

It can often be advantageous to incorporate priority information into an object-

sharing scheme. We have developed a wait-free scheme called priority helping

that does this [1, 3]. Priority helping is similar to cyclic helping, except that

the help counter is always advanced to the processor with the highest-priority

pending transaction. Under priority helping, if a transaction is of highest pri-

ority, then at most one other transaction can be completed before it.

6 Chapter 1

4 TRANSACTION IMPLEMENTATION

In this section, we present a detailed description of our transaction implemen-

tation. The implementation has been obtained by combining a multiprocessor-

based cyclic-helping scheme with a lock-free transaction implementation for

real-time uniprocessors presented previously [2]. Modi�cations for implement-

ing a priority-helping scheme could be similarly applied.

Our implementation is de�ned by four procedures, Exec, Help, Read , and

Write, which are given in Figure 3. Variable declarations that are used in

these procedures are given in Figure 2. The procedures given in Figure 3 sup-

port the \illusion" of a contiguous shared array MEM of memory words. In

reality, data is not stored in contiguous locations of memory, but is composed of

a number of blocks. The Read (Write) procedure is invoked when executing a

transaction to read words from (write words to) the MEM array. As explained

below, the Exec procedure is called by a task to perform a transaction of that

task. The Help procedure is invoked when one task helps another.

When a transaction of task T accesses a word in the implemented array of

memory words, say MEM [k], the block containing the kth word is identi�ed.

If T's transaction writes into MEM [k], then T must replace the correspond-

ing block. The details of identifying blocks and replacing modi�ed blocks are

implemented within the Read and Write routines, which perform all neces-

sary address translation and bookkeeping. These routines are called within

user-supplied transaction code to read or write words of the MEM array; e.g.,

\Write(1;Read(10))" performs the assignment \MEM [1] :=MEM [10]". Figure

4 shows a simple example transaction, which enqueues an item onto a shared

queue. This transaction would be executed by calling Exec(Enqueue).

The implemented array MEM is partitioned into B blocks of size S. (We

assume a constant block size here for simplicity.) Figure 5 depicts this arrange-

ment for B = 5. The �rst block contains memory locations 0 through S � 1,

the second contains locations S through 2S � 1, and so on. A bank of pointers

| one for each block | is used to point to the blocks that make up the array.

(These are really array indices, not pointers.) In order to modify the contents

of MEM , a task makes a copy of each block to be modi�ed, and then attempts

to atomically replace the old blocks with their modi�ed copies. The details of

how this is done is explained below in conjunction with the helping scheme.

In Figure 2, Bank is a B-word shared array. Each element of Bank contains

a pointer to a block of size S. The B blocks pointed to by Bank constitute

Implementing Hard Real-Time Transactions on Multiprocessors 7

=� Assume: (at most) N tasks executing on P processors; B, S, and C are : : :
: : : as de�ned in the text; version number ranges over f0; : : : ;D � 1g �=

type

blktype = array [0::S � 1] of memwdtype;
wdtype = 0::B +NC � 1;

vertype = record cnt : 0::D� 1; needhelp: boolean end =� Stored in one word �=

shared variable

Bank : array[0::B � 1] of wdtype; =� Bank of \pointers" to array blocks �=

Blk : array[0::B +NC � 1] of blktype; =� Array and copy blocks �=

V : vertype; =� V:cnt is the version number; V:cnt mod P is the help counter; : : :
: : : V:needhelp indicates if help is needed on processor currently pointed to �=

Ann: array[0::P � 1] of 0::N ; =� Ann[R] is the announce variable : : :

: : : for processor R; equals N if no currently announced transaction on R �=

Trans: array[0::N] of pointer to function; =� Used to announce transactions �=

Stat : array[0::N] of �1::N ; =� Status of each task's latest transaction: : : : �=

=� : : : �1, initially; in [0; : : : ;N � 1] after �rst phase; N , after second phase �=
Addrlist : array[0::N � 1; 0::B � 1] of pointer to wdtype; =� Parameters for : : : �=

Oldlist , Newlist : array[0::N � 1; 0::B � 1] of wdtype; =� : : : CCAS's �=

Numblks: array[0::N � 1] of 0::B =� Number of CCAS's to perform �=

initially (8k : 0 � k < B :: Bank[k] = NC + k ^ Blk[NC + k] = (initial value of

block k)) ^ (8n : 0 � n < P :: Ann[n] = N) ^ Stat[N] = N

private variable =� For task Tp �=
copy: array[0::C � 1] of wdtype; =� Indices for copy blocks of Tp �=

curr : array[0::B � 1] of wdtype; =� Tp's current view of MEM �=

blklist : array[0::B � 1] of 0::B � 1; =� List of accessed blocks �=
dirty: array[0::B � 1] of 0::2; =� 1 if block read, 2 if modi�ed, 0 otherwise �=

mypr : 0::P � 1; =� Task Tp's processor �=

hid , lid , wid : 0::N ; =� Task identi�ers: hid is task to help; lid is local task : : :
on Tp's processor; wid is \winning" task from �rst phase �=

ver : vertype; =� A value read from V �=

addr : pointer to wdtype; =� Address to perform CCAS on �=
old , new : wdtype; =� Old and new value for performing CCAS �=

env : jmp buf ; =� Used by setjmp and longjmp system calls �=

dirtycnt : 0::C � 1; m: 0::1; i, j, numblks, blk : 0::B; ret : boolean

initially (8k : 0 � k < C :: copy[k] = pC + k) ^ (8k : 0 � k < B :: dirty[k] = 0)

Figure 2 Variable declarations.

the current version of the MEM array. We assume that an upper bound C is

known on the number of blocks modi�ed by any transaction. Because a task's

8 Chapter 1

procedure Exec(tr : pointer to function)
1: Trans[p] := tr ;

2: Stat[p] := �1;

3: for m := 0 to 1 do
4: lid := Ann[mypr];

5: if lid < N then

6: while true do

7: ver := V ;

8: if Stat[lid] = N ^ (ver:cntmod P 6= mypr _ :ver:needhelp) then break �;

9: if ver .needhelp then Help(ver) �;
10: hid := Ann[ver:cnt + 1 mod P];

11: if hid = N _ Stat[hid] = N then

12: CAS(&V ; ver; ((ver:cnt + 1) mod D; false));

13: else CAS(&V ; ver; ((ver :cnt + 1) mod D; true));

�

od

�;

14: Ann[mypr] := p

od;
15: Ann[mypr] := N

procedure Help(ver : vertype)

16: hid := Ann[ver:cnt mod P];
17: if Stat[hid] = N then return �;

18: if Stat[hid] = �1 then

19: dirtycnt; numblks := 0; 0;
20: if setjmp(env) 6= 1 then

21: �Trans[hid]();

22: for j := 0 to numblks � 1 do
23: Newlist[p; j] := curr [blklist[j]]

od;

24: Numblks[p] := numblks;
25: ret := CCAS(&V; ver;&Stat[hid];�1; p);

26: i := 0;

27: for j := 0 to numblks � 1 do

28: if dirty[blklist[j]] = 2 ^ ret then

29: copy[i] := Oldlist[p; j];

30: i := i+ 1
�;

31: dirty[blklist[j]] := 0

od

� �;

=� Help continued �=

32: wid := Stat[hid];

33: if wid = �1 _ wid = N then

return

�;

34: numblks := Numblks[wid];

35: for j := 0 to numblks � 1 do

36: if V 6= ver then

return

�;

37: if Stat[hid] = N then

return

�;
38: addr := Addrlist[wid; j];

39: old := Oldlist[wid; j];

40: new := Newlist[wid; j];

41: CCAS(&V; ver;addr;old;new)

od;

42: CCAS(&V; ver;&Stat[hid];wid;N)

Figure 3 Transaction implementation. For each procedure, p is the
index of the invoking task. All private variables refer to those of Tp.

Implementing Hard Real-Time Transactions on Multiprocessors 9

procedure Read(mwd : 0::BS � 1)

returns memwdtype

43: if V 6= ver then

44: longjmp(env; 1)

�;
45: if Stat[hid] � 0 then

46: longjmp(env; 1)

�;
47: blk := mwd div S;

48: if dirty[blk] = 0 then

49: dirty[blk] := 1;

50: curr [blk] := Bank[blk];

51: addr := &Bank[blk];

52: Addrlist[p;numblks] := addr;

53: blklist[numblks] := blk;

54: Oldlist[p;numblks] := curr [blk];

55: numblks := numblks + 1
�;

56: v := Blk [curr[blk]][mwd mod S];

57: return(v)

procedure Write(mwd : 0::BS � 1;

value : memwdtype)
58: if V 6= ver then longjmp(env; 1) �;

59: if Stat[hid] � 0 then

60: longjmp(env; 1)
�;

61: blk := mwd div S;

62: if dirty[blk] = 0 then
63: curr [blk] := Bank[blk];

64: addr := &Bank[blk];

65: Addrlist[p;numblks] := addr;

66: blklist[numblks] := blk;

67: Oldlist[p;numblks] := curr [blk];

68: numblks := numblks + 1

�;

69: if dirty[blk] 6= 2 then

70: dirty[blk] := 2;
71: memcpy(Blk[copy[dirtycnt]];

Blk[curr [blk]]; sizeof (blktype));

72: curr [blk] := copy[dirtycnt];
73: dirtycnt := dirtycnt + 1

�;

74: Blk [curr[blk]][mwd mod S] := value

Figure 3 (continued)

transaction copies a block before modifying it, C \copy" blocks are required

per task. Therefore, a total of B+NC blocks are used, where N is the number

of tasks. These blocks are stored in the array Blk . Initially, blocks Blk [NC] to

Blk [NC + B � 1] are the blocks of the MEM array, and Blk [pC] to Blk [(p +

1)C � 1] are task Tp's copy blocks. However, the roles of these blocks are not

�xed. If Tp's copy blocks are installed as part of the MEM array, then Tp
reclaims the replaced blocks as copy blocks (lines 26-30). Thus, some of Tp's

copy blocks become part of the current array, and vice versa.

As mentioned above, user-supplied transaction code accesses theMEM array in

a sequential manner using the Read and Write procedures. After performing a

consistency check that we will describe later (lines 43-46), the Read procedure

computes the index of the block containing the accessed word (line 47). If

the block has not yet been read by the transaction invoking Read , then it is

marked as having been read (line 49), and is recorded in the transaction's curr

array (line 50). This array gives the transaction's \current view" of MEM .

The block index is also recorded in an array blklist (line 53), which is used later

10 Chapter 1

constant Head = n; Tail = n+ 1
private variable newtail : 0::n� 1

procedure Enqueue(input: valtype) returns fFULL;SUCCESSg

Write(Read(Tail); input);
newtail := (Read(Tail) + 1) mod n;

if newtail = Read(Head) then return(FULL) �;

Write(Tail ; newtail);
return(SUCCESS)

Figure 4 Example transaction.

MEM array made up
of S−word blocks

Block 1

Current Blocks

 BANK
 of
Pointers Replacement Blocks

Writes block 2

Reads block 3

Writes block 1

Reads blocks 3,5

Writes block 5

Reads block 4

Block 2

Block 3

Block 4

Block 5

Block 1
Copy of

Block 2
Copy of

Block 5
Copy of

Modified Block Pointers

Unmodified Block Pointers

Transaction T Transaction T Transaction T
1 2 3

Figure 5 Implementation of the MEM array (depicted for B = 5).

in reclaiming copy blocks. In addition, the address and old value of the block

pointer are saved in arrays (lines 52 and 54) that are later used to update the

MEM array (see below). The Read procedure completes by retrieving a value

from the appropriate o�set within the block that is accessed (line 56). The

Write procedure is similar to the Read procedure, except that, when a block

is �rst modi�ed, it is recorded as having been modi�ed (line 70), and a local

copy of the block is made (line 71).

Implementing Hard Real-Time Transactions on Multiprocessors 11

We now explain the Exec and Help procedures. A special synchronization
primitive, which we call conditional compare-and-swap (CCAS), is used within
these procedures. CCAS is an atomic primitive with the following semantics.

procedure CCAS(V : pointer to vertype; ver : vertype;
X: pointer to valtype; old;new : valtype) returns boolean

if �V 6= ver _ �X 6= old then return false �;

�X := new ;
return true

As its de�nition shows, CCAS is a restriction of the more well-known two-word

compare-and-swap (CAS2) instruction in which one word is a compare-only

value. In our implementation, this word is a shared variable that stores a

\version number" (the variable V | see below). CCAS is useful because the

compare-only value can be used to ensure that a \late" CCAS operation by a

task that has been preempted and then resumed has no e�ect. Fortunately,

CCAS is easy to implement even if CAS2 is not available. In a recent paper [3],

we showed that CCAS can be implemented using only three high-level language

statements if CAS (a commonly-available instruction) is available.

We continue our description of the Exec and Help procedures by considering

the shared variables that are referenced in these procedures. Ann[R] is the

announce variable for processor R. Incremental helping is used on each pro-

cessor, so only one announce variable per processor is required. Ann [R] equals

N when there is no task to help on processor R (task identi�ers are assumed

to range over f0; : : : ; N � 1g). Trans[p] is used to store a pointer to a function

that implements a transaction of task Tp. Stat [p] records the \status" of a

transaction of task Tp. Each transaction is executed in two phases, the details

of which are described below. Stat [p] is initialized to �1, equals a value in

f0; : : : ; N � 1g after the �rst phase, and equals N after the second phase.

The shared variable V is a compare-only version number that is passed to CCAS.

It consists of a counter �eld cnt and a boolean �eld needhelp. V:cnt is assumed

to not cycle during any transaction. Our transaction implementation is based

on the idea of cyclic helping described in Section 3. With this helping scheme,

processors are considered in turn, as if they formed a logical ring. A \help

counter" is used to indicate the current processor under consideration. The

value of the help counter is given by V:cnt mod P . P here is de�ned to be the

total number of processors in the system. When the help counter is advanced

to point to processor R, V:needhelp is set to true i� there is a task on processor

R that needs to be helped. A task is allowed to help a task on processor R only

12 Chapter 1

if it detects that (V:cnt mod P = R) ^ V:needhelp holds. Thus, the decision

whether or not to help a task on processor R is �xed when the help counter is

advanced to point to R. Since this decision is made atomically when the help

counter is advanced, there can be no disagreement among tasks as to whether

a task on processor R should be helped.

As mentioned previously, Exec is invoked by a task Tp to perform a transaction.

After some initialization (lines 1-2), two rounds of cyclic helping are performed

(lines 4-14). During the �rst round, Tp repeatedly advances the help counter

until any pending announced (lower-priority) transaction on its processor has

been completed. It then announces its own transaction (line 14) and performs

a second round of cyclic helping in order to complete its own transaction. The

loop at lines 6-13 performs one round of cyclic helping. The test at line 8

causes the loop to terminate once the currently-announced transaction on Tp's

processor has been completed and the help counter has been advanced. If the

help counter points to a processor that has a task that needs help, then the

Help procedure is invoked at line 9. Lines 10-13 advance the help counter to

the next processor on the logical ring. Line 15 sets the announce variable on

Tp's processor to indicate that no task currently requires helping.

The Help procedure is called to help a transaction of some task Tq that is

executing on the processor that is pointed to by the help counter. It can be

shown that the Help procedure is invoked at most P times during each round

of cyclic helping (2P times in total). As mentioned previously, each transaction

is executed in two phases. During the �rst phase (lines 19-31), modi�cations to

theMEM array are determined by executing the user-supplied transaction code

(line 21). In the second phase (lines 34-42), theMEM array is actually updated

by performing a sequence of CCAS operations. When executing lines 19-24, a

task Tp updates three shared arrays, Addrlist[p], Newlist[p], and Oldlist[p], and

the shared variableNumblks[p]. (Addrlist[p] and Oldlist[p] are actually updated

in the Read and Write routines, which are invoked when the input transaction

is executed at line 21.) The shared arrays give lists of addresses, new values, and

old values to be used in performing CCAS operations in the second phase. Each

address speci�es a particular entry in Bank . Such an entry corresponds to a

block that has been read or written while executing a transaction. The variable

Numblks[p] speci�es the number of such blocks. Several tasks may concurrently

attempt to perform the �rst phase of a transaction of some task Tq . One of

these tasks | call it Tr | will successfully update Stat [q] at line 25, signifying

the end of the �rst phase. Task Tr reclaims blocks that have been modi�ed

as its own copy blocks for the next transaction it executes (lines 26-31). The

addresses, new values, old values, and number of blocks recorded by Tr are used

by all tasks that attempt to perform the second phase of Tq 's transaction (lines

Implementing Hard Real-Time Transactions on Multiprocessors 13

34-41). In this phase, each Bank entry corresponding to a block accessed by

Tq 's transaction is modi�ed in turn. (An optimization could be added to lines

38-41 so that only blocks that are written are considered. This optimization

has been omitted for brevity.) When the second phase is completed, Stat [q] is

updated to indicate that Tq 's latest transaction is complete (line 42).

Before concluding, one subtlety that we have glossed over must be mentioned. If

the Bank variable is modi�ed by a task Tq during the execution of a transaction

performed by some other task Tp (Tp may be executing its own transaction or

that of another task), then Tp may read inconsistent values from MEM . Task

Tp cannot possibly perform a successful CCAS operation in its second phase in

this case, so Tp will not be able to install corrupted data. However, there is

a risk that Tp's execution of the transaction code might cause an error, such

as a division by zero or a range error. This problem is solved by performing

a consistency check at the beginning of the Read and Write procedures (lines

43-46 and 58-60). If an inconsistency is detected, then control is returned to

line 20 in the Help procedure using Unix-like longjmp calls. In this event, Tp
discontinues executing the �rst phase of the transaction it is performing, and

proceeds directly to attempt to execute its second phase (lines 32-42).

5 CONCLUDING REMARKS

Many optimizations of the basic implementation just described are possible.

For example, with a slight modi�cation, read-only transactions can be executed

with greater concurrency, which is very desirable if only a small percentage of

transactions are updates. This involves adding a (P+1)st \virtual" processor to

the cyclic helping ring. While the help counter points to the virtual processor,

any read-only transaction can be performed without helping other transactions.

Also, the cyclic helping scheme actually can be implemented in a manner that

requires a transaction to perform only one traversal of the helping ring instead of

two [1]. Details of these optimizations are omitted here due to space limitations.

The explanation of our transaction implementation would seem to imply that

one centralized help counter is always required. This is not the case. Trans-

actions often can be grouped into classes such that transactions in di�erent

classes cannot possibly conict with each other. Only one help counter per

class is required in this case. Transactions in di�erent classes may execute with

complete concurrency. Moreover, the helping ring for a class really only needs

to include processors with tasks that execute transactions in that class.

14 Chapter 1

The results above leave many opportunities for further research. Of foremost

importance are experimental studies that compare our transaction implemen-

tation with more conventional ones. Such studies require a real-time multipro-

cessor testbed. We are currently developing such a testbed at UNC.

REFERENCES

[1] J. Anderson, R. Jain, S. Ramamurthy, \Wait-Free Object-Sharing Schemes

for Real-Time Uniprocessors and Multiprocessors", manuscript, 1997.

[2] J. Anderson, S. Ramamurthy, M. Moir, K. Je�ay, \Lock-Free Trans. for

Real-Time Systems", Proc. First Int'l Workshop on Real-Time Databases:

Issues and Applications, 1996, 107-114.

[3] J. Anderson, S. Ramamurthy, R. Jain \Implementing Wait-Free Objects

on Priority-Based Systems", Proc. 16th ACM Symp. on Prin. of Distr.

Comp., to appear.

[4] R. Bettati, End-to-End Scheduling to Meet Deadlines in Distributed Sys-

tems, Ph.D. Thesis, Computer Science Dept., Univ. of Illinois, 1994.

[5] M. Herlihy, \A Methodology for Implementing Highly Concurrent Data

Objects", ACM Trans. on Prog. Langs. and Sys., 15(5), 1993, 745-770.

[6] V. Lortz, An Object-Oriented Real-Time Database System for Multiproces-

sors, Ph.D. Thesis, Computer Science Dept., Univ. of Michigan, 1994.

[7] R. Rajkumar, \Real-Time Synchronization Protocols for Shared Memory

Multiprocessors", Proc. Int'l Conf. on Distr. Comp. Sys., 1990, 116-123.

[8] Raghunathan Rajkumar, Synchronization In Real-Time Systems - A Pri-

ority Inheritance Approach, Kluwer Academic Publications, 1991.

[9] R. Rajkumar, L. Sha, J. Lehoczky, \Real-Time Synchronization Protocols

for Multiprocessors", Proc. IEEE Real-Time Sys. Symp., 1988, 259-269.

[10] L. Sha, R. Rajkumar, J. Lehoczky, \Priority Inheritance Protocols: An

Approach to Real-Time System Synchronization", IEEE Trans. on Com-

puters, 39(9), 1990, 1175-1185.

[11] J. Sun, R. Bettati, J. W.-S. Liu, \Using End-to-End Scheduling Approach

to Schedule Tasks with Shared Resources in Multiprocessor Systems",Proc.

11th IEEE Workshop on Real-Time Op. Sys. & Software, 1994.

