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Abstract

We consider the issue of deadline tardiness under global multiprocessor scheduling algo-
rithms. We present a general tardiness-bound derivation that is applicable to a wide variety of
such algorithms (including some whose tardiness behavior has not been analyzed before). Our
derivation is very general: job priorities may change rather arbitrarily at runtime, capacity restric-
tions may exist on certain processors, and, under certain conditions, non-preemptive regions are
allowed. Our results show that, with the exception of static-priority algorithms, most global al-
gorithms considered previously have bounded tardiness. Inaddition, our results provide a simple
means for checking whether tardiness is bounded under newly-developed algorithms.

1 Introduction

Most major chip manufacturers are investing in multicore technologies to continue performance im-
provements in their product lines in the face of fundamentallimitations of single-core chip designs.
To date, several manufacturers have released dual-core chips, Intel and AMD each have quad-core
chips on the market, and Sun’s Niagara and more recent Niagara 2 systems have eight-core chips
with multiple hardware threads per core. In the future, per-chip core counts are expected to increase
significantly. Indeed, Intel has announced plans to releasechips with as many as 80 cores within
five years (Farivar, 2006).

The advent of multicore technologies is a profound development that is impacting software de-
sign processes across a wide range of application domains. An important category of such ap-
plications is those withreal-time constraints. The range of real-time applications already being
deployed on multicore platforms is quite varied, ranging from simple streaming applications to
computationally-intensive applications for which multiprocessor designs are anecessity. A good
example of the latter is Azul System’sVega2system, which is a Java-based appliance with up to 768
cores (on several chips) for processing time-sensitive business transactions (Bisson, 2006).

To support such applications on either a multicore or a conventional (non-multicore) multipro-
cessor platform, an appropriate multiprocessor scheduling algorithm must be used. This paper is
directed at issues concerning such algorithms. Our specificfocus is multiprocessor algorithms for
scheduling soft real-time workloads specified as sporadic tasks.

In the sporadic task model, tasks repeatedly generate sequential jobs subject to deadlines. A
sporadic task has a specifiedperiod, which defines the minimum spacing between its jobs, and a
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relative deadline, which defines the length of the time interval in which each ofits jobs is allowed
to complete. Job deadlines can be eitherhard — in which case they should always be met — or
soft— in which case misses can occur, provided the extent of violation is constrained in some way.
The soft real-time constraint considered in this paper requires that deadline tardiness be bounded; if
a job misses its deadline, then itstardinessis defined as the difference between its completion time
and deadline (see Section 2).

Bounded tardiness is a sufficient property in many soft real-time applications (provided the
bounds are not too large). In particular, such bounds ensurethat the long-term processor share
of each task is in accordance with its specified utilization.For example, in a video decoding appli-
cation, it is desirable to decode a frame every 33.3 ms in order to achieve a rate of 30 frames per
second. However, a tardiness of a few milliseconds will not compromise the video quality if the
decoding rate remains at 30 frames per second over reasonably long intervals of time.

In devising multiprocessor scheduling algorithms, two basic approaches exist: partitioning and
global scheduling. Under partitioning, tasks are statically assigned to processors, and each processor
schedules its assigned tasks using a uniprocessor scheduling algorithm. Under global scheduling,
tasks are scheduled from a single run queue and may migrate among processors. For soft real-time
systems, global algorithms have the advantage of being ableto ensure bounded deadline tardiness,
as long as the available processing capacity is not exceeded(something we assume throughout this
paper). The same is not true of partitioned scheduling. For example, no partitioning scheme can
schedule three tasks with utilization2/3 each on two processors without overloading a processor,
and on an overloaded processor, tardiness will grow unboundedly. On the the other hand, if a task
system can be partitioned without overloading a processor,then bounded tardiness can be ensured,
provided an appropriate uniprocessor scheduler is used on each processor (in particular, a scheduler
that uses window-constrained prioritizations, as discussed later in this section).

The main focus of this paper is global algorithms that are capable of ensuring bounded tardiness
(without restrictions on overall utilization).

Motivation and prior work. The first tardiness bounds to be established for a global scheduling
algorithm pertained to the earliest-pseudo-deadline-first (EPDF) Pfair algorithm (Devi and Ander-
son, 2004). This analysis was later extended to establish tardiness bounds for several variants of the
global earliest-deadline-first (EDF) algorithm, wherein jobs with earlier deadlines have higher pri-
ority. These include preemptive and non-preemptiveEDF and two variants that slightly alterEDF
prioritizations and allow a small number of special tasks tobe guaranteed lower tardiness (Devi
and Anderson, 2006) or cause temporary overloads (Leontyevand Anderson, 2007b). (The latter
variant arises in an approach for scheduling multi-speed multiprocessor systems.) Tardiness bounds
have also been established for the global first-in first-out (FIFO) algorithm (Leontyev and Anderson,
2007c), wherein jobs with earlier release times have higherpriority. Given that tardiness is bounded
under such disparate algorithms, several questions come tomind. Do other widely-studied global
algorithms have bounded tardiness? Is there a singular characteristic of such algorithms that re-
sults in bounded tardiness? Can the class of algorithms for which tardiness is bounded be generally
characterized?

Contributions. In this paper, we present a generalized tardiness result that answers these ques-
tions. This result implies that the singular characteristic needed for tardiness to be bounded is that
a pending job’s priority eventually (in bounded time) is higher than that of any future job. Global
algorithms that donot have this characteristic (and for which tardiness can be unbounded) include
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static-priority algorithms such as the rate-monotonic (RM) algorithm, and impractical dynamic-
priority algorithms such as the earliest-deadline-last algorithm, wherein jobs with earlier deadlines
have lower priority. (This algorithm is different from the earliest-deadline-late (EDL) scheduler
from the literature (Chetto and Chetto, 1989).) Global algorithms thatdohave this property include
theEDF, FIFO, EDF-until-zero-laxity (EDZL), and least-laxity-first (LLF) algorithms. (EDZL and
LLF are described later.)

We establish a generalized tardiness result by consideringa generic scheduling algorithm where
job priorities are defined by points in time that may vary as time progresses. All of the algorithms
mentioned above can be seen as special cases of this generic algorithm in which priorities are further
constrained. Even thePD2 Pfair algorithm (Anderson and Srinivasan, 2004), which uses a rather
complex notion of priority, is a special case. The main result of this paper is a derivation of a
tardiness bound that applies to the generic algorithm if priorities arewindow-constrained: a job’s
priority at any time is a point in time within a time window that includes the job’s release time
and deadline. For example, underEDF, this time point is simply the job’s deadline. We also show
that if this window constraint is violated, then tardiness can be unbounded. It is possible to define
window-constrained prioritizations not only forEDF, but also forFIFO, EDZL, LLF, EPDF, and
PD2, so these algorithms have bounded tardiness. (ForEDF, FIFO, EPDF, andPD2, this was
previously known.) For any other algorithm that may be devised in the future, our results enable
tardiness bounds to be established by simply showing that prioritizations can be expressed in a
window-constrained way (instead of laboriously devising anew proof).

The notion of a window-constrained priority is very general. For example, it is possible to
describe hybrid scheduling policies by combining different prioritizations,e.g., using a combination
of EDF andFIFO in the same system. Priority rules can even change dynamically (subject to the
window constraint). For example, if a task has missed too many deadlines, then its job priorities
can be boosted for some time so that it receives special treatment. Or, if a single job is in danger of
being tardy, then its prioritization may be changed so that it completes execution non-preemptively
(provided certain restrictions hold — see Section 5.5). Tardiness also remains bounded if early-
release behavior is allowed or if the capacity of each processor that is available to the (soft) real-
time workload is restricted. In simplest terms, the main message of this paper is that,for global
scheduling algorithms, bounded tardiness is the common case, rather than the exception(at least,
ignoring clearly impractical algorithms such as earliest-deadline-last). For the widely-studiedEDZL
andLLF algorithms, and for several of the variants of existing algorithms just discussed, this paper is
the first to show that tardiness is bounded. Although we assume in our analysis that relative deadlines
are equal to periods, the analysis can also be applied to tasksystems where relative deadlines differ
from periods as discussed in Section 5.1.

The rest of this paper is organized as follows. In Sections 2–3, we present our task model and
scheduling framework. Then, in Section 4, we present our tardiness-bound derivation. In Section 5,
we discuss some special cases and possible extensions to theanalysis. As discussed later, tardi-
ness may be different under different scheduling algorithms. In Section 6, we present results from
experiments conducted to assess such differences. Section7 concludes the paper.

2 System Model

We consider the problem of scheduling onm processors a set of sporadic soft real-time tasksτ =
{T1, . . . , Tn}. All time quantities considered in this paper are assumed tobe real numbers.
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Figure 1: (a) Unavailable time instants and(b) service functions for processor 1 (denotedP1) in
Example 1.

2.1 Processor Model

Our main result is very general and can be applied in settingswhere the full capacity of one or more
processors is not available for the soft real-time workload(Brandenburg and Anderson, 2007; Devi
and Anderson, 2006; Leontyev and Anderson, 2007b). We assume that such capacity restrictions
are specified usingservice functions(Chakraborty et al, 2003). Specifically, the minimum guaran-
teed time that processork can provide to the tasks inτ in any time interval of length∆ ≥ 0 is
characterized by the service function

βk(∆) = max(0, ûk · (∆− σk)), (1)

whereûk ∈ (0, 1] andσk ≥ 0. In the above definition,̂uk is the total long-term utilization available
to the tasks inτ on processork andσk is the maximum length of time when the processor can be
unavailable over an interval of length∆. We requireβk(∆) andσk to be specified for eachk. Note
that, if (unit-speed) processork is fully available to the tasks inτ , thenβk(∆) = ∆.

Limited processor availability arises in many contexts. For example, real-time tasks may be par-
tially deprived of processing capacity due to interrupt service routines (Jeffay and Stone, 1993) or in
hierarchically scheduled systems (Shin et al, 2008). Allowing processors to have limited availability
enables our results to be applied in these and other contextsin a uniform fashion.

Example 1. Consider a system with one processor (m = 1) that is not fully available for the
soft real-time workload. The availability pattern, which repeats every eight time units, is shown in
Figure 1(a); intervals of unavailability are shown as shaded regions. For processor 1, the minimum
amount of time that is guaranteed to soft real-time tasks over any interval of length∆ is zero if
∆ ≤ 2, ∆− 2 if 2 ≤ ∆ ≤ 4, and so on. Figure 1(b) shows the minimum amount of timeβ∗(∆) that
is available on processor 1 for soft real-time tasks over anyinterval[t, t+∆]. It also shows a service
curveβ1(∆) = max(0, û1(∆−σ1)), whereû1 = 5

8 andσ1 = 2, which boundsβ∗(∆) from below.
β1(∆) can be used to reflect the minimum service guarantee for soft real-time tasks on processor 1.
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2.2 Task Model

Using the available processor time, the sporadic tasksT1, . . . , Tn in τ are scheduled. Each task is
invoked orreleasedrepeatedly, with each such invocation called ajob.

Associated with each taskTi are two parameters,ei andpi: ei gives the maximumexecution
timeof one job ofTi, while, pi, called theperiodof Ti, is the minimum time between consecutive
job releases. For brevity, we often use the notationTi = (ei, pi) to specify task parameters.

Thejth job of Ti, wherej ≥ 1, is denotedTi,j . A task’s first job may be released at any time
t ≥ 0. The actual execution requirement of jobTi,j is ei,j ≤ ei. The release time of jobTi,j is
denotedri,j and its (absolute) deadlinedi,j is defined asri,j + pi. If Ti,j completes at timet, then
its tardinessismax(0, t−di,j). A task’s tardiness is the maximum of the tardiness of any of its jobs.
When a job of a task misses its deadline, the release time of the next job of that task is not altered.
However, at most one job of a task may execute at any time, evenif deadlines are missed.

The utilization of taskTi is defined asui = ei/pi, and theutilization of the task systemτ as
Usum=

∑
Ti∈τ ui. We assume

Usum ≤
m∑

k=1

ûk. (2)

Otherwise, tardiness may grow unboundedly (Devi, 2006).
For each jobTi,j , we define aneligibility time εi,j such thatεi,j ≤ ri,j andεi,j−1 ≤ εi,j . The

eligibility time of Ti,j denotes the earliest time when it may be scheduled. A jobTi,j is said to be
early-releasedif εi,j < ri,j . JobTi,j is said to beeligibleat timet if εi,j ≤ t. The early-release task
model was first proposed in work on Pfair scheduling (Anderson and Srinivasan, 2004). Allowing
early releases can reduce job response times as the following example illustrates.

Example 2. Consider the (Earliest Pseudo-Deadline First)EPDF Pfair algorithm (Devi and Ander-
son, 2004). Under it, task periods and execution times are assumed to be integral, and each taskTi
is represented by a sequence of unit-length schedulable entities calledsubtasks, denotedT j

i , where
j ≥ 1. Each subtaskT j

i has two attributes associated with it, arelease timerji and adeadlinedji .
The interval[rji , d

j
i ) is called thewindowof T j

i . 1 SubtaskT j
i becomes available for execution at

timerji and has higher priority than subtaskT y
x if dji < dyx. Deadline ties are resolved arbitrarily but

consistently. In consideringEPDF scheduling examples, we assume (for simplicity) that jobs are
released in a synchronous periodic fashion, in which caserji = b i−1

ui
c anddji = d i

ui
e (see (Anderson

and Srinivasan, 2004)). Figure 2 shows twoEPDF schedules of a taskT1 = (3, 8). Inset (a) shows
a schedule in which early releases are not allowed. In this schedule, each subtask executes within its
respective window which is shown in bold. The time betweenT1,1’s release and completion is six
time units. A schedule in which early releases are allowed isshown in Figure 2(b). In this schedule,
each subtask commences execution immediately after its predecessor completes. In this schedule,
the response time ofT1,1 is three time units.

We assume that eligible jobs are placed into a single global ready queue. When choosing a new
job to schedule, the scheduler selects (and dequeues) the ready job of highest priority. As reiterated
in Definition 3 in Section 4, a job isreadyif it is eligible and its predecessor (if any) has completed
execution. Job priorities are determined as follows.

1This usage of term “window” should not be confused with that arising in our window constraints.
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Figure 2:EPDF schedules from Example 2(a) without and(b) with early releases.

Definition 1. (prioritization functions) Associated with each jobTi,j is a function of timeχ(Ti,j, t)
defined fort ≥ 0 and called itsprioritization function. If χ(Ti,j , t) < χ(Tk,h, t), then the prior-
ity of Ti,j is higher than the priority ofTk,h at time t. We assume that, when comparing pri-
orities, any ties are broken arbitrarily but consistently.That is, if, χ(Ti,j , t) = χ(Tk,h, t) and
χ(Ti,j , t

′) = χ(Tk,h, t
′), wheret 6= t′, then the tie is broken in favor ofTi,j at time t iff it is

broken in favor ofTi,j at timet′.

3 Example Mappings

We now show how to describe several well-known scheduling policies in our framework, using the
two-processor task set
τ = {T1 = (1, 3), T2 = (2, 3), T3 = (1, 4), T4 = (3, 4)} executing on two fully-available proces-
sors as an example. Unless stated otherwise, we assumeei,j = ei andεi,j = ri,j in these examples,
for each jobTi,j . In depicting example schedules, we use up (down) arrows to depict job releases
(deadlines).

Example 3. Figure 3(a) shows a schedule forτ under the globalEDF algorithm. In this case, since
jobs are prioritized by deadline, it suffices to defineχ(Ti,j , t) = di,j for eachTi,j. In Figure 3(a),
the value ofχ(Ti,j , t) is shown for each jobTi,j using a black circle labeledχi,j .

Example 4. Figure 3(b) shows a schedule forτ under the globalRM algorithm. In this case,Ti,j
should have priority overTk,h if i < k (since the tasks inτ are ordered by increasing periods). Thus,
we can simply defineχ(Ti,j , t) = i for each jobTi,j , as shown.

Example 5. Figure 3(c) shows a schedule forτ under the globalFIFO algorithm (which, by def-
inition, schedules jobs non-preemptively). In this case (assuming no early releases), it suffices to
defineχi,j(t) = ri,j for each jobTi,j , as shown. (Note that, if early releases are allowed, then this
prioritization may not reflect the actual job arrival order.)

Example 6. Interestingly, the definition ofχ(Ti,j , t) is flexible enough to allowcombinationsof
scheduling policies to be specified. For example, we can prioritize the jobs ofT1, . . . , T3 on an
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Figure 3:(a) Example 3 (globalEDF). (b) Example 4 (globalRM). (c) Example 5 (globalFIFO).
(d) Example 6 (hybrid global scheduler).

EDF basis and those ofT4 on a FIFO basis by definingχ(Ti,j , t) = di,j for 1 ≤ i ≤ 3, and
χ(T4,j , t) = r4,j . A schedule for this hybrid policy is shown in Figure 3(d). Itis also possible to
mix RM andEDF prioritizations (even though such a scheme would not have window-constrained
priorities). For example, if taskT1 needs to be statically prioritized over all other tasks, then we can
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Table 1:χ-values in Example 7.

Time t χ(T1,j , t) χ(T2,j , t) χ(T3,j , t) χ(T4,j , t)

0 2 1 3 1
1 2 2 3 2
2 2 − 3 3
3 5 4 3 −

4 5 5 7 5
5 5 − 7 6
6 8 7 7 7
7 8 8 7 −

8 8 − 11 9
9 11 10 11 10
10 11 11 11 11
11 11 − 11 −

T4,1 t

0            2             4            6            8            10          12

T3,1
T3,2

T1,1 T1,2 T1,3

T2,2T2,1
T2,3

T3,3

T2,4

T1,4

T4,3T4,2

Figure 4: Example 7 (global preemptiveLLF).

setχ(T1,j , t) = −1 for all jobs ofT1 andχ(Ti,j , t) = di,j for all jobs of other tasks.

Example 7. So far we have considered only fixed job-priority algorithms, wherein the priority
χ(Ti,j , t) is constant during jobTi,j ’s execution. We now consider a slightly more complicated
example, namely the globalLLF scheduling algorithm (Liu, 2000). Thelaxity or slackof a jobTi,j
at timet is defined as

slacki,j(t) = di,j − t− (ei − δi,j(t)), (3)

whereδi,j(t) is the amount of time for whichTi,j has executed beforet. If a job does not miss its
deadline, then its slack is always non-negative; if it does miss its deadline, then its slack becomes
negative at some time prior to its deadline. According toLLF, Ti,j has higher priority thanTk,h at
time t if slacki,j(t) < slackk,h(t). To capture this, we can simply defineχ(Ti,j , t) = di,j − (ei −
δi,j(t)) for each jobTi,j . Because this definition depends onδi,j(t), χ(Ti,j , t) is not constant, as in
the prior examples, but is time-dependent. Assuming that itis updated only at integral points in time,
χ(Ti,j , t+ 1) := χ(Ti,j , t) + 1, if Ti,j executes during the interval[t, t + 1), andχ(Ti,j , t+ 1) :=
χ(Ti,j , t), otherwise.

Figure 4 shows anLLF schedule forτ where ties are broken in favor of jobs currently executing.
Becauseχ-values change with time, they are not shown in the schedule,as earlier, but are depicted
separately in Table 1. The table shows the value ofχ(Ti,j , t) for the earliest pending jobTi,j of each
taskTi where0 ≤ t ≤ 11.
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Figure 5: Early releasing under globalEDF.

Example 8. The EDZL algorithm (Piao et al, 2006), which is a hybrid ofEDF andLLF, can be
specified as well. In this case,χ(Ti,j , t) is set todi,j (as inEDF) whenTi,j is released, and is reset
to di,j − (ei− δi,j(t)) ≤ di,j (as inLLF) whenTi,j ’s slack becomes zero, whereδi,j(t) is as defined
earlier. To our knowledge,EDZL has not been considered previously in systems where deadlines
can be missed. However, if no deadlines are missed, then our definition yields priority comparisons
that match exactly howEDZL has been specified in prior work. It is possible that other variants
could be defined that prioritize jobs differently when deadlines are missed.

In the examples above, we assumedεi,j = ri,j , i.e., jobs are not released early. The idea of early
releasing is illustrated in Figure 5, which shows a globalEDF schedule for the task set in Example 3
with early releases allowed. In particular, for jobT1,2, ε1,2 = 1. Thus,T1,2 begins its execution one
time unit earlier than its actual release time. Note also that jobsT4,1 andT4,3 miss their deadlines
by one time unit.

Example 9. ThePD2 (Anderson and Srinivasan, 2004) andEPDF (Devi and Anderson, 2004) Pfair
algorithms can also be modeled using our framework. Consider theEPDF algorithm introduced in
Example 2. Again, we illustrate assuming jobs are released in a synchronous periodic fashion. First,
we represent each taskTi = (ei, pi) by a taskT ′

i with e′i = 1 andp′i =
1
ui

. TheEPDF subtaskT j
i

then corresponds to the jobT ′
i,j . Second, we define the eligibility time ofT ′

i,j asεi,j = rji . Third,

we define the prioritization function for jobT ′
i,j asχ(Ti,j , t) = dji . Note, thatχ(Ti,j , t) is always

an integral number.
This mapping is illustrated in Figure 6 using the task setτ = {T1 = (3, 8), T2 = (3, 7), T3 =

(3, 6), T4 = (1, 2)} scheduled on two fully-available processors. Inset (a) shows anEPDF schedule
for τ . Subtask windows are shown in bold. Inset (b) shows a schedule for τ ′, which is constructed
from τ in the way described above. In this figure, the release time ofeach jobT ′

i,j is denoted by an
up arrow and its deadline is denoted by a down arrow.χ-values are depicted as black circles.

PD2 differs fromEPDF in that two special tie-breaking rules are used in the event of a deadline
tie. We can capture the effects of these tie breaks by slightly shifting the value of a job’s prioritization
function and letting it be non-integral.

4 Tardiness Bound

In this section, we show that any scheduling algorithm (specified according to Definition 1) has
bounded tardiness if its prioritization functions are “window-constrained,” as defined below in Def-
inition 4. This definition imposes two separate constraintson χ-values. We show that if either is
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Figure 6:(a)An EPDF schedule for the task setτ from Example 9.(b) Equivalent schedule obtained
using prioritization functions.

violated, then tardiness may become unbounded. In this section, we consider a system with partially
available processors; later, in Section 5, we consider the special case when all processors are fully
available as well as some other extensions to the analysis.

4.1 Definitions

The system start time is assumed to be zero. For any timet > 0, t− denotes the timet − v in the
limit v → 0+.

Definition 2. (pending jobs)Ti,j is pendingat timet in a scheduleS if Ti,j is eligible at timet and
Ti,j has not completed execution byt in S.

10



Definition 3. (ready jobs)A pending jobTi,j is readyat timet in a scheduleS if all prior jobs of
Ti have completed execution byt in S.

Definition 4. (window-constrained priorities) A scheduling algorithm’s prioritization functions
arewindow-constrainediff, for each taskTi, there exist constantsφi andψi such that, for each job
Ti,j of Ti and timet,

ri,j − φi ≤ χ(Ti,j , t) ≤ di,j + ψi. (4)

Note that (4) requires a job’sχ-values to lie within a window[ri,j −φi, di,j +ψi] that is defined
with respect to its release time and deadline. Note also thatthe constantsφi andψi may be positive
or negative; however, if negative, the interval[ri,j − φi, di,j + ψi] cannot be empty.

It is easy to see that, other thanRM, all of the algorithms considered in Section 3 have prioriti-
zation functions that satisfy (4). In contrast, the prioritization function specified forRM fails to be
window-constrained because it violates the required lowerbound: as new jobs of each taskTi are
released,χ(Ti,j , t) < ri,j − φi will eventually hold for some jobTi,j for any choice of the constant
φi. It can be shown that the task system in Example 4 has unbounded tardiness. In particular, if
the job-release pattern in Figure 3(b) recurs repeatedly, then the processing capacity available toT4
every 12 time units is the same as is depicted in Figure 3(b). This capacity is less than the amount
of work generated byT4 during the same interval. As a result, more and more work shifts to future
intervals, causing tardiness forT4 to grow unboundedly. (The fact that tardiness can be unbounded
underRM was also established by Devi (Devi, 2006).)

It is possible to “fix” the prioritization functions forRM so that the required lower bounds
are adhered to, but then the upper bounds will be violated. For example, we could simply define
χ(Ti,j , t) = i + t′, wheret′ is the time where the most recent job release occurred at or before
t. This definition simply shifts theχ-values defined earlier to future points in time as new jobs
are released. However, we know that tardiness forT4 in Example 4 is unbounded, so eventually
χ(T4,j , t) > d4,j + ψ4 will hold for some pending jobT4,j of T4 for any choice of the constantψ4.
Intuitively, Inequality (4) ensures that any jobTi,j eventually becomes the highest-priority job in the
system and will execute until completion. We summarize thisdiscussion as follows. (Recall that
any task set considered in this paper is assumed to satisfy (2).)

Theorem 1. If either the lower or upper bound given in(4) is eliminated, then there exists a pri-
oritization scheme that satisfies the remaining condition for which tardiness is unbounded for some
task set.

Definition 5. A task system isconcreteif the release times and eligibility times of all jobs are
specified, andnon-concrete, otherwise.

Each of the schedules presented in Examples 3–9 was generated for a concrete task system in
which jobs are released synchronously and periodically. However, the task set considered in each
example is a non-concrete task system because (being sporadic) job release times are not specified.

Most of the rest of this paper is devoted to showing that any scheduling algorithmA with
window-constrained prioritization functions has boundedtardiness. The tardiness bound established
for A is derived by comparing the allocations to a concrete task systemτ in an ideal processor-
sharing (PS) schedule to those in a schedule produced byA. In a PS schedule, each job of a task
Ti is executed at a constant rate ofui,j =

ei,j
pi

≤ ui between its release and deadline (Stoica et al,

11
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Figure 7:PS schedule forτ in Example 3.

1996). Figure 7 depicts an example. In this figure, the execution of each jobTi,j is represented as
a rectangle of lengthpi = di,j − ri,j and heightui,j. Therefore, the allocation of each job between
its release time and deadline in this schedule isui,j · pi = ei,j .

Note that aPS schedule does not depend on processor availability. Also, in such a schedule,
each job completes exactly at its deadline. Thus, if a job misses its deadline, then it is “lagging
behind” the correspondingPS schedule — this concept of “lag” is instrumental in the analysis and
is formalized below. (A similar lag-based analysis was usedby Devi and Anderson to establish
tardiness bounds for preemptive and non-preemptive globalEDF (Devi and Anderson, 2008)).

Let A(Ti,j , t1, t2,S) be the total allocation to the jobTi,j in an arbitrary scheduleS in [t1, t2).
Then, the difference between the allocations toTi,j up to timet in aPS schedulePS and an arbitrary
scheduleS, termed thelag ofTi,j at timet in scheduleS, is given by

lag(Ti,j , t,S) = A(Ti,j , 0, t,PS)− A(Ti,j , 0, t,S). (5)

Task lags can be similarly defined:

lag(Ti, t,S) =
∑

j≥1

lag(Ti,j , t,S) =
∑

j≥1

A(Ti,j , 0, t,PS)− A(Ti,j , 0, t,S). (6)

Finally, thelag for a finite job setΦ at timet in the scheduleS is defined by

LAG(Φ, t,S) =
∑

Ti,j∈Φ

lag(Ti,j , t,S) =
∑

Ti,j∈Φ

(A(Ti,j , 0, t,PS)− A(Ti,j , 0, t,S)). (7)

SinceLAG(Φ, 0,S) = 0, the following holds fort′ ≤ t.

LAG(Φ, t,S) = LAG(Φ, t′,S) + A(Φ, t′, t,PS)− A(Φ, t′, t,S) (8)

The concept of lag is important because, if lags remain bounded, then tardiness is bounded as well.

Definition 6. A time interval[t1, t2) is busyfor a job setΦ in scheduleS if, at each timet ∈ [t1, t2),
all m processors execute jobs fromΦ in this schedule, and isnon-busyfor Φ otherwise.

When using the above terminology, we will omit “forΦ” if the job set under consideration is
clear. According to the lemma below, the lag for a job setΦ cannot increase across a busy interval
for Φ. This fact was proved in the context of globalEDF in (Devi et al, 2006). However, since the
proof relies only on the fact that the interval in question isbusy, and not on how jobs are scheduled,
it applies in our context as well. Later, we will examine the behavior of theLAG function over an
interval where some processors are unavailable.
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Lemma 1. For any interval[t1, t2) that is busy forΦ, LAG(Φ, t2,S) ≤ LAG(Φ, t1,S).

Proof. By (8),

LAG(Φ, t2,S) = LAG(Φ, t1,S) + A(Φ, t1, t2,PS)− A(Φ, t1, t2,S). (9)

Because the interval[t1, t2) is busy,m processors execute jobs fromΦ throughout the interval, and
thusA(Φ, t1, t2,S) = m · (t2 − t1). In the idealPS schedulePS, each jobTi,j executes with a
constant rateui,j ≤ ui from its release to its deadline, and thus

A(Φ, t1, t2,PS) ≤
∑

Ti∈τ

∑

j>0

A(Ti,j , t1, t2,PS) ≤
∑

Ti∈τ

ui · (t2 − t1) = Usum · (t2 − t1).

Setting this inequality andA(Φ, t1, t2,S) = m ·(t2− t1) into (9) and applyingUsum ≤
∑m

k=1 ûk ≤
m, we get

LAG(Φ, t2,S) = LAG(Φ, t1,S) + A(Φ, t1, t2,PS)− A(Φ, t1, t2,S)

≤ LAG(Φ, t1,S) + Usum(t2 − t1)−m · (t2 − t1)

≤ LAG(Φ, t1,S).

We are interested in non-busy intervals (for a job set) because total lag (for that job set) can
increase only across such (non-busy) intervals, and such increases may lead to deadline misses. The
following example illustrates how lag can change across busy and non-busy intervals.

Example 10. Consider a two-processor system upon which a task setτ = {T1 = (1, 2), T2 =
(2, 6), T3 = (2, 8), T4 = (11, 12)} is to be scheduled, where the first jobs ofT1, T2, T3, andT4
are released at times 2, 1, 0, and 0 respectively. The total utilization of the system isUsum =
1/2+2/6+2/8+11/12 = 2. Assume that both processors are always available, i.e.,û1 = û2 = 1
andσ1 = σ2 = 0, andA is theFIFO algorithm, i.e., jobs are prioritized usingχ(Ti,j , t) = ri,j
(assume there are no early releases). Consider the schedulefor τ in Figure 8. UnderA, T1,1 misses
its deadline at time 4 by one time unit because it cannot preempt T2,1 andT4,1, which have earlier
release times and later deadlines.

Let Φ = {T1,1, . . . , T1,5, T2,1, T3,1, T4,1} be the set of jobs with deadlines at most 12. The
interval [4, 7) in Figure 8 is a busy interval forΦ, because all processors execute jobs fromΦ
throughout the interval. By (8),LAG(Φ, 7,S) = LAG(Φ, 4,S) + A(Φ, 4, 7,PS) − A(Φ, 4, 7,S),
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whereS is the schedule underA. The allocation ofΦ in thePS schedulePS during the interval
[4, 7) isA(Φ, 4, 7,PS) = 3 · (u1 + u2 + u3 + u4) = 3/2+ 6/6+ 6/8+ 33/12 = 6. The allocation
of Φ in S throughout[4, 7) is also 6. Thus,LAG(Φ, 7,S) = LAG(Φ, 4,S).

Now let Φ = {T1,1} be the set of jobs with deadlines at most 4. Because the jobsT2,1 and
T4,1, which have deadlines after time 4, execute within the interval [2, 4) in Figure 8, this interval is
non-busy forΦ in S. By (7),LAG(Φ, 4,S) = A(Φ, 0, 4,PS)−A(Φ, 0, 4,S). The allocation ofΦ in
thePS schedulePS throughout the interval[0, 4) is A(Φ, 0, 4,PS) = 2 · 1/2 = 1. The allocation
of Φ in S isA(Φ, 0, 4,S) = 0. Thus,LAG(Φ, 4,S) = 1− 0 = 1. Figure 8 shows that at time 4,T1,1
from Φ is pending. This job has unit execution cost, which is equal to the amount of pending work
given byLAG(Φ, 4,S).

4.2 Tardiness Bound forA

Given an arbitrary non-concrete task systemτN (where the eligibility times and release times of
jobs are not specified – see Definition 5), we want to determinethe maximum tardiness of any job
of any task in any concrete instantiation ofτN scheduled onm processors. The approach for doing
this is based on techniques from (Devi and Anderson, 2008). Let τ be a concrete instantiation of
τN . First, we order the jobs in the concrete instantiation using the following rule:Ti,j ≺ Ta,b iff
di,j < da,b or (di,j = da,b) ∧ i < a.

Let

ρ = max

(
0,max

i6=a
(ψa + φi)

)
and µ = max

(
0,max

i6=a
(pa + ψa + φi)

)
(10)

Let T`,q be a job of a taskT` in τ , let td = d`,q, and letS be a schedule, produced forτ by the
scheduling algorithmA. We assume that the scheduleS has the following property.

(P) The tardiness of every jobTk,h such thatTk,h ≺ T`,q is at mostx+ ek, wherex ≥ ρ ≥ 0.

Our goal is to determine the smallestx ≥ ρ such that the tardiness ofT`,q remains at mostx + e`.
Such a result would by induction imply a tardiness of at mostx+ek for all jobs of every taskTk ∈ τ .
Becauseτ is arbitrary, the tardiness bound will hold for every concrete instantiation ofτN .

The objective is easily met ifT`,q completes by its deadline,td, so assume otherwise. The
completion time ofT`,q then depends on the demand of the jobs that can compete withT`,q aftertd
and on the amount of available processor time aftertd. Hence, a value forx can be determined via
the following steps.

1. Compute an upper bound on the demand for jobs (includingT`,q) that can compete withT`,q
aftertd.

2. Determine the amount of such demand necessary for the tardiness ofT`,q to exceedx+ e`.

3. Determine the smallestx ≥ ρ such that the tardiness ofT`,q is at mostx+ e` using the upper
bound in Step 1 and the necessary condition in Step 2.

To reason about the tardiness ofT`,q, we need to determine how other jobs delay its execution.
To do that, we first define a boolean function of two jobsTi,k andTa,b that will allow us to exclude
certain jobs from consideration:

LP(Ti,k, Ta,b) = (∀ t : da,b + ψa < χ(Ti,k, t)). (11)
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Claim 1. If LP(Ti,k, Ta,b) holds for jobsTi,k andTa,b, thenχ(Ta,b, t) < χ(Ti,k, t) for any timet.

Proof. We upper boundχ(Ta,b, t) as follows.

χ(Ta,b, t)

{by (4)}

≤ da,b + ψa

{by the condition of the claim and (11)}

< χ(Ti,k, t)

Claim 1 provides a sufficient condition for a jobTi,k to have lower priority (a largerχ-value)
than that ofTa,b at any time and therefore not compete withTa,b for processor time. In the rest of
the proof, four job sets,d, DH, DLH , andDLL , are considered.d andDH are defined as follows.

d = {Ti,k :: di,k ≤ d`,q = td} (12)

DH = {Ti,k :: (di,k > td) ∧ (i 6= `) ∧ (∃ Ta,b ∈ d : (a 6= i) ::¬LP(Ti,k, Ta,b))} (13)

In this notation,d andD denote, respectively, jobs with deadlines at most and greater thantd. The
letterH in DH denotes thatTi,k ’s priority at some timemay be higherthan that of a job of different
task ind (refer to Claim 1). Note that, becaused`,y ≤ d`,q = td,

(∀y : y ≤ q :: T`,y ∈ d). (14)

The remaining two job sets are defined as follows.

DLH = {Ti,k :: (di,k > td) ∧ (i 6= `) ∧ (∀ Ta,b ∈ d : (a 6= i) ::LP(Ti,k, Ta,b))

∧ (∃ Ta,b ∈ DH : (a 6= i) ::¬LP(Ti,k, Ta,b))} (15)

DLL = {Ti,k :: (di,k > td) ∧ (i 6= `) ∧ (∀ Ta,b ∈ d : (a 6= i) ::LP(Ti,k, Ta,b))

∧ (∀ Ta,b ∈ DH : (a 6= i) ::LP(Ti,k, Ta,b))} (16)

If Ti,k is in DLH or DLL , then, for each jobTa,b ∈ d such thata 6= i, LP(Ti,k, Ta,b) holds, and
hence,Ti,k’s priority is always lowerthan that of any job ind of a different task. The second letter
L in DLH andDLL is intended to denote this. Similarly, the third letterH in DLH denotes that job
Ti,k ’s priority may be higher than that of a job of a different taskTa that belongs toDH. Finally,
the third letterL in DLL denotes that jobTi,k ’s priority is always lower than that of any job of a
different taskTa that belongs toDH.

Example 11. Consider the task setτ = {T1 = (1, 2), T2 = (1.5, 3), T3 = (5, 5)} and thePS
schedule for it in Figure 9. JobT1,1 is released at time 1, and jobsT2,1 andT3,1 are released at time
0. Consider the jobT`,q = T1,1, which has a deadline at time 3. Assume that there are no early
releases and jobs are prioritized as follows. For taskT1, χ(T1,j , t) = d1,j for all j. For taskT2,
χ(T2,j , t) = r2,j if j is even andχ(T2,j , t) = d2,j if j is odd. For taskT3, χ(T3,j, t) = r3,j for all
j.
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We thus have,φ1 = −p1, φ2 = φ3 = 0, ψ1 = 0, ψ2 = 0, andψ3 = −p3. With respect to
T1,1, the four sets mentioned above ared = {T1,1, T2,1}, DH = {T3,1, T2,2}, DLH = {T3,2}, and
DLL = {T2,3, T2,4, T3,3}. The jobT2,2 ∈ DH becauseχ(T2,2, t) = r2,2 = 3 ≤ d1,1 = 3, and
hence,LP(T2,2, T1,1) does not hold. The jobT3,2 ∈ DLH becauseχ(T3,2, t) = r3,2 = 5 ≤ d2,2 =
6, and hence,LP(T3,2, T2,2) does not hold.DLL would also include any jobs of tasks other thanT1
released after time 12.

We now prove some important relationships between the priorities of jobs in the four sets men-
tioned above.

Lemma 2. If Ta,b ∈ DH andTi,k ∈ DLL , wherea 6= i, thenχ(Ta,b, t) < χ(Ti,k, t) for any timet.

Proof. If Ti,k in DLL , then, by (16),(∀Ta,b ∈ DH : (a 6= i) :: LP(Ti,k, Ta,b)). By the condition of
the lemma, this implies thatLP(Ti,k, Ta,b) holds. The required result follows from Claim 1.

Lemma 3. If Ta,b ∈ d andTi,k ∈ DLL ∪ DLH , wherea 6= i, thenχ(Ta,b, t) < χ(Ti,k, t) for any
timet.

Proof. If Ti,k ∈ DLL ∪ DLH , then, by (15) and (16),(∀Ta,b ∈ d : (a 6= i) ::LP(Ti,k, Ta,b)) holds.
By the condition of the lemma, this implies thatLP(Ti,k, Ta,b) holds. The required result follows
from Claim 1.

Lemma 4. If a job Ti,k ∈ DLL is scheduled at timet or there is an idle available processor at time
t, andTa,b ∈ d ∪ DH is ready at timet, wherea 6= i, thenTa,b is scheduled at timet.

Proof. The case when an available processor is idle at timet is trivial so suppose that this is not the
case. IfTi,k andTa,b are defined as in the statement of the lemma, andTi,k is scheduled at timet,
thenTa,b is scheduled at timet as well since, by Lemmas 2 and 3,χ(Ta,b, t) < χ(Ti,k, t).

Lemma 5. If a jobTi,k ∈ DLH ∪DLL is scheduled at timet andTa,b ∈ d is ready at timet, where
a 6= i, thenTa,b is scheduled at timet.

Proof. If Ti,k andTa,b are defined as in the statement of the lemma, andTi,k is scheduled at timet,
thenTa,b is scheduled as well, since by Lemma 3,χ(Ta,b, t) < χ(Ti,k, t).

Corollary 1. If a job Ti,k ∈ DLH ∪ DLL is scheduled at timet ≥ td and jobT`,q is pending at
timet, thenT` is scheduled att.
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Proof. If T`,q is pending at timet ≥ td, then the earliest pending job ofT`, T`,y, wherey ≤ q is
ready at timet. The required result follows from (14) and Lemma 5.

Determining an upper bound on competing demand.We are now ready to establish the upper
bound mentioned in the first step of the proof outline given earlier as a function of job setsd, DH,
DLH , andDLL .

Definition 7. LetW (α) be the total allocation of jobs in the setα in scheduleS after timetd while
job T`,q is pending.

We are interested in the allocation of jobs ind ∪ DH ∪ DLH because these jobs may delay the
execution ofT`,q. (By Lemma 4, jobs inDLL cannot delayT`,q or prior jobs ofT`.) Their allocation
aftertd while T`,q is pending, is

W (d ∪ DH ∪ DLH ) =W (d) +W (DH ∪ DLH ). (17)

Because jobs fromd have deadlines at mosttd, they do not execute in thePS schedulePS
beyondtd. Thus, the allocation of jobs ind after timetd is upper-bounded by the amount of pending
work due to jobs in this set at timetd as given byLAG(d, td,S), which must be positive in order for
T`,q to miss its deadline attd (by (14)). Therefore,

W (d) ≤ LAG(d, td,S). (18)

From (17) and (18), we have

W (d ∪ DH ∪ DLH ) ≤ LAG(d, td,S) +W (DH ∪ DLH ). (19)

Thus, an upper bound onW (d∪DH∪DLH ) can be obtained by determining bounds forLAG(d, td,S)
andW (DH ∪ DLH ) individually.

Upper bound on LAG(d, td,S). In deriving this bound, we assume that all busy and non-busy
intervals considered are with respect tod and the scheduleS is produced by the scheduling algorithm
A.

To begin, note that, by Lemma 1, if no non-busy interval exists in [0, td), thenLAG(d, td,S) ≤
LAG(d, 0,S) = 0. In that which follows, we consider the more interesting case wherein some
non-busy interval exists in[0, td). An interval could be non-busy for two reasons:

1. There are not enough ready jobs ind to occupy all available processors, so it is immaterial
whether jobs fromDH, DLH , or DLL execute during the interval.

2. There are tasks with ready jobs ind that cannot execute because, within certain sub-intervals,
some processors are not available (because of capacity restrictions) or jobs inDH occupy one
or more processors because they have higher priority. Note that, by Lemma 5, jobs inDLH
andDLL cannot execute at time instants when there are ready unscheduled jobs ind.

Jobs with deadlines after timetd may prevent the execution of jobs ind before timetd (if such
jobs become eligible beforetd) and hence increase theLAG for d.

Definition 8. (τDH) Let τDH be the set of tasks that have jobs inDH.
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Definition 9. (δi) Let δi be the total allocation of taskTi’s jobs inDH in the scheduleS by timetd.

In much of the rest of the analysis, we focus on a timetn defined as follows.

Definition 10. If there exists a time instantt such that there are at mostm− 1 tasks with ready jobs
in d at timet− and all these tasks execute at timet−, then definetn to be the latest such time instant
at or beforetd; if no sucht exists, then lettn = 0.

We express a bound onLAG(d, td,S) in terms of individual task parameters and processor avail-
ability functions using Lemmas 6, 7, and 8, which are proved in an appendix. Lemma 7 establishes
a relationship betweenLAG(d, tn,S) andLAG(d, td,S). Lemmas 6 and 8 were initially proved
in (Devi et al, 2006) in the context of globalEDF, for the case where all processors are fully avail-
able. The proof of each lemma relies only on Property (P) and,for Lemma 7, the definition oftn. In
particular, the exact way in which jobs are scheduled does not arise.

Lemma 6: lag(Tk, t,S) ≤ x · uk + ek for any taskTk andt ∈ [0, td].

Lemma 7: LAG(d, td,S) ≤ LAG(d, tn,S) +
∑

Ti∈τDH
δi +

∑m
k=1 ûk · σk.

Definition 11. (U(τ, y) andE(τ, y)) LetU(τ, y) (E(τ, y)) be the set of at mostmin(|τ |, y) tasks
from τ of highest utilization(execution cost), where|τ | is the number of tasks inτ , and let

EL =
∑

Ti∈E(τ,m−1)

ei and UL =
∑

Ti∈U(τ,m−1)

ui.

Lemma 8: LAG(d, tn,S) ≤ EL + x · UL.

Using Lemmas 7 and 8, we can upper boundLAG(d, td,S) in (19).

Lemma 9: LAG(d, td,S) ≤ EL + x · UL +
∑

Ti∈τDH
δi +

∑m
k=1 ûk · σk.

Upper bound onW (DH∪DLH ). The jobs inDH∪DLH may delay the execution ofT`,q because
some of these jobs may have higher priority thanT`,q at some time. We now upper-bound the total
execution demand due to jobs inDH∪DLH . Lemmas 10 and 11, which are proved in the appendix,
upper-bound the release times of jobs inDH ∪ DLH usingρ andµ from (10).

Lemma 10. If Ti,k ∈ d ∪ DH, thenri,k ≤ td + ρ.

Lemma 11. If Ti,k ∈ DLH , thenri,k ≤ td + ρ+ µ.

Similarly to Definition 8, we define the following task set.

Definition 12. (τDLH ) Let τDLH be the set of tasks that have jobs inDLH .

Lemma 12. TaskTi ∈ τDH can have at most
⌈

ρ
pi

⌉
jobs in DH with release times aftertd. Task

Ti ∈ τDLH can have at most
⌈
ρ+µ
pi

⌉
jobs inDLH with release times aftertd.

Proof. Suppose thatTi,k ∈ DH ∪ DLH andri,k > td. If Ti,k ∈ DH, then, by Lemma 10,ri,k ≤
td + ρ. If Ti,k ∈ DLH , then, by Lemma 11,ri,k ≤ td + ρ + µ. Because taskTi’s consecutive job
releases are separated by at leastpi time units, the lemma follows.
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Lemma 13: W (DH ∪ DLH ) ≤
∑

Ti∈τDH∪τDLH

((⌈
ρ+µ
pi

⌉
+ 1
)
· ei
)
−
∑

Ti∈τDH
δi

Proof. ConsiderTi ∈ τDH ∪ τDLH . Each jobTi,k in DH ∪ DLH is released either at or beforetd
or aftertd. Because each job inDH ∪ DLH has a deadline aftertd, eachTi has at most one job
in DH ∪ DLH with a release time at or beforetd. The demand due to this job is at mostei. By

Lemma 12, the demand of jobs ofTi in DH ∪ DLH released aftertd is at most
⌈
ρ+µ
pi

⌉
· ei. The

allocation of taskTi’s jobs in DH in scheduleS before timetd is δi, by Definition 9. Thus, the
allocation of all jobs inDH ∪ DLH after timetd in scheduleS while T`,q is pending is

W (DH ∪ DLH )

≤
∑

Ti∈τDH∪τDLH

(⌈
ρ+ µ

pi

⌉
· ei + ei

)
−

∑

Ti∈τDH

δi

=
∑

Ti∈τDH∪τDLH

((⌈
ρ+ µ

pi

⌉
+ 1

)
· ei

)
−

∑

Ti∈τDH

δi

Upper bound onW (d ∪ DH ∪ DLH ).

Definition 13. Letα(τ, `) ≥
∑

Ti∈τDH∪τDLH

((⌈
ρ+µ
pi

⌉
+ 1
)
· ei
)

be a scheduling-algorithm-dependent

bound on the competing demand due to jobs inDH andDLH .

From (19), Lemma 9, and Lemma 13 we have

W (d ∪ DH ∪ DLH )

{by (19)}

≤ LAG(d, td,S) +W (DH ∪ DLH )

{by Lemmas 9 and 13}

≤ EL + x · UL +
∑

Ti∈τDH

δi +

m∑

k=1

ûk · σk

+
∑

Ti∈τDH∪τDLH

((⌈
ρ+ µ

pi

⌉
+ 1

)
· ei

)
−

∑

Ti∈τDH

δi

= EL + x · UL +

m∑

k=1

ûk · σk +
∑

Ti∈τDH∪τDLH

((⌈
ρ+ µ

pi

⌉
+ 1

)
· ei

)

{by Definition 13}

≤ EL + x · UL +

m∑

k=1

ûk · σk + α(τ, `) (20)

Claim 2. The expression
∑

Ti∈τ\T`

((⌈
ρ+µ
pi

⌉
+ 1
)
· ei
)

(conservatively) upper-boundsα(τ, `) for

any window-constrained scheduler.

Proof. The claim follows fromτDH ∪ τDLH ⊆ τ \ T`.
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In Section 5, we will discuss how to compute tighter bounds for α(τ, `) for GEDF andFIFO
schedulers.
Necessary condition for tardiness to exceedx + e`. We now find the amount of competing work
that is necessary forT`,q to miss its deadline by more thanx + e` time units. JobT`,q’s tardiness
depends on the amount of competing demandW (d ∪ DH ∪ DLH ) and on the amount of processor
time available toτ after timetd.

Definition 14. Let β∗
k ≥ βk(x + e`) be the amount of processor time available to tasks inτ during

the interval[td, td+x+ e`) on processork in scheduleS. LetR =
∑m

k=1(x+ e` −β∗
k) be the total

amount of processor time that isnot availableto τ during[td, td + x+ e`).

Definition 15. LetF be the number of processors that could be unavailable, i.e.,F = |k :: βk(∆) <
∆|.

Lemma 14. If at mostm − F tasks with ready jobs ind ∪ DH ∪ DLH are scheduled at time
t∗ ∈ [td+ρ, td+x+ e`), T`,q is pending att∗, and there is an idle available processor at timet∗ or
a job fromDLL is scheduled at timet∗, then(i) taskT` is scheduled att∗, and(ii) T` is guaranteed
uninterrupted execution until the jobT`,q completes.

Proof. (i) follows from Corollary 1. To prove(ii) , assume that the antecedent of the lemma holds.
LetA(t) (B(t)) be the number of tasks that have ready jobs ind (DH) at timet ≥ t∗. By Lemma 4,
all tasks with ready jobs ind ∪ DH are scheduled at timet∗, and hence,

A(t∗) +B(t∗) ≤ m− F. (21)

Suppose, contrary to the statement of the lemma, thatT` executes uninterruptedly within[t∗, t′) but
is preempted at timet′ so thatT`,q is pending att′. By Lemma 5, no job inDLH ∪ DLL can be
scheduled at timet′ (sinceT`,q ∈ d). Therefore, at timet′, all available processors are occupied by
tasks with ready jobs ind ∪ DH, andT` has ready job (ind) at timet′ that is not scheduled. This
impliesA(t′) +B(t′) > m− F , and, by (21),

A(t′) +B(t′) > A(t∗) +B(t∗). (22)

By Lemma 10, all jobs ind∪DH are released at or beforetd+ρ. Therefore, the number of tasks
with ready jobs ind∪DH at timet′ > t∗,A(t′) +B(t′), cannot be higher thanA(t∗) +B(t∗), i.e.,
A(t′) +B(t′) ≤ A(t∗) +B(t∗). This contradicts (22).

The following lemma establishes a lower bound on the competing demand forT`,q.

Lemma 15. If the tardiness ofT`,q exceedsx+ e`, wherex ≥ ρ, then

W (d ∪ DH ∪ DLH ) +R > (m− (m− a) · u`) · x+ (1− a) · ρ+ e`, (23)

wherea = min(m,m− F + 1).

Proof. Assume that

W (d ∪ DH ∪ DLH ) +R ≤ (m− (m− a) · u`) · x+ (1− a) · ρ+ e` (24)

holds and suppose, contrary to the statement of the lemma, that
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(T) the tardiness ofT`,q exceedsx+ e`.

In the rest of the proof, we say that a time instantt ≥ td (or an interval) isWR-occupiedif each
processor either executes a job fromd∪DH∪DLH or is unavailable; otherwise, we say thatt is WR-
free. The prefix“WR” denotes that all processors contribute to the allocationW (d∪DH∪DLH )+R.
If the time instantt ≥ td is WR-free, then either at least one available processor is idle at t, or a
job from DLL is scheduled at timet. Because, by (T),T`,q ∈ d is pending throughout the interval
[td, td + x+ e`), the following property holds by Corollary 1:

(E) taskT` executes at eachWR-free instant within[td, td + x+ e`).

By (P), the preceding jobT`,q−1 (if it exists) completes by time

t′ ≤ td − p` + e` + x ≤ td + x. (25)

Thus,td + x is the latest time at whichT`,q may become ready. If the latestWR-occupied instant in
the interval[td, td + x+ e`) is at or beforetd + x, then, by (E),T`,q executes uninterruptedly after
td + x and its tardiness is at mostx + e`,q ≤ x + e`, contrary to (T). In the rest of the proof, we
assume that the latestWR-occupied instant in the interval[td, td + x+ e`) is aftertd + x.

Suppose that at mostm − F processors execute jobs fromd ∪ DH ∪ DLH at someWR-free
instantt∗ ∈ [td + ρ, td + x). In this case, becauset∗ is WR-free, some processor is idle or a job in
DLL is scheduled there. Thus, by Lemma 14,T` is guaranteed uninterrupted execution at or after
time t∗ until T`,q finishes. By (25),T`,q−1 (if it exists) finishes its execution by timet′ ≤ td + x,
soT`,q finishes by timet′ + e`,q ≤ td + x + e`,q ≤ td + x + e`, thereby having tardiness at most
x+ e`, contrary to (T).

In the rest of the proof, we assume the following:

(N) at leasta = min(m,m−F +1) processors execute jobs fromd∪DH∪DLH at eachWR-free
instant in[td + ρ, td + x).

LetB1,B2, andB3 be the total length ofWR-occupied intervals within[td, td+ρ), [td+ρ, td+x),
and[td + x, td +x+ e`), respectively. (Recall, from (P), thatx ≥ ρ.) LetB = B1 +B2 +B3. This
is illustrated in Figure 10.

We now find a lower bound onB. Suppose first thatB ≤ x−x ·u`. In this case, the total length
of WR-free intervals during[td, td+x+e`) isx+e`−B ≥ x+e`−(x−x ·u`) ≥ x ·u`+e`. Thus,
by (E),T` executes for at leastx ·u`+e` time units after timetd within the interval[td, td+x+e`).
By Lemma 6, the total amount of pending work forT` at timetd, including work due toT`,q, is at
mostx ·u`+ e`, and thusT`,q completes by timetd+x+ e` and its tardiness is at mostx+ e`. This
contradicts (T). In the rest of the proof, we consider the other possibility, i.e.,

B = x− x · u` + v, (26)

wherev > 0.
By (E), at least one processor executes a job fromd at eachWR-free instant within[td, td + ρ)

(becauseT` executes at each such instant). The total length of allWR-free intervals within[td, td+ρ)
is

L1 = ρ−B1. (27)

By (N), at leasta processors execute jobs fromd ∪ DH ∪ DLH at eachWR-free instant in
[td + ρ, td + x). The total length of allWR-free intervals within[td + ρ, td + x) is x − ρ − B2 =
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Figure 10: Structure ofWR-occupied intervals in Lemma 15.

x− ρ− (B −B1 −B3). Thus, the total processor allocation to jobs ind ∪ DH ∪ DLH in WR-free
intervals within[td + ρ, td + x) is at least

L2 = a · (x − ρ−B +B1 +B3). (28)

By (E), at least one processor executes a job fromd at eachWR-free instant within[td + x, td +
x + e`) (again, becauseT` executes at each such instant). The total length of allWR-free intervals
in [td + x, td + x+ e`) is

L3 = e` −B3. (29)

By (26), the sum of the total allocation to jobs ind ∪ DH ∪ DLH and the unavailable processor
time in allWR-occupied intervals in[td, td + x+ e`) is

Lb = m ·B = m · (x− x · u` + v). (30)

Let Z be the total allocation to jobs ind ∪ DH ∪ DLH within [td, td + x + e`). Because each
processor is either unavailable or executes a job fromd ∪ DH ∪ DLH at everyWR-occupied instant
and at least one processor executesT` at everyWR-free instant, summing the lengths of allWR-free
intervals in[td, td + ρ) and[td + x, td + x + e`), given by (27) and (29), the allocation of jobs in
d ∪ DH ∪ DLH in WR-free intervals within[td + ρ, td + x), given by (28), and the total processor
allocation and the unavailable processor time inWR-occupied intervals in[td, td+x+ e`), given by
(30), we have

Z +R ≥ L1 + L2 + L3 + Lb,
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whereR is defined earlier in Definition 14. From the inequality above, we have

Z +R

≥ L1 + L2 + L3 + Lb

{by (27), (28), (29), and (30)}

= ρ−B1 + a · (x− ρ− B +B1 +B3) + e` −B3 +m · (x − x · u` + v)

{settingB′ = B1 +B3 andB = x− x · u` + v, which follows from (26)}

= e` + ρ−B′ + a · (x · u` − v − ρ+B′) +m · (x− x · u` + v)

= e` + ρ−B′ + a · x · u` − a · v − a · ρ+ a ·B′ +m · x−m · x · u` +m · v

= e` + (m− (m− a) · u`) · x+ (m− a) · v + (a− 1) · B′ + (1− a) · ρ. (31)

By our assumption at the beginning of the proof,T`,q ’s tardiness exceedsx + e`. Because
T`,q ∈ d, at timetd + x + e`, there is therefore unfinished work on jobs ind ∪ DH ∪ DLH . Let
Z ′ > 0 be this remaining work. To findZ ′, we subtractZ +R fromW (d ∪ DH ∪ DLH ) +R.

Z ′

=W (d ∪ DH ∪ DLH ) +R− Z −R

{by (24)}

≤ (m− (m− a) · u`) · x+ (1− a) · ρ+ e` − Z − R

{by (31)}

≤ (m− (m− a) · u`) · x+ (1− a) · ρ+ e` − e`

− (m− (m− a) · u`) · x− (m− a) · v − (a− 1) · B′ − (1− a) · ρ

= (1− a) · B′ − (m− a) · v.

By (N), 1 − a = 1 − min(m,m − F + 1) = max(F − m, 1 − m) ≤ 0 andm − a =
m − min(m,m − F + 1) = max(F − 1, 0) ≥ 0, and thusZ ′ ≤ 0. Therefore, there is no work
pending at timetd+x+ e` for jobs ind∪DH ∪DLH , which implies thatT`,q’s tardiness is at most
x+ e`, contrary to (T).

Deriving a tardiness bound. In that which follows, it is more convenient to use the following
form of (23):

W (d ∪ DH ∪ DLH ) +R > (m−max(F − 1, 0) · u`) · x+max(F −m, 1−m) · ρ+ e`. (32)

This expression is obtained from (23) by replacing1 − a by max(F − m, 1 −m) andm − a by
max(F − 1, 0).

Earlier, in (19), we established an upper bound onW (d∪DH ∪DLH ). Using Definition 14, we
can upper-boundR as follows.
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R

{by Definition 14}

=

m∑

k=1

(x+ e` − β∗
k)

{by Definition 14}

≤
m∑

k=1

(x+ e` − βk(x + e`))

{ by (1)}

≤
m∑

k=1

(x+ e` − ûk · (x+ e` − σk)) (33)

To this point,x has only been constrained to be at leastρ. We now show that ifx is further
constrained according to the definition below, then the tardiness ofT`,q is at mostx+ e`.

Definition 16. Let x = max(ρ, z), where

z =
EL +max(A(`))∑m

k=1 ûk −max(F − 1, 0) ·max(u`)− UL

, (34)

andA(`) = e` · (
∑m

k=1(1− ûk)− 1) + 2
∑m

k=1 ûk · σk + α(τ, `) + min(m− F,m− 1) · ρ.

Lemma 16. With x as defined in Definition 16, the tardiness ofT`,q is at mostx + e` provided the
denominator of (34) is positive.

Proof. Suppose that the denominator of (34) is positive and, contrary to the statement of the lemma,
that the tardiness ofT`,q exceedsx+ e`. By (20) and (33),

W (d∪DH ∪ DLH ) +R

≤ EL + x · UL +
m∑

k=1

ûk · σk + α(τ, `) +
m∑

k=1

(x+ e` − ûk · (x+ e` − σk))

= EL + x · UL + 2

m∑

k=1

ûk · σk + α(τ, `)

+ x ·

(
m−

m∑

k=1

ûk

)
+ e` ·

m∑

k=1

(1− ûk). (35)

Since, by our assumption,T`,q ’s tardiness is greater thanx + e` andx ≥ ρ, by Lemma 15, (32)
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holds. From (35) and (32), we have

(m−max(F − 1, 0) · u`) · x+max(F −m, 1−m) · ρ+ e`

< EL + x · UL + 2

m∑

k=1

ûk · σk + α(τ, `)

+ x ·

(
m−

m∑

k=1

ûk

)
+ e` ·

m∑

k=1

(1 − ûk).

Rearranging, we have

(m−max(F−1, 0) · u`) · x−m · x+ x ·
m∑

k=1

ûk − x · UL

< EL + 2

m∑

k=1

ûk · σk + α(τ, `)

−max(F −m, 1−m) · ρ+ e` ·

(
m∑

k=1

(1− ûk)− 1

)
,

which implies

x·

(
m∑

k=1

ûk −max(F − 1, 0) · u` − UL

)

<EL + 2

m∑

k=1

ûk · σk + α(τ, `) + min(m− F,m− 1) · ρ

+ e` ·

(
m∑

k=1

(1− ûk)− 1

)
.

From this, we have

x <
EL +A(`)∑m

k=1 ûk −max(F − 1, 0) · u` − UL

≤ max

(
ρ,

EL +max(A(`))∑m
k=1 ûk −max(F − 1, 0) ·max(u`)− UL

)
,

whereA(`) is defined as in Definition 16. However, this contradicts the definition of x in Defini-
tion 16.

From the above reasoning, we have the following theorem.

Theorem 2. The tardiness of any taskTk under a window-constrained scheduling algorithmA is
at mostx+ ek, wherex is as in Definition 16, provided the denominator of (34) is positive.
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5 Discussion

In this section, we discuss some implications of Theorem 2 and consider some extensions and im-
provements to the analysis given above, such as tightening the tardiness bound for specific schedul-
ing algorithms and processor configurations.

5.1 Relative Deadlines Different from Periods

First, note that, the definition of a prioritization function we have assumed is flexible enough to
allow task systems with relative deadlines different from periods to be analyzed. By Theorem 2 and
the definition of tardiness, each jobTi,j is guaranteed to complete withinpi+ ei+x time units after
its release timeri,j . We thus can compute a maximum tardiness bound with respect to an arbitrary
relative deadline.

5.2 Implications of Theorem 2

The requirement to have the denominator of (34) to be positive implicitly restricts the maximum
per-task utilization the system is able to accommodate without having unbounded deadline tardiness.
(Recall that (2) is assumed to hold, and by our task model,|τ | = n.)

Corollary 2. Bounded tardiness is guaranteed if

(A) n ≤ m− F , or

(B) max(u`) <
∑

m
k=1

ûk

max(F−1,0)+min(m−1,n) , or

(C) m ≥ 2 andF ≤ 1.

Proof. (A) follows trivially from the fact that if tasks do not compete for available processors, then
no deadlines are missed. To prove (B), suppose that

max(u`) <

∑m
k=1 ûk

max(F − 1, 0) + min(m− 1, n)
.

From this, we get
∑m

k=1 ûk > max(u`) ·max(F − 1, 0) +max(u`) ·min(m− 1, n) ≥ max(u`) ·
max(F − 1, 0) + UL, where the last inequality follows from Definition 11. Therefore, the denomi-
nator of (34) is positive, and by Theorem 2, the tardiness of any task inτ is bounded. As for (C), if
it holds, thenmax(F − 1, 0) = 0. Because, by Definition 11 and (2),UL <

∑m
k=1 ûk, this implies

that the denominator of (34) is positive. Again, by Theorem 2, the tardiness of any task inτ is
bounded.

The conditions of Corollary 2 are not necessary. Depending on the processor availability pattern,
it may be possible to schedule a task system for which some of the conditions from Corollary 2 do
not hold yet tardiness is still bounded as the following example illustrates.

Example 12. Consider a four-processor system, where the first processoris fully available, and all
other processors are available for one time unit every threetime units as shown in Figure 11(a).
For these processors,̂u1 = 1, û2 = û3 = û4 = 1/3, σ1 = 0, andσ2 = σ3 = σ4 = 2. The
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Figure 11: Task execution for different processor availability patterns.

total processing capacity of the system is
∑4

k=1 ûk = 1 + 3 · 1/3 = 2. Suppose that the task set
τ = {T1 = (3, 3), T2 = (3, 3)} is scheduled. Applying Corollary 2 to this task system, we find that
bounded deadline tardiness can be guaranteed if

max(u`) <

∑m
k=1 ûk

max(F − 1, 0) + min(m− 1, n)

=
2

max(3− 1, 0) + min(3, 2)
= 2/4 = 1/2.

Thoughmax(u`) = 1 > 1/2, jobs ofT1 andT2 always meet their deadlines because at every time
instant two processors are available. However, if we attempt to scheduleτ on a system with the
availability pattern shown in Figure 11(b), which is described by the same service functions as the
pattern in Figure 11(a), we indeed will have unbounded deadline tardiness, because the arriving jobs
demand six time units every three time units (assuming the job-arrival pattern continues as shown)
but can utilize only four time units.

Uniform multiprocessors. Service functions as defined by (1) can also be used to describe a
uniform multiprocessor platform, i.e., a platform where processors have different (constant) speeds.
Particularly, a service function for whichσk = 0 describes a processor with speed̂uk ≤ 1. This
can be thought of as a unit-speed processor that is unavailable in infinitesimally small time intervals.
The following example illustrates this approximation.

Example 13. Consider a processor that is available for two time units every six time units. The
amount of available serviceβ∗[1](∆) is shown in Figure 12(a) with a solid line. The service func-
tion for this processor isβ[1](∆) = max(0, û · (∆ − σ)), whereû = 1/3 andσ = 4 as shown
in Figure 12(a). The superscript “[1]” denotes that this is a first approximation of a processor
with speed 1/3. It is possible to make processor availability more even, so that the processor is
available for one time units every three time units. The respective service curves,β∗[2](∆) and
β[2](∆) = max(0, 1/3 · (∆ − 2)), are shown in Figure 12(b). Continuing this process, we can
approximate a processor with speed1/3 by using the limiting service functionβlim(∆) = ∆/3,
shown in Figure 12(b), as the availability function.
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Figure 12: Approximating a slow processor with a unit-speedprocessor.

In order to apply Theorem 2 to a uniform multiprocessor system, task execution times have to
be measured with respect to the fastest processor. The speeds of all processors must be scaled down
so that the fastest processor has unit speed. When considering a system with partially-available
processors in Section 4, we did not make any assumptions about the way that jobs are assigned to
processors except that these processors select at mostm jobs of highest priority. Therefore, Corol-
lary 2, under which bounded tardiness is guaranteed, may be unnecessarily restrictive for uniform
multiprocessors. This is because Theorem 2 treats different-speed processors and partially-available
unit-speed processors in a unified fashion. In the case of a uniform multiprocessor, it may be more
advantageous to assign jobs with larger utilizations or execution times or higher priorities to faster
processors in order to achieve better performance. Alternatively, a partitioning scheme that restricts
the set of processors where jobs may execute can be employed (e.g., see (Leontyev and Anderson,
2007b)).

5.3 Systems With Full Processor Availability

In previous work on deriving tardiness bounds for differentglobal scheduling algorithms (Devi and
Anderson, 2005; Devi et al, 2006; Leontyev and Anderson, 2007c), a system where all processors
are always available for scheduling soft real-time tasks from τ was considered. In this section, we
instantiate Theorem 2 for this important subcase.

If all processors are fully available to tasks inτ , then for eachk, βk(∆) = ∆, ûk = 1, and
σk = F = 0. Setting these values into Theorem 2 we have the following corollary.

Corollary 3. If all processors are always available for scheduling the tasks inτ , then the tardiness
of any taskTk under a window-constrained scheduling algorithmA is at mostmax(ρ, z) + ek,
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where

z =
EL +max(A(`))

m− UL

, (36)

andA(`) = −e` + α(τ, `) + (m− 1) · ρ.

Note that the denominator of (36) is always positive sinceUL < m holds, by Definition 11.

5.4 Tightening the Bound for Specific Algorithms

The bounds in Theorem 2 and Corollary 3 can be improved for particular algorithms by exploiting
the structure of the setsτDH andτDLH , and the way jobs are prioritized. (Indeed, it is difficult to
establish a tight bound when considering only very general properties of a scheduling algorithm.)

For example, for globalEDF, χ(Ti,j , t) = di,j , so jobs with deadlines aftertd have lower
priority thanT`,q. Thus,φi = −pi, ψi = 0, andρ = 0. By (13), we haveDH = ∅, and hence,
DLH = ∅, which by Definitions 7 and 13, impliesα(τ, `) = 0. As a result, tardiness under global
EDF for taskTk is at most

ek +max

(
0,
EL + 2

∑m
k=1 ûk · σk +maxTh∈τ (eh · (

∑m
k=1(1 − ûk)− 1))∑m

k=1 ûk −max(F − 1, 0) ·max(uh)− UL

)
, (37)

provided the denominator of the second argument ofmax is positive.
If at most one processor is partially available, thenF ≤ 1, ûk = 1 for eachk except one and

σk = 0 for eachk except one. From this, we have
∑m

k=1 ûk = m− 1 + min(ûh),∑m
k=1 ûk · σk = max(ûh · σh),∑m
k=1(1− ûk)− 1 = −min(ûh),

max(F − 1, 0) ·max(uh) = 0.





(38)

Setting (38) into (37), we have a tardiness bound for taskTk underGEDF if at most one processor
is partially available:

ek +
EL + 2max(ûk · σk)−min(ûh) ·minTh∈τ (eh)

m− 1 + min(ûh)− UL

. (39)

Finally, if all processors are fully available, thenmax(ûh · σh) = 0, becauseσh = 0 for all
h, andmin(ûh) = 1, and hence, by (39), the tardiness under globalEDF for taskTk is at most

ek +
EL−minTh∈τ (eh)

m−UL
. The latter tardiness bound was first established by Devi andAnderson in

(Devi and Anderson, 2005).
Under globalFIFO, jobs are prioritized by their release times, i.e.,χ(Ti,j , t) = ri,j . We thus

haveφi = 0 andψi = −pi for each taskTi, and hence, by (10),ρ = 0 andµ = 0. Using these values
and Claim 2, we can upper-boundα(τ, `) by

∑
Ti∈τ\T`

ei. After setting these values into (36), from

Corollary 3, the maximum tardiness of taskTk under globalFIFO is ek+
EL+max`(

∑
Ti∈τ\T`

ei−e`)

m−UL
.

This bound is slightly worse than that obtained in (Leontyevand Anderson, 2007c), which isek +
EL+max`(

∑
Ti : pi>p`

ei−e`)

m−UL
.

29



5.5 Non-Preemptive Execution

As shown in Section 3, the notion of window-constrained priorities allows a wide range of schedul-
ing algorithms to be described. Some of these algorithms, e.g., globalFIFO, execute jobs non-
preemptively. Non-preemptivity is useful when overheads associated with rescheduling are high
or when exclusive access to shared resources is needed. Somesimple but efficient resource access
protocols require using short non-preemptive code regions(Block et al, 2007).

Non-preemptive execution causes priority inversions whena lower-priority job is scheduled
and a higher-priority job is ready but not scheduled. In thissection, we show how to model non-
preemptivity using window-constrained prioritization functions in a system where all processors are
always available for scheduling the tasks inτ ; we leave the analysis of non-preemptive execution
under partial processor availability as an open problem. (Indeed, it is not clear how to deal with the
situation where a processor becomes unavailable while a jobis executing on it non-preemptively.)
We assume some additional constraints on the task system andthe scheduler.

Definition 17. We call a task systemrestricted early-releaseif there exists a constantγ ≥ 0 such
that, for each jobTi,j ,

εi,j ≥ ri,j − γ. (40)

Definition 18. Let χA(Ti,j , t) be a prioritization function imposed by the scheduling algorithmA.
We callA eventually-monotonicif there exists a constantM ≥ 0 such that for each jobTi,j, for all
t ≥ di,j +M andv ≥ 0, χA(Ti,j , t) ≤ χA(Ti,j , t+ v).

From the above definition, any algorithm for whichχA(Ti,j , t) is constant, e.g., globalEDF,
FIFO, andRM, is eventually-monotonic. Also, it is easy to verify thatLLF andEDZL, as specified
as in Examples 7 and 8, are eventually-monotonic. In the restof this section, we concentrate on
restricted early-release task systems scheduled under an eventually-monotonic schedulerA assum-
ing that (4) holds forχA(Ti,j , t). We show how to modify the prioritization functions ofA in a
window-constrained way to ensure non-preemptive execution (if this is not ensured already).

Definition 19. Let φmax = maxTi∈τ (φi), pmax = maxTi∈τ (pi), andG = µ+ γ + φmax +M +
pmax + 1.

As mentioned earlier, non-preemptive execution causes priority inversions when a low-priority
jobTi,j is scheduled and there is a ready high-priority jobTa,b that is not scheduled. This means that
Ti,j ’s priority is effectively higher than that ofTa,b for the duration of the non-preemptive region.
We can explicitly model this behavior by changing prioritization functions ofA as follows.

If a ready jobTi,j is not executing within a non-preemptive region, thenχ(Ti,j , t) = χA(Ti,j , t).
If Ti,j begins executing a non-preemptive region at timet1 and leaves that region at a later timet2,
then we “boost” its priority while it executes non-preemptively by settingχ(Ti,j , t) = ri,j −G for
all t ∈ (t1, t2).

Theorem 3. (proved in the appendix)If A is an eventually-monotonicscheduling algorithm and its
prioritization functions are augmented as described above, then no job is preempted while executing
in a non-preemptive region.

The augmented prioritization functionχ(Ti,j, t) remains window-constrained becauseri,j−G ≤
χ(Ti,j , t) ≤ di,j − ψi holds, whereG is constant. By Corollary 3, this implies that tardiness
is bounded for any restricted early-release task system under a window-constrained eventually-
monotonic scheduler onm fully available processors even if the tasks inτ have non-preemptive
regions.

30



6 Experiments

As noted in Section 5, different algorithms to which Theorem2 applies may exhibit very different
behavior in terms of tardiness. To provide a sense of how significant such differences can be, we
present here the results of some experiments that we conducted to compare observed tardiness under
different scheduling algorithms.

In these experiments, we examinedm-procssesor systems for which task sets were randomly
generated as follows. First, we generated an initial set setτ by adding tasks with integral execu-
tion times uniformly distributed over the range[1, 10] and utilizations uniformly distributed over
the range[umin, umax) until Usum exceeded(m + 1)/2. We considered three utilization ranges:
[0.01, 0.05) (light), [0.05, 0.5) (medium), and[0.5, 0.9) (heavy). For each utilization range, we
generated 500 independent task sets. After the initial independent task setτ was generated we in-
crementally added tasks toτ until its total utilization exceededm. For each resulting task set, we
produced schedules (with job releases occurring in a synchronous, periodic manner) for each of
EDF, FIFO, LLF, andEDZL for min(20000, 20 · max(pi)) time units. In producing these sched-
ules, system and scheduling overheads were taken to be negligible. For each schedule, the maximum
observed tardiness was recorded.

Figure 13 shows the maximum observed tardiness values underEDF, FIFO, LLF, andEDZL
as a function ofUsum for m = 4 for the light (inset (a)), medium (inset (b)), and heavy (inset
(c)) utilization ranges. These observed values are denotedO-GEDF, O-FIFO, O-LLF, and O-
EDZL, respectively. Additionally, for each task set, a maximum tardiness bound underLLF and
EDZL was computed using Corollary 3 and assumingψi = φi = 0 for each taskTi. This bound
is denotedC-GEN (it is a generalized bound, which is also applicable toFIFO and EDF). We
also computed tighter bounds forEDF andFIFO, denotedC-GEDF andC-FIFO, respectively, as
discussed in Section 5.4. To compute the maximum deadline tardiness underFIFO, we used the
slightly improved bound mentioned earlier in Section 5.4 from (Leontyev and Anderson, 2007c).
Figure 14 depicts similar data for the casem = 8.

Of the four scheduling algorithms under consideration, observed tardiness underLLF andEDZL
was smaller than that underFIFO andEDF (muchsmaller than underFIFO). While LLF may be
impractical in reality because it preempts jobs frequently, EDZL could be a viable approach for
scheduling soft real-time workloads when tardiness is allowed.

The general tardiness bound obtained using Corollary 3 is five to six times larger than the maxi-
mum task execution time, which seems quite reasonable, for the medium and heavy per-task utiliza-
tion ranges (see insets (b) and (c) of Figures 13 and 14). In contrast, for the light utilization range,
the maximum tardiness bound is about twenty times larger than the maximum per-task execution
cost. However, the observed tardiness underFIFO for that utilization range is also quite high so it
is unlikely that the general bound can be improved much (see inset (a) of Figures 13 and 14). Even
though observed tardiness underLLF andEDZL is practically zero, the tardiness bound given for
them by Corollary 3 (C-GEN) is very pessimistic, due to the use of a conservative estimation for
α(τ, `) (from Claim 2). Obtaining a better estimation for these algorithms is difficult, due to their
dynamic nature.

The experiments also show that theFIFO bound improvement discussed in Section 5.4 is only
a slight improvement (C-GEN and C-FIFO do not differ much in any graph). In contrast, the
improved bound forEDF is significantly better. (Note that the improved bound forEDF is two to
three times larger than the maximum per-task execution timefor all utilization ranges.) These results
suggest that it might be possible to improve the tardiness bound for each algorithm (particularly
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Figure 13: Maximum deadline tardiness observed and computed for (a) light, (b) medium, and(c)
heavy per-task utilization ranges form = 4 processors.

EDZL andLLF) further. We leave the development of tighter bounds for these algorithms as open
problems.
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Figure 14: Maximum deadline tardiness observed and computed for (a) light, (b) medium, and(c)
heavy per-task utilization ranges form = 8 processors.

7 Conclusion

We have presented a general tardiness-bound derivation that applies to a wide variety of global
scheduling algorithms. Our results show that, with the exception of static-priority algorithms, most
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global algorithms of interest in the real-time-systems community have bounded tardiness. When
considering new algorithms, the question of whether tardiness is bounded can be answered in the
affirmative by simply showing that the required prioritization can be specified. Of course, a tardiness
bound that is tighter than that given by our results might be possible through the use of reasoning
specific to a particular algorithm. Indeed, it is difficult toobtain a very tight bound when assuming
so little concerning the nature of the scheduling algorithm. Our goal in this paper was not to produce
the tightest bound possible, but rather to produce a bound that could be widely applied.

Since their publication in preliminary form (Leontyev and Anderson, 2007a), the results of this
paper have been used in several other efforts. For example, the ability to re-define priority points
at runtime has been used in a scheduling framework that seeksto minimize cache thrashing on
multicore platforms (Calandrino and Anderson, 2008). Also, the fact that per-task utilizations are
not severely constrained when at most one processor is partially available (see Corollary 2 and (39))
was used in developing a hierarchical bandwidth reservation scheme for multiprocessors (Leontyev
and Anderson, 2008). This scheme allows hierarchies of taskgroups to be scheduled with soft
real-time constraints with no utilization loss (assuming overheads are negligible).

Several interesting avenues for further work exist. First,it would be interesting to investigate
reactive techniques that could be applied at runtime to lessen tardiness for certain jobs by redefining
priority points, as circumstances warrant. Such techniques might exploit the fact that our framework
allows priority definitions to be changed rather arbitrarily at runtime. Second, our experimental
results suggest that actual tardiness underEDZL is likely to be very low. It would be interesting to
improve our analysis as it applies toEDZL in order to obtain a tight tardiness bound.
Acknowledgement: Work supported by a grant from Intel Corp., by NSF grants CNS 0408996,
CCF 0541056, and CNS 0615197 and by ARO grant W911NF-06-1-0425.
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Appendix

The following claim is used in proving Lemma 6 and Lemma A1.

Claim A1.
(a) If, for job Ti,g, ri,g ≥ t, thenA(Ti,j , 0, t,PS) = 0 for eachj ≥ g.
(b) If, for job Ti,g, ri,g < t ≤ di,g, thenA(Ti,j , 0, t,PS) = 0 for eachj > g.

Proof. (a) follows from the fact that no jobTi,j such thatri,j ≥ t receives an allocation before its
release time in thePS schedulePS. If ri,g < t ≤ di,g, thenj > g implies thatri,j ≥ ri,g + pi =
di,g ≥ t, which, by (a), implies (b).

Lemma 6: lag(Tk, t,S) ≤ x · uk + ek for any taskTk andt ∈ [0, td].

Proof. Let dk,j be the deadline of the earliest pending job ofTk, Tk,j , in the scheduleS at timet.
Let γk,j < ek,j be the amount of time for whichTk,j executes beforet in the scheduleS. By (6)
and the selection ofTk,j ,

lag(Tk, t,S)

=
∑

h≥1

lag(Tk,h, t,S)

=
∑

h≥j

lag(Tk,h, t,S)

=
∑

h≥j

(A(Tk,h, 0, t,PS)− A(Tk,h, 0, t,S))

= A(Tk,j , 0, t,PS)− A(Tk,j , 0, t,S) +
∑

h>j

A(Tk,h, 0, t,PS)−
∑

h>j

A(Tk,h, 0, t,S). (41)

We now bound each term in the equation above. Since the earliest pending jobTk,j executes forγk,j
time units before timet in the scheduleS,

A(Tk,j , 0, t,S) = γk,j and
∑

h>j

A(Tk,h, 0, t,S) = 0. (42)

Bounds for the remaining terms depend on the relationship betweendk,j andt.
Case 1:dk,j < t. SinceTk,j does not execute before its release time and finishes atdk,j in PS,
from the condition of Case 1, it follows that

A(Tk,j , 0, t,PS) = A(Tk,j , rk,j , dk,j ,PS) = ek,j . (43)

Since the jobTk,j+1 cannot commence execution inPS earlier than timedk,j ,

∑

h>j

A(Tk,h, 0, t,PS) ≤ uk · (t− dk,j). (44)

Setting (42), (43), and (44) into (41), we get

lag(Tk, t,S) ≤ ek,j − γk,j + uk · (t− dk,j). (45)
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Becausedk,j < t ≤ td holds, by Property (P),Tk,j has tardiness at mostx+ ek. Let compl(Tk,j , t)
be the length of the interval after timet whereTk,j is pending. Then,t + compl(Tk,j , t) ≤ dk,j +
x+ ek, and hence,

t− dk,j ≤ x+ ek − compl(Tk,j , t). (46)

BecauseTk,j executes forγk,j time units before timet, compl(Tk,j , t) ≥ ek,j − γk,j . Setting the
last inequality into (46), we gett− di,j ≤ x+ ek − ek,j + γk,j . From (45), we therefore have

lag(Tk, t,S)

≤ ek,j − γk,j + uk · (t− dk,j)

≤ ek,j − γk,j + uk · (x+ ek − ek,j + γk,j)

= ek,j + uk · x+ γk,j · (uk − 1) + uk · (ek − ek,j)

≤ uk · x+ ek,j + uk · (ek − ek,j)

= uk · x+ ek,j · (1 − uk) + uk · ek

{maximized ifek,j = ek}

≤ uk · x+ ek.

Case 2:dk,j ≥ t. In this case,

A(Tk,j , 0, t,PS) = A(Tk,j , rk,j , t,PS) ≤ uk,j ·(t−rk,j) ≤ uk ·(dk,j−rk,j) = uk ·pk = ek. (47)

By the condition of Case 2, for any jobTk,h such thath > j, rk,h ≥ t holds, and hence, by
Claim A1, ∑

h>j

A(Tk,h, 0, t,PS) = 0. (48)

Setting (42), (47), and (48) into (41) we get

lag(Tk, t,S) ≤ ek,j − γk,j ≤ ek + uk · x,

where the latter inequality trivially follows, sincex ≥ ρ ≥ 0 (see (P)). The lemma follows.

Lemma 7: LAG(d, td,S) ≤ LAG(d, tn,S) +
∑

Ti∈τDH
δi +

∑m
k=1 ûk · σk.

Proof. By (8),

LAG(d, td,S) = LAG(d, tn,S)+A(d, tn, td,PS)−A(d, tn, td,S). (49)

To computeA(d, tn, td,PS)−A(d, tn, td,S), we split[tn, td) into b non-overlapping intervals
[tps

, tqs), 1 ≤ s ≤ b, such thattn = tp1
, tqs−1

= tps
, andtqb = td. These intervals are defined

so that, for each interval[tps
, tqs), if processorh is unavailable at timet ∈ [tps

, tqs), then it is
unavailable throughout the entire interval[tps

, tqs). We further assume that each interval[tps
, tqs)

is defined so that if a jobTk,j executes at some point in the interval in scheduleS, then it executes
continuously throughout the interval inS. Note that such a jobTk,j does not necessarily execute
continuously throughout[tn, td). The allocation difference ford throughout the interval[tn, td) is
thus

A(d, tn, td,PS)− A(d, tn, td,S) =
b∑

s=1

(A(d, tps
, tqs ,PS)− A(d, tps

, tqs ,S)) .
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We now bound the allocation difference in thePS schedulePS and the scheduleS across each of
the intervals[tps

, tqs). The sum of these bounds gives us a bound on the total allocation difference
throughout[tn, td). By the definition of aPS schedule,

A(d, tps
, tqs ,PS) ≤ Usum · (tqs − tps

). (50)

For each interval[tps
, tqs), we letαs ⊆ τDH denote those tasks that execute their jobs inDH

continuously throughout[tps
, tqs) in the scheduleS. Due to selection oftn, within each interval

[tps
, tqs) in scheduleS two alternatives are possible:

1. m available processors are occupied by tasks with ready jobs in d.

2. Some tasks with ready jobs ind do not execute because some processors are unavailable
and/or other available processors execute tasks inαs. (Note that, by Lemma 5, jobs inDLH
andDLL cannot execute at time instants when there are ready unscheduled jobs ind.)

For each interval[tps
, tqs), we defineκs to be the number of unavailable processors in that

interval. The number of available processors in[tps
, tqs) is thusm− κs. Therefore,

A(d, tps
, tqs ,S)

= (tqs − tps
) · (m− |αs| − κs)

= − (tqs − tps
) · |αs|+ (tqs − tps

) · (m− κs). (51)

Subtracting (51) from (50), we get

A(d, tps
, tqs ,PS)− A(d, tps

, tqs ,S)

≤(tqs − tps
) · Usum − (−(tqs − tps

) · |αs|+ (tqs − tps
) · (m− κs))

=(tqs − tps
) · Usum + (tqs − tps

) · |αs| − (tqs − tps
) · (m− κs)

=(tqs − tps
) · Usum + (tqs − tps

) ·
∑

Ti∈αs

1− (tqs − tps
) · (m− κs). (52)

Summing (52) over all intervals[tps
, tqs), we have

A(d,tn, td,PS)− A(d, tn, td,S)

≤
b∑

s=1

(tqs − tps
) · Usum +

b∑

s=1

∑

Ti∈αs

(tps
− tqs)−

b∑

s=1

(tqs − tps
) · (m− κs)

=(td − tn) · Usum +
b∑

s=1

∑

Ti∈αs

(tps
− tqs)−

b∑

s=1

(tqs − tps
) · (m− κs). (53)

For each taskTi ∈ τDH , the sum of the lengths of the intervals[tps
, tqs), in which jobs ofTi

from DH execute continuously before timetd is at mostδi (see Definition 9). Thus,

b∑

s=1

∑

Ti∈αs

(tps
− tqs) ≤

∑

Ti∈τDH

δi. (54)
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Now consider
∑b

s=1(tqs − tps
) · (m − κs). Sinceκs is the number of unavailable processors

within the interval[tps
, tqs), (m − κs) · (tqs − tps

) is the amount of processor time available to
tasks inτ within [tps

, tqs). The sum of these times for all the intervals[tps
, tqs) is at least the total

processor time guaranteed within[tn, td), because each processor is either unavailable or executes a
task fromτ within [tps

, tqs). Thus,

b∑

s=1

(m− κs) · (tqs − tps
) ≥

m∑

k=1

βk(td − tn). (55)

By (1) and (55), we have

b∑

s=1

(m− κs) · (tqs − tps
) ≥

m∑

k=1

βk(td − tn) ≥
m∑

k=1

ûk · (td − tn − σk). (56)

Substituting (54) and (56) into (53), we have

A(d, tn, td,PS)− A(d, tn, td,S)

≤ (td − tn)Usum +
∑

Ti∈τDH

δi −
m∑

k=1

ûk · (td − tn − σk)

= (td − tn)

(
Usum −

m∑

k=1

ûk

)
+

∑

Ti∈τDH

δi +

m∑

k=1

ûk · σk

{ by (2)}

≤
m∑

k=1

ûk · σk +
∑

Ti∈τDH

δi. (57)

By (57) and (49), the lemma follows.

The following definition and Lemmas A1 and A2 and used in proving Lemma 8.

Definition 20. Let ξ = {Ti :: ∃Ti,j ∈ d such thatTi,j is ready att−n in scheduleS}.

Lemma A1. If Ti 6∈ ξ, then
∑

Ti,j∈d lag(Ti,j , tn,S) ≤ 0.

Proof. Consider taskTi 6∈ ξ at time instantt−n . Let Ti,g be the latest job such thatri,g < tn. Then
tn ≤ ri,j for eachj > g. By Claim A1 (b),

∑

Ti,j :: Ti,j∈d∧j>g

A(Ti,j , 0, tn,PS) = 0. (58)

Also, in thePS schedulePS, Ti,g ’s allocation cannot be larger than its actual execution timeei,g.

A(Ti,g, 0, tn,PS) ≤ ei,g. (59)
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BecauseTi 6∈ ξ, all jobsTi,j such thatTi,j ∈ d andj < g complete by timet−n in both schedulesS
andPS, and hence,

A(Ti,j , 0, tn,PS) = A(Ti,j , 0, tn,S) for eachj < g andTi,j ∈ d. (60)

Also, all jobs with eligibility times at mosttn, including jobTi,g, for which εi,g ≤ ri,g < tn,
complete bytn in scheduleS. We thus have

A(Ti,g, 0, tn,S) = ei,g. (61)

By (7), we have
∑

Ti,j∈d
lag(Ti,j , tn,S)

=
∑

Ti,j∈d
(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

{by (60)}

=
∑

Ti,j :: Ti,j∈d∧j≥g

(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

{by (59) and (61)}

≤
∑

Ti,j :: Ti,j∈d∧j>g

A(Ti,j , 0, tn,PS)−
∑

Ti,j :: Ti,j∈d∧j>g

A(Ti,j , 0, tn,S)

{by (58)}

≤ −
∑

Ti,j :: Ti,j∈d∧j>g

A(Ti,j , 0, tn,S)

≤ 0.

The lemma follows.

Lemma A2. If Ti ∈ ξ, then
∑

Ti,j∈d lag(Ti,j , tn,S) ≤ lag(Ti, tn,S).

Proof. BecauseTi ∈ ξ, there exists a jobTi,g such thatdi,g ≤ td andTi,g is pending att−n . Because
jobs ofTi execute sequentially, jobs ofTi with deadlines afterdi,g do not execute before timetn,
and hence,

A(Ti,j , 0, tn,S) = 0 for each jobTi,j 6∈ d. (62)

We therefore have,

lag(Ti, tn,S)

{by (6)}

=
∑

j≥1

(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

=
∑

(j≥1)∧Ti,j∈d
(A(Ti,j , 0, tn,PS)
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− A(Ti,j , 0, tn,S)) +
∑

(j≥1)∧Ti,j 6∈d
(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

{by (7)}

=
∑

Ti,j∈d
lag(Ti,j , tn,S) +

∑

Ti,j 6∈d
(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

{by (62)}

=
∑

Ti,j∈d
lag(Ti,j , tn,S) +

∑

Ti,j 6∈d
A(Ti,j , 0, tn,PS)

≥
∑

Ti,j∈d
lag(Ti,j , tn,S).

Lemma 8: LAG(d, tn,S) ≤ EL + x · UL.

Proof. If tn = 0, thenLAG(d, tn,S) = 0 and the lemma holds trivially, so assume thattn > 0. By
Definition 10 and Definition 20, all tasks inξ execute att−n , and hence,|ξ| ≤ m− 1. Therefore,

LAG(d, tn,S)

{by (7)}

=
∑

Ti,j∈d
lag(Ti,j, tn,S)

=
∑

Ti∈ξ

∑

Ti,j∈d
lag(Ti,j , tn,S) +

∑

Ti 6∈ξ

∑

Ti,j∈d
lag(Ti,j , tn,S)

{by Lemma A1}

≤
∑

Ti∈ξ

∑

Ti,j∈d
lag(Ti,j , tn,S)

{by Lemma A2}

≤
∑

Ti∈ξ

lag(Ti, tn,S)

{by Lemma 6}

≤
∑

Ti∈ξ

(x · ui + ei)

{because|ξ| ≤ m− 1}

≤ EL + x · UL.

The following claim is used in proving Lemmas 10 and 11.

Claim A2. If Ti,k ∈ DH, thenχ(Ti,k, t′) ≤ td + ψa for somea 6= i and timet′.

Proof. If Ti,k ∈ DH, then, by (13), there existsTa,b ∈ d such thata 6= i and¬LP(Ti,k, Ta,b) holds.
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By (11), there existst′ such that

χ(Ti,k, t
′)

≤ da,b + ψa

{becauseTa,b ∈ d, by (12),da,b ≤ td }

≤ td + ψa.

The claim follows.

Lemma 10. If Ti,k ∈ d ∪ DH, thenri,k ≤ td + ρ.

Proof. Because setsd andDH are disjoint we consider two cases.

Case 1:Ti,k ∈ d. In this case,ri,k ≤ di,k ≤ td ≤ td + ρ, sinceρ ≥ 0.

Case 2:Ti,k ∈ DH. By the condition of Case 2 and Claim A2, there existsa 6= i andt′ such that
χ(Ti,k, t

′) ≤ td + ψa. We thus have, for timet′,

ri,k

{by (4)}

≤ χ(Ti,k, t
′) + φi

≤ td + ψa + φi

{by (10)}

≤ td + ρ.

The lemma follows.

Lemma 11. If Ti,k ∈ DLH , thenri,k ≤ td + ρ+ µ.

Proof. Suppose thatTi,k ∈ DLH . Then, by (15), there existsTa,b ∈ DH such thata 6= i and
¬LP(Ti,k, Ta,b) holds. The latter implies thatχ(Ti,k, t′) ≤ da,b + ψa holds for some timet′. We
thus have, for timet′,

ri,k

{by (4)}

≤ χ(Ti,k, t
′) + φi

≤ da,b + ψa + φi

= ra,b + pa + ψa + φi

{by (10)}

≤ ra,b + µ

{by Lemma 10}

≤ td + ρ+ µ.
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Theorem 3. If A is an eventually-monotonic scheduling algorithm and its prioritization functions
are augmented as described above, then no job is preempted while executing in a non-preemptive
region.

Proof. Suppose, contrary to the statement of the theorem, that jobTk,h begins executing a non-
preemptive region at timet1 and, while still within that region, is preempted at timetp by jobTa,b
that is either ready but not scheduled at timet−p or becomes eligible attp. BecauseTk,h cannot be
scheduled earlier thanεk,h, we have

εk,h ≤ t1 < t−p < tp. (63)

According to the priority augmentation rules,χ(Ta,b, tp) = χA(Ta,b, tp). Below, we show that
eitherχA(Ta,b, tp) > rk,h −G = χ(Tk,h, tp) holds or the tie-breaking between jobsTa,b andTk,h
at timest−p andtp is not consistent, and hence, jobTa,b cannot be scheduled at timetp as assumed.
Let

rc = rk,h − µ− γ − pmax −M. (64)

Two cases are possible, based upon the release time ofTa,b.
Case 1:rc ≤ ra,b. In this case,

χA(Ta,b, tp)

{by (4)}

≥ ra,b − φa

{by the condition of Case 1}

≥ rc − φa

{by (64)}

= rk,h − µ− γ − pmax −M − φa

{by Definition 19}

> rk,h −G

Case 2:ra,b < rc. In this case, we can show thatda,b +M < εk,h holds.

da,b +M

= ra,b + pa +M

{by the condition of Case 2}

< rc + pa +M

{by (64)}

= rk,h − µ− γ − pmax −M + pa +M

≤ rk,h − µ− γ

{by (40)}

≤ εk,h − µ

{becauseµ ≥ 0 (see (10))}

≤ εk,h (65)
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Two subcases are possible, depending on whether jobTa,b is ready at timet−p .
Subcase 1:Ta,b is not ready at timet−p . In this case, by the selection ofTa,b, it becomes eligible at
tp, and hence, by (63),

εk,h < tp = εa,b. (66)

We can lower-boundχA(Ta,b, tp) as follows.

χA(Ta,b, tp)

{by (4)}

≥ ra,b − φa

≥ εa,b − φa

{by (66)}

> εk,h − φa

{by (40)}

≥ rk,h − γ − φa

{by Definition 19}

> rk,h −G

Subcase 2:Ta,b is ready at timet−p . In this case, becauseTk,h is scheduled att−p andTa,b is not
scheduled, we have

rk,h −G = χ(Tk,h, t
−
p ) ≤ χ(Ta,b, t

−
p ) = χA(Ta,b, t

−
p ). (67)

The latter equality holds becauseTa,b is not scheduled att−p and thus is not executing non-preemptively
then. By (63) and (65),da,b +M < t−p < tp. Therefore, by Definition 18, we have

χA(Ta,b, t
−
p ) ≤ χA(Ta,b, tp). (68)

By (67) and (68), we haverk,h − G ≤ χA(Ta,b, tp). If rk,h − G < χA(Ta,b, tp) holds, thenTa,b
cannot preemptTk,h. If rk,h − G = χA(Ta,b, tp), then by (67) and (68), we haverk,h − G =
χA(Ta,b, t

−
p ), and hence, the tie-breaking between jobsTa,b andTk,h is not consistent.
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