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Abstract

The earliest-pseudo-deadline-first (EPDF) Pfair scheduling algorithm is less expensive than some other known

Pfair algorithms, but is not optimal for scheduling recurrent real-time tasks on more than two processors. In prior

work, sufficient per-task weight (i.e., utilization) restrictions were established for ensuring that tasks either do

not miss their deadlines or have bounded tardiness when scheduled under EPDF. Implicit in these restrictions is

the assumption that the total system utilization may equal the total available processing capacity (i.e., the total

number of processors). This paper considers an orthogonal issue, namely, determining a sufficient restriction on the

total utilization of a task set for it to be schedulable (i.e., a schedulable utilization bound) under EPDF, assuming

that there are no per-task weight restrictions. We prove that a task set with total utilization at most 3M+1
4 is

correctly scheduled under EPDF on M processors, regardless of how large each task’s weight is. At present, we do

not know whether this value represents the worst-case for EPDF, but we do provide a counterexample that shows

that it cannot be improved to exceed 86% of the total processing capacity. The schedulable utilization bound we

derive is expressed in terms of the maximum weight of any task, and hence, if this value is known, may be used to

schedule task sets with total utilization greater than 3M+1
4 .
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1 Introduction

We consider the scheduling of recurrent (i.e., periodic, sporadic, or rate-based) real-time task systems on multi-

processor platforms consisting of M identical, unit-capacity processors. Such a task system consists of a collection

of sequential tasks, each of which is invoked repeatedly; as explained in more detail later (in Sec. 2), each in-

vocation is called a job, and jobs are subject to deadline constraints. Pfair scheduling, originally introduced by

Baruah et al. [15], is the only known way of optimally1 scheduling such multiprocessor task systems.2 To ensure

optimality, Pfair scheduling imposes a stronger constraint on the timeliness of tasks than that mandated by periodic

scheduling. Specifically, each task must execute at an approximately uniform rate at all times, while respecting a

fixed-size allocation quantum. A task’s execution rate is defined by its weight (i.e., utilization). Uniform rates are

ensured by subdividing each task into quantum-length subtasks that are subject to intermediate deadlines, called

pseudo-deadlines , determined based on the task’s weight.

Viability of Pfair scheduling. Due to its theoretical optimality, Pfair scheduling is superior to other approaches

under ideal conditions. However, in practice, context switches incurred due to its frequent task preemptions and

migrations can negate the schedulability gain enabled by intelligent scheduling. The main overhead incurred due

to a preemption or migration is a potential loss of cache affinity, which can cause task execution costs to worsen.

Consequently, Pfair scheduling is often dismissed as an impractical approach. However, such a dismissive attitude

is not always warranted due to the following reasons.

First, empirical evidence now exists that shows that Pfair scheduling is a practical alternative to other approaches.

In particular, Calandrino et al. recently conducted an empirical evaluation of several multiprocessor scheduling

approaches on a four-processor Linux testbed [22]. The approaches considered by them included partitioning,

Pfair-based global scheduling, and non-Pfair-based global scheduling. Under partitioning, tasks are statically

assigned to processors, while under global scheduling, they may migrate. The results presented in [22] show that

there exist scenarios in which Pfair scheduling is either competitive with or outperforms other approaches.

Second, in dynamic task systems, in which tasks may leave or join the system or change weights, Pfair scheduling

has some definitive advantages over other approaches. For such systems, partitioning is a cumbersome strategy

due to the need to repartition when task-set changes occur, and if hard real-time guarantees are also needed, then

non-Pfair-based global algorithms, such as global EDF, may also not be viable due to their low schedulability. It is

worth noting that the evaluation of Calandrino et al. focused only on static systems.

Third, recent trends in processor architectures favor designs that can considerably mitigate migration overheads,

and, hence, augur well for Pfair scheduling. The most significant such trend is the advent of multicore architectures,

which are being adopted as a way of circumventing the impediments posed in continuing processor performance

1A real-time scheduling algorithm is said to be optimal iff it can schedule without deadline misses every feasible task system, i.e.,
every task system for which some correct schedule exists.

2In recent work, Cho et al. [24] presented the lowest local-remaining-execution first (LLREF) algorithm, which is optimal on
multiprocessors for scheduling periodic task systems. LLREF requires that the arrival time of every job be known a priori , so it cannot
be used to schedule sporadic or rate-based tasks. Thus, it is not a viable approach for most of the application contexts considered later
in this section that have motivated the research reported herein.
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improvements in conventional single-core chips. Multicore architectures have multiple processing cores on a single

chip, and in some designs, the different cores share one or more levels of on- or off-chip caches of considerable

capacity. For example, the four cores of the Intel R© Xeon R© 5300 series chips share an 8-MB on-chip L2 cache [1].

In such systems, tasks do not significantly lose cache affinity when they migrate (as long as the miss rates of the

shared caches are kept low), so overheads due to migrations are less of a concern.

Tie-breaking rules and their overhead. Under most known Pfair algorithms, subtasks are scheduled on an

earliest-pseudo-deadline-first basis. However, to avoid deadline misses, ties among subtasks with the same deadline

must be broken carefully. In [43], Srinivasan and Anderson observed that overheads associated with the tie-breaking

rules of optimal Pfair algorithms may be unnecessary or unacceptable for many soft real-time task systems. PD2 [6],

the most efficient of the known optimal Pfair algorithms, requires two tie-break parameters, the b-bit and the group

deadline. (These tie-break parameters are described in Sec. 3.) Though these parameters can be computed for each

subtask in constant time, as explained below, there exist many scenarios in which eliminating them is preferable.

Under Pfair scheduling, up to M highest-priority subtasks are chosen for execution at the beginning of each

time quantum. Hence, the use of the tie-breaking rules will incur, in the worst case, an overhead of 2 · O(log N)

comparisons per scheduling decision, and, hence, 2 · O(M log N) comparisons per quantum, where N denotes the

number of tasks. Though the inclusion of tie-breaking rules does not impact the asymptotic time complexity of

scheduling, eliminating them may be preferable in embedded systems with slower processors or limited memory

bandwidth. Other applications where this may be desirable as well include web-hosting systems [23] and server

farms, packet processing in programmable multiprocessor-based network processors or routers [45], packet trans-

mission on multiple, parallel outgoing router links [3], and optical networks that use wave-division multiplexing

(WDM) to transmit multiple light packets simultaneously [11]. In the networking applications mentioned, packets

must be processed and/or scheduled for transmission at link speeds. Since link speeds are typically much greater

than processor speeds [25, 2], it may be undesirable or even unacceptable to include tie-breaking rules in schedul-

ing packet-processing tasks. Tie-breaking rules are undesirable in web-hosting systems also for a similar reason.

Finally, in some scalable network architectures for providing per-flow service guarantees, per-flow state is stored

at the edge router only; the priority details of a packet are computed using flow state at the edge router and this

information is transmitted in the packet header [46, 47, 32, 33]. This is in contrast to the traditional Integrated

Services (IntServ) architecture [20], in which the state of every flow is stored and updated in every core router.

The IntServ architecture is hence not scalable, but provides the ability to compute packet priorities in any router.

In the scalable architectures, eliminating tie-breaking rules would help conserve scarce header bits.

Tie-breaking rules may especially be problematic in dynamic task systems. Some of the applications mentioned

above are also dynamic. As explained in [43], it is possible to reweight each task whenever its utilization changes

such that its next subtask deadline is preserved. If no tie-breaking information is maintained, such an approach

entails very little computational overhead. However, utilization changes can cause tie-breaking information to

change, so if tie-breaking rules are used, then reweighting may necessitate an O(N) cost for N tasks, due to the

need to reorder the scheduler’s priority queue. This cost may be prohibitive if reallocations are frequent. (This
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reweighting overhead is illustrated in more detail in Sec. 3.2.)

Prior research. The tie-breaking overheads described above motivated Srinivasan and Anderson to consider

the viability of scheduling soft real-time task systems using the simpler earliest-pseudo-deadline-first (EPDF) Pfair

algorithm, which uses no tie-breaking rules. A soft real-time task differs from a hard real-time task in that its

deadlines may be occasionally missed. If a job or a subtask with a deadline at time d completes executing at time

t, then it is said to have a tardiness of max(0, t− d). Srinivasan and Anderson succeeded in showing that EPDF is

optimal on up to two processors [5], and that if each task’s weight is at most q
q+1 , then the algorithm guarantees

a tardiness of at most q quanta for every subtask [43]. In later work [27, 26], we showed that this condition can

be improved to q+2
q+3 . With either condition, the total utilization of a task set may equal M , where M denotes the

number of processors.

This research. In this paper, we consider the viability of EPDF for scheduling hard real-time task systems.

Specifically, we seek to determine a schedulability test that is as accurate as possible, and which can be used to

a priori show that a task system will not miss deadlines under EPDF. Such a test would enable less-expensive

scheduling for hard real-time systems that satisfy the test and dynamic task systems where tie-breaking rules are

problematic.

Furthermore, a schedulability test for EPDF can enable the use of the algorithm in some systems with hetero-

geneous timing constraints, specifically, those in which the hard real-time (HRT) component does not fully utilize

the system and co-exists with soft real-time (SRT) and/or best-effort (BE) tasks. As pointed out in [39] and [21],

such heterogeneous workloads are becoming increasingly common. One way of scheduling such a task system is to

statically prioritize the HRT tasks over other tasks, and to schedule the HRT tasks using an appropriate scheduler.

For the following reasons, apart from its simplicity and flexibility, EPDF may be a better choice for this scheduler

than optimal Pfair algorithms or partitioning. First, since the utilization of the HRT component is likely to be

low [39], and within what is permissible for EPDF, schedulability need not be sacrificed. Second, changes in the

composition of HRT tasks can be more seamlessly supported (as described above and in Sec. 3.2). Third, because

tasks execute more uniformly under Pfair scheduling, it may be possible to provide better bounds on response times

for SRT and BE tasks.

Finally, we believe that studying EPDF is also of academic and theoretical interest, and may help in advancing

the state-of-the-art in research on global scheduling algorithms. We believe that a study of EPDF could add to our

general understanding of global scheduling algorithms, help in quantifying the “power” of tie-breaking rules, and

lead to techniques that can be applied in the analysis of other global algorithms.

Motivated by the above reasons, in this paper, we address the following question, which is orthogonal to that

addressed in prior work: If individual tasks cannot be subject to weight restrictions, then what would be a sufficient

restriction on the total utilization of a task set for it to be scheduled correctly under EPDF? We answer this question

by deriving a schedulable utilization bound for EPDF. (The notion of a schedulable utilization bound is formally

defined in Sec. 2.)
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Contributions. Our first contribution is to show that on M processors, EPDF can correctly schedule every

task system with total utilization at most min(M, λM(λ(1+Wmax)−Wmax)+1+Wmax

λ2(1+Wmax) ), where λ = max(2,
⌈

1
Wmax

⌉

). For

Wmax ≥ 1
2 , i.e., λ = 2, this value reduces to (2M+1)(2+Wmax)−1

4(1+Wmax) , and as Wmax → 1.0, it approaches 3M+1
4 , which,

as M → ∞, approaches 3M
4 , i.e., 75% of the total processing capacity. As discussed in Sec. 2, for Wmax > 1/2,

the schedulable utilization bound that we have derived for EPDF is greater than that of every known non-Pfair

algorithm by 25%. Currently, it is not known whether 3M+1
4 is the worst-case schedulable utilization, let alone,

optimal utilization bound for EPDF. (These terms are defined formally in Sec. 2.) The closest that we have come to

in assessing the accuracy of our result is a counterexample that shows that when Wmax ≥ 5
6 , worst-case schedulable

utilization cannot exceed 86%. We have considered extending our result for use in systems where tardiness may be

permissible. As as second contribution, we discuss permissible system utilizations for a tardiness of q > 0 quanta.

Organization. The rest of the paper is organized as follows. Sec. 2 describes our task model and discusses the

concept of a schedulable utilization bound. Sec. 3 provides an overview of Pfair scheduling. In Sec. 4, the utilization

bound for EPDF mentioned above is derived. Sec. 5 concludes. Proofs omitted in the main paper are provided in

an appendix.

2 Definitions

In this section, we describe our system model, formally define the notion of a schedulable utilization bound, and

discuss some associated concepts and known utilization bounds for some algorithms.

Task model. A recurrent task system τ consists of N periodic, sporadic, or rate-based tasks. Each task T of τ is

assigned a rational weight (i.e., utilization) wt(T ) ∈ (0, 1] that denotes the fraction of a single processor it requires.

For a periodic or a sporadic task T , wt(T ) = T.e/T.p, where T.e and T.p are the execution cost and inter-arrival

time or period , respectively, of T . A task is light if its weight is less than 1/2, and heavy, otherwise. Each task is

sequential, and at any time may execute on at most one processor.

A periodic or sporadic task T may be invoked zero or more times; T is periodic if its consecutive invocations or

arrivals are separated by exactly T.p time units and is sporadic if the separation is at least T.p time units. Each

invocation or release of T is referred to as a job of T . The first job of T may be invoked or released at any time at

or after time zero. Every job of T executes for at most T.e time units. In this paper, we consider task systems in

which every job of T has a relative deadline of T.p time units, i.e., should complete execution within T.p time units

of its release. Such systems are also referred to as implicit-deadline systems. (For ease of notation and description,

we assume that each job of T executes for exactly T.e time units.)

A rate-based task is a generalization of a sporadic task and can be used to model systems in which task arrivals

are neither periodic nor sporadic but may be highly jittered [31]. The weight of a rate-based task denotes its

average or expected arrival rate. No restriction is imposed on the instantaneous arrival rate of such a task, and an

instantaneous rate that exceeds the expected is handled by simply postponing task deadlines. The intra-sporadic

and early-release task models discussed in Sec. 3 can be used to characterize this behavior.
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Schedulable utilization bounds. If UA(M, α) is a schedulable utilization bound, or more concisely, utilization

bound , for scheduling algorithm A, then on M processors, A can correctly schedule every recurrent task system

τ with umax(τ) ≤ α and Usum(τ) ≤ UA(M, α), where umax(τ) is the maximum utilization of any task in τ and

Usum(τ) is the total utilization of all the tasks in τ . If, in addition, there exists at least one task system with

total utilization UA(M, α) and umax = α, whose task parameters can be slightly modified such that Usum and

umax are greater than UA(M, α) and α, respectively, by infinitesimal amounts, and the modified task system has

a deadline miss under A on M processors, then UA(M, α) is said to be the minimax utilization3 of A for M and

umax; otherwise, UA(M, α) is a lower bound on A’s minimax utilization for M and umax. The minimax utilization

of A is also referred to as the worst-case schedulable utilization4 of A. Furthermore, if no task system with total

utilization exceeding UA(M, α) can be scheduled correctly by A when umax = α on M processors, then UA(M, α) is

said to be the optimal utilization bound of A for M and umax. Note that, while an optimal utilization bound is also

a worst-case schedulable utilization, the converse may not hold. This is because it is possible that there exist task

systems that are correctly scheduled but have a total utilization that is higher than that of some other task system

that is barely schedulable. It should also be noted that when expressed using a fixed set of parameters, such as α

and M , different values are not possible for the optimal bound and the worst-case schedulable utilization. In other

words, if an optimal utilization bound exists or is known for M and α, then a worst-case schedulable utilization

that is different from the optimal bound is not possible.

For implicit-deadline systems (considered in this paper), utilization bounds can be used for devising simple and

fast schedulability tests and online admission-control tests. Given a utilization bound UA(M, α) of Algorithm A

and a system τ of N tasks, an O(N)-time schedulability test for τ under A that verifies whether the total system

utilization is at most UA(M, α), and a similar O(1)-time per-task online admission control, are straightforward.

The downside of such utilization-based schedulability tests is that for many algorithms, optimal utilization bounds

are not known. In such cases, the tests are only sufficient but not necessary (i.e., are not exact tests), and hence,

can be pessimistic, i.e., incorrectly conclude that deadlines may be missed. On the other hand, more accurate tests,

such as those based on time-demand analysis [35, 34] have higher time complexity, and hence, when timeliness is

a concern, as in online admission-control tests, utilization-based tests are usually preferred. The concept of load ,

as defined in [9, 29], has also been used to obtain some useful schedulability tests [18, 16]. However, for implicit-

deadline systems, load generally is the same as utilization and does not yield more accurate tests than those based

on utilization, and hence, load-based tests are not of interest for the task models considered in this paper.

Uniprocessor utilization bounds. Optimal bounds or worst-case schedulable utilizations are known for several

scheduling algorithms. (In the discussion of known utilization bounds that follows, tasks are assumed to be periodic

or sporadic, with the relative deadline of each task equal to its period.) In the domain of uniprocessor scheduling,

a utilization bound of 1.0 is optimal for preemptive earliest-deadline-first (EDF) scheduling, while N(21/N − 1) is

3The phrase minimax utilization is due to Oh and Baker [38] and denotes the minimum utilization over all maximal task sets. A
maximal task set is one that is schedulable but if the execution times of its tasks are increased slightly, then some deadline will be
missed.

4Unless otherwise specified, worst-case schedulable utilizations are assumed to be with respect to M and α = umax. It is possible
to obtain other worst-case values if other or more task parameters, such as execution costs and periods, are considered.
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the worst-case schedulable utilization for preemptive RM scheduling with respect to the number of tasks, N [36].

This value converges to ln 2 ≈ 0.69 as N → ∞.

Multiprocessor utilization bounds. In general, multiprocessor scheduling algorithms use either a partitioned

or global scheduling approach. Under partitioned scheduling, tasks are assigned to processors by defining a many-to-

one mapping from the set of tasks to the set of processors. In other words, tasks are partitioned among processors,

and a separate instance of a uniprocessor scheduling algorithm is used to schedule the tasks assigned to each

processor. Therefore, the partitioning algorithm has to ensure that on each processor, the deadlines of the tasks

assigned to it will be met. In general, this is done by ensuring that on each processor, the sum of the utilizations of

the tasks assigned does not exceed the best known utilization bound of its scheduler. If Wmax, where 0 < Wmax ≤ 1,

denotes the maximum weight of any task and EDF is the per-processor scheduling algorithm used, then the worst-

case schedulable utilization for the partitioned approach with respect to the parameters M and Wmax is βM+1
β+1 ,

where β =
⌊

1
Wmax

⌋

[37]. This value approaches M+1
2 as Wmax → 1.0. Because EDF is an optimal uniprocessor

scheduling algorithm, a higher utilization bound is not possible with any other per-processor scheduling algorithm.

Under global scheduling, a task may execute on any processor. The global approach can be differentiated

further based on whether a preempted job is allowed to resume execution on a different processor. If each job is

bound to a single processor only, then migrations are said to be restricted ; otherwise, they are unrestricted . EDF,

which is a restricted dynamic-priority algorithm,5 has a worst-case schedulable utilization of M − (M − 1) · umax

when deployed globally. For all M ≥ 2, this value approaches 1.0 as umax approaches 1.0, implying that for each

M ≥ 2, there exist task systems with utilization arbitrarily close to 1.0 that cannot be correctly scheduled on M

processors. This phenomenon, now referred to as the “Dhall” effect, was first noted by Dhall and Liu as early as

1978 [28]. RM, which is a static-priority scheduling algorithm, is also susceptible to this effect. It has been shown

that within global scheduling, a utilization bound exceeding M+1
2 is impossible under either restricted dynamic-

priority algorithms [13, 14] or static-priority algorithms [7, 8], regardless of the nature of migrations (restricted or

not). Thus, the worst-case schedulable utilization for each multiprocessor scheduling algorithm considered so far

converges to approximately 50% of the total processing capacity.

Most Pfair scheduling algorithms allow migrations, and hence, fall under the global category. As mentioned

earlier, optimal scheduling on multiprocessors is possible with Pfair scheduling. Therefore, each of the optimal

Pfair algorithms, PF [15], PD [17], and PD2 [42], has an optimal utilization bound of M . Weight monotonic (WM)

is another Pfair scheduling algorithm that has been proposed [12, 40]. WM uses static priorities based on task

weights for scheduling subtasks and is not optimal. The current best known utilization bound for WM is M/2 [8].

5Under restricted dynamic-priority algorithms, the priority of a job cannot be changed once assigned. On the other hand, if job
priorities can change with time, then the algorithm is said to be an unrestricted dynamic-priority algorithm.
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3 Background on Pfair Scheduling

This section describes some basic concepts of Pfair scheduling, provides needed background, and summarizes

results from prior work reported in [4, 5, 6, 15, 42, 43].6

3.1 Preliminaries

Pfair scheduling [15, 42] can be used to schedule a periodic, sporadic, intra-sporadic (IS), or generalized-intra-

sporadic (GIS) (see below) task system τ on M ≥ 1 processors. Periodic and sporadic tasks were described in

Sec. 2.

When scheduled under Pfair algorithms, it is required that for each task T , T.e and T.p, be specified as integers,

which are interpreted as integral number of quanta. Pfair algorithms allocate processor time in discrete quanta;

the time interval [t, t+1), where t is a nonnegative integer, is called slot t. (Hence, time t refers to the beginning of

slot t.) All references to time are non-negative integers. The interval [t1, t2), consists of slots t1, t1 + 1, . . . , t2 − 1.

A task may be allocated time on different processors, but not in the same slot (i.e., interprocessor migration is

allowed but parallelism is not). Similarly, on each processor, at most one task may be allocated in each slot. The

sequence of allocation decisions over time defines a schedule S. Formally, S : τ ×N 7→ {0, 1}, where N is the set of

nonnegative integers. S(T, t) = 1 iff T is scheduled in slot t. On M processors,
∑

T∈τ S(T, t) ≤ M holds for all t.

Periodic, sporadic, and IS task models. In Pfair scheduling, each quantum of execution of each task is

referred to as a subtask . Each task gives rise to a potentially infinite sequence of subtasks. The ith subtask of T ,

where i ≥ 1, is denoted Ti. If T is periodic or sporadic, then the kth job of T , where k ≥ 1, consists of subtasks

T(k−1)·e+1, . . . , Tk·e, where e = T.e.

Each subtask Ti has an associated pseudo-release r(Ti) and pseudo-deadline d(Ti), defined as follows. (The prefix

“pseudo-” is often omitted for conciseness.)

r(Ti) = Θ(Ti) +

⌊

i − 1

wt(T )

⌋

∧ d(Ti) = Θ(Ti) +

⌈

i

wt(T )

⌉

(1)

In the above formulas, Θ(Ti) ≥ 0 denotes the offset of Ti and is used in modeling the late releases of sporadic and IS

tasks. It is well known that the sporadic model generalizes the periodic model by allowing jobs to be released “late;”

the IS model, proposed by Srinivasan and Anderson in [5, 42], is a further generalization that allows subtasks to be

released late. The offsets of T ’s various subtasks are nonnegative and satisfy the following: k > i ⇒ Θ(Tk) ≥ Θ(Ti).

T is periodic if Θ(Ti) = c holds for all i (and is synchronous also if c = 0), and is IS , otherwise. For a sporadic

task, all subtasks that belong to the same job will have equal offsets. Examples are given in insets (a) and (b) of

Fig. 1. Informally, the restriction on offsets implies that the separation between any pair of subtask releases is at

least the separation between those releases if the task were periodic.

6To reasonably curtail the discussion, we have refrained from explaining every concept in depth. The interested reader is referred
to the primary sources cited.
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Figure 1. (a) PF-windows of the first job of a periodic (or sporadic) task T with weight 3/7. This job consists of
subtasks T1, T2, and T3, each of which must be scheduled within its window. (This pattern repeats for every job.) (b)
PF-windows of an IS task. Subtask T2 is released one time unit late. Here, Θ(T1) = 0 while Θ(T2) = Θ(T3) = 1. (c)
PF-windows of a GIS task. Subtask T2 is absent and subtask T3 is released one time unit late. (d) PF- and IS-windows
of the first job of a GIS task with early releases. All the subtasks of this job are eligible when the job arrives. (The
deadline-based priority definition of the Pfair scheduling algorithms and the prohibition of parallel execution of a task
ensure that the subtasks execute in the correct sequence.) For each subtask, its PF-window consists of the solid part;
the IS-window includes the dashed part, in addition. For example, T2’s PF-window is [2, 5) and its IS-window is [0, 5).

The interval [r(Ti), d(Ti)) is termed the PF-window of Ti and is denoted ω(Ti). The following lemma, concerning

PF-window lengths, follows from (1).

Lemma 1 (Anderson and Srinivasan [6]) The length of the PF-window of any subtask Ti of a task T , |ω(Ti)| =

d(Ti) − r(Ti), is either
⌈

1
wt(T )

⌉

or
⌈

1
wt(T )

⌉

+ 1.

GIS task model. When proving properties concerning Pfair scheduling algorithms, it is sometimes useful to

“eliminate” certain subtasks. For example, if a deadline miss does not depend on the existence of a subtask,

then ignoring such a subtask makes analysis easier. In [42], Srinivasan and Anderson introduced the generalized

intra-sporadic model to facilitate such selective removal of subtasks. A GIS task system is obtained by omitting

subtasks from a corresponding IS (or GIS) task system. However, the spacing between subtasks of a task that are

not omitted may not be decreased in comparison to how they are spaced in a periodic task. Specifically, subtask Ti

may be followed by subtask Tk, where k > i + 1 if the following holds: r(Tk)− r(Ti) is at least
⌊

k−1
wt(T )

⌋

−
⌊

i−1
wt(T )

⌋

.

That is, r(Tk) is not smaller than what it would have been if Ti+1, Ti+2, . . . ,Tk−1 were present and released as

early as possible. For the special case where Tk is the first subtask released by T , r(Tk) must be at least
⌊

k−1
wt(T )

⌋

.

Fig. 1(c) shows an example. In this example, though subtask T2 is omitted, T3 cannot be released before time 4.

If a task T , after executing subtask Ti releases subtask Tk, then Tk is called the successor of Ti and Ti is called

the predecessor of Tk. Note that a periodic task system is an IS task system, which in turn is a GIS task system;

hence, any property established for the GIS task model applies to the other models, as well.

The early-release task model. The task models described so far are non-work-conserving in that, the second

and later subtasks remain ineligible to be scheduled before their release times, even if they are otherwise ready

and some processor is idle. The early-release (ER) task model is a work-conserving variant of the other models

that allows subtasks to be scheduled before their release times [4]. Early releasing can be applied to subtasks in

any of the task models considered so far, and unless otherwise specified, it should be assumed that early releasing

is enabled. However, whether subtasks are actually released early is optional. To facilitate this, in this model,

each subtask Ti has an eligibility time e(Ti) that specifies the first time slot in which Ti may be scheduled. This

8



flexibility, in conjunction with the sporadic and the IS task models, which permit late job and subtask releases,

can be used to schedule rate-based tasks. The interval [e(Ti), d(Ti)) is referred to as the IS-window of Ti. Fig. 1(d)

gives an example. It is required that the following hold:

(∀i ≥ 1 :: e(Ti) ≤ r(Ti) ∧ e(Ti) ≤ e(Ti+1)). (2)

Concrete and non-concrete task systems. A task system is said to be concrete if the release and eligibility

times are specified for each subtask of each task, and non-concrete, otherwise. Note that an infinite number of

concrete task systems can be specified for every non-concrete task system. We indicate the type of the task system

only when necessary.

Pfair and ERfair schedules. The notion of a Pfair schedule is obtained by comparing the allocations that each

task receives in such a schedule to those received in an ideal fluid schedule. In an ideal fluid schedule, each task

executes at a precise rate given by its utilization whenever it is active, and no deadlines, including pseudo-deadlines

of subtasks, are missed. Let A(ideal, T, t1, t2) and A(S, T, t1, t2), denote the total allocation to T in the interval

[t1, t2) in the ideal schedule and an actual schedule, S, respectively. Then, the “error” in allocation to T in S at

time t with respect to the ideal schedule, referred to as the lag of T at t in S, is given by

lag(T, t,S) = A(ideal, T, 0, t)− A(S, T, 0, t).

S is said to be Pfair iff the following holds.

(∀t, T ∈ τ :: −1 < lag(T, t,S) < 1)

Informally, each task’s allocation error must always be less than one quantum. If early releases are allowed, then

it is not required that the negative lag constraint, lag(T, t) > −1, hold. A schedule for which (∀T, t : lag(T, t) < 1)

holds is said to be ERfair . The release times and deadlines in (1) are assigned such that scheduling each subtask

by its deadline is sufficient to generate an ERfair schedule for τ ; a Pfair schedule can be generated if each subtask

is scheduled at or after its release time, as well. Further, ensuring that each task is scheduled in a Pfair or an

ERfair manner is sufficient to ensure that the deadlines of all jobs are met in a periodic or sporadic task system. A

schedule that is Pfair or ERfair exists for a GIS task system τ on M processors iff
∑

T∈τ wt(T ) ≤ M holds [15, 5].

If T is synchronous and periodic, then A(ideal, T, 0, t) is given by t·wt(T ). However, if T is GIS, then the allocation

it receives in the ideal schedule may be less due to IS separations or omitted subtasks. To facilitate expressing

A(ideal, T, 0, t) for GIS tasks, let A(ideal, Ti, 0, t) and A(ideal, Ti, t) denote the ideal allocations to subtask Ti in

[0, t) and slot t, respectively. In [5], Anderson and Srinivasan showed that A(ideal, Ti, t) is given by (3) below. An

example is given in Fig. 2.

A(ideal, Ti, u) =































(
⌊

i−1
wt(T )

⌋

+ 1) × wt(T ) − (i − 1), u = r(Ti)

i − (
⌈

i
wt(T )

⌉

− 1) × wt(T ), u = d(Ti) − 1

wt(T ), r(Ti) < u < d(Ti) − 1

0, otherwise.

(3)
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Figure 2. Per-slot ideal allocations to subtasks of a task T with weight 3/7. These allocations are marked above
the subtask windows. (a) T is synchronous, periodic. A(ideal, T, t) = 3/7 holds for every t. A(ideal, T2, 4) = 2

7
and A(ideal, T3, 4) = 1

7 . (b) T is GIS. T2’s release is delayed by one time slot. T4 is delayed by an additional
time slot and T5 is omitted. Here, A(ideal, T2, 4) = 3

7 and A(ideal, T3, 4) = 0.

Let A(ideal, T, t) denote the total allocation to task T in slot t. Then, A(ideal, T, t) is given by
∑

i A(ideal, Ti, t).

For example, in Fig. 2(a), A(ideal, T, 4) = A(ideal, T2, 4)+ A(ideal, T3, 4) = 1/7+ 2/7 = 3/7, since no subtasks other

than T2 and T3 receive a non-zero allocation in slot 4.

As shown in Fig. 2, A(ideal, T, u) usually equals wt(T ), but in certain slots, it may be less than wt(T ) due to

omitted or delayed subtasks. Also, the total allocation that a subtask Ti receives in the slots that span its window

is exactly one in the ideal schedule. These and similar properties have been proved formally in [41]. Later in this

paper, we will use Lemma 2, and (4) and (5) given below.

(∀u ≥ 0 :: A(ideal, T, u) ≤ wt(T )) (4)

(∀Ti ::

d(Ti)−1
∑

u=r(Ti)

A(ideal, Ti, u) = 1) (5)

Lemma 2 (A. Srinivasan [41]) If b(Ti) = 1, then A(ideal, Ti+1, r(Ti+1)) ≤ ρ(T ), where ρ(T ) = T.e−gcd(T.e,T.p)
T.p .

A task T ’s ideal allocation up to time t is simply

A(ideal, T, 0, t) =

t−1
∑

u=0

A(ideal, T, u) =

t−1
∑

u=0

∑

i

A(ideal, Ti, u),

and hence

lag(T, t,S) = A(ideal, T, 0, t)− A(S, T, 0, t)

=

t−1
∑

u=0

A(ideal, T, u)−
t−1
∑

u=0

S(T, u) (6)

=

t−1
∑

u=0

∑

i

A(ideal, Ti, u) −
t−1
∑

u=0

S(T, u). (7)
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From (6), lag(T, t + 1)7 is given by

lag(T, t + 1) =
∑t

u=0(A(ideal, T, u)− S(T, u))

= lag(T, t) + A(ideal, T, t) − S(T, t). (8)

Similarly, by (6) again, for any 0 ≤ t′ ≤ t,

lag(T, t + 1) = lag(T, t′) +
∑t

u=t′(A(ideal, T, u) − S(T, u))

= lag(T, t′) + A(ideal, T, t′, t + 1) − A(S, T, t′, t + 1). (9)

Another useful definition, the total lag for a task system τ in a schedule S at time t, LAG(τ, t,S), or more concisely,

LAG(τ, t), is given by

LAG(τ, t) =
∑

T∈τ lag(T, t). (10)

Using (8)–(10), LAG(τ, t + 1) can be expressed as follows. In (12) below, 0 ≤ t′ ≤ t holds.

LAG(τ, t + 1) = LAG(τ, t) +
∑

T∈τ (A(ideal, T, t) − S(T, t)) (11)

LAG(τ, t + 1) = LAG(τ, t′) +

t
∑

u=t′

∑

T∈τ

(A(ideal, T, u)− A(S, T, u))

= LAG(τ, t′) + A(ideal, τ, t′, t + 1) − A(S , τ, t′, t + 1) (12)

(11) and (12) above can be rewritten as follows using (4).

LAG(τ, t + 1) ≤ LAG(τ, t) +
∑

T∈τ (wt(T ) − S(T, t)) (13)

LAG(τ, t + 1) ≤ LAG(τ, t′) + (t + 1 − t′) ·
∑

T∈τ wt(T ) − A(S, τ, t′, t + 1) (14)

= LAG(τ, t′) + (t + 1 − t′) ·
∑

T∈τ wt(T ) −
∑t

u=t′
∑

T∈τ S(T, u) (15)

3.2 Tie-Break Parameters and Pfair Scheduling Algorithms

b-bit. The b-bit or boundary bit is associated with each subtask Ti and is denoted b(Ti). b(Ti) is a tie-break

parameter used by the known optimal Pfair algorithms and is defined by (16) below.

b(Ti) =

⌈

i

wt(T )

⌉

−

⌊

i

wt(T )

⌋

(16)

From (1), it can be verified that if Θ(Ti) < Θ(Ti+1), then d(Ti) ≤ r(Ti+1). Therefore, the PF-windows of Ti and Ti+1

can overlap only if Θ(Ti) = Θ(Ti+1). It can also be verified that if Θ(Ti) = Θ(Ti+1), then d(Ti) − r(Ti+1) = b(Ti).

Hence, b(Ti) determines whether the PF-window of Ti can overlap that of Ti+1. Observe that b(Ti) is either zero

or one. Therefore, the PF-windows of Ti and Ti+1 are either disjoint or overlap by at most one slot. In Fig. 1,

b(T2) = 1, while b(T3) = 0. Therefore, the PF-window of T2 overlaps T3’s when Θ(T3) = Θ(T2) as in insets (a),

(b), and (d). Further, as shown in an appendix, the following lemma holds.

7The schedule parameter is omitted in the lag and LAG functions when unambiguous.
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Lemma 3 For all i ≥ 1, k ≥ 1, the following holds.

r(Ti+k) ≥







d(Ti) + k − 1, b(Ti) = 0

d(Ti) + k − 2, b(Ti) = 1

Group deadline. Like the b-bit, the group deadline, denoted D(Ti), is a parameter that is associated with each

subtask Ti, and is used by some Pfair scheduling algorithms. For a subtask Ti of a heavy task T , D(Ti) is defined

as follows.

D(Ti) = Θ(Ti) +









⌈

i
wt(T )

⌉

− i

1 − wt(T )









If Θ(Ti) = 0, then D(Ti) =
⌈

d(Ti)−i
1−wt(T )

⌉

, and the formula has the interpretation that the group deadline of Ti is given

by the deadline of the (d(Ti) − i)th subtask of a task with weight 1 − wt(T ). The group deadline of each subtask

of a light task is taken to be 0. The intuition behind group deadlines can be found in [6].

Optimal algorithms. Pfair scheduling algorithms function by choosing at the beginning of each time slot, at

most M eligible subtasks for execution in that time slot. At present, three optimal Pfair scheduling algorithms,

namely, PF [15], PD [17], and PD2 [6, 42], that can correctly schedule any feasible GIS task system in polynomial

time are known. All the three algorithms are based on a common approach: in each algorithm, subtask priorities

are first determined on an earliest-pseudo-deadline-first basis; ties are then resolved using tie-breaking rules. Since

PD2 is the most efficient of the three algorithms, we limit ourselves to describing the priority definition of PD2.

Algorithm PD2. In determining the priorities of subtasks, PD2 uses the b-bits and group deadlines of subtasks,

apart from their pseudo-deadlines. Under PD2, subtask Ti’s priority is at least that of subtask Uj , denoted Ti � Uj ,

if at least one of the following holds.

(i) d(Ti) < d(Uj) (ii) d(Ti) = d(Uj) ∧ b(Ti) > b(Uj) (iii) d(Ti) = d(Uj) ∧ b(Ti) = b(Uj) = 1 ∧ D(Ti) ≥ D(Uj)

Any ties that may remain after applying the above rules can be resolved arbitrarily.

Overhead of tie-breaking rules. As explained in Sec. 1, in static task systems, the worst-case overhead incurred

due to the use of tie-breaking rules is 2O(M log(N)) additional comparison operations per time slot. The overhead

incurred in addition in dynamic task systems was also explained in Sec. 1, and is illustrated using examples in

Fig. 3.

Algorithm EPDF. EPDF is a derivative of the optimal algorithms in that it schedules subtasks on an earliest-

pseudo-deadline-first basis but avoids using any tie-breaking rule. Under EPDF, ties among subtasks with equal

deadlines are resolved arbitrarily. As mentioned earlier, in prior work, Srinivasan and Anderson have shown that

EPDF is optimal on at most two processors [6]. They have also shown that on more than two processors, EPDF

can correctly schedule task systems in which the maximum task weight is at most 1/(M − 1) [44].

The next subsection presents some additional technical definitions and results that we will use in this paper.
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Figure 3. Examples to illustrate the complexities and overhead in reweighting due to the use of tie-breaking rules.

(a) At time 4, tasks in Group A leave. The capacity that is made available is used to increase the weights of the tasks

in Groups B and C. The last-released subtasks of the tasks in these groups have not been scheduled by time 4, and

hence these tasks can be reweighted at this time. (The subtask windows before reweighting are shown using dashed

lines.) For each task, this reweighting modifies the tie-break parameters for the next subtask to be scheduled, which

is already in the ready queue. Note that, prior to reweighting, tasks in Group B have a higher PD
2 priority than

those in Group C, whereas the reverse holds after the weight change. There is a similar change in the relative priority

between subtasks in Groups B and D and between those in Groups C and D. Therefore, if tie-breaking rules are used,

the position of a subtask whose tie-break parameters change may have to be adjusted in the priority queue at a cost

of O(log N). If tie-break parameters change for k subtasks, then the overhead is O(k · (log N)), and if several subtasks

are reweighted, as in this example, then the priority queue may have to be reconstructed at a cost of O(N). On the

other hand, if no tie-breaking rule is used, then the priority queue need not be disturbed. In this example, deadlines

are unaltered for the current (i.e., active as in Def. 1) subtasks after the weight change. Altering the deadline for a

subtask already in the priority queue can be avoided in one of two ways depending on whether the new deadline is

before or after the old deadline. If earlier, the release time of the current subtask can be postponed (while leaving the

eligibility time unaltered) so that the new and old deadlines align. If later, the reweighting request can be enacted

after the current subtask is scheduled. (b) If tie-breaking rules are used, then because the first subtask depicted is

scheduled at time 12, the task in this inset cannot leave or be reweighted until time 20, which is the group deadline

for all the subtasks depicted. On the other hand, if no tie-breaking rule is used, then the task may leave at time 14

and the capacity allocated to it may be reclaimed. Similarly, the task may be reweighted at time 14 or 15 (depending

on whether the reweighting request is initiated by the time the first subtask completes execution or later). (Refer to

[44] and [19] for reweighting rules under optimal Pfair algorithms.)

3.3 Additional Technical Definitions

Active tasks. If subtasks are absent or are released late, then it is possible for a GIS (or IS) task to have no

eligible subtasks and an allocation of zero during certain time slots. Tasks with and without subtasks in slot t are

distinguished using the following definition of an active task.
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Definition 1: A GIS task U is active in slot t if it has one or more subtasks Uj such that e(Uj) ≤ t < d(Uj). (A

task that is active in t is not necessarily scheduled in that slot in an active schedule.)

Holes. If fewer than M tasks are scheduled at time t in S, then one or more processors are idle in slot t. For

each slot, each processor that is idle in that slot is referred to as a hole. Hence, if k processors are idle in slot t,

then there are said to be k holes in t. The following lemma relates an increase in the total lag of τ , LAG, to the

presence of holes, and is a generalization of one proved in [42].

Lemma 4 (Srinivasan and Anderson [42]) If LAG(τ, t+ `,S) > LAG(τ, t,S), where ` ≥ 1, then there is at least

one hole in the interval [t, t + `).

Intuitively, if there is no idle processor in slots t, . . . , t + ` − 1, then the total allocation in S in each of those slots

to tasks in τ is equal to M . This is at least the total allocation that τ receives in any slot in the ideal schedule

(assuming that the sum of the weights of all tasks in τ is at most M). Therefore, LAG cannot increase.

Task classification(from [42]). Tasks in τ may be classified as follows with respect to a schedule S and time

interval [t, t + `).8

A(t, t + `): Set of all tasks that are scheduled in one or more slots in [t, t + `).

B(t, t + `): Set of all tasks that are not scheduled in any slot in [t, t + `), but are active in one or more slots in the

interval.

I(t, t + `): Set of all tasks that are neither active nor scheduled in any slot in [t, t + `).

As a shorthand, the notation A(t), B(t), and I(t) is used when ` = 1. A(t, t + `), B(t, t + `), and I(t, t + `) form a

partition of τ , i.e., the following holds.

A(t, t + `) ∪ B(t, t + `) ∪ I(t, t + `) = τ ∧

A(t, t + `) ∩ B(t, t + `) = B(t, t + `) ∩ I(t, t + `) = I(t, t + `) ∩ A(t, t + `) = ∅







(17)

This classification of tasks is illustrated in Fig. 4(a) for ` = 1. Using (10) and (17) above, we have the following.

LAG(τ, t + 1) =
∑

T∈A(t)

lag(T, t + 1) +
∑

T∈B(t)

lag(T, t + 1) +
∑

T∈I(t)

lag(T, t + 1) (18)

The next definition identifies the last-released subtask at t of any task U .

Definition 2: Subtask Uj is the critical subtask of U at t iff e(Uj) ≤ t < d(Uj) holds, and no other subtask Uk

of U , where k > j, satisfies e(Uk) ≤ t < d(Uk).

For example, in Fig. 4(a), T ’s critical subtask at both t− 1 and t is Ti+1, and U ’s critical subtask at t + 1 is Uk+1.

8For brevity, we let the task system τ and schedule S be implicit in these definitions.
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Figure 4. (a) Illustration of task classification at time t. IS-windows of two consecutive subtasks of three
GIS tasks T , U , and V are depicted. The slot in which each subtask is scheduled is indicated by an “X.”
Because subtask Ti+1 is scheduled at t, T ∈ A(t). No subtask of U is scheduled at t. However, because the
window of Uk overlaps slot t, U is active at t, and hence, U ∈ B(t). Task V is neither scheduled nor active at
t. Therefore, V ∈ I(t). (b) Illustration of displacements. If Ui, scheduled at time t, is removed from the task
system, then some subtask that is eligible at t, but scheduled later, can be scheduled at t. In this example, it is
subtask Vk (scheduled at t+3). This displacement of Vk results in two more displacements, those of Vk+1 and
Ui+1, as shown. Thus, there are three displacements in all: ∆1 = 〈Ui, t, Vk, t+3〉, ∆2 = 〈Vk, t+3, Vk+1, t+4〉,
and ∆3 = 〈Vk+1, t + 4, Ui+1, t + 5〉.

Displacements. To facilitate reasoning about Pfair algorithms, Srinivasan and Anderson formally defined dis-

placements in [42]. Let τ be a GIS task system and let S be an EPDF schedule for τ . Then, removing a subtask, say

Ti, from τ results in another GIS task system τ ′. Suppose Ti is scheduled at t in S. Then, Ti’s removal can cause

another subtask, say Uj , scheduled after t to shift left to t, which in turn can lead to other shifts, resulting in an

EPDF schedule S′ for τ ′. Each shift that results due to a subtask removal is called a displacement and is denoted by

a four-tuple 〈X(1), t1, X
(2), t2〉, where X(1) and X(2) represent subtasks. This is equivalent to saying that subtask

X(2) originally scheduled at t2 in S displaces subtask X(1) scheduled at t1 in S. A displacement 〈X(1), t1, X
(2), t2〉

is valid iff e(X(2)) ≤ t1. Because there can be a cascade of shifts, there may be a chain of displacements. Such a

chain is represented by a sequence of four-tuples. An example is given in Fig. 4(b).

The next two lemmas regarding displacements are proved in [41] and [42]. The first lemma states that in an

EPDF schedule, a subtask removal can cause other subtasks to shift only to their left. According to the second

lemma, if a subtask displaces to a slot with a hole, then its predecessor is scheduled in that slot prior to the

displacement.

Lemma 5 (from [41]) Let X(1) be a subtask that is removed from τ , and let the resulting chain of displacements

in an EPDF schedule for τ be ∆1, ∆2, . . . , ∆k, where ∆i = 〈X(i), ti, X
(i+1), ti+1〉. Then ti+1 > ti for all i ∈ [1, k].

Lemma 6 (from [42]) Let ∆ = 〈X(i), ti, X
(i+1), ti+1〉 be a valid displacement in any EPDF schedule. If ti < ti+1

holds and there is a hole in slot ti, then X(i+1) is the successor of X(i).
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4 Sufficient Schedulability Test for EPDF

In this section, we derive a schedulable utilization bound under EPDF for GIS task systems with early releases.

The utilization bound that we derive is more accurate than that specified in Sec. 1, and can be used if the ρ values

of tasks as defined in (19) can be computed.

Before getting started, we will set some needed notation in place and provide an overview of the approach used.

Let ρ, ρmax, Wmax, and λ be defined as follows. (The task system τ will be omitted when it is unambiguous.)

ρ(T )
def
= (T.e − gcd(T.e, T.p))/T.p (19)

ρmax(τ)
def
= max

T∈τ
{ρ(T )} (20)

Wmax(τ)
def
= max

T∈τ
{wt(T )} (21)

λ(τ)
def
= max

(

2,

⌈

1

Wmax(τ)

⌉)

(22)

ρ(T ) is an upper bound on the ideal allocation that a subtask of T can receive in a slot that overlaps with the

previous or the next subtask, such as, the allocation to T2 in slot 2 or to T3 in slot 4 in Fig. 2(a). This value is used

in computing task lags, and hence, the LAG of a task system. λ(τ) denotes the minimum length of any window

of any subtask of any task in τ excluding tasks with unit weight. As explained below, the minimum number of

contiguous slots immediately preceding a deadline miss or an increase in LAG and that do not contain any hole is

dependent on λ. Since our analysis relies on the number of such slots, the utilization bound derived is dependent

on λ.

Overview of the derivation. In deriving a utilization bound for EPDF, we identify a condition that is necessary

for a deadline miss, and determine a total task system utilization that is sufficient to ensure that this condition will

not hold under any circumstance. We proceed as follows. If td denotes the time at which a deadline is missed by

τ , then we note that LAG(τ, td) ≥ 1 (Lemma 14(c)). While it is necessary that LAG be at least 1.0 for a deadline

miss, this condition is be somewhat strong, and schedulability tests that are solely based on preventing it at all

times turn out to be restrictive. A weaker condition is obtained by first noting that for a deadline to be missed at

td, there should be no hole in any of the λ slots that immediately precede td (Lemma 14(g)).9 This implies that the

actual allocation exceeds the ideal by M −Usum in each of these slots, and hence, that LAG at td is at least 1.0 only

if LAG at td −λ is at least λ · (M −Usum) +1.0. Thus, LAG ≥ λ · (M −Usum) + 1.0 is a weaker necessary condition

for a deadline miss. (It should be pointed out that though weaker, this condition is nonetheless not sufficient, and

hence, our utilization bound is neither worst-case nor optimal.)

We next determine a total utilization that is sufficient to ensure that LAG does not reach this value at any time.

For this, we first make use of the fact that LAG can increase only across a slot with a hole (Lemma 4). Next,

we note that for LAG to increase across a slot t, there should be no hole in any of the λ − 1 slots preceding it

(Lemma 17), and express LAG at t + 1 in terms of LAG at t − λ + 1, Usum, and ρ (Lemma 19). This procedure is

9Lemma 14(g) only states that there is no hole in the last λ − 1 slots. Below, we explain how slot td − λ is handled.
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then applied recursively to express LAG at t − λ + 1 in terms of LAG at an earlier time, and so on, with LAG at

some time when it is less than 1.0 (such a time exists since LAG at time 0 is 0.0), serving as the base condition

(Lemma 22). Thus, LAG at t + 1 can be expressed in terms of just the task system parameters Usum, ρmax, and λ,

and solving for Usum in LAG(t + 1) < λ · (M − Usum) + 1 yields a utilization bound.

In the above description, we have glossed over at least two complexities (and hence our description above may

not exactly match what is stated in the lemmas referenced). First, if Wmax = 1, then it is possible for slot

(td − λ) = td − 2 to have a hole, and hence, some extra reasoning (that is provided in Lemma 14(h) and in some

lemmas in the appendix) is needed. (In fact, the reasoning used for task systems with Wmax = 1 can be generalized

for Wmax = 1
k , where k is an integer, to handle the case when slot td − k − 1 contains a hole. This generalization,

along with some additional reasoning in Lemma 17, will help in expressing λ as
⌊

1

Wmax

⌋

+ 1 instead of as in (22),

and thereby an improved utilization bound can be provided when Wmax = 1
k . Specifically, the drops in Fig. 7 will

be at Wmax = 1
k + ε, instead of at 1

k . However, formally presenting the generalization is quite tedious and will add

to the length of the proof, so we have limited to presenting the general idea for k = 1.) Secondly, most properties

discussed above apply only to minimal task systems, i.e., a task system from which no subtask can be removed

without causing a presumed deadline miss to be met. Minimal task systems are explained further later (following

Def. 5).

With this overview, we will now move on to the derivation proper.

The utilization bound that we derive for EPDF is given by the following theorem.

Theorem 1 Every GIS task system τ with
∑

T∈τ wt(T ) ≤ min
(

M, λM(λ(1+ρmax)−ρmax)+1+ρmax

λ2(1+ρmax)

)

, where ρmax and

λ are as defined in (20) and (22), respectively, is correctly scheduled by EPDF on M processors.

As a shorthand, we define U(M, k, f) as follows.

Definition 3: U(M, k, f)
def
= kM(k(1+f)−f)+1+f

k2(1+f) .

To prove the above theorem, we use a setup similar to that used by Srinivasan and Anderson in [42] in establishing

the optimality of PD2. The overall strategy is to assume that the theorem to prove is false, identify a task system

that is minimal or smallest in the sense of having the smallest number of subtasks and that misses a deadline, and

show that such a task system cannot exist. (It should be pointed out that although the setup is similar, the details

of the derivation and proof are significantly different.)

If Theorem 1 does not hold, then there exist a Wmax ≤ 1 and ρmax < 1, and a time td and a concrete task system

τ defined as follows. (In these definitions, we assume that τ is scheduled on M processors.)

Definition 4: td is the earliest time at which any concrete task system with each task weight at most Wmax,

ρ(T ) at most ρmax for each task T , and total utilization at most min(M, U(M, λ, ρmax)) misses a deadline under

EPDF, i.e., some such task system misses a subtask deadline at td, and no such system misses a subtask deadline

prior to td.
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Definition 5: τ is a task system with the following properties.

(T0) τ is concrete task system with each task weight at most Wmax, ρ(T ) at most ρmax, and total utilization at

most min(M, U(M, λ, ρmax)).

(T1) A subtask in τ misses its deadline at td in S, an EPDF schedule for τ .

(T2) No concrete task system satisfying (T0) and (T1) releases fewer subtasks in [0, td) than τ .

(T3) No concrete task system satisfying, (T0), (T1), and (T2) has a larger rank than τ at td, where the rank of

a task system τ at t is the sum of the eligibility times of all subtasks with deadlines at most t, i.e., rank(τ, t) =
∑

{Ti:T∈τ ∧ d(Ti)≤t} e(Ti).

(T2) can be thought of as identifying a minimal task system in the sense of having a deadline miss with the

fewest number of subtasks, subject to satisfying (T0) and (T1). It is easy to see that if Theorem 1 does not hold

for all task systems satisfying (T0) and (T1), then some task system satisfying (T2) necessarily exists. (T3) further

restricts the nature of τ by requiring subtask eligibility times to be spaced as much apart as possible. In proving

some lemmas later, we will show that if the lemma does not hold, then either (T2) or (T3) is contradicted.

The following shorthand notation will be used hereafter.

Definition 6: α denotes the total utilization of τ , expressed as a fraction of M , i.e., α
def
=

∑

T∈τ
wt(T )

M .

Definition 7: δ
def
= ρmax

1+ρmax
.

The lemma below follows from (T0) and the definition of α.

Lemma 7 0 ≤ α ≤ min(M,U(M,λ,ρmax))
M ≤ 1.

The next lemma is immediate from the definition of δ, (20), and (19). A proof is provided in an appendix.

Lemma 8 0 ≤ δ < 1
2 .

We now prove some properties about τ and S. In proving some of these properties, we make use of the following

three lemmas established in prior work by Srinivasan and Anderson.

Lemma 9 (Srinivasan and Anderson [42]) If LAG(τ, t + 1) > LAG(τ, t), then B(t) 6= ∅.

The following is an intuitive explanation for why Lemma 9 holds. Recall from Sec. 3 that B(t) is the set of all

tasks that are active but not scheduled at t. Because e(Ti) ≤ r(Ti) holds, by Definition 1 and (3), only tasks that

are active at t may receive positive allocations in slot t in the ideal schedule. Therefore, if every task that is active

at t is scheduled at t, then the total allocation in S cannot be less than the total allocation in the ideal schedule,

and hence, by (11), LAG cannot increase across slot t.

Lemma 10 (Srinivasan and Anderson [42]) Let t < td be a slot with holes and let T ∈ B(t). Then, the critical

subtask at t of T is scheduled before t.
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To see that the above lemma holds, let Ti be the critical subtask of T at t. By its definition, the IS-window of

Ti overlaps slot t, but T is not scheduled at t. Also, there is at least a hole in t. Because EPDF does not idle a

processor while there is a task with an outstanding execution request, Ti is scheduled before t.

Lemma 11 (Srinivasan and Anderson [42]) Let Uj be a subtask that is scheduled in slot t′, where t′ ≤ t < td

and let there be a hole in t. Then d(Uj) ≤ t + 1.

This lemma is true because it can be shown that if d(Uj) > t + 1 holds, then Uj has no impact on the deadline

miss at td. In other words, it can be shown that if the lemma does not hold, then the GIS task system obtained

from τ by removing Uj also has a deadline miss at td, which is a contradiction to (T2).

Arguments similar to those used in proving the above lemma can be used to show the following. It is proved in an

appendix.

Lemma 12 Let t < td be a slot with holes and let Uj be a subtask that is scheduled at t. Then d(Uj) = t + 1 and

b(Uj) = 1.

Finally, we will also use the following lemma, which is a generalization of Lemma 9. It is also proved in an appendix.

Lemma 13 If LAG(τ, t + 1) > LAG(τ, t − `), where 0 ≤ ` ≤ λ − 2 and t ≥ `, then B(t − `, t + 1) 6= ∅.

We are now ready to establish some properties concerning S. These properties will be used later. Our ultimate

goal is to show that one of Parts (c), (h), and (i) is contradicted, in turn contradicting the existence of τ , and

thereby, proving Theorem 1.

Lemma 14 The following properties hold for τ and S.

(a) For all Ti, d(Ti) ≤ td.

(b) Exactly one subtask of τ misses its deadline at td.

(c) LAG(τ, td) = 1.

(d) Let Ti be a subtask that is scheduled at t < td in S. Then, e(Ti) = min(r(Ti), t).

(e) (∀Ti :: d(Ti) < td ⇒ (∃t :: e(Ti) ≤ t < d(Ti) ∧ S(Ti, t) = 1)). That is, every subtask with deadline before td

is scheduled before its deadline.

(f) Let Uk be the subtask that misses its deadline at td. Then, U is not scheduled in any slot in [td − λ + 1, td).

(g) There is no hole in any of the last λ − 1 slots, i.e., in slots [td − λ + 1, td).

(h) There exists a time v ≤ td − λ such that the following both hold.

(i) There is no hole in any slot in [v, td − λ).

(ii) LAG(τ, v) ≥ (td − v)(1 − α)M + 1.

(i) There exists a time u ∈ [0, v), where v is as defined in part (h), such that LAG(τ, u) < 1 and LAG(τ, t) ≥ 1 for

all t in [u + 1, v].
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The proofs of parts (a)–(d) are similar to those formally proved in [42] for the optimal PD2 Pfair algorithm. We

give informal explanations here. Part (e) follows directly from Definition 4 and (T1). The rest are proved in an

appendix.

Proof of (a): This part holds because a subtask with deadline after td cannot impact the schedule for those with

deadlines at most td. Therefore, even if all the subtasks with deadlines after td are removed, the deadline miss at

td cannot be eliminated. In other words, the GIS task system that results due to the removal of subtasks from τ

and that contains fewer subtasks than τ will also miss a deadline at td. This contradicts (T2).

Proof of (b): If several subtasks miss their deadlines at td, then even if all but one are removed, the remaining

subtask will still miss its deadline, contradicting (T2).

Proof of (c): By part (a), all the subtasks in τ complete executing in the ideal schedule by td. Hence, the total

allocation to τ in the ideal schedule up to td is exactly equal to the total number of subtasks in τ . By part (b),

the total number of subtasks of τ scheduled in S in the same interval is fewer by exactly one subtask. Hence, the

difference in allocations, LAG(τ, td), is exactly one.

Proof of (d): Suppose e(Ti) is not equal to min(r(Ti), t). Then, by (2) and because Ti is scheduled at t, it

is before min(r(Ti), t). Simply changing e(Ti) so that it equals min(r(Ti), t) will not affect how Ti or any other

subtask is scheduled. So, the deadline miss at td will persist. However, this change increases the rank of the task

system, and hence, (T3) is contradicted. �

Overview of the rest of the proof of Theorem 1. If td and τ as given by Definitions 4 and 5, respectively,

exist, then by Lemma 14(i), there exists a time slot u < v, where v is as defined in Lemma 14(h), across which

LAG increases to at least one. To prove Theorem 1, we show that for every such u, either (i) there exists a time u′,

where u+1 < u′ ≤ v or u′ = td, such that LAG(τ, u′) < 1, and thereby derive a contradiction to either Lemma 14(i)

or Lemma 14(c), or (ii) v referred to above does not exist, contradicting Lemma 14(h). The crux of the argument

we use in establishing the above is as follows. By Lemma 4, for LAG to increase across slot u, at least one hole is

needed in that slot. As described earlier, we show that for every such slot, there are a sufficient number of slots

without holes, and hence, that if (T0) holds, then the increase in LAG across slot u is offset by a commensurate

decrease in LAG elsewhere that is sufficient to ensure that no deadline is missed.

In what follows, we state and prove several other lemmas that are required to accomplish this. We begin with

a simple lemma that relates PF-window lengths to λ.

Lemma 15 If Wmax < 1, then the length of the PF-window of each subtask of each task T in τ is at least λ;

otherwise, it is at least λ − 1.

Proof: Follows from the definition of λ in (22) and Lemma 1. �

The next lemma shows that LAG does not increase across the first λ − 1 slots, i.e., across slots 0, 1, . . . , λ − 2.
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Lemma 16 (∀t : 0 ≤ t ≤ λ − 2 :: LAG(τ, t + 1) ≤ LAG(τ, t)).

Proof: Contrary to the statement of the lemma, assume that LAG(τ, t + 1) > LAG(τ, t) for some 0 ≤ t ≤ λ − 2.

Then, by Lemma 4, there is at least one hole in slot t, and by Lemma 9, B(t) is not empty. Let U be a task in

B(t) and Uj its critical subtask at t. Because there is a hole in t, by Lemma 10,

(B) Uj is scheduled before t,

and hence, by Lemma 11, d(Uj) ≤ t + 1 holds. We will consider two cases depending on Wmax. If Wmax < 1,

then by Lemma 15, |ω(Uj)| (i.e., the length of the PF-window of Uj) is at least λ, and hence, by Lemma 1,

r(Uj) = d(Uj)−|ω(Uj)| ≤ t+1−λ holds. By our assumption, t < λ−1, and hence, r(Uj) < 0, which is impossible.

Thus, the lemma holds when Wmax < 1. On the other hand, if Wmax = 1, then, by (22), λ = 2 holds, and hence, by

our assumption, t = 0. Therefore, by (B), Uj is scheduled before time zero, which is also impossible. The lemma

follows. �

Lemma 4 showed that at least one hole is necessary in slot t for LAG to increase across t. The next lemma relates

an increase in LAG to certain other conditions. We will use this lemma later to show that there is no hole in any

of the λ − 1 slots preceding the one that we consider and across which LAG increases.

Lemma 17 The following properties hold for LAG in S.

(a) If LAG(τ, t + 1,S) > LAG(τ, t,S), where λ− 1 ≤ t < td − λ, then there is no hole in any slot in [t − λ + 2, t).

(b) If LAG(τ, t + 1,S) > LAG(τ, t − λ + 2,S), then there is no hole in slot t − λ + 1.

Proof: We prove the two parts separately. We use Lemma 9 to conclude that B(t) and B(t − λ + 2, t + 1) are

non-empty in parts (a) and (b), respectively. For each part, we later show that unless the statement of that part

holds, the critical subtask of any task in B can be removed without eliminating the deadline miss at td, which is a

contradiction to (T2).

Proof of part (a). By the definition of λ in (22), λ ≥ 2 holds. If λ = 2, then this part is vacuously true.

Therefore, assume λ ≥ 3, which, by (22), implies that

Wmax <
1

2
. (23)

Because LAG(τ, t + 1) > LAG(τ, t), by Lemma 4,

(H) there is at least one hole in slot t,

and by Lemma 9, B(t) is not empty. Let U be a task in B(t) and let Uj be the critical subtask of U at t. By (H)

and Lemma 10, Uj is scheduled before t. Let Uj be scheduled at t′ < t, i.e.,

S(Uj , t
′) = 1 ∧ t′ < t. (24)

Also, by Definition 2, d(Uj) ≥ t + 1 holds, while by (H), (24), and Lemma 11, d(Uj) ≤ t + 1 holds. Hence, we have

d(Uj) = t + 1. (25)
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By (23) and Lemma 15, the length of Uj ’s PF-window, |ω(Uj)| ≥ λ, and hence, by (25) and the definition of

PF-window in Lemma 1, r(Uj) ≤ t − λ + 1. We claim that Uj can be scheduled at ar after t − λ + 2. If there

does not exist a predecessor for Uj , then Uj can be scheduled any time at or after r(Uj), and hence, at or after

t − λ + 1. If not, let Uh be the predecessor of Uj . Then, h ≤ j, and hence, by Lemma 3, d(Uh) ≤ t − λ + 2 holds.

By Lemma 14(e), Uh does not miss its deadline, and hence, is scheduled at or before t − λ + 1. This implies that

Uj is ready and can be scheduled at any time at or after t − λ + 2. Given this, if t′ > t − λ + 2, then there is no

hole in any slot in [t − λ + 2, t′). Hence, to complete the proof, it is sufficient to show that there is no hole in any

slot in [t′, t). Assume to the contrary, and let v be the earliest slot with at least one hole in [t′, t). Then, by (24)

and Lemma 11, d(Uj) ≤ v + 1 ≤ t, which contradicts (25). Thus, v does not exist, and there is no slot with one or

more holes in [t′, t).

Proof of part (b). By the statement of this part of the lemma, LAG(τ, t+1) > LAG(τ, t−λ+2). Hence, Lemma 13

applies with ` = λ − 2. Therefore, B(t − λ + 2, t + 1) is not empty. By definition, a task in B(t − λ + 2, t + 1) is

not scheduled anywhere in [t− λ + 2, t + 1). Let U be a task in B(t− λ + 2, t + 1) and let t− λ + 2 ≤ v ≤ t be the

latest slot in the interval [t − λ + 2, t + 1) in which U is active, and let Uj be its critical subtask at v. Therefore,

by Definition 2,

d(Uj) ≥ v + 1 ≥ t − λ + 3. (26)

By Lemma 4, there is at least one hole in the interval [t− λ + 2, t + 1). Hence, because U is in B(t− λ + 2, t + 1),

and thus is not scheduled anywhere in the interval concerned, Uj is scheduled at or before t− λ + 1 (as opposed to

after the interval under consideration). Therefore, if there is a hole in t− λ + 1, then by Lemma 11, it follows that

d(Uj) ≤ t − λ + 1, which contradicts (26). Thus, there cannot be any hole in t − λ + 1, which completes the proof

of this part. �

The next lemma bounds the lag of each task at time t + 1, where t is a slot with one or more holes.

Lemma 18 Let t < td be a slot with one or more holes in S. Then the following hold.

(a) (∀T ∈ A(t) :: lag(T, t + 1) ≤ ρ(T ))

(b) (∀T ∈ B(t) :: lag(T, t + 1) ≤ 0)

(c) (∀T ∈ I(t) :: lag(T, t + 1) = 0)

Proof: Parts (b) and (c) have been proved formally in [43]. To see why they hold, note that no task in B(t) or I(t)

is scheduled at t. Because there is a hole in t, the critical subtask of a task in B(t) is scheduled before t; similarly,

the latest subtask of a task in I(t) with release time at or before t should have completed execution by t. Hence,

such tasks cannot be behind with respect to the ideal schedule.

Proof of part (a). Let T be a task in A(t) and let Ti be its subtask scheduled at t. Then, in S, Ti and all prior

subtasks of T are scheduled in [0, t + 1), i.e., each of these subtasks receives its entire allocation of one quantum in

[0, t + 1). Because there is a hole in t, by Lemma 12, we have

d(Ti) = t + 1 ∧ b(Ti) = 1. (27)
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By (5) and the final part of (3), this implies that Ti and all prior subtasks of T receive a total allocation of one

quantum each in [0, t + 1) in the ideal schedule also. Therefore, any difference in the allocations received in the

ideal schedule and S is only due to subtasks that are released later than Ti. This is illustrated in Fig. 5.

X

time
t t+1

slot with
holes
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Figure 5. Lemma 18. PF windows of a sub-
task Ti and its successor Tj are shown. If
r(Tj) = t, then j = i + 1 holds. Ti is sched-
uled in slot t (indicated by an “X”) and there
are one or more holes in that slot. Arrows
over the window end-points indicate that the
end-point could extend along the direction
of the arrow. Ti and all prior subtasks of T
complete executing at or before t+1. There-
fore, the lag of T at t is at most the allocation
that Ti+1 receives in slot t + 1 in the ideal
schedule.

Obviously, in S, every subtask that is released later than

Ti receives an allocation of zero in [0, t + 1). Therefore,

the lag of T at t + 1 is equal to the allocations that these

later subtasks receive in the ideal schedule in the same in-

terval. To determine this value, let Tj be the successor of

Ti. By Lemma 3, if j > i + 1, then r(Tj) ≥ d(Ti) = t + 1

holds. Hence, among the later subtasks, only Ti+1 may re-

ceive a non-zero allocation in [0, t + 1). By (27), b(Ti) = 1,

and hence, by Lemma 3 again, r(Ti+1) is at least d(Ti)− 1,

which, by (27), is at least t. Hence, in the ideal schedule, the

allocation to Ti+1 in the interval [0, t + 1) may be non-zero

only in slot r(Ti+1).

Thus, if r(Ti+1) ≥ t+1 or Ti+1 is absent, then lag(T, t+1)

is zero. Otherwise, it is given by the allocation that Ti+1

receives in slot t = r(Ti+1) in the ideal schedule. Because

b(Ti) = 1 holds, by Lemma 2, A(ideal, Ti+1, r(Ti+1)) ≤ ρ(T ).

Hence, lag(T, t + 1) ≤ ρ(T ). This is illustrated in Fig. 5. �

The next lemma gives an upper bound on LAG at t + 1 in terms of LAG at t and t− λ + 1, where t is a slot with

holes.

Lemma 19 Let t, where λ − 1 ≤ t < td − λ, be a slot with at least one hole. Then, the following hold. (a)

LAG(τ, t + 1) ≤ LAG(τ, t) · δ + αM · δ. (b) If there is no hole in any slot in [t − λ + 1, t), that is, there is no hole

in any of the λ − 1 slots preceding t, then LAG(τ, t + 1) ≤ LAG(τ, t − λ + 1) · δ + (λα · M − (λ − 1)M) · δ.

Proof: By the statement of the lemma, there is at least one hole in slot t. Therefore, by Lemma 18, only tasks in

set A(t), i.e., tasks that are scheduled in slot t, may have a positive lag at t + 1. Let x denote the number of tasks

scheduled at t, i.e., x =
∑

T∈τ S(T, t) = |A(t)|. Then, by (18), we have

LAG(τ, t + 1) ≤
∑

T∈A(t) lag(T, t + 1)

≤
∑

T∈A(t) ρ(T ) (by Lemma 18)

≤
∑

T∈A(t) ρmax (by (20))

= |A(t)| · ρmax

= x · ρmax. (28)

Using (13), LAG(τ, t + 1) can be expressed as follows.

LAG(τ, t + 1) ≤ LAG(τ, t) +
∑

T∈τ (wt(T ) − S(T, t))
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= LAG(τ, t) +
∑

T∈τ wt(T ) − x (
∑

T∈τ S(T, t) = x)

= LAG(τ, t) + αM − x (by Def. 6) (29)

By (28) and (29), we have

LAG(τ, t + 1) ≤ min(x · ρmax, LAG(τ, t) + αM − x).

Because ρmax ≥ 0, and hence, x·ρmax is non-decreasing with increasing x, whereas LAG(τ, t)+αM−x is decreasing,

LAG(τ, t + 1) is maximized when x · ρmax = LAG(τ, t) + αM − x, i.e., when x = LAG(τ, t) · 1
1+ρmax

+ αM 1
1+ρmax

.

Therefore, using either (28) or (29), we have

LAG(τ, t + 1) ≤ LAG(τ, t) ·
(

ρmax

1+ρmax

)

+ αM ·
(

ρmax

1+ρmax

)

= LAG(τ, t) · δ + αM · δ. (by Def. 7) (30)

The above establishes part (a).

By the statement of the lemma, t ≥ λ − 1, and hence, t − λ + 1 ≥ 0 holds. Therefore, using (15), LAG(τ, t) can

be expressed as follows.

LAG(τ, t) ≤ LAG(τ, t − λ + 1) + (λ − 1) ·
∑

T∈τ wt(T ) −
∑u=t−1

u=t−λ+1

∑

T∈τ S(T, u)

If there is no hole in any slot in [t − λ + 1, t), then
∑

T∈τ S(T, u) = M , for all u in [t − λ + 1, t). Hence,

LAG(τ, t) ≤ LAG(τ, t − λ + 1) + (λ − 1) ·
∑

T∈τ wt(T ) −
∑u=t−1

u=t−λ+1

∑

T∈τ S(T, u)

= LAG(τ, t − λ + 1) + (λ − 1) ·
∑

T∈τ wt(T ) − (λ − 1) · M (there is no hole in [t−λ+1, t)
by assumption)

≤ LAG(τ, t − λ + 1) + (λ − 1)α · M − (λ − 1)M (by Def. 6) (31)

Substituting (31) in (30), we have LAG(τ, t + 1) ≤ LAG(τ, t − λ + 1) · δ + (λα · M − (λ − 1)M) · δ, establishing

part (b). �

The next two lemmas are purely mathematical and are proved in an appendix. They will be used in proving a

later lemma.

Lemma 20 A solution to the recurrence

L0 ≤ δ + δ · αM

Lk ≤ δ · Lk−1 + δ · (λαM − (λ − 1)M),

for all k ≥ 1 and 0 ≤ δ < 1, is given by

Ln ≤ δn+1(1 + αM) + (1 − δn)

(

δ

1 − δ

)

(λαM − (λ − 1)M), for all n ≥ 0.

Lemma 21 M(λ−δ−(λ−1)δn+1)+δn+2−δn+1+1−δ
M(λ−(λ−1)δn+1−δn+2) ≥

M(λ−δ)+ 1
λ

λM holds for all n ≥ 0, 0 ≤ δ ≤ 1/2, and M ≥ 1.

We will next show how to bound LAG at the end of an interval that does not contain λ consecutive slots without

holes, after LAG increases to one at the beginning of the interval.
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Lemma 22 Let t, where λ − 1 ≤ t < td − λ, be a slot across which LAG increases to at least one, i.e.,

λ − 1 ≤ t < td − λ ∧ LAG(τ, t) < 1 ∧ LAG(τ, t + 1) ≥ 1. (32)

Let u, where t < u ≤ td − λ, be such that there is at least one hole in at least one slot in every λ consecutive slots

in the interval [t + 1, u). Then, LAG(τ, u) < (λ − λα)M + 1.

Proof: Because LAG(τ, t + 1) > LAG(τ, t) holds by (32), by Lemmas 4 and 17, we have (C1) and (C2) below,

respectively. ((C2) holds by part (a) of Lemma 17 when λ > 2 and by part (b) of the same Lemma when λ = 2.

By (22), λ ≥ 2 holds.)

(C1) There is at least one hole in slot t.

(C2) There is no hole in slot t − 1.

By the statement of the lemma (that there is at least one hole in at least one slot in every λ consecutive slots in

[t + 1, u)) and (C1), there is at least one hole in at least one slot in every λ consecutive slots in [t, u). Therefore,

at most λ − 1 consecutive slots in the interval can be without any hole. Let

n ≥ 0 (33)

denote the number of slots in [t, u − λ + 1) that each begin a block of λ − 1 consecutive slots with no holes. Note

that the last slot in the last block is before u − 1. If n > 0, let t1, t2, . . . , tn, where t1 < t2 < . . . < tn < u − λ + 1

be such slots. Also note that if there is no hole in [u− λ + 1, u) (provided u−λ + 1 > t + 1 holds), then there is at

least one hole in u − λ. By (C1), t1 > t holds. Further, tn + λ − 1 < u and there is no hole in [ti, ti + λ − 1) for

each i. Because there is at least one hole in at least one slot in any consecutive λ slots in [t, u), there is at least

one hole in ti − 1 for all 1 ≤ i ≤ n. Similarly, there is at least one hole in ti + λ − 1 for all 1 ≤ i ≤ n. Also,

ti+1 − ti ≥ λ, for all 1 ≤ i ≤ n − 1. (34)

We divide the interval [t − 1, u) into n + 1 non-overlapping subintervals that each start at t or at one of the n

slots that begin blocks of λ − 1 consecutive slots without holes in [t, u − λ + 1), namely, t1, . . . , tn, as shown in

Fig. 6. Note that t − 1 exists by the statement of the lemma, and by (C2), there is no hole in slot t − 1. Also, as

noted earlier, t1 > t.

The subintervals denoted I0, I1, . . . , In are defined as follows.

I0
def
=







[t − 1, t1), if t1 exists, i.e., n > 0

[t − 1, u), otherwise
(35)

In
def
= [tn, u), if n > 0 (36)

Ik
def
= [tk, tk+1), for all 1 ≤ k < n (37)
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Figure 6. Lemma 22. LAG(τ, t) < 1 and LAG(τ, t + 1) ≥ 1. There is at least one hole in at least one slot in
every λ consecutive slots in [t − 1, u). Each interval Ik, where 1 ≤ k ≤ n, has one set of λ − 1 consecutive
slots without holes. The objective is to determine an upper bound on LAG(τ, u).

Before proceeding further, we introduce some more notation. We denote the start and end times of Ik, where

0 ≤ k ≤ n, by tks and tkf , respectively, i.e., Ik is denoted as follows.

Ik
def
= [tks , tkf ), for all k = 0, 1, . . . , n (38)

tkh is defined as follows for 0 ≤ k ≤ n.

tkh
def
=







t + 1, k = 0

tks + λ, otherwise
(39)

LAG at tkh is denoted Lk, i.e.,

Lk
def
= LAG(τ, tkh), for all k = 0, 1, . . . , n (40)

Note that each subinterval Ik, where 1 ≤ k ≤ n, contains a block of λ − 1 consecutive slots with no holes that

begins at tks , In may contain a second such block beginning at u − λ + 1, and the following holds (refer to Fig. 6).

(C3) For all k, 0 ≤ k ≤ n, there is (i) no hole in any slot in [tks , tkh − 1), (ii) at least one hole in

tkh − 1, and (iii) at least one hole in at least one slot in [t̂, t̂ + λ − 1), for all t̂, where tkh − 1 ≤ t̂ ≤

min(tkf − 1, u − min(λ − 1, tnf − tnh + 1)).

Our goal now is to derive bounds for LAG at tkf , for all 0 ≤ k ≤ n. Towards this end, we first establish the following

claim, which states that LAG at any time in the interval [tkh, tkf ] is at most Lk for all k. Intuitively, this claim follows

from the following: (i) there is at least one hole in tkh − 1 and (ii) at most λ− 2 consecutive slots are without holes

in [tkh, min(tkf , u − λ + 1)). Due to the above facts, it follows that for every slot with a hole in [tkh, tkf ), there is at

least one hole in at least one of the λ − 1 slots that precede it, which is used with part (a) or (b) of Lemma 17 to

arrive at the required claim.

Claim 1 (∀k : 0 ≤ k ≤ n :: (∀t′ : tkh ≤ t′ ≤ tkf :: LAG(τ, t′) ≤ Lk)).
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For each k, the proof is by induction on t′.

Base Case: t′ = tkh. The claim holds by the definition in (40).

Induction Step: Assuming that the claim holds at all times in the interval [tkh, t′], where tkh ≤ t′ < tkf ,

we show that it holds at t′ + 1. By this induction hypothesis, we have the following.

tkh ≤ t′ < tkf (41)

(∀t̂ : tkh ≤ t̂ ≤ t′ :: LAG(τ, t̂) ≤ Lk) (42)

We consider the following two cases. In each case, if there is no hole in t′, then by Lemma 4, LAG(τ, t′ +

1) ≤ LAG(τ, t′) ≤ Lk. Hence, assume that there is a hole in t′.

Case 1: t′ ≤ tk

h
+ λ − 3. For this case, t′ − λ + 2 ≤ tkh − 1 holds. By (C3)(ii), there is a hole in

slot tkh − 1. By (41), tkh − 1 < t′. Thus, there is at least one hole in the interval [t′ − λ + 2, t′), i.e.,

in one of the λ − 2 slots immediately preceding t′. Therefore, by the contrapositive of Lemma 17(a),

LAG(τ, t′ + 1) ≤ LAG(τ, t′), which by (42), is at most Lk.

Case 2: t′ > tk

h
+ λ − 3. In this case,

tkh − 2 < t′ − λ + 1 (43)

holds. Because tkf ≤ tnf for all 0 ≤ k ≤ n, we have tkf ≤ u by (35) and (36), when n = 0 and

n > 0, respectively, and hence, by (41), we have t′ < u. Therefore, t′ − λ + 1 < u − λ + 1 ≤

u−min(λ−1, tnf − tnh +1) holds. Also, because λ ≥ 2, by (41), t′−λ+1 < tkf −1 follows. Thus, we have

t′−λ+1 < min(tkf −1, u−min(λ−1, tnf − tnh +1)). Therefore, by (43), (C3)(iii) applies for t̂ = t′−λ+1,

and it follows that there is at least one hole in [t′−λ+1, t′). If there is a hole in [t′−λ+2, t′), then by the

contrapositive of Lemma 17(a), LAG(τ, t′ + 1) ≤ LAG(τ, t′), which by (42), is at most Lk. On the other

hand, if there is no hole in [t′ − λ + 2, t′), then there is a hole in t′ − λ + 1 because there is at least one

hole in [t′ − λ + 1, t′). Thus, by the contrapositive of Lemma 17(b), LAG(τ, t′ + 1) ≤ LAG(τ, t′ − λ + 2).

By (43), t′ −λ+2 ≥ tkh, and hence, by (42), LAG(τ, t′ −λ+2) ≤ Lk. The claim follows for this case. �

Having shown that LAG(τ, tkf ) is at most Lk, we now bound Lk. We start by determining a bound for L0. By (40),

L0 = LAG(τ, t0h), which by (39) is LAG(τ, t + 1). Thus,

L0 = LAG(τ, t + 1)

≤ δ · LAG(τ, t) + δ · αM (by Lemma 19(a), because (C1) holds and by
the statement of this lemma, λ−1 ≤ t < td−λ)

< δ + δ · αM, (LAG(τ, t) < 1 by (32)). (44)
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We next determine an upper bound for Lk, where 1 ≤ k ≤ n. Notice that by our definition of Ik in (37), we have

tks = tk−1
f . Thus, LAG(τ, tks) = LAG(τ, tk−1

f ), and hence, by Claim 1, we have

LAG(τ, tks) ≤ Lk−1. (45)

By (39), for k > 0, tkh = tks + λ. By (34) (and because ti = tis) tks + λ − 1 < tk+1
s . Also, tk+1

s ≤ u holds by (37)

and (36). By the statement of the lemma u ≤ td − λ. Thus,

tks + λ − 1 < td − λ. (46)

Also, t1s = t1 > t, and hence,

tks + λ − 1 > t ≥ λ − 1, (47)

where the last inequality is from the statement of the lemma. By (C3)(ii), there is a hole in slot tkh −1 = tks +λ−1,

and by (C3)(i), no hole in any slot in [tks , tkh − 1), i.e., in [tks , tks +λ− 1). Therefore, because (46) and (47) also hold,

Lemma 19(b) applies with tks + λ− 1, and hence, LAG(τ, tks + λ) ≤ δ · LAG(τ, tks) + δ · (λα ·M − (λ− 1) ·M), which

by (40), (45), and tkh = tks + λ implies that

Lk = LAG(τ, tkh) = LAG(τ, tks + λ) ≤ δ · Lk−1 + δ · (λα · M − (λ − 1) · M), for all 1 ≤ k ≤ n. (48)

By (36) and (38), we have u = tnf . Therefore, by Claim 1 and (33), we have

LAG(τ, u) = LAG(τ, tnf ) ≤ Ln, (49)

and hence, an upper bound on LAG(τ, u) can be determined by solving the recurrence given by (44) and (48), which

is restated below for convenience.

L0 < δ + δ · αM

Lk ≤ δ · Lk−1 + δ · (λα · M − (λ − 1) · M) , k ≥ 1

By Lemma 20, a solution to the above recurrence is given by

Lk < δk+1(1 + αM) + (1 − δk)

(

δ

1 − δ

)

(λα · M − (λ − 1) · M).

Therefore, by (49), LAG(τ, u) ≤ Ln < δn+1(1 + αM) + (1 − δn)
(

δ
1−δ

)

(λα · M − (λ − 1) · M).

If Ln is at least (λ − λα)M + 1, then δn+1(1 + αM) + (1 − δn)
(

δ
1−δ

)

(λα · M − (λ − 1) ·M) > (λ − λα)M + 1,

which on rearranging terms implies that

α >
M(λ − δ − (λ − 1)δn+1) + δn+2 − δn+1 + 1 − δ

M(λ − (λ − 1)δn+1 − δn+2)

≥
M(λ − δ) + 1

λ

λM
(by Lemma 21, because 0 ≤ δ < 1/2 by Lemma 8)

=
λM(λ(1 + ρmax) − ρmax) + 1 + ρmax

λ2M(1 + ρmax)
(by Def. 7)

=
U(M, λ, ρmax)

M
(by Def. 3)

≥
min(M, U(M, λ, ρmax))

M
. (50)
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Because (50) is in contradiction to Lemma 7, we conclude that Ln < (λ − λα)M + 1. Hence, by (49), LAG(τ, u) ≤

Ln < (λ − λα)M + 1. �

Lemma 23 Let λ − 1 ≤ t < td − λ be a slot such that LAG(τ, t) < 1 ∧ LAG(τ, t + 1) ≥ 1 and let u be the earliest

time after t such that u = td − λ or there is no hole in any slot in the interval [u, u + λ). (Note that this implies

that there is at least one hole in at least one slot in every λ consecutive slots in [t + 1, u).) Then, at least one of

the following holds.

t < u ≤ td−2λ, there is a hole in u−1, (∀t̂ : u ≤ t̂ < u+λ :: LAG(τ, t̂) < (λ−λα)M +1),
and LAG(τ, u + λ) < 1.

(51)

LAG(τ, td) < 1. (52)

There exists at least one slot with a hole before td − λ and (∀v : t′ + 1 ≤ v ≤ td − λ ::

LAG(τ, v) < (td − v) · (1 − α)M + 1), where t′ is the latest slot with a hole before td − λ.
(53)

Proof: Because LAG(τ, t + 1) > LAG(τ, t) holds (by the statement of the lemma), by Lemma 4, we have the

following.

(D1) There is at least one hole in t.

We consider two cases depending on u. (By the definition of u in the statement of the lemma, if u < td − λ holds,

then there is no hole in u.)

Case 1: u ≤ td − λ and there is no hole in u. By Lemma 14(g),

(D2) there is no hole in any slot in [td − λ + 1, td).

If u = td − λ, then by the condition of this case, there is no hole in td − λ, and hence, by (D2), in any slot in

[td − λ, td), i.e., in [u, u + λ). On the other hand, if u < td − λ, then by the definition of u, there is no hole in

[u, u + λ). Thus, in both cases, we have the following.

(D3) There is no hole in any slot in [u, u + λ).

By the definition of u, there is at least one hole in at least one slot in any λ consecutive slots in the interval [t+1, u).

Therefore, by Lemma 22, we have

LAG(τ, u) < (λ − λα)M + 1. (54)

To prove the lemma for this case, we consider the following two subcases.

Subcase 1(a): u ≤ td − 2λ. For this subcase, we first show that

(D4) there is at least one hole in u − 1.

Because (D3) and u < td − λ (which is implied by the condition of this subcase, since λ ≥ 2) hold, the absence of

holes in u− 1 would imply that there is no hole in any slot in [u− 1, u+λ). This is a contradiction of the fact that
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u is the earliest time after t such that either there is no hole in any slot in [u, u + λ) or u = td − λ. Thus, there is

at least one hole in u − 1.

We next show that LAG(τ, u + λ) < 1 holds. By (15), we have

LAG(τ, u + λ) ≤ LAG(τ, u) + λ ·
∑

T∈τ wt(T ) −
∑v=u+λ−1

v=u

∑

T∈τ S(T, v)

= LAG(τ, u) + λ ·
∑

T∈τ wt(T ) − λM (by (D3), there is no hole in [u, u + λ))

< (λ − λα)M + 1 + λ ·
∑

T∈τ wt(T ) − λM (by (54), LAG(τ, u) < (λ − λα)M + 1)

= (λ − λα)M + 1 + λαM − λM (by Def. 6)

= 1. (55)

Further, by (D3), there is no hole in any slot in [u, u + λ), hence, by Lemma 4, LAG cannot increase across any slot

in this interval. Therefore, by (54), (∀t̂ : u < t̂ < u + λ :: LAG(τ, t̂) ≤ LAG(τ, u) < (λ − λα)M + 1) holds, which

together with (D4), (54) and (55), establishes condition (51) for this subcase.

Subcase 1(b): td − 2λ < u ≤ td − λ. For this subcase, we first show that there is no hole in any slot

in [u, td). If u = td − λ, then, by (D3), there is no hole in [u, td). Otherwise, because u > td − 2λ holds, we

have u + λ ≥ td − λ + 1. Thus, by (D3), there is no hole in any slot in [u, td − λ + 1), and hence, by (D2),

no hole in [u, td). By (14), LAG(τ, td) ≤ LAG(τ, u) + (td − u) ·
∑

T∈τ wt(T ) −
∑td−1

v=u A(S, τ, v). Therefore, by

Definition 6, LAG(τ, td) ≤ LAG(τ, u) + (td − u)αM −
∑td−1

v=u A(S, τ, v). Since there is no hole in [u, td) in S,

A(S, τ, v) = M , for every v in [u, td). Hence, LAG(τ, td) ≤ LAG(τ, u) + (td − u)(αM − M), which by (54), implies

LAG(τ, td) < (λ − λα)M + 1 + (td − u)(αM − M). Since, by the condition of this case, u ≤ td − λ holds, we have

td − u ≥ λ. Hence, because α ≤ 1 (by Lemma 7), LAG(τ, td) < 1 holds. Thus, (52) holds for this subcase.

Case 2: u = td − λ and there is a hole in slot td − λ. Let u′ denote the latest slot with at least one hole

in [t, td − λ). Because (D1) holds, u′ exists, and the following holds.

(D5) u′ < td − λ and there is no hole in any slot in [u′ + 1, td − λ).

Because no λ consecutive slots in [t, td − λ) are without holes (implied by the statement of the lemma, since

u = td − λ for this case), applying Lemma 22 (with u = u′ + 1), we have

LAG(τ, u′ + 1) < λ(1 − α)M + 1. (56)

By (D5), u′ < td − λ, and hence, u′ + 1 ≤ td − λ holds. Therefore, λ ≤ (td − (u′ + 1)), and hence, because α ≤ 1

by Lemma 7,

λ(1 − α)M ≤ (td − (u′ + 1))(1 − α)M (57)

holds. Therefore, by (56), we have

LAG(τ, u′ + 1) < λ(1 − α)M + 1 (58)

≤ (td − (u′ + 1))(1 − α)M + 1 (by (57)). (59)
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For all t̂, where u′ + 2 ≤ t̂ ≤ td − λ, by (15), we have the following.

LAG(τ, t̂) ≤ LAG(τ, u′ + 1) + (t̂ − u′ − 1) ·
∑

T∈τ wt(T ) −
∑t̂−1

v=u′+1

∑

T∈τ S(T, v)

< (λ − λα)M + 1 + (t̂ − u′ − 1) ·
∑

T∈τ wt(T ) −
∑t̂−1

v=u′+1

∑

T∈τ S(T, v) (by (58))

= (λ − λα)M + 1 + (t̂ − u′ − 1) ·
∑

T∈τ wt(T ) − (t̂ − u′ − 1) · M (by (D5) and the definition of
t̂, there in no hole in [u′+1, t̂))

= (λ − λα)M + 1 + α(t̂ − u′ − 1) · M − (t̂ − u′ − 1) · M (by Def. 6)

≤ (λ − λα)M + 1 (by Lemma 7)

≤ (td − t̂) · (1 − α)M + 1 (because t̂ ≤ td − λ) (60)

By the definition of u′, (59), the definition of t̂, and (60), condition (53) holds for this case. �

By part (i) of Lemma 14, there exists a t, where 0 ≤ t < v and v is as defined in Lemma 14(h), such that

LAG(τ, t) < 1 and LAG(τ, s) ≥ 1, for all s in [t + 1, v]. Since by Lemma 16, t ≥ λ − 1 holds, Lemma 23 applies for

t. Let t′ = u + λ, where u is as defined in Lemma 23. If (51) holds, then

(E) u ≤ td − 2λ and there is a hole in u − 1,

and LAG(τ, t′) < 1 holds. Hence, if t′ < v holds, then the existence of t, and hence Lemma 14(i), is contradicted.

On the other hand, if t′ ≥ v holds, then, because, by (E), there is a hole in u − 1 < td − 2λ, and by the definition

of v in Lemma 14(h), which states that there is no hole in any slot in [v, td − λ), we have u − 1 < v, i.e., v ≥ u.

Therefore, we have, u ≤ v ≤ t′. However, by (51), LAG at every time between u and u + λ− 1 = t′ − 1 is less than

(λ − λα)M + 1, and at time u + λ = t′ is less than one, and hence, is less than (λ − λα)M + 1 (as α ≤ 1). This

contradicts Lemma 14(h). If (52) holds, then Lemma 14(c) is contradicted. Finally, if (53) holds, then at every

time s after the latest slot with a hole before td − λ and until td − λ, LAG(τ, s) < (td − s) · (1 − α)M + 1, which

contradicts part (h) of Lemma 14. Therefore, our assumption that τ misses a deadline at td is incorrect, which in

turn proves Theorem 1.

According to Theorem 1, min(M, U(M, λ, ρmax)) is a schedulable utilization bound for EPDF on M processors.

We now show that every GIS task system with total utilization at most min(M, U(M, λ, Wmax)) is also correctly

scheduled under EPDF. For this, first note that the first derivative of U(M, λ, f) = λM(λ(1+f)−f)+1+f
λ2(1+f) with respect

to f is given by −M
λ(1+f)2 , which is negative for all M ≥ 1, λ ≥ 1, and 0 ≤ f ≤ 1. Hence, U(M, λ, f) is a decreasing

function of f for 0 ≤ f ≤ 1. By (19), ρ(T ) < wt(T ) holds for each task T . Therefore, 0 ≤ ρmax < Wmax ≤ 1 holds,

and hence, U(M, λ, Wmax) < U(M, λ, ρmax) holds, by which we have the following corollary to Theorem 1.

Corollary 1 A GIS task system τ is schedulable on M processors under EPDF if the total utilization of τ is at

most min(M, λM(λ(1+Wmax)−Wmax)+1+Wmax

λ2(1+Wmax) ), where Wmax and λ are as defined in (21) and (22), respectively.

Comparison with EDF. Fig. 7 shows how the utilization bound derived for EPDF compares to the best known

bounds of partitioned EDF (p-EDF) [37], global EDF (g-EDF) [30, 10], and a variant of global EDF, called fp-

EDF [30], in which tasks with utilizations greater than 1/2 are statically given higher priority than the remaining
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Figure 7. Schedulable utilization Bound by Wmax. The order of the curves coincides with that in the legend.

tasks, and the remaining tasks are scheduled under EDF [13]. As discussed in Sec. 1, for any M , there exist task

sets with utilization roughly equal to 1.0 that can miss deadlines under g-EDF, and hence, the worst-case utilization

bound under this algorithm approaches 0.0% of the available processing capacity. In general, there does not exist

a correlation between Wmax and ρmax. That is, Wmax(τ) > Wmax(τ
′) 6⇒ ρmax(τ) > ρmax(τ

′), where τ and τ ′ are

two distinct task systems. For example, though 7
12 > 55

96 , ρ( 7
12 ) = 1

2 , which is less than ρ(55
96 ) = 9

16 . Thus, a general

characterization of any utilization bound as a function of ρmax may not convey useful information. Hence, in Fig. 7,

each bound is plotted as a function of Wmax only. Also, ρmax(τ) cannot be determined if only Wmax(τ) is known.

However, since gcd(T.e, T.p) ≥ 1 holds for every T , by (19) and (20), ρmax(τ) is at most Wmax(τ)−1/pmax(τ), where

pmax is the maximum period of any task. Hence, for an arbitrary task system, a utilization bound higher than that

given by min(M, U(M, λ, Wmax)) is possible if at least pmax is also known. Thus, in Fig. 7, utilization bounds for

EPDF for tasks systems with pmax = 5 and pmax = 10 computed using Theorem 1 assuming ρmax = Wmax −1/pmax

are plotted, as is the U(M, λ, ρmax) bound. As can be seen from the plots, the utilization bound of EPDF is higher

than those of p-EDF and fp-EDF by around 25% when Wmax > 1/2.

Note that as is generally the case with utilization bounds, the bound for EPDF also decreases with increasing

Wmax. This bound is also piece-wise continuous with discontinuities whenever λ changes, i.e., at Wmax = 1/p,

where p is an integer. In other words, when considering Wmax for increasing values, there is a sharper decrease

in the utilization bound at Wmax = 1/p than at other points, with the decrease becoming more pronounced as p

decreases. In fact, due to scale, the discontinuities are not perceptible for p > 3 (i.e., Wmax < 0.33̄) in the curves
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in Fig. 7, and the drop in the bound is more pronounced for p = 2 (i.e., at Wmax = 0.5) than for p = 3 (i.e., at

Wmax = 0.33̄). These discontinuities are due to the following reason. The bound given by Corollary 1 decreases

with increasing Wmax and decreasing λ; λ is not an independent variable, but a decreasing piece-wise constant

function of Wmax, and assumes a constant value of p for Wmax in the subinterval [ 1p , 1
p−1 ), where p ≥ 2. Further,

the EPDF bound is a continuous decreasing function of Wmax for a given λ, and has a term proportional to −1
λ .

Therefore, it incurs an extra drop that is proportional to the change in 1/λ when λ decreases. For example, at

Wmax = 0.5, 1/λ increases by 33.3% to 0.5 (from 0.33̄), which is higher than the 25% increase at Wmax = 0.33̄

(from 0.25 to 0.33̄). Hence, the drop is higher at Wmax = 0.5. In the context of the derivation of the bound, when

λ decreases by one, the number of contiguous slots without holes decreases by one, resulting in a drop of M −Usum

to the permissible accumulation of LAG, which in turn leads to a drop in the utilization bound in a non-continuous

manner. Also, the percentage by which the total permissible LAG drops (due to a decrease of one slot without a

hole) increases with decreasing number of slots without holes, and hence the highest drop at λ = 2 (which value is

encountered first when Wmax = 0.5).

Similar characteristic as noted in the EPDF plots and described above can be observed in the plot for p-EDF

also. In the case of p-EDF, the utilization bound depends on the minimum number of tasks, say β, that can

necessarily be assigned to each processor by a partitioning algorithm. β can easily be seen to be
⌊

1
Wmax

⌋

, and

for reasonable partitioning heuristics, the utilization bound is roughly equal to βM
β+1 , which is a constant p − 1

for Wmax ∈ ( 1
p , 1

p−1 ]. Also, the bound is an increasing function of β and, hence, since β decreases by one at

Wmax = 1/p, the bound exhibits discontinuous drops at Wmax = 1/p. To understand the result, consider a task

set with Wmax = 1
3 + ε = 1

3−ε′ . In this case β =
⌊

1
Wmax

⌋

= 2, and since at least two tasks of utilization Wmax

of every such task set can be assigned to each processor, it can be shown that the total utilization of all the

tasks assigned to each processor is at least 2 · (1/3 + ε). The utilization bound in this case is therefore at least

2 · (1/3 + ε) · M ≥ 2 · 1/3 · M . Since β =
⌊

1
Wmax

⌋

⇒Wmax > 1
β+1 , the above argument can be generalized to show

that for an arbitrary Wmax, the total utilization of tasks assigned to each processor is at least β · 1/(β + 1) and

that the utilization bound is at least βM
β+1 .

In Sec. 3, we mentioned that Srinivasan and Anderson have shown that EPDF can correctly schedule every task

system with Wmax ≤ 1
M−1 [44]. With Wmax = 1

M−1 , the utilization bound given by Corollary 1 is M− 1
M−1+ 1

(M−1)2 ,

which approaches M asymptotically. The discrepancy for lower values of M is due to the approximation of ρmax

by Wmax. Hence, the results of this paper are useful only when Wmax > 1
M−1 holds.

How accurate is the utilization bound given by Theorem 1? Is it the worst-case for EPDF? As yet, we do not

fully know the answers to these questions. The closest we have come towards providing any answer is the following

task system, which can miss deadlines under EPDF.

Counterexample. Consider a task system that consists of 2n + 1 tasks of weight 1
2 , n tasks of weight 3

4 , and

n tasks of weight 5
6 scheduled on 3n processors, where n ≥ 2. There is an EPDF schedule for this task system

in which a deadline miss occurs at time 12. One such schedule is shown in Fig. 8. The total utilization of this

task system is 31n
12 + 1

2 , which approaches 86.1% of 3n, the total processing capacity, as n approaches infinity. The
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Figure 8. An EPDF schedule with a deadline miss for a task system with 2n + 1 tasks of weight 1
2 , n tasks

with weight 3
4 , and n tasks with weight 5

6 on M = 3n processors, where n ≥ 2. The number of tasks for
each weight scheduled in each time slot is indicated. As n → ∞, the total utilization of this task system
approaches 86.1%.

utilization bound given by Theorem 1 for a task system with task parameters as in this example is slightly above

80% for large M . Hence, at least asymptotically, the value derived does not seem to be too pessimistic. However,

the same cannot be said when M is small. For instance, for the example under consideration, the total utilizations

when n = 2 and n = 3 (i.e., M = 6 and M = 9) are 94.4% and 91.6%, respectively, while the estimated values are

only 84.1% and 82.7%. Further, though this single task system is too little data to draw general conclusions, the

difficulty in identifying counterexamples and some of the approximations made in the analysis make us strongly

believe that our result is not tight.

Utilization restriction for a tardiness of q quanta. Having determined a sufficient utilization restriction for

schedulability under EPDF, we were interested in determining a sufficient utilization restriction for a tardiness of

q ≥ 1 quanta. Extending the technique used in this paper, we have found that if the total utilization of τ is at most

min(M, ((q+1)Wmax+(q+2))M+((2q+1)Wmax+1)
2(q+1)Wmax+2 ), then no subtask of τ misses its deadline by more than q quanta. For

a tardiness of at most one, this imposes a sufficient utilization restriction of 83.3%. A proof can be found in [26].

5 Conclusion

We have determined a utilization bound for the non-optimal earliest-pseudo-deadline-first (EPDF) Pfair schedul-

ing algorithm on multiprocessors, and thereby, presented a sufficient schedulability test for EPDF. In general, on

M > 2 processors, the utilization bound derived is at least 3M+1
4 , and is higher than that known for every non-Pfair

algorithm by around 25% when task utilizations are not restricted. Our bound is expressed as a decreasing function
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of the maximum weight, Wmax, of any task, and hence, if this value is known, may be used to schedule task systems

with total utilization exceeding 3M+1
4 . EPDF is more efficient than optimal Pfair algorithms and may be preferable

for systems instantiated on less-powerful platforms or systems whose task composition can change at run-time.

Currently, it is not known whether the utilization bound derived is the worst-case for EPDF. We have only

presented a counterexample that shows that the worst-case value for Wmax ≤ 5
6 is at most 86.1%, which also

suggests that a significant improvement to the result may not be likely. We have also considered extending the

result to allow non-zero tardiness.
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Appendix: Proofs Omitted in the Main Text

Lemma 3 For all i ≥ 1, k ≥ 1, the following holds.

r(Ti+k) ≥







d(Ti) + k − 1, b(Ti) = 0

d(Ti) + k − 2, b(Ti) = 1

Proof: We consider two cases based on b(Ti).
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Case 1: b(Ti) = 0. In this case, by (16), i
wt(T ) is an integer. Hence,

r(Ti+k) = Θ(Ti+k) +

⌊

i + k − 1

wt(T )

⌋

(by (1))

= Θ(Ti+k) +
i

wt(T )
+

⌊

k − 1

wt(T )

⌋

(because i
wt(T ) is an integer)

= Θ(Ti+k) +

⌈

i

wt(T )

⌉

+

⌊

k − 1

wt(T )

⌋

> Θ(Ti+k) +

⌈

i

wt(T )

⌉

+
k − 1

wt(T )
− 1

≥ Θ(Ti) +

⌈

i

wt(T )

⌉

+
k − 1

wt(T )
− 1 (because Θ(Ti+k) ≥ Θ(Ti))

= d(Ti) +
k − 1

wt(T )
− 1 (by (1))

≥ d(Ti) + k − 2 (because wt(T ) ≤ 1 and k ≥ 1).

Because, r(Ti+k) is an integer, the above implies that r(Ti+k) ≥ d(Ti) + k − 1.

Case 2: b(Ti) = 1. In this case,

r(Ti+k) = Θ(Ti+k) +

⌊

i + k − 1

wt(T )

⌋

(by (1))

> Θ(Ti+k) +
i + k − 1

wt(T )
− 1

= Θ(Ti+k) +
i

wt(T )
+

k − 1

wt(T )
− 1

> Θ(Ti+k) +

⌈

i

wt(T )

⌉

+
k − 1

wt(T )
− 2

≥ Θ(Ti) +

⌈

i

wt(T )

⌉

+
k − 1

wt(T )
− 2 (because Θ(Ti+k) ≥ Θ(Ti))

= d(Ti) +
k − 1

wt(T )
− 2 (by (1))

≥ d(Ti) + k − 3 (because wt(T ) ≤ 1 and k ≥ 1).

For this case again, the lemma holds because r(Ti+k) is an integer. �

Lemma 8 0 ≤ δ < 1
2 .

Proof: By Definition 7, δ = ρmax

1+ρmax
. The first derivative of δ with respect to ρmax, δ′(ρmax), is 1

(1+ρmax)2 , which

is positive, and hence, δ is increasing with ρmax (though the rate of increase decreases with ρmax). By (20) and

(19), 0 ≤ ρmax < Wmax holds. Hence, ρmax lies in the range [0, 1). δ(0) = 0 and δ(1) = 1
2 , from which, the lemma

follows. �

Lemma 13 If LAG(τ, t + 1) > LAG(τ, t − `), where 0 ≤ ` ≤ λ − 2 and t ≥ `, then B(t − `, t + 1) 6= ∅.

Proof: We will refer to sets A(t− `, t + 1), B(t− `, t + 1), and I(t− `, t + 1) as A, B, and I, respectively. By (12),

LAG(τ, t + 1) = LAG(τ, t− `) +
∑

T∈τ (A(ideal, T, t− `, t + 1)− A(S, T, t− `, t + 1)). Because, tasks in I are neither

active nor scheduled in the interval [t − `, t + 1), by (17), LAG(τ, t + 1) = LAG(τ, t − `) +
∑

T∈A∪B(A(ideal, T, t −
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`, t + 1)−A(S, T, t− `, t + 1)) holds. Because ` ≤ λ− 2 holds by the statement of the lemma, t + 1− (t− `) ≤ λ− 1

holds. Therefore, by (4), for each T in A ∪ B, A(ideal, T, t − `, t + 1) ≤ (λ − 1) · wt(T ) ≤ 1 holds. The last

inequality holds because, by (22), either λ = 2 or Wmax ≤ 1
λ−1 . Hence, LAG(τ, t + 1) ≤ LAG(τ, t − `) + |A ∪ B| −

∑

T∈A∪B A(S, T, t − `, t + 1). By the statement of the lemma, LAG(τ, t + 1) > LAG(τ, t − `). Therefore, it follows

that |A ∪ B| −
∑

T∈A∪B A(S, T, t − `, t + 1) > 0, i.e.,

∑

T∈A∪B A(S, T, t − `, t + 1) < |A ∪ B|. (61)

Now, if B is empty, then, |A ∪B| = |A| holds. Because, by definition, every task in A is scheduled at least once in

the interval [t− `, t + 1),
∑

T∈A∪B A(S, T, t− `, t + 1) ≥ |A| = |A∪B|, which is a contradiction to (61). Therefore,

B(t − `, t + 1) 6= ∅. �

Lemma 24 Let T be a unit-weight task. Then, d(Ti) = r(Ti) + 1 and |ω(Ti)| = 1 hold for every subtask Ti of T .

Proof: Follows directly from wt(T ) = 1, (1), and the definition of ω(Ti). �

In some of the proofs that follow, we identify tasks that receive an allocation of zero at time t in the ideal schedule

using the following definition.

Definition 8: A GIS task U is a Z-task at time t iff there exists no subtask Uj such that r(Uj) ≤ t < d(Uj). The

set of all tasks that are Z-tasks at t is denoted Z(t).

By (3), and because A(ideal, U, t) =
∑

i A(ideal, Ui, t) holds, U is a Z-task at t iff A(ideal, U, t) = 0. Also, note that

while T ∈ I(t) ⇒ T ∈ Z(t), the converse does not hold. This is because, a task may have one or more subtasks

whose IS-windows include slot t, and hence, are active at t, even if their release times are after t, i.e., even if their

PF-windows do not include slot t.

The next two lemmas concern tasks with unit weight that are Z-tasks at some time t. The first lemma says

that if a subtask of a unit-weight task is scheduled before its release time, then that task is a Z-task during some

earlier time.

Lemma 25 Let Ti be a subtask of a unit-weight task T scheduled at some time t < td. If r(Ti) > t, then T is a Z

task in at least one slot in [0, t + 1).

Proof: Follows easily from the fact that unit-weight tasks have PF-windows of length one and no subtask is

scheduled before time 0. �

Lemma 26 Let T be a unit-weight task and suppose T is not scheduled at some time t < td, where there is at least

one hole in t. Then, there exists a time t′ ≤ t, such that there are no holes in [t′, t) and there exists at least one

slot t̂ in [t′, t + 1), such that T is a Z-task in t̂.
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Proof: Because T is not scheduled at t, by (17), either T ∈ B(t) or T ∈ I(t). If T ∈ I(t), then T is a Z-task at t.

Therefore, the lemma is trivially satisfied with t̂ = t′ = t. So assume T ∈ B(t) for the rest of the proof. Let Tj be

the critical subtask at t of T . Then, by Definition 2, we have

d(Tj) ≥ t + 1. (62)

Also, because there is a hole in t, by Lemma 10, Tj is scheduled before t, say t′′, i.e.,

t′′ < t ∧ S(Tj , t
′′) = 1. (63)

Because there is a hole in t, by Lemma 11, d(Tj) ≤ t + 1 holds, which, by (62), implies that d(Tj) = t + 1 holds.

Because wt(T ) = 1, by Lemma 24, we have r(Tj) = t. Thus,

r(Tj) = t ∧ d(Tj) = t + 1. (64)

Because (63) and (64) hold, by Lemma 25, T is a Z-task at some time at or before t′′, i.e., before t. Let z be the

latest such time. Then, we have

0 ≤ z < t ∧ (6 ∃Tk : r(Tk) ≤ z ∧ d(Tk) > z) ∧ (∀z′ : z < z′ ≤ t :: (∃Tk : r(Tk) ≤ z′ ∧ d(Tk) > z′)). (65)

Because wt(T ) = 1 holds, by Lemma 24, (65) implies the following.

0 ≤ z < t ∧ (6 ∃Tk : r(Tk) = z ∧ d(Tk) = z + 1)∧ (∀z′ : z < z′ ≤ t :: (∃Tk : r(Tk) = z′ ∧ d(Tk) = z′ + 1))(66)

We next claim the following. (Informally, Claim 2 says that every subtask of T with release time in [z + 1, t] is

scheduled before its release time, and there is no hole in any slot between where the subtask is scheduled and its

deadline.)

Claim 2 If r(Tk) = z′ ∧ d(Tk) = z′ + 1 holds, where z < z′ ≤ t, then there exists a u′, where

u′ ≤ t′′ − (t − z′) < z′, such that Tk is scheduled at u′, and there is no hole in any slot in [u′, z′).

The proof is by induction on decreasing values for z′. So, we begin with z′ = t.

Base Case: z′ = t. By (64), we have r(Tj) = t and d(Tj) = t + 1, and by (63), we have S(Tj , t
′′) = 1.

Further, t′′ − (t − z′) = t′′ − (t − t) = t′′. By (63), t′′ < t = z′. Therefore, to show that the claim holds

for this case with u′ = t′′, we only have to show that there is no hole in any slot in [t′′, t). Assume to

the contrary that there is a hole in slot th in [t′′, t). Then, by Lemma 11, d(Tj) ≤ th + 1 < t + 1, which

is in contradiction to (64). Hence, the assumption does not hold.

Induction Hypothesis: Assume that for all z′, where z′′ ≤ z′ ≤ t and t ≥ z′′ > z + 1, (r(Tk) = z′ ∧

d(Tk) = z′ + 1) ⇒ (∃u′ : u′ ≤ t′′ − (t − z′) < z′ :: (S(Tk, u′) = 1 ∧ there are no holes in [u′, z′)) holds.

(Informally, the claim holds for all z′ in [z′′, t].)

Induction Step: We now show that the following holds, i.e., the claim holds, for z′′ − 1.

(r(Tk) = z′′ − 1 ∧ d(Tk) = z′′) ⇒ (∃u′ : u′ ≤ t′′ − (t − (z′′ − 1)) < z′′ − 1 ::

(S(Tk, u′) = 1 ∧ there is no hole in any slot in [u′, z′′ − 1))) (67)
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By (66), there exists a subtask T` with r(T`) = z′′ and d(T`) = z′′+1. By the induction hypothesis, T` is

scheduled at or before t′′−(t−z′′). Let Tk be a subtask such that r(Tk) = z′′−1 and d(Tk) = z′′. Then,

because r(Tk) < r(T`) holds, k < ` holds. Also, d(Tk) < d(T`). Hence, by (2), Tk is scheduled before

T`, i.e., Tk is scheduled at or before t′′ − (t− z′′)− 1 = t′′ − (t− (z′′ − 1)). Because t′′ − (t− (z′′ − 1)) =

z′′−1−(t− t′′), by (63), we have t′′−(t−(z′′−1)) < z′′−1. Thus, we have shown that if the antecedent

of the implication in (67) holds, then the first subexpression of the consequent is satisfied. To see that

there are no holes in [t′′ − (t − (z′′ − 1)), z′′ − 1), assume to the contrary that there is a hole in slot th

in this interval. Then, by Lemma 11, d(Tk) ≤ th + 1 ≤ z′′ − 1, which is in contradiction to d(Tk) = z′′.

Thus, the claim holds for z′′ − 1. �

(66) and Claim 2 imply that (∀z′ : z < z′ ≤ t :: there are no holes in z′ − 1). Therefore, it immediately follows

that there are no holes in [z, t). Also, we defined z such that T is a Z-task at z. Therefore, the lemma follows. �

Proof of parts (f), (g), (h), and (i) of Lemma 14.

Lemma 14 The following properties hold for τ and S.

(a) For all Ti, d(Ti) ≤ td.

(b) Exactly one subtask of τ misses its deadline at td.

(c) LAG(τ, td) = 1.

(d) Let Ti be a subtask that is scheduled at t < td in S. Then, e(Ti) = min(r(Ti), t).

(e) (∀Ti :: d(Ti) < td ⇒ (∃t :: e(Ti) ≤ t < d(Ti) ∧ S(Ti, t) = 1)). That is, every subtask with deadline before td

is scheduled before its deadline.

(f) Let Uk be the subtask that misses its deadline at td. Then, U is not scheduled in any slot in [td − λ + 1, td).

(g) There is no hole in any of the last λ − 1 slots, i.e., in slots in [td − λ + 1, td).

(h) There exists a time v ≤ td − λ such that the following both hold.

(i) There is no hole in any slot in [v, td − λ).

(ii) LAG(τ, v) ≥ (td − v)(1 − α)M + 1.

(i) There exists a time u ∈ [0, v) where v is as defined in part (h), such that LAG(τ, u) < 1 and LAG(τ, t) ≥ 1 for

all t in [u + 1, v].

As mentioned in the main text, parts (a), (b), (c), and (d) are proved in [42]. Part (e) follows directly from

Definition 4 and (T1). The other parts are proved below.

Proof of (f): If Uk is the first subtask of U , then it is trivial that U is not scheduled at any time before td. So

assume Uk is not the first subtask of U and let Uj be Uk’s predecessor. We first show that the deadline of Uj is

at or before td − λ + 1. Because Uk misses its deadline at td, d(Uk) = td holds. If Wmax < 1, then by Lemma 15,

|ω(Uk)| ≥ λ. On the other hand, if Wmax = 1, then by (22), λ = 2. Hence, if wt(U) < 1, then by Lemma 1,

|ω(Uk)| ≥ 2 = λ. Thus, if either Wmax < 1 or Wmax = 1 ∧ wt(U) < 1, then r(Uk) ≤ td − λ holds. Since Uk is Uj’s
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predecessor, k ≤ j − 1 holds, and by Lemma 3, d(Uj) ≤ td − λ + 1 follows. Finally, if Wmax = 1 and wt(U) = 1,

then because the deadlines of any two consecutive subtasks of a unit-weight task are separated by at least one time

slot, d(Uj) ≤ td − 1 = td − λ + 1 follows.

Thus, by part (e), Uj and every prior subtask of U is scheduled before td −λ+1. Obviously, no U`, where ` > k,

is scheduled before Uk is scheduled. Therefore, no subtask of U is scheduled in any slot in [td − λ + 1, td). �

Proof of (g): Let Uk denote the subtask that misses its deadline at td. By Lemma 15, |ω(Uk)| ≥ λ − 1 holds,

Therefore, r(Uk) ≤ td − λ + 1. Further, by part (f), no subtask of U is scheduled in any slot in [td − λ + 1, td).

Hence, Uk is ready and eligible to be scheduled in [td − λ + 1, td). Thus, if there is a hole in this interval, then

EPDF would schedule Uk there, which contradicts the fact that Uk misses its deadline. �

Proof of (h): We prove this part using part (g) and Lemma 26. Let τ1 and N1 be defined as follows.

τ1
def
= {T | T ∈ τ ∧ wt(T ) = 1} (68)

|τ1|
def
= N1 (69)

Then, by (T0), we have

N1 ≤ M, (70)

and by Definition 6,

∑

T∈τ\τ1

wt(T ) = αM − N1. (71)

By part (g), there is no hole in any slot in [td − λ + 1, td). Therefore, by (70), at least M − N1 tasks with weight

less than one (i.e., tasks in τ \ τ1) are scheduled in each slot in [td − λ + 1, td), i.e.,


∀t : td − λ + 1 ≤ t < td ::
∑

T∈τ\τ1

S(T, t) ≥ M − N1



 . (72)

Let T denote the set of all subtasks of tasks not in τ1 that are scheduled in some slot in [td − λ + 1, td), i.e.,

T = {Ti | T ∈ τ \ τ1 ∧ Ti is scheduled in the interval [td − λ + 1, td)}. (73)

Let Ti be some subtask in T . If Wmax < 1, then by Lemma 15, |ω(Ti)| ≥ λ holds. Otherwise, since, T 6∈ τ1,

wt(T ) < 1 holds, and hence, by Lemma 1, |ω(Ti)| ≥ 2 = λ holds. (The last equality follows from (22), since

Wmax = 1.) Thus, in both cases, the length of the PF-window of every subtask in T is at least λ. By part (a),

d(Ti) ≤ td. Hence, because |ω(Ti)| ≥ λ holds, it follows that r(Ti) ≤ td − λ. Therefore, by Lemma 3, the deadline

of the predecessor, if any, say, Th, of Ti is at or before td − λ + 1. Hence, by part (e), Th and all prior subtasks of

T are scheduled before td −λ + 1. Thus, at most one subtask of every task not in τ1 is scheduled in [td −λ + 1, td).

Furthermore, as shown above, the release time of each such subtask is at or before td − λ.

By (72), |T | ≥ (λ− 1) · (M −N1), and by the discussion above, every subtask in T is of a distinct task, and the

release time of each such subtask is at or before td − λ. By (69), in every time slot, at least M − N1 processors

are available for scheduling tasks not in τ1. Therefore, the fact that no subtask in T is scheduled at td − λ implies
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that either there is no hole in td − λ, that is, M other subtasks of tasks in τ are scheduled there, or there is a hole

in td − λ and the predecessor of every subtask in T (that is at least (λ − 1) · (M − N1) distinct tasks in τ \ τ1) is

scheduled there. Let h ≥ 0 denote the number of holes in slot td − λ. If h > 0 holds, then by the discussion above,

(λ − 1) · (M − N1) < M holds, and at least (λ − 1) · (M − N1) tasks in τ \ τ1 are scheduled in td − λ. Hence, at

most M − (λ − 1) · (M − N1) − h = (λ − 1)N1 − (λ − 2)M − h tasks in τ1 are scheduled at td − λ. Let

Ns
1

def
=

∑

T∈τ1

S(T, td − λ). (74)

Then, by the above discussion,

h > 0 ⇒ Ns
1 ≤ (λ − 1)N1 − (λ − 2)M − h < (λ − 1)N1 − (λ − 2)M. (75)

Let τz
1 denote the subset of all tasks in τ1 that are not scheduled at td − λ. If τz

1 is not empty and h > 0, then let

Y be a task in τz
1 . Then, by Lemma 26, there exists a time u ≤ td − λ such that Y is a Z-task at u and there is

no hole in any slot in [u, td − λ). Let v be defined as follows.

v
def
=











td − λ, if τz
1 = ∅ ∨ h = 0

minY ∈τz

1
{u ≤ td − λ | there is no hole in [u, td − λ)

and Y is a Z-task in at least one slot in [u, td−λ+1)}
, if τz

1 6= ∅ ∧ h > 0

v satisfies the following.

Every task in τz
1 is a Z-task in at least one slot in the interval [v, td − λ + 1). (76)

There is no hole in [v, td − λ). (77)

To complete the proof, we are left with determining a lower bound on LAG(τ, v). By (12), we have

LAG(τ, v) = LAG(τ, td) −
∑

T∈τ

∑td−1
u=v (A(ideal, T, u)− S(T, u)) , by (12)

= 1 −
∑

T∈τ

∑td−1
u=v (A(ideal, T, u)− S(T, u)) , by part (c)

= 1 −
∑

T∈τ

∑td−1
u=v A(ideal, T, u) +

∑

T∈τ

∑td−1
u=v S(T, u)

= 1 − (
∑

T∈τ

∑td−1
u=v A(ideal, T, u)) + (td − v)M − h

, there are h holes in td −λ; by part (g), there is no hole in
[td − λ + 1, td), and by (77), there is no hole in [v, td − λ)

= 1 −
∑

T∈τ1

∑td−λ
u=v A(ideal, T, u) −

∑

T∈τ\τ1

∑td−λ
u=v A(ideal, T, u)

−
∑

T∈τ

∑td−1
u=td−λ+1 A(ideal, T, u) + (td − v)M − h

≥ 1 −
∑

T∈τ1

∑td−λ
u=v A(ideal, T, u) −

∑

T∈τ\τ1

∑td−λ
u=v wt(T )

−
∑

T∈τ

∑td−1
u=td−λ+1 wt(T ) + (td − v)M − h , by (4)

= 1 −
∑

T∈τ1

∑td−λ
u=v A(ideal, T, u)

−(αM − N1)(td − v − λ + 1) − (λ − 1)αM + (td − v)M − h , by (71) and Def. 6

= 1 −
∑

T∈(τ1\τz

1
)

∑td−λ
u=v A(ideal, T, u)−

∑

T∈τz

1

∑td−λ
u=v A(ideal, T, u)

−(αM − N1)(td − v − λ + 1) − (λ − 1)αM + (td − v)M − h

≥ 1 −
∑

T∈(τ1\τz

1
)

∑td−λ
u=v wt(T ) −

∑

T∈τz

1

∑td−λ
u=v A(ideal, T, u)

43



−(αM − N1)(td − v − λ + 1) − (λ − 1)αM + (td − v)M − h , by (4)

= 1 − (Ns
1 )(td − v − λ + 1) −

∑

T∈τz

1

∑td−λ
u=v A(ideal, T, u)

−(αM − N1)(td − v − λ + 1) − (λ − 1)αM + (td − v)M − h , by the definitions of τ1

and τz
1 , (69), and (74)

= 1 −
∑

T∈τz

1

∑

{u | v ≤ u ≤ td − λ ∧ T is not a Z-task at u} A(ideal, T, u)

−(Ns
1 )(td − v − λ + 1) − (αM − N1)(td − v − λ + 1) − (λ − 1)αM + (td − v)M − h

, by Def. 8 (Z-task) and (3)

≥ 1 −
∑

T∈τz

1

∑

{u | v ≤ u ≤ td − λ ∧ T is not a Z-task at u} wt(T )

−(Ns
1 )(td − v − λ + 1) − (αM − N1)(td − v − λ + 1) − (λ − 1)αM + (td − v)M − h

, by (4)

≥ 1 −
∑

T∈τz

1
(td − v − λ)wt(T ) − (Ns

1 )(td − v − λ + 1)

−(αM − N1)(td − v − λ + 1) − (λ − 1)αM + (td − v)M − h , by (76)

= 1 − (N1 − Ns
1 )(td − v − λ) − (Ns

1 )(td − v − λ + 1)

−(αM − N1)(td − v − λ + 1) − (λ − 1)αM + (td − v)M − h , by the definitions of τ1

and τz
1 , (69), and (74)

= 1 + N1 − Ns
1 − αM(td − v) + M(td − v) − h , simplifying

≥







1 + N1 − Ns
1 − αM(td − v) + M(td − v), h = 0

1 − (λ − 2)N1 + (λ − 2)M − αM(td − v) + M(td − v), h > 0
, by the first inequality in (75)

≥ 1 + (M − αM)(td − v).
, because N1 − Ns

1 ≥ 0,
and, by (69) and (70),
N1 ≤ M

�

Proof of (i): Follows from the facts that LAG(τ, 0) = 0 and there exists a v ≤ td − λ such that LAG(τ, v) ≥

(td − v)(1 − α)M + 1 (from part (h)). Note that, by Lemma 7, (td − v)(1 − α)M + 1 ≥ 1. �

Lemma 20 A solution to the recurrence

L0 < δ + δ · αM

Lk ≤ δ · Lk−1 + δ · (λαM − (λ − 1)M), (78)

for all k ≥ 1 and 0 ≤ δ < 1, is given by

Ln < δn+1(1 + αM) + (1 − δn)

(

δ

1 − δ

)

(λαM − (λ − 1)M), for all n ≥ 0. (79)

Proof: The proof is by induction on n.

Base Case: Holds trivially for n = 0.

Induction Hypothesis: Assume that (79) holds for L0, . . . , Lk.

Induction Step: Using (78), we have

Lk+1 ≤ δLk + δ(λαM − (λ − 1)M)

< δk+2(1 + αM) + δ(1 − δk)
(

δ
1−δ

)

(λαM − (λ − 1)M) + δ(λαM − (λ − 1)M)
(by (79) (induc-
tion hypothe-
sis))

44



= δk+2(1 + αM) + δ(λαM − (λ − 1)M)((1 − δk)
(

δ
1−δ

)

+ 1)

= δk+2(1 + αM) + (1 − δk+1)
(

δ
1−δ

)

((λαM − (λ − 1)M),

which proves the lemma. �

Lemma 21 M(λ−δ−(λ−1)δn+1)+δn+2−δn+1+1−δ
M(λ−(λ−1)δn+1−δn+2) ≥

M(λ−δ)+ 1
λ

λM holds for all n ≥ 0, 0 ≤ δ ≤ 1/2, and M ≥ 1.

Proof: First, note the following.

M(λ−δ−(λ−1)δn+1)+δn+2−δn+1+1−δ
M(λ−(λ−1)δn+1−δn+2) ≥

M(λ−δ)+ 1
λ

λM

⇔ (λ2 + 1)δn+2 − (λ2 − λ + 1)δn+1 + λMδn+2(1 − δ) + λ2(1 − δ) − λ ≥ 0 , simplifying

⇐ (λ2 + 1)δn+2 − (λ2 − λ + 1)δn+1 + λδn+2(1 − δ) + λ2(1 − δ) − λ ≥ 0 , because M ≥ 1 and 0 ≤ δ ≤ 1/2

⇔ −λδn+3 + (λ2 + λ + 1)δn+2 − (λ2 − λ + 1)δn+1 − λ2δ + λ2 − λ ≥ 0

From this, it suffices to show that h(δ, λ)
def
= −λδn+3 + (λ2 + λ + 1)δn+2 − (λ2 − λ + 1)δn+1 − λ2δ + λ2 − λ ≥ 0, for

0 ≤ δ ≤ 1/2, n ≥ 0, and λ ≥ 2. The first derivative of h(δ, λ) with respect to λ is given by h′(δ, λ) = δn+2(1− δ) +

(1−δn+1)(2λ(1−δ)−1). Because δ ≤ 1/2 and λ ≥ 2, h′(δ, λ) is positive for all λ. Hence, h(δ, λ) is increasing with λ

and it suffices to show that h(δ, 2) ≥ 0 holds. h(δ, 2) = −2δn+3+7δn+2−3δn+1−4δ+2 = −(2δ−1)(δn+1(δ−3)+2).

Because −(2δ − 1) ≥ 0, it suffices to show that g(δ)
def
= δn+1(δ − 3) + 2 is at least zero. The first derivative of

g(δ) with respect to δ is given by g′(δ) = δn((n + 2)δ − 3(n + 1)). The roots of g′(δ) are δ = 0 and δ = 3(n+1)
n+2 .

3(n+1)
n+2 ≥ 3

2 holds for all n ≥ 0. Therefore, g(δ) is either increasing or decreasing for δ in [0, 1
2 ]. g(0) = 2 and g(1

2 )

lies in [34 , 2] for all n ≥ 0. Therefore, g(δ) is positive in [0, 1
2 ], and hence, h(δ) ≥ 0 in that interval. �

Lemma 12 Let t < td be a slot with holes and let Uj be a subtask that is scheduled at t. Then d(Uj) = t + 1 and

b(Uj) = 1.

Proof: Let Uj and t be as defined in the statement of the lemma. We first show that d(Uj) cannot be less than

t + 1. Because Uj is scheduled at t and t ≤ td − 1 holds, d(Uj) < t + 1 ⇒ d(Uj) < td. Hence, by Lemma 14(e), Uj

is scheduled before its deadline, and so, d(Uj) < t + 1 implies that Uj is scheduled before t which contradicts the

fact that Uj is scheduled at t. Therefore,

d(Uj) ≥ t + 1. (80)

We now show that d(Uj) = t + 1 ∧ b(Uj) = 1 holds. The proof is by contradiction, hence, assume that b(Uj) = 0

∨ d(Uj) 6= t + 1 holds. By (80), this implies that (b(Uj) = 0 ∧ d(Uj) = t + 1) ∨ d(Uj) > t + 1. Let Uk be the

successor, if any, of Uj . By Lemma 3, if d(Uj) > t + 1 holds, then r(Uk) ≥ d(Uj) − 1 > t holds, and if b(Uj) = 0 ∧

d(Uj) = t + 1 holds, then r(Uk) ≥ d(Uj) = t + 1 holds. Thus, in both cases, r(Uk) ≥ t + 1 holds. Because Uj is

scheduled at t in S, Uk is scheduled at or after t + 1. Hence, by Lemma 14(d), e(Tk) ≥ t + 1 holds. Now, if Uj is

removed, then because there is at least a hole in t, by Lemma 6, only Uj’s successor, Uk, can shift to t. However,

if Uk exists, then its eligibility time is at least t + 1, and hence, Uk cannot shift to t. Thus, regardless of whether

Uk exists, the removal of Uj will not cause any subtask scheduled after t to shift to t, and hence, will not prevent

the deadline miss at td. This contradicts (T2). Hence, our assumption is incorrect. The lemma follows. �
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