
1
LOCK-FREE TRANSACTIONS FOR

REAL-TIME SYSTEMS

James H. Anderson,

Srikanth Ramamurthy,

Mark Moir and Kevin Je�ay

University of North Carolina,

Chapel Hill, North Carolina, USA

1 INTRODUCTION

Lock-free objects are an alternative to lock-based object sharing protocols such

as the priority ceiling protocol [17, 21] in preemptive real-time uniprocessor sys-

tems. An object implementation is lock-free i� it guarantees the following: if

several tasks concurrently perform operations on the object, and if some proper

subset of these tasks stop taking steps, then at least one of the remaining tasks

must complete its operation in a �nite number of its own steps. This de�ni-

tion precludes the use of critical sections, because if a task stops taking steps

while within a critical section, then other tasks are prevented from accessing

that critical section. In several related papers, we have presented general tech-

niques that can be used to implement lock-free objects in real-time uniprocessor

systems [3, 18] and to schedule tasks that share such objects [3, 4]. Related

research includes work on techniques for implementing speci�c lock-free objects

(such as read/write bu�ers) [13, 19, 20], and work on synchronization mech-

anisms that are similar to lock-free objects but are implemented using kernel

support [12, 19, 20].

Operations on lock-free objects are usually implemented using \retry loops".

Figure 1 depicts a lock-free enqueue operation that is implemented in this way.

An item is enqueued in this implementation by using a two-word compare-and-

swap (CAS2) instruction within a retry loop to atomically update a shared tail

pointer and the \next" pointer of the last item in the queue. (CAS2 takes six

parameters: the �rst two specify addresses of two shared variables, the next

two are values to which these variables are compared, and the last two are new

values to be assigned to the variables if both comparisons succeed.) The retry

loop is attempted repeatedly until the CAS2 instruction succeeds. Note that

1

2 Chapter 1

type Qtype = record data : valtype ; next : �Qtype end

shared variable Tail : �Qtype

private variable old; new : �Qtype

procedure Enqueue(input : valtype)

�new := (input;NULL);

repeat old := Tail

until CAS2(&Tail;&(old�>next);old ;NULL;new ;new)

Figure 1 Lock-free enqueue operation.

CAS2 is used to atomically validate and commit an operation. An important

property of lock-free implementations is that operations may interfere with

each other. In the enqueue example, a task � can be interfered with only if a

higher-priority task performs a successful CAS2 between �'s read of Tail and �'s

subsequent CAS2.

From a real-time perspective, lock-free object implementations are of interest

because they avoid priority inversion and deadlock with no underlying sys-

tem support. On the surface, however, it is not immediately apparent that

lock-free shared objects can be employed if tasks must adhere to strict timing

constraints. In particular, repeated interferences can cause a given operation

to take an arbitrarily long time to complete. Fortunately, such interferences

can be bounded by scheduling tasks appropriately [4]. As explained in the next

section, the key to scheduling such tasks is to allow enough spare processor time

to accommodate the failed object updates due to interferences that can occur

over any interval. The number of interferences within an interval is bounded

by the number of task preemptions within that interval.

In this chapter, we show that previous work on lock-free objects can be extended

to apply to lock-free transactions on memory-resident databases. Compared to

conventional optimistic concurrency control schemes, our lock-free transaction

implementation is most similar to optimistic concurrency control with broad-

cast commit [10]. The main di�erence between our implementation and con-

ventional schemes is that we use a strong synchronization primitive at the user

level to validate and commit transactions. The strong primitive used in our

implementation is a multi-word compare-and-swap (MWCAS). This primitive is

used as the basis for a lock-free retry loop in which operations on many objects

are validated at once.

Lock-Free Transactions for Real-Time Systems 3

Our implementation accomplishes most of the same goals as conventional op-

timistic concurrency control protocols. However, our implementation requires

less interprocess communication overhead than conventional client/server im-

plementations. In addition, lock-free implementations do not require compli-

cated recovery procedures when transactions are aborted. As with any opti-

mistic scheme, the main overhead associated with lock-free transactions is the

cost of wasted computation due to restarts.

The rest of this chapter is organized as follows. In Section 2, we review previ-

ous work on using lock-free objects in real-time systems. Then, in Section 3,

we present our approach for implementing lock-free transactions. Concluding

remarks appear in Section 4.

2 LOCK-FREE OBJECTS

We begin this section by reviewing previous work on scheduling hard real-time

tasks that share lock-free objects. We then consider the issue of hardware

support for lock-free synchronization.

2.1 Scheduling with Lock-Free Objects

Although lock-free objects do not give rise to priority inversions, it may seem

that unbounded retry loops render such objects useless in real-time systems.

Nonetheless, Anderson et al. have shown that if tasks on a uniprocessor are

scheduled appropriately, then such loops are indeed bounded [4]. We now

explain why such bounds exist.

For the sake of explanation, let us call an iteration of a retry loop a successful

update if it successfully updates an object, and a failed update otherwise. Thus,

an invocation of a lock-free operation consists of any number of failed updates

followed by one successful update. Consider two tasks �i and �j that access a

common lock-free object B. Suppose that �i causes �j to experience a failed

update of B. On a uniprocessor, this can happen only if �i preempts the access

of �j and then updates B successfully. Thus, there is a correlation between failed

updates and task preemptions. The maximum number of task preemptions

within a time interval can be determined from the timing requirements of the

tasks. This gives a bound on the number of failed updates in that interval. A

4 Chapter 1

task set is schedulable if there is enough free processor time to accommodate

the failed updates that can occur over any interval.

In [4], scheduling conditions are established for the DM [14] and EDF [15]

priority assignments. In order to state these conditions, we must �rst de�ne

some notation. Each condition applies to a collection of N periodic tasks

f�1; : : : ; �Ng. The period of task �i is denoted by pi, and the relative deadline of

task �i is denoted by li, where li � pi; under the EDF scheme, we assume li = pi.

Tasks are labeled in nondecreasing order by deadline, i.e., li < lj) i < j. Let

ci denote the worst-case computational cost (execution time) of task �i when it

is the only task executing on the processor. Let s denote the execution time for

one loop iteration in the implementation of a lock-free object. For simplicity,

all such loops are assumed to have the same cost. Note that s is also the extra

computation required in the event of a failed update. Given this notation,

su�cient scheduling conditions for the DM and EDF schemes can be stated.

Theorem 1: (Su�ciency under DM) A set of periodic tasks that share lock-free

objects on a uniprocessor can be scheduled under the DM scheme if, for each

task �i, there exists some t 2 (0; li] such that

(

iX
j=1

l
t
pj

m
� cj +

i�1X
j=1

l
t�1
pj

m
� s) � t:

Informally, this condition states that a task set is schedulable if, for each job

of every task �i, there exists a point in time t between the release of that job

and its deadline, such that the demand placed on the processor in the interval

between the job's release and time t is at most the available processor time

in that interval. Demand in this interval can be broken into two components:

demand due to job releases, ignoring failed object updates (this is given by the

�rst summation); and demand due to failed object updates, which is bounded

by the number of preemptions by higher-priority tasks in the interval (this is

given by the second summation). In comparing the above condition to the DM

condition for independent tasks given in [5], we see that the above condition

essentially requires that the computation time of each task be \dilated" by the

time it takes for one lock-free loop iteration.

Theorem 2: (Su�ciency under EDF) A set of periodic tasks that share lock-

free objects on a uniprocessor can be scheduled under the EDF scheme if

NX
j=1

cj + s

pj

� 1:

Lock-Free Transactions for Real-Time Systems 5

This condition states that a task set is schedulable if processor utilization is at

most 1. As in the case of DM scheduling, this condition extends the correspond-

ing condition for independent tasks [15] by requiring that the computation time

of each task be dilated by the cost of one lock-free loop iteration.

The results presented above suggest a general strategy for determining the

schedulability of tasks that share lock-free objects. First, determine a bound on

demand due to failed updates over any interval of time. Then, modify schedul-

ing conditions for independent tasks by incorporating this demand. Scheduling

conditions derived in this manner are applicable not only for tasks that perform

single-object updates, but also for tasks that perform multi-object transactions.

The bounds on failed updates given in the theorems above are based on the

assumption that the cost of each lock-free retry loop equals that of the largest

such loop, which is reasonable if retry loop costs are fairly uniform. For cases

in which large variations in loop costs exist, Anderson and Ramamurthy have

shown that linear programming can be applied to obtain much tighter schedul-

ing conditions [3]. In this approach, the total cost of failed updates in �i and

higher-priority tasks over an interval I is �rst expressed as a linear expression

involving a set of variables; each variable represents the number of interfer-

ences of a particular retry loop as caused by a particular task in I. Then, a

set of conditions constraining the variables is derived. A simple example of

such a constraint is that the total number of interferences caused by task �j

in I is bounded by the number of job releases of �j in I. Finally, an upper

bound on the total cost of interferences in �i and higher-priority tasks during

I is calculated using linear programming. This approach can be used to derive

scheduling conditions for most common scheduling schemes.

2.2 Hardware Support

A possible criticism of the lock-free algorithm in Figure 1 is that it requires a

strong synchronization primitive, namely CAS2. The fact that many lock-free

object implementations are based on such primitives is no accident. Herlihy

has shown that strong primitives are, in general, necessary for these implemen-

tations [7]. Nonetheless, Ramamurthy, Moir, and Anderson have shown that

simple read and write instructions can be used to implement any strong syn-

chronization primitive in a wait-free manner on a uniprocessor real-time system

[18]. A wait-free object implementation must satisfy the following condition:

if several tasks concurrently perform operations on the object, and if some

proper subset of these tasks stop taking steps, then each of the remaining tasks

6 Chapter 1

(a) (b)

Figure 2 Line segments denote operations on shared objects with time
running from left to right. Each level corresponds to operations by a dif-
ferent task. (a) Interleaved operations in an asynchronous multiprocessor
system. Operations may overlap arbitrarily. (b) Interleaved operations
in a uniprocessor real-time system. Two operations overlap only if one
is contained within the other.

must complete its operation in a �nite number of its own steps. This condition

strengthens that required of lock-free implementations, and precludes waiting

dependencies of any kind, including potentially unbounded retry loops.

The results of Ramamurthy et al. are based on the fact that certain task inter-

leavings cannot occur in real-time systems. In particular, if a task �i performs

an operation in the time interval [t; t0], and if another task �j performs an op-

eration in the interval [u; u0], then it is not possible to have t < u < t
0

< u
0,

because the higher-priority task must �nish its operation before relinquishing

the processor. Requiring an object implementation to correctly deal with this

interleaving is therefore pointless, because it cannot arise in practice. The dis-

tinction between traditional asynchronous systems, to which Herlihy's work is

directed, and hard real-time systems is illustrated in Figure 2.

The results of [18] are based upon a task execution model like that depicted in

Figure 2(b). This model is characterized by the following axioms.

Axiom 1: Task �i may preempt task �j only if �i has higher priority than �j . 2

Axiom 2: A task's priority can change over time, but not during any object

access. 2

Axiom 1 is common to all priority-driven scheduling policies. Axiom 2 holds

for most common policies, including RM [15], EDF [15], and DM scheduling

[14]. The only common scheduling policy that we know of that violates Axiom

2 is least-laxity-�rst scheduling [16].

Lock-Free Transactions for Real-Time Systems 7

Most practical implementations of lock-free objects are based on compare-and-

swap (CAS) and related primitives like load-linked/store-conditional (LL/SC) [8].

To enable such implementations to be used on systems that do not provide these

primitives, Ramamurthy, Moir, and Anderson present two implementations of

an object that supports CAS. (LL/SC can be implemented using CAS in constant

time [1].) These implementations, which are summarized in the following the-

orems, use read/write and memory-to-memory Move instructions, respectively.

Move is widely available on uniprocessors. For example, Intel's 80x86 and Pen-

tium processors support the Move instruction. (In these theorems, N denotes

the number of tasks that share an object.)

Theorem 3: On any system satisfying Axioms 1 and 2, CAS can be imple-

mented from reads and writes in a wait-free manner with O(N) time and space

complexity. 2

Theorem 4: On any system satisfying Axioms 1 and 2, CAS can be imple-

mented using Move in a wait-free manner with constant time and O(N) space

complexity. 2

3 LOCK-FREE TRANSACTIONS

In this section, we present an implementation of lock-free transactions on

memory-resident data. We assume that transactions are invoked by a collec-

tion of prioritized tasks executing on the same processor. Our implementation

is based on universal lock-free constructions by Anderson and Moir for im-

plementing large objects and for implementing multi-object operations [1, 2].

The implementation uses a multi-word compare-and-swap (MWCAS) primitive

for real-time systems proposed by Anderson and Ramamurthy [3].

3.1 Transaction Routines

Our transaction implementation, which is shown in Figure 3, consists of three

procedures, TR Read, TR Write, and TR Exec. These procedures support the

\illusion" of a contiguous shared array MEM of memory words. In reality,

the array is not stored in contiguous locations of memory, but is composed

of a number of blocks. The TR Read (TR Write) procedure is invoked from

user-supplied sequential transaction code to read words from (write words to)

8 Chapter 1

type

blktype = array[0::S� 1] of memwdtype;

valtype = record blid: 0::B+NC � 1; ver: 0::V � 1 end;

wdtype = record val: valtype; count: 0::B� 1; valid: boolean; pid: 0::N � 1 end

=� The count, valid , and pid �elds are used by the MWCAS/READ procedures. �=

shared variable

BANK: array[0::B� 1] of wdtype; =� Bank of pointers to array blocks �=

BLK: array[0::B+NC � 1] of blktype =� Array and copy blocks �=

initially (8k : 0 � k < B :: BANK [k] = ((NC + k; 0);0;0; true;0)

^ BLK [NC + k] = (kth block of initial value))

private variable

copy: array[0::C � 1] of 0::B +NC � 1; =� Indices for copy block of task �p �=

curr: array[0::B� 1] of valtype; =� Task �p's current view of the MEM array �=

addrlist: array[0::B� 1] of pointer to wdtype; =� Addresses for MWCAS �=

blklist: array[0::B� 1] of 0::B � 1; =� List of blocks that have been accessed �=

oldval, newval: array[0::B� 1] of valtype; =� Old and new values for MWCAS �=

dirty: array[0::B� 1] of 0::2; =� 0 if block not accessed, 1 if read, 2 if modi�ed �=

dcnt: 0::C� 1; done: boolean; i, j, numblks, blk: 0::B; tmp: 0::B+NC� 1;

env: jmp buf =� Used by setjmp and longjmp system calls. �=

initially (8k : 0 � k < C :: copy [k] = pC + k) ^ (8k : 0 � k < B :: dirty[k] = 0)

procedure TR Read(memwd: 0::BS � 1) returns memwdtype

1: blk := memwd div S;

2: if dirty[blk] = 0 then

3: dirty[blk] := 1;

4: curr [blk] := READ(&BANK [blk]);

5: addrlist[numblks] := &BANK [blk];

6: blklist[numblks] := blk;

7: oldval [numblks] := curr [blk];

8: numblks := numblks + 1

�;

9: v := BLK [curr [blk]:blid][memwd mod S];

10: if READ(&BANK [blk]) = curr [blk] then return v

11: else longjmp(env ;1)

�

Figure 3 Lock-free transaction implementation.

Lock-Free Transactions for Real-Time Systems 9

procedure TR Write(memwd: 0::BS� 1;

value: memwdtype)

12: blk := memwd div S;

13: if dirty [blk] = 0 then

14: curr [blk] := READ(&BANK [blk]);

15: addrlist[numblks] := &BANK [blk];

16: blklist[numblks] := blk;

17: oldval [numblks] := curr [blk];

18: numblks := numblks + 1

�;

19: if dirty [blk] 6= 2 then

20: dirty[blk] := 2;

21: memcpy(BLK [copy [dcnt]];

BLK [curr [blk]:blid];

sizeof (blktype));

22: if READ(&BANK [blk]) = curr [blk]

then

23: curr [blk]:blid := copy [dcnt];

24: dcnt := dcnt + 1

25: else longjmp(env ; 1)

�

�;

26: tmp := curr [blk]:blid;

27: BLK [tmp][memwd mod S] := value

procedure TR Exec(tr: function ptr)

28: done := false;

29: while :done do

30: dcnt ; numblks := 0; 0;

31: if setjmp(env) 6= 1 then

32: � tr();

33: for j := 0 to numblks � 1 do

34: i := blklist [j];

35: newval [j] := curr [i];

36: ifdirty [i] = 2 then

37: newval [j]:ver :=

newval [j]:ver + 1 mod V

�

od;

38: done := MWCAS(numblks; addrlist;

oldval ; newval)

�;

39: i := 0;

40: for j := 0 to numblks � 1 do

41: if done ^ dirty[blklist[j]] = 2

then

42: copy [i] := oldval [blklist[j]]:blid;

i := i+ 1

�;

43: dirty[blklist[j]] := 0

od

od

Figure 3 (continued) Lock-free transaction implementation.

this array. The TR Exec procedure takes this user-supplied code as input and

executes it within the body of a lock-free retry loop. The input transaction is

validated and committed in TR Exec by invoking a MWCAS primitive, which is

used in conjunction with an associated READ primitive. The semantics of MWCAS

extends that of CAS2 in Figure 1. We consider the implementation of the MWCAS

and READ primitives in the next subsection.

When a transaction of task � accesses a word in the implemented array of mem-

ory words, say MEM [x], the block containing the xth word is identi�ed. If �'s

10 Chapter 1

constant Boiler temp = 0; Disp temp = 1

=� Locations 0 and 1 of the MEM array contain variables �=

=� Boiler temp and Disp temp, respectively. �=

private variable t : integer

procedure update display()

t := TR Read(Boiler temp);

if TR Read(Disp temp) 6= t then

TR Write(Disp temp; t)

�

Figure 4 An example transaction.

transaction writes into MEM [x], then � must replace the corresponding block.

The details of identifying blocks and replacing modi�ed blocks are hidden from

the programmer by means of the TR Read and TR Write routines, which per-

form all necessary address translation and bookkeeping. These routines are

called within the programmer's transaction code in order to read or write a

word of the MEM array. Thus, instead of writing \MEM [1] := MEM [10]", the

programmer would write \TR Write(1; TR Read(10))". Figure 4 shows a simple

example transaction, which updates the temperature display of a boiler. This

transaction would be executed by calling TR Exec(update display).

The implemented array MEM is partitioned into B blocks of size S. (We

assume a constant block size here for simplicity.) Figure 5 depicts this arrange-

ment for B = 5. The �rst block contains array locations 0 through S � 1, the

second contains locations S through 2S � 1, and so on. A bank of pointers |

one for each block | is used to point to the blocks that make up the array.

(These are really array indices, not pointers.) In order to modify the contents

of MEM , a task makes a copy of each block to be modi�ed, and then attempts

to atomically replace the old blocks with their modi�ed copies using MWCAS.

In Figure 3, BANK is a B-word shared array. Each element of BANK contains

a pointer to a block of size S and a version number (see below) for that pointer.

The B blocks pointed to by BANK constitute the current version of the MEM

array. We assume that an upper bound C is known on the number of blocks

modi�ed by any transaction. Because a task's transaction copies a block before

modifying it, C \copy" blocks are required per task. Therefore, a total of

B + NC blocks are used. These blocks are stored in the array BLK . Initially,

blocks BLK [NC] to BLK [NC +B � 1] are the blocks of the MEM array, and

BLK [pC] to BLK [(p+ 1)C � 1] are task �p's copy blocks. However, the roles

of these blocks are not �xed. If �p successfully completes a transaction, then

Lock-Free Transactions for Real-Time Systems 11

�p reclaims the replaced blocks as copy blocks (lines 39-43). Thus, some of �p's

copy blocks become part of the current array, and vice versa.

As mentioned above, user-supplied transaction code accesses theMEM array in

a sequential manner using the TR Read and TR Write procedures. The TR Read

procedure �rst computes the index of the block containing the accessed word

(line 1). If the block has not yet been read by this transaction, then it is marked

as having been read (line 3), and is recorded in the transaction's curr array (line

4). This array gives the transaction's \current view" ofMEM . The block index

is also recorded in an array blklist (line 6), which is used later in reclaiming copy

blocks when the transaction successfully completes. In addition, the address

and old value of the block pointer are saved in arrays (lines 5 and 7) that are

later used as parameters to the MWCAS procedure. The new value of the block

pointer is determined later, prior to invoking MWCAS (lines 33-37). The TR Read

procedure completes by retrieving a value from the appropriate o�set within

the block that is accessed (line 9), and by performing a consistency check (lines

10 and 11), the purpose of which we describe below. The TR Write procedure

is similar to the TR Read procedure, except that, when a block is �rst modi�ed,

it is recorded as having been modi�ed, and a local copy of the block is made.

The ver counter associated with each block pointer in BANK records the cur-

rent version number of the corresponding block. If a transaction successfully

replaces a modi�ed block, then it increments that block's version number. In

contrast, if a block is read but not modi�ed, then its block pointer and version

number are not changed. This ensures that read-only transactions do not in-

terfere with each other. A transaction can determine whether the ith block has

been changed by comparing the version number that it last read from BANK [i]

to the current version number of BANK [i].

Before concluding this description, one subtlety that we have glossed over must

be mentioned. If the BANK variable is modi�ed by a transaction of task �q

during the execution of a transaction of some lower-priority task �p, then �p may

read inconsistent values from the MEM array. Because its MWCAS operation will

subsequently fail, �p will not be able to install corrupted data. However, there

is a risk that �p's sequential operation might cause an error, such as a division

by zero or a range error. This problem is solved by ensuring that, if the version

number of one of the blocks accessed by a transaction changes during that

transaction, then control is returned from the TR Read or TR Write procedure

to line 31 in TR Exec using Unix-like longjmp calls. In this event, relevant

data structures are reinitialized (lines 40-43) and the transaction is retried.

Transactions can take advantage of this mechanism by re-reading previously

12 Chapter 1

Block 1

Current Blocks

Writes block 2

Reads block 3

Writes block 1

Reads blocks 3,5

Writes block 5

Reads block 4

Block 2

Block 3

Block 4

Block 5

Block 2
Copy of

Transaction T
1 2 3MEM array made up

of B blocks of size S

Block 5
Copy of

Transaction T

 BANK
 of
Pointers

Modified Block Pointers

Replacement Blocks

Unmodified Block Pointers

Transaction T

Copy of
Block 1

Figure 5 Implementation of the MEM array for lock-free transactions

(depicted for B = 5).

accessed blocks in order to fail early in the event that such a block has been

modi�ed by another transaction.

In our implementation, read-only transactions do not interfere with one an-

other, nor do transactions that modify disjoint sets of blocks. This is illustrated

in Figure 5, which depicts three concurrent transactions T1, T2, and T3. Trans-

actions T1 and T2 do not interfere with each other because neither of them

modi�es a block accessed by both. However, T3 can potentially interfere with

T1 because T3 modi�es block 5, which is read by transaction T1.

The transaction implementation in Figure 3 can be optimized in several ways.

For example, the code can be modi�ed to support di�erent block sizes. This

would help to avoid false-sharing and fragmentation problems when using the

MEM array to store a mixed collection of objects of di�erent sizes. Also,

objects such as queues can be incorporated into the implementation without

using a copy-based solution.

The techniques shown here can potentially simplify transaction abort/recovery.

In particular, each lock-free transaction execution has a distinct linearization

step [11], and a transaction does not a�ect other transactions before it executes

this step. Thus, complicated recovery procedures for undoing the e�ects of

partially completed transactions are not required. (The ability to stop and

restart a transaction arbitrarily would require some additional \clean up" code.

Lock-Free Transactions for Real-Time Systems 13

For example, if a transaction of a task were stopped while executing the loop

at lines 40 through 43, then the next transaction of that task should �nish the

bookkeeping activities done in this loop.)

3.2 Implementing MWCAS and READ

We now show how to e�ciently implement the MWCAS and READ primitives used

in the previous subsection. Unfortunately, MWCAS is exceedingly di�cult to

implement e�ciently in truly asynchronous systems [1, 6, 9, 22]. The most

e�cient known wait-free implementation [1] requires �(N3
M) time complexity

to implementM words that can be accessed by N tasks. Fortunately, as shown

by Anderson and Ramamurthy in [3], a W -word MWCAS can be implemented

on a real-time uniprocessor in only O(W) time (which is clearly optimal). In

the remainder of this subsection, we present a brief overview of Anderson and

Ramamurthy's implementation.

The code for implementing MWCAS and READ is shown in Figure 6. The imple-

mentation requires a CAS instruction. As mentioned in Section 2.2, CAS can be

implemented on a real-time uniprocessor using a variety of other instructions.

The words that may be accessed by the MWCAS and READ procedures are as-

sumed to be of type wdtype. A word of this type consists of a val �eld, which

contains an application-dependent value, and three �elds that are used in the

implementation, count , valid , and pid . In the transaction implementation of

Section 3.1, the val �eld consists of a block pointer and version number.

We now explain how a MWCAS operation of task �r is executed. (In reading this

description, it is important to keep in mind that Anderson and Ramamurthy's

MWCAS/READ implementation is designed for real-time uniprocessors in which

tasks are executed in accordance with the priority-based task model described

in Section 2.2. In fact, if one assumes a conventional asynchronous task model,

then the implementation does not work.) If MWCAS is invoked on a set of words,

then it should either succeed and atomically change the current value of each

word to the desired new value, or it should fail and change the value of no word.

To understand how this is done, we need to specify how each word's \current

value" is de�ned. Let w be a word of type wdtype. Then, the current value of

w, denoted cv (w), is de�ned as follows.

cv(w) =

�
w:val if w:valid _ Status[w:pid] = 2

Save [w:pid; w:count] otherwise

14 Chapter 1

type =� Assume N tasks, each MWCAS accesses at most B words �=

wdtype = record val: valtype; count: 0::B� 1; valid: boolean; pid: 0::N � 1 end;

=� All of these �elds are stored in one word; the val �eld is application dependent �=

adtype = array[0::B� 1] of pointer to wdtype; =� Addresses to perform MWCAS on �=

vallist = array[0::B� 1] of valtype =� Lists of old and new values for MWCAS �=

shared variable

Status : array[0::N � 1] of 0::2 initially 0;

Save : array[0::N � 1; 0::B� 1] of valtype =� Save word temporarily during MWCAS �=

private variable =� For task �p, where 0 � p < N �=

in, as: array[0::B� 1] of wdtype; =� Values read and assigned to words by MWCAS �=

ovp: array[0::B� 1] of boolean; =� Indicates if a MWCAS operation is overlapped �=

i,j: 0::B; retval: boolean; wd: wdtype; v: valtype

procedure MWCAS(nw : 0::B; ad: adtype;

old, new: vallist) returns boolean

1: Status[p]; i := 0; 0;

2: while i < nw ^ Status [p] 6= 1 do

3: in[i]; v ;ovp[i] := �ad[i];�ad[i]:val ; false;

4: if :in[i]:valid ^ Status[in[i]:pid] 6= 2

then

5: ovp[i] := true;

6: v := Save [in[i]:pid; in[i]:count]

�;

7: Save[p; i] := v;

8: if old [i] 6= v then Status[p] := 1

else

9: if old [i] 6= new [i] ^ ovp [i] then

10: Status[in[i]:pid] := 1

�;

11: as[i] := (new [i]; i; false; p);

12: if :CAS(ad [i]; in[i]; as [i]) then

13: Status[p] := 1

�;

14: i := i+ 1

�

od;

=� MWCAS continued �=

15: retval := CAS(&Status[p]; 0; 2);

16: for j := 0 to i� 1 do

17: if retval ^ old [j] 6= new [j] then

18: CAS(ad [j];as[j]; (new [j]; 0; true; p))

else

19: if :CAS(ad[j]; as[j]; in[j])^ ovp[j]

then

20: Status[in[j]:pid] := 1

�

�

od;

21: return(retval)

procedure READ(ad : pointer to wdtype)

returns valtype

22: wd := �ad;

23: if wd:valid _ Status[wd:pid] = 2

then

24: return(wd:val)

else

25: return(Save[wd:pid;wd:count])

�

Figure 6 Wait-free implementation of MWCAS from CAS.

Lock-Free Transactions for Real-Time Systems 15

The shared array Save referred to in this de�nition is used to temporarily save

the value of a word during a MWCAS operation on that word. The shared variable

Status [r] gives the \status" of task �r 's latest MWCAS operation. Status [r] is

initialized to 0 when such an operation begins (line 1). If the operation is

interfered with by other MWCAS operations, or if the current value of some word

accessed by the operation di�ers from the old value speci�ed for that word,

then Status [r] is assigned the value 1 (lines 8, 10, 13, and 20). A value of 2 in

Status [r] indicates that task �r's latest MWCAS operation has succeeded.

A MWCAS operation by task �r attempts to change the current values of the

words it accesses in three phases. In the �rst phase (lines 1 through 14), �r
attempts to modify �elds within each of the (at most W) words it accesses;

the kth such word | call it w | is updated so that its val �eld contains the

desired new value, the count �eld contains the value k, the valid �eld is false,

and the pid �eld contains the value r (see lines 11 and 12). In addition, the old

value of w is saved in the shared variable Save [r; k] (line 7). The pid and count

�elds of w are used by other tasks to retrieve the old value from the Save array

(lines 6 and 25). Given the above de�nition of cv , it can be shown that the

�rst phase of a MWCAS operation does not change the current value of any word

that is accessed. However, if this phase is \successful" | i.e., Status [r] is not

assigned the value 1 by any task | then at the end of the phase, the proposed

new value for each word is contained within the val �eld of that word.

The second phase of a MWCAS operation consists of only one statement: the CAS

at line 15. This CAS attempts to both validate and commit the operation by

changing the value of Status [r] from 0 to 2. By the de�nition of cv , this CAS, if

successful, atomically changes the current value of each word that is accessed

to the desired new value. The third and �nal phase consists of lines 16 through

21. In this phase, each word w that is accessed by the MWCAS operation of �r is

\cleaned up" so that w:pid 6= r _ w:valid holds. This implies that the current

value of word w does not depend on Status [r]. Hence, when task �r performs

a subsequent MWCAS operation, reinitializing Status [r] and modifying Save [r; k]

does not change the current value of any word.

Example. Figure 7 depicts the e�ects of a MWCAS operation m by task �4

on three words x, y, and z, with old/new values 12/5, 22/10, and 8/17, re-

spectively. The values of relevant shared variables are shown at various points

within this operation. Inset (a) shows the contents of various variables just

before m begins. Note that the current value of each word matches the desired

old value. Inset (b) shows the variables after the �rst phase of m has com-

pleted, assuming no interferences by higher-priority tasks. The current value

16 Chapter 1

val count valid pid

x: 12 2 true 2 cv(x) = 12

y: 3 1 false 3 cv(y) = 22

z: 8 3 true 4 cv(z) = 8

Save[3; 1]: 22 Status[3]: 0

(a)

val count valid pid

x: 5 0 false 4 cv(x) = 12

y: 10 1 false 4 cv(y) = 22

z: 17 2 false 4 cv(z) = 8

Save[3; 1]: 22 Status[3]: 1

Save[4; 0]: 12 Save[4;1]: 22

Save[4; 2]: 8 Status[4]: 0

(b)

val count valid pid

x: 5 0 true 4 cv(x) = 5

y: 10 0 true 4 cv(y) = 10

z: 17 0 true 4 cv(z) = 17

Status[4]: 2

(c)

val count valid pid

x: 12 2 true 2 cv(x) = 12

y: 3 1 false 3 cv(y) = 22

z: 56 4 true 9 cv(z) = 56

Save[3; 1]: 22 Status[3]: 1

Status[4]: 1

(d)

Task

Task
4

3

(e)

3
Task

4Task

9Task

(f)

Figure 7 Task �4 performs a MWCAS operation on words x, y, and z,
with old/new values 12/5, 22/10, and 8/17, respectively. The contents of
relevant shared variables are shown (a) at the beginning of the operation;
(b) after the loop in lines 3..17; (c) at the end of the operation, assuming
success; and (d) at the end of the operation, assuming failure on word
z. The operation interleaving that results in (c) is shown in (e) (�4
preempts �3). The operation interleaving that results in (d) is shown in
(f) (�4 preempts �3, and �9 preempts �4).

of each word is unchanged. Also, Status [3] has been updated to indicate that

task �3 (which must be of lower priority) has been interfered with. Note that

changing the value of Status [4] from 0 to 2 in inset (b) would have the e�ect of

atomically changing the current value of each of x, y, and z to the desired new

value. Inset (c) shows relevant variables at the termination of m, assuming no

interferences by higher-priority tasks. The current value of each word is now

the desired new value, and all valid �elds are true (so the value of Status [4]

is no longer relevant). Inset (d) shows relevant variables at the termination of

Lock-Free Transactions for Real-Time Systems 17

m, assuming an interference on word z by task �9 (which must be of higher-

priority) with new value 56. Status[4] is now 1, indicating the failure of �4's

operation. Status [3] is still 1, indicating that �3's operation has also failed.

Observe that �4 has successfully restored the original values of words x and y.

Insets (e) and (f) show the operation interleavings corresponding to insets (c)

and (d), respectively. 2

Having dispensed with the MWCAS procedure, the READ procedure can be readily

explained. If the READ procedure is invoked with the address of word w as input,

then it simply computes the current value of w.

Although the above description conveys the basic idea of the implementation,

there are some subtleties that have been omitted for brevity. A more complete

discussion that addresses these subtleties can be found in [3]. The results of

this subsection yield the following theorem.

Theorem 5: On any system satisfying Axioms 1 and 2, READ and W -word

MWCAS operations can be implemented in a wait-free manner from CAS with

O(1) and O(W) time complexity, respectively . 2

3.3 Simulation Results

Having considered how to implement and schedule tasks that perform lock-free

transactions, we now brie
y discuss some conclusions drawn from preliminary

simulation experiments that compare lock-free, wait-free, and lock-based im-

plementations of transactions on real-time uniprocessors. These experiments

were conducted to determine achievable processor utilizations under the vari-

ous transaction implementations that were tested. This was done by checking

the schedulability of randomly generating task sets. A detailed description of

the experimental methodology that was followed can be found in [3].

When comparing lock-free and lock-based implementations, the main conclu-

sion to be drawn from the experiments is as follows: if lock-free loop costs

are (on average) less than corresponding lock-based access costs (i.e., the cost

of a lock/object-access/unlock sequence), then lock-free implementations per-

form better. Preliminary cost �gures from actual implementations indicate that

lock-free implementations of common data structures like queues, stacks, and

linked lists are likely to be more e�cient than lock-based implementations. On

the other hand, lock-based implementations of more complex data structures

like balanced trees are likely to be more e�cient than lock-free ones. Also, in

18 Chapter 1

practice, lock-free implementations may be preferable if most operations are

read-only; the average loop cost in such situations is likely to be low. This is

because, for many objects, read-only operations are inexpensive, because they

do not entail any copying overhead.

The experiments also indicate that wait-free implementations perform better

than their lock-free counterparts when access costs are identical. However, in

practice, wait-free operation costs are typically much higher than corresponding

lock-free costs, due to the additional overhead required to ensure wait-freedom.

On the other hand, for transactions that only access very simple objects like

read/write bu�ers, a wait-free implementation may be the best choice.

4 CONCLUDING REMARKS

The research outlined above leaves many opportunities for further work. Of

foremost importance are de�nitive experimental studies that compare lock-

free transactions with more conventional implementations. Further work is

also needed on techniques for reducing the impact of failed loop tries and for

minimizing state copying, particularly techniques that exploit our real-time

task model. Finally, although we have targeted uniprocessor systems in which

all data is memory-resident, it would be interesting to determine if some of the

techniques we have proposed could be used in systems with disk-resident data

or in systems with multiple processors.

Acknowledgements

We thank Steve Goddard for his valuable comments. The �rst three authors

were supported, in part, by NSF grants CCR 9216421 and CCR 9510156, and

by a Young Investigator Award from the U.S. Army Research O�ce, grant

number DAAH04-95-1-0323. In addition, James Anderson was supported by

an Alfred P. Sloan Research Fellowship, and Mark Moir was supported by

a UNC Alumni Fellowship. Kevin Je�ay was supported by NSF grant CCR

9510156 and by grants from Intel and IBM.

Lock-Free Transactions for Real-Time Systems 19

REFERENCES

[1] J. Anderson and M. Moir, \Universal Constructions for Multi-Object Op-

erations", Proceedings of the 14th Annual ACM Symposium on Principles

of Distributed Computing , 1995, pp. 184-193.

[2] J. Anderson and M. Moir, \Universal Constructions for Large Objects",

Proceedings of the Ninth International Workshop on Distributed Algo-

rithms, Lecture Notes in Computer Science 972, Springer-Verlag, 1995,

pp. 168-182.

[3] J. Anderson and S. Ramamurthy, \A Framework for ImplementingObjects

and Scheduling Tasks in Lock-Free Real-Time Systems", to be presented at

the 17th IEEE Real-Time Systems Symposium, December 1996. Available

at the URL \http://www.cs.unc.edu/�anderson/papers.html".

[4] J. Anderson, S. Ramamurthy, and K. Je�ay \Real-Time Computing with

Lock-Free Shared Objects", Proceedings of the 16th IEEE Real-Time Sys-

tems Symposium, 1995, pp. 28-37.

[5] N. Audsley, A. Burns, M. Richardson, and A. Wellings, \Hard Real-Time

Scheduling: The Deadline Monotonic Approach", Proceedings of the 8th

IEEE Workshop on Real-Time Operating Systems and Software, 1992, pp.

127-132.

[6] G. Barnes, \A Method for Implementing Lock-Free Shared Data Struc-

tures", Proceedings of the �fth Annual ACM Symposium on Parallel Algo-

rithms and Architectures, 1993, pp. 261-270.

[7] M. Herlihy, \Wait-Free Synchronization", ACM Transactions on Program-

ming Languages and Systems, Vol. 13, No. 1, 1991, pp. 124-149.

[8] M. Herlihy, \A Methodology for Implementing Highly Concurrent Data

Objects", ACM Transactions on Programming Languages and Systems,

Vol. 15, No. 5, 1993, pp. 745-770.

[9] A. Israeli and L. Rappoport, \Disjoint-Access-Parallel Implementations of

Strong Shared Memory Primitives", Proceedings of the 13th Annual ACM

Symposium on Principles of Distributed Computing , 1994, pp. 151-160.

[10] J. Harista, M. Carey, and M. Livny, \On Being Optimistic about Real-

Time Constraints", Proceedings of the Ninth ACM Symposium on Princi-

ples of Database Systems, 1990, pp. 331-343.

20 Chapter 1

[11] M. Herlihy and J. Wing, \Linearizability: A Correctness Condition for

Concurrent Objects," ACM Transactions on Programming Languages and

Systems, Vol. 12, No. 3, 1990, pp. 463-492.

[12] T. Johnson and K. Harathi, \Interruptible Critical Sections", Technical

Report TR94-007,Department of Computer Science, University of Florida,

1994.

[13] H. Kopetz and J. Reisinger, \The Non-Blocking Write Protocol NBW:

A Solution to a Real-Time Synchronization Problem", Proceedings of the

IEEE Real-Time Systems Symposium, 1993, pp. 131-137.

[14] J. Leung and J. Whitehead, \On the Complexity of Fixed-Priority Schedul-

ing of Periodic, Real-Time Tasks", Performance Evaluation, Vol. 2, No. 4,

1982, pp. 237-250.

[15] C. Liu and J. Layland, \Scheduling Algorithms for multiprogramming in a

Hard Real{Time Environment", Journal of the ACM , Vol. 30, No. 1, 1973,

pp. 46-61.

[16] A. Mok, Fundamental Design Problems of Distributed Systems for the Hard

Real-Time Environment , Ph.D. Thesis, MIT Laboratory for Computer Sci-

ence, 1983.

[17] R. Rajkumar, Synchronization in Real-Time Systems: A Priority Inheri-

tance Approach, Kluwer Academic Publications, 1991.

[18] S. Ramamurthy, M. Moir, and J. Anderson, \Real-Time Object Sharing

with Minimal System Support", Proceedings of the 15th Annual ACM Sym-

posium on Principles of Distributed Computing , 1996, pp. 233-242.

[19] P. Sorensen, A Methodology for Real-Time System Development , Ph.D.

Thesis, University of Toronto, 1974.

[20] P. Sorensen and V. Hemacher, \A Real-Time System Design Methodol-

ogy", INFOR, Vol. 13, No. 1, 1975, pp. 1-18.

[21] L. Sha, R. Rajkumar, and J. Lehoczky, \Priority Inheritance Protocols:

An Approach to Real-Time System Synchronization", IEEE Transactions

on Computers, Vol. 39, No. 9, 1990, pp. 1175-1185.

[22] N. Shavit and D. Touitou, \Software Transactional Memory", Proceedings

of the 14th Annual ACM Symposium on Principles of Distributed Com-

puting , 1995, pp. 204-213.

