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Abstract

We consider the issue of deadline tardiness under globaipradessor scheduling algo-
rithms. We present a general tardiness-bound derivatiahishapplicable to a wide variety of
such algorithms (including some whose tardiness beha@smiot been analyzed before). Our
derivation is very general: job priorities may change ra#iybitrarily at runtime, capacity restric-
tions may exist on certain processors, and, under certaidittons, non-preemptive regions are
allowed. Our results show that, with the exception of stptiority algorithms, most global al-
gorithms considered previously have bounded tardinesaddition, our results provide a simple
means for checking whether tardiness is bounded under ravigioped algorithms.

1 Introduction

Most major chip manufacturers are investing in multicochtelogies to continue performance im-
provements in their product lines in the face of fundamdirtatations of single-core chip designs.
To date, several manufacturers have released dual-cqrs, ¢htel and AMD each have quad-core
chips on the market, and Sun’s Niagara and more recent Nidyaystems have eight-core chips
with multiple hardware threads per core. In the future,g@p core counts are expected to increase
significantly. Indeed, Intel has announced plans to relehges with as many as 80 cores within
five years (Farivar, 2006).

The advent of multicore technologies is a profound develemirthat is impacting software de-
sign processes across a wide range of application domainsimportant category of such ap-
plications is those withreal-time constraints The range of real-time applications already being
deployed on multicore platforms is quite varied, rangingnirsimple streaming applications to
computationally-intensive applications for which muttpessor designs arenecessity A good
example of the latter is Azul SystenVega2system, which is a Java-based appliance with up to 768
cores (on several chips) for processing time-sensitivelbas transactions (Bisson, 2006).

To support such applications on either a multicore or a cotweal (non-multicore) multipro-
cessor platform, an appropriate multiprocessor scheglaigorithm must be used. This paper is
directed at issues concerning such algorithms. Our spdaifics is multiprocessor algorithms for
scheduling soft real-time workloads specified as sporadicst

In the sporadic task model, tasks repeatedly generate iségjyebs subject to deadlines. A
sporadic task has a specifipdriod, which defines the minimum spacing between its jobs, and a



relative deadlinewhich defines the length of the time interval in which eacltojobs is allowed

to complete. Job deadlines can be eithard — in which case they should always be met — or
soft— in which case misses can occur, provided the extent of Miwlas constrained in some way.
The soft real-time constraint considered in this paperirequhat deadline tardiness be bounded; if
a job misses its deadline, thenitgsdinesss defined as the difference between its completion time
and deadline (see Section 2).

Bounded tardiness is a sufficient property in many soft tiead applications (provided the
bounds are not too large). In particular, such bounds ertbatethe long-term processor share
of each task is in accordance with its specified utilizatibor example, in a video decoding appli-
cation, it is desirable to decode a frame every 33.3 ms inrdalachieve a rate of 30 frames per
second. However, a tardiness of a few milliseconds will ryhpromise the video quality if the
decoding rate remains at 30 frames per second over reagdoaglintervals of time.

In devising multiprocessor scheduling algorithms, twoibapproaches exist: partitioning and
global scheduling. Under partitioning, tasks are stdti@dsigned to processors, and each processor
schedules its assigned tasks using a uniprocessor samgaldiorithm. Under global scheduling,
tasks are scheduled from a single run queue and may migrategpnocessors. For soft real-time
systems, global algorithms have the advantage of beingtat@esure bounded deadline tardiness,
as long as the available processing capacity is not excgedetething we assume throughout this
paper). The same is not true of partitioned scheduling. kamgle, no partitioning scheme can
schedule three tasks with utilizati@3 each on two processors without overloading a processor,
and on an overloaded processor, tardiness will grow unbedigdOn the the other hand, if a task
system can be partitioned without overloading a procesisen bounded tardiness can be ensured,
provided an appropriate uniprocessor scheduler is useda@nprocessor (in particular, a scheduler
that uses window-constrained prioritizations, as disedi$ater in this section).

The main focus of this paper is global algorithms that arebégpof ensuring bounded tardiness
(without restrictions on overall utilization).

Motivation and prior work.  The first tardiness bounds to be established for a globabsding
algorithm pertained to the earliest-pseudo-deadling{sBDF) Pfair algorithm (Devi and Ander-
son, 2004). This analysis was later extended to establidm&ss bounds for several variants of the
global earliest-deadline-firsEDF) algorithm, wherein jobs with earlier deadlines have higtrée
ority. These include preemptive and non-preempiizd= and two variants that slightly alté&DF
prioritizations and allow a small number of special taskb¥¢oguaranteed lower tardiness (Devi
and Anderson, 2006) or cause temporary overloads (LeoryeévAnderson, 2007b). (The latter
variant arises in an approach for scheduling multi-speeltipnocessor systems.) Tardiness bounds
have also been established for the global first-in first-BLEQ) algorithm (Leontyev and Anderson,
2007c), wherein jobs with earlier release times have highierity. Given that tardiness is bounded
under such disparate algorithms, several questions comenid. Do other widely-studied global
algorithms have bounded tardiness? Is there a singulaacteaistic of such algorithms that re-
sults in bounded tardiness? Can the class of algorithmsliarhwardiness is bounded be generally
characterized?

Contributions. In this paper, we present a generalized tardiness restlatisavers these ques-
tions. This result implies that the singular characterisgeded for tardiness to be bounded is that
a pending job’s priority eventually (in bounded time) is iég than that of any future job. Global
algorithms that danot have this characteristic (and for which tardiness can beunded) include



static-priority algorithms such as the rate-monoto®) algorithm, and impractical dynamic-
priority algorithms such as the earliest-deadliastalgorithm, wherein jobs with earlier deadlines
havelower priority. (This algorithm is different from the earlieseddline-late EDL) scheduler
from the literature (Chetto and Chetto, 1989).) Global gthms thatdo have this property include
theEDF, FIFO, EDF-until-zero-laxity EDZL), and least-laxity-firstl{L F) algorithms. EDZL and
LLF are described later.)

We establish a generalized tardiness result by considargemeric scheduling algorithm where
job priorities are defined by points in time that may vary asetiprogresses. All of the algorithms
mentioned above can be seen as special cases of this gdgerithan in which priorities are further
constrained. Even theD? Pfair algorithm (Anderson and Srinivasan, 2004), whichsueseather
complex notion of priority, is a special case. The main restilthis paper is a derivation of a
tardiness bound that applies to the generic algorithm drjirés arewindow-constraineda job’s
priority at any time is a point in time within a time window thiamcludes the job’s release time
and deadline. For example, undeDF, this time point is simply the job’s deadline. We also show
that if this window constraint is violated, then tardineas e unbounded. It is possible to define
window-constrained prioritizations not only f&DF, but also forFIFO, EDZL, LLF, EPDF, and
PD?2, so these algorithms have bounded tardiness. BR¥, FIFO, EPDF, andPD?2, this was
previously known.) For any other algorithm that may be dedis the future, our results enable
tardiness bounds to be established by simply showing thatiirations can be expressed in a
window-constrained way (instead of laboriously devisingea proof).

The notion of a window-constrained priority is very gener&or example, it is possible to
describe hybrid scheduling policies by combining difféngmoritizations,e.g, using a combination
of EDF andFIFO in the same system. Priority rules can even change dyndgn{sabject to the
window constraint). For example, if a task has missed tooyntadlines, then its job priorities
can be boosted for some time so that it receives speciairtezdt Or, if a single job is in danger of
being tardy, then its prioritization may be changed so thedinpletes execution non-preemptively
(provided certain restrictions hold — see Section 5.5).difess also remains bounded if early-
release behavior is allowed or if the capacity of each pmethat is available to the (soft) real-
time workload is restricted. In simplest terms, the main sage of this paper is thaipr global
scheduling algorithms, bounded tardiness is the commoe, cather than the exceptidfat least,
ignoring clearly impractical algorithms such as earligs&dline-last). For the widely-studi&DZL
andLLF algorithms, and for several of the variants of existing athms just discussed, this paper is
the first to show that tardiness is bounded. Although we assour analysis that relative deadlines
are equal to periods, the analysis can also be applied tayasms where relative deadlines differ
from periods as discussed in Section 5.1.

The rest of this paper is organized as follows. In Sectiorg 2+ present our task model and
scheduling framework. Then, in Section 4, we present odirtass-bound derivation. In Section 5,
we discuss some special cases and possible extensionsdodhysis. As discussed later, tardi-
ness may be different under different scheduling algorith Section 6, we present results from
experiments conducted to assess such differences. S&atmmcludes the paper.

2 System Model

We consider the problem of scheduling enprocessors a set of sporadic soft real-time tasks
{T1,...,T,}. Alltime quantities considered in this paper are assumdx teeal numbers.
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Figure 1: (a) Unavailable time instants anth) service functions for processor 1 (denotgd in
Example 1.

2.1 Processor Model

Our main result is very general and can be applied in settifgse the full capacity of one or more
processors is not available for the soft real-time workl{@w@ndenburg and Anderson, 2007; Devi
and Anderson, 2006; Leontyev and Anderson, 2007b). We asslat such capacity restrictions
are specified usingervice functiongChakraborty et al, 2003). Specifically, the minimum guaran
teed time that processércan provide to the tasks in in any time interval of lengthA > 0 is
characterized by the service function

B(A) = max(0, ug - (A = o%)), 1)

whereuy, € (0,1] andoy, > 0. In the above definitionyy, is the total long-term utilization available
to the tasks inr on processok andoy, is the maximum length of time when the processor can be
unavailable over an interval of length. We require3;(A) andoy, to be specified for each Note
that, if (unit-speed) processaiis fully available to the tasks in, theng, (A) = A.

Limited processor availability arises in many contexts. &ample, real-time tasks may be par-
tially deprived of processing capacity due to interrupvess routines (Jeffay and Stone, 1993) or in
hierarchically scheduled systems (Shin et al, 2008). Algwprocessors to have limited availability
enables our results to be applied in these and other cortextsniform fashion.

Example 1. Consider a system with one processor & 1) that is not fully available for the
soft real-time workload. The availability pattern, whigkpeats every eight time units, is shown in
Figure 1(a); intervals of unavailability are shown as sh@dgions. For processor 1, the minimum
amount of time that is guaranteed to soft real-time tasks amg interval of lengthA is zero if

A <2,A-2if 2 <A < 4,and so on. Figure 1(b) shows the minimum amount of tith@\ ) that

is available on processor 1 for soft real-time tasks overiateyval|t, ¢ + A]. It also shows a service
curvep; (A) = max(0,u1(A — 01)), whereuy = 2 ando; = 2, which bounds3* (A) from below.
B1(A) can be used to reflect the minimum service guarantee foresalftime tasks on processor 1.



2.2 Task Model

Using the available processor time, the sporadic td3ks. ., T, in 7 are scheduled. Each task is
invoked orreleasedrepeatedly, with each such invocation callgdta

Associated with each task; are two parameterg, andp;: e; gives the maximunexecution
time of one job ofT;, while, p;, called theperiod of 7}, is the minimum time between consecutive
job releases. For brevity, we often use the notafipe- (e;, p;) to specify task parameters.

The ;" job of T;, wherej > 1, is denotedl; ;. A task’s first job may be released at any time
t > 0. The actual execution requirement of j@b; is e; ; < e;. The release time of jolf; ; is
denotedr; ; and its (absolute) deadlink ; is defined as; ; + p;. If T; ; completes at time, then
its tardinesss max(0, t —d; ;). A tasks tardiness is the maximum of the tardiness of any of itsjobs
When a job of a task misses its deadline, the release timesafeht job of that task is not altered.
However, at most one job of a task may execute at any time,iédeadlines are missed.

The utilization of task7; is defined as:; = e;/p;, and theutilization of the task system as
Usum = _r, e, ti- We assume

Ui <37 @
2

Otherwise, tardiness may grow unboundedly (Devi, 2006).

For each joldl’; ;, we define areligibility time e, ; such thai; ; < r; ; ande; j_1 < ¢ ;. The
eligibility time of 7; ; denotes the earliest time when it may be scheduled. Aljobis said to be
early-releasedf ¢; ; < r; ;. JObT; ; is said to beeligibleat timet if ¢; ; < ¢. The early-release task
model was first proposed in work on Pfair scheduling (Andei@ed Srinivasan, 2004). Allowing
early releases can reduce job response times as the fojj@xample illustrates.

Example 2. Consider the (Earliest Pseudo-Deadline FIERDF Pfair algorithm (Devi and Ander-
son, 2004). Under it, task periods and execution times aenaad to be integral, and each task

is represented by a sequence of unit-length schedulabtfeemalledsubtasksdenotedTJ where

j > 1. Each subtasi” has two attributes associated with itredease time-/ and adeadlined .
The mterval[ 7 d7) is called thewindowof T7. 1 Subtaskl’’ becomes available for execution at
timer] and has higher priority than subt&sk if df < d¥. Deadline ties are resolved arbitrarily but
consistently. In consideringPDF scheduling examples, we assume (for simplicity) that jales a
released in a synchronous periodic fashion, in which gase | = 1J andd? = [-=] (see (Anderson
and Srinivasan, 2004)). Figure 2 shows t#BDF schedules ofa task, = 8} Inset (a) shows

a schedule in which early releases are not allowed. In thisdde, each subtask executes within its
respective window which is shown in bold. The time betw&gn’s release and completion is six
time units. A schedule in which early releases are allowstigsvn in Figure 2(b). In this schedule,
each subtask commences execution immediately after itepessor completes. In this schedule,
the response time @, ; is three time units.

We assume that eligible jobs are placed into a single glazaly queue. When choosing a new
job to schedule, the scheduler selects (and dequeueskithe jab of highest priority. As reiterated
in Definition 3 in Section 4, a job iradyif it is eligible and its predecessor (if any) has completed
execution. Job priorities are determined as follows.

1This usage of term “window” should not be confused with thiiag in our window constraints.
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Figure 2:EPDF schedules from Example(2) without and(b) with early releases.

Definition 1. (prioritization functions) Associated with each jdb; ; is a function of timey (75 ;, t)
defined fort > 0 and called itsprioritization function If x(7; ;,t) < x(T%,n,t), then the prior-
ity of T; ; is higher than the priority of}, ;, at timet. We assume that, when comparing pri-
orities, any ties are broken arbitrarily but consistentbhat is, if, x(T; ;,t) = x(Txn,t) and
X(Ti5,t") = x(Tk,n,t'), wheret # t/, then the tie is broken in favor df; ; at time¢ iff it is
broken in favor off; ; at timet’.

3 Example Mappings

We now show how to describe several well-known schedulirigigs in our framework, using the
two-processor task set

T={T1 =(1,3),T> = (2,3), 15 = (1,4),T4 = (3,4)} executing on two fully-available proces-
sors as an example. Unless stated otherwise, we assymee; ande; ; = r; ; in these examples,
for each jobT} ;. In depicting example schedules, we use up (down) arrowgpictjob releases
(deadlines).

Example 3. Figure 3(a) shows a schedule founder the globaEDF algorithm. In this case, since
jobs are prioritized by deadline, it suffices to defind’; ;,t) = d; ; for eachT; ;. In Figure 3(a),
the value ofy(T; ;, t) is shown for each jold; ; using a black circle labeleg; ;.

Example 4. Figure 3(b) shows a schedule ferunder the globaRM algorithm. In this casel; ;
should have priority ovefy, 5, if ¢ < k (since the tasks in are ordered by increasing periods). Thus,
we can simply defing(7; ;,t) = i for each jobl; ;, as shown.

Example 5. Figure 3(c) shows a schedule forunder the globaFIFO algorithm (which, by def-
inition, schedules jobs non-preemptively). In this cassaning no early releases), it suffices to
definey; ;(t) = r; ; for each jobT; ;, as shown. (Note that, if early releases are allowed, thien th
prioritization may not reflect the actual job arrival ordler.

Example 6. Interestingly, the definition of(T; ;,t) is flexible enough to alloveombinationsof
scheduling policies to be specified. For example, we carripze the jobs of7},..., 73 on an



Figure 3:(a) Example 3 (globaEDF). (b) Example 4 (globaRM). (c) Example 5 (globaFIFO).
(d) Example 6 (hybrid global scheduler).

EDF basis and those df, on aFIFO basis by definingy(7; ;,¢t) = d;; for1 < i < 3, and
Xx(Tu;,t) = r4,. A schedule for this hybrid policy is shown in Figure 3(d).idtalso possible to
mix RM andEDF prioritizations (even though such a scheme would not havnelai-constrained
priorities). For example, if task needs to be statically prioritized over all other tasksntive can



Table 1:x-values in Example 7.

Timet X(Tl,jvt) X(TQ-,%t) X(T'S,jvt) X(T4,j7t)
0 2 1 3 1
1 2 2 3 2
2 2 — 3 3
3 5 4 3 -
4 5 5 7 5
5 5 — 7 6
6 8 7 7 7
7 8 8 7 —
8 8 — 11 9
9 11 10 11 10
10 11 11 11 11
11 11 — 11 —
T, T, T, T,
1 7 T T,
T, T, 0
T, T, T, t
0 2 4 6 8 0 12

Figure 4: Example 7 (global preemptilzeF).

sety(T4,;,t) = —1 for all jobs of T} andx(T; ;,t) = d;, ; for all jobs of other tasks.

Example 7. So far we have considered only fixed job-priority algorithmerein the priority
x(T;,;,t) is constant during joly; ;'s execution. We now consider a slightly more complicated
example, namely the globalLF scheduling algorithm (Liu, 2000). THaxity or slackof a job7; ;
at timet is defined as

slack‘m (t) = d@j —t— (61' — (51'7j (t)), (3)

whered; ;(t) is the amount of time for whicli; ; has executed before If a job does not miss its
deadline, then its slack is always non-negative; if it doéssnrits deadline, then its slack becomes
negative at some time prior to its deadline. According t®, 7; ; has higher priority thaf}, ;, at
timet if slack; ;(t) < slacky,(t). To capture this, we can simply defing¢7; ;,t) = d;; — (e; —

d; ;(t)) for each jolT; ;. Because this definition dependsa&n (¢), x(1;,;,t) is not constant, as in
the prior examples, but is time-dependent. Assuming tligtipdated only at integral points in time,
x(T;;,t+1) :== x(T;;,t) + 1, if T; ; executes during the intervill ¢ + 1), andx (7} ;,t + 1) :=
x(T;,;,t), otherwise.

Figure 4 shows ahLF schedule for- where ties are broken in favor of jobs currently executing.
Becausey-values change with time, they are not shown in the schedslearlier, but are depicted
separately in Table 1. The table shows the valug(@t ;, ¢) for the earliest pending job; ; of each
taskT; where0 <t < 11.
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Figure 5: Early releasing under glotiDF.

Example 8. The EDZL algorithm (Piao et al, 2006), which is a hybrid BDF andLLF, can be
specified as well. In this casg(T; ;,t) is settod, ; (as iInEDF) whenT; ; is released, and is reset
tod, ; — (e; — d;,;(t)) < d, ; (@asinLLF) whenT; ;'s slack becomes zero, whefg; () is as defined
earlier. To our knowledgeDZL has not been considered previously in systems where deadlin
can be missed. However, if no deadlines are missed, thenedinittbn yields priority comparisons
that match exactly ho#EDZL has been specified in prior work. It is possible that otheraves
could be defined that prioritize jobs differently when déaes are missed.

In the examples above, we assumagd= r; ;, i.e., jobs are not released early. The idea of early
releasing is illustrated in Figure 5, which shows a gldbaF schedule for the task set in Example 3
with early releases allowed. In particular, for j@b», €1 » = 1. Thus,T; » begins its execution one
time unit earlier than its actual release time. Note alsojtitzs 7 ; and7 3 miss their deadlines
by one time unit.

Example 9. ThePD? (Anderson and Srinivasan, 2004) a8EDF (Devi and Anderson, 2004) Pfair
algorithms can also be modeled using our framework. Con#ti@d=PDF algorithm introduced in
Example 2. Again, we illustrate assuming jobs are releasadsynchronous periodic fashion. First,
we represent each tagk = (e;, p;) by a taskT/ with ¢; = 1 andp), = 1 . TheEPDF subtaskl”

then corresponds to the jdlj ;. Second, we define the eligibility tlme @f ; ase; ; = r]. Third,

we define the prioritization function for job; ; asx (73, ;,t) = . Note, thaty(T; ;, ) is always
an integral number.

This mapping is illustrated in Figure 6 using the taskmset {77 = (3,8),T> = (3,7),15 =
(3,6), Ty = (1,2)} scheduled on two fully-available processors. Inset (ajvstenEPDF schedule
for 7. Subtask windows are shown in bold. Inset (b) shows a schddut’, which is constructed
from 7 in the way described above. In this figure, the release tineaoh job} ; is denoted by an
up arrow and its deadline is denoted by a down arnpwalues are depicted as black circles.

PD? differs fromEPDF in that two special tie-breaking rules are used in the eveaieadline
tie. We can capture the effects of these tie breaks by sfightfting the value of a job’s prioritization
function and letting it be non-integral.

4 Tardiness Bound

In this section, we show that any scheduling algorithm (g@ecaccording to Definition 1) has
bounded tardiness if its prioritization functions are “daw-constrained,” as defined below in Def-
inition 4. This definition imposes two separate constraimts-values. We show that if either is



T’
T, T,
L= (I
s
T 2 Tz T 25
T 77
T, T’
T 3 J 3
’ I I
I I;
I, I 2 ]
T 4 T 1’ T ; T ; t
0 2 4 6 8 10 12
ey
4
Tl Tu} I TLZ’ LTI,J l TIJ’ I
A X|,2 Xl.} Xia
- i i 22 I Tz,s Tz,4 J,T 25 I
A2 X2 Kas pon Xos
T, T, T, |T. T T,
Asa Xsz Xss Asa Ass
’ B * B * B * B * B * B
T4 oy XA.Ii s Xq.zi T X4.Ji i X4.4i g Xa.si T I t

0 2 4 6 8 10 12
(b)

Figure 6:(a) An EPDF schedule for the task sefrom Example 9(b) Equivalent schedule obtained
using prioritization functions.

violated, then tardiness may become unbounded. In thiggeete consider a system with partially
available processors; later, in Section 5, we considerikeial case when all processors are fully
available as well as some other extensions to the analysis.

4.1 Definitions

The system start time is assumed to be zero. For any#timé), ¢t~ denotes the timeé — v in the
limit v — 0+.

Definition 2. (pending jobs)T; ; is pendingat timet in a schedule if T; ; is eligible at timet and
T;,; has not completed execution bin S.

10



Definition 3. (ready jobs)A pending jobT; ; is readyat timet in a schedules if all prior jobs of
T; have completed execution byn S.

Definition 4. (window-constrained priorities) A scheduling algorithm’s prioritization functions
arewindow-constrainedf, for each taskT;, there exist constants and+); such that, for each job
T; ; of T; and timet,

rij — ¢ < X(Tij,t) < dijj + i (4)

Note that (4) requires a jobg-values to lie within a windovr; ; — ¢;, d; ; + ;] that is defined
with respect to its release time and deadline. Note alscdlleatonstants; andi; may be positive
or negative; however, if negative, the inter\ial; — ¢;, d; ; + ;] cannot be empty.

It is easy to see that, other th&M, all of the algorithms considered in Section 3 have prioriti
zation functions that satisfy (4). In contrast, the priagtion function specified foRM fails to be
window-constrained because it violates the required Idveemd: as new jobs of each tagkare
releasedy(T; ;,t) < ri; — ¢; will eventually hold for some jol; ; for any choice of the constant
¢;. It can be shown that the task system in Example 4 has unbduad#iness. In particular, if
the job-release pattern in Figure 3(b) recurs repeatduiy the processing capacity availabldio
every 12 time units is the same as is depicted in Figure 3(bis dapacity is less than the amount
of work generated by, during the same interval. As a result, more and more worksstoffuture
intervals, causing tardiness @} to grow unboundedly. (The fact that tardiness can be unbedind
underRM was also established by Devi (Devi, 2006).)

It is possible to “fix” the prioritization functions foRM so that the required lower bounds
are adhered to, but then the upper bounds will be violated.ekample, we could simply define
x(Ti;,t) = i+ t', wheret’ is the time where the most recent job release occurred atforebe
t. This definition simply shifts the-values defined earlier to future points in time as new jobs
are released. However, we know that tardinessifom Example 4 is unbounded, so eventually
X(Ty,j,t) > da,; + b4 will hold for some pending jold ; of T, for any choice of the constagt,.
Intuitively, Inequality (4) ensures that any jdb ; eventually becomes the highest-priority job in the
system and will execute until completion. We summarize dlissussion as follows. (Recall that
any task set considered in this paper is assumed to satisfy (2

Theorem 1. If either the lower or upper bound given {4) is eliminated, then there exists a pri-
oritization scheme that satisfies the remaining condit@nfhich tardiness is unbounded for some
task set.

Definition 5. A task system iconcreteif the release times and eligibility times of all jobs are
specified, andhon-concretgotherwise.

Each of the schedules presented in Examples 3—-9 was geh&raie concrete task system in
which jobs are released synchronously and periodicallywéder, the task set considered in each
example is a non-concrete task system because (being gggoddrelease times are not specified.

Most of the rest of this paper is devoted to showing that amedualing algorithmA with
window-constrained prioritization functions has bountidiness. The tardiness bound established
for A is derived by comparing the allocations to a concrete taskegyr in an ideal processor-
sharing PS) schedule to those in a schedule producedbyin a PS scheduleeach job of a task

T; is executed at a constant ratewf; = pp’ < u; between its release and deadline (Stoica et al,

11
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Figure 7:PS schedule for in Example 3.

1996). Figure 7 depicts an example. In this figure, the execwf each jobl; ; is represented as
arectangle of length; = d; ; — r; ; and heightu; ;. Therefore, the allocation of each job between
its release time and deadline in this scheduleg js- p; = e; ;.

Note that aPS schedule does not depend on processor availability. Atssuch a schedule,
each job completes exactly at its deadline. Thus, if a jolsesists deadline, then it is “lagging
behind” the correspondingS schedule — this concept of “lag” is instrumental in the asayand
is formalized below. (A similar lag-based analysis was uggdevi and Anderson to establish
tardiness bounds for preemptive and non-preemptive gleb&l (Devi and Anderson, 2008)).

Let A(T; ;,t1,t2,S) be the total allocation to the jdb, ; in an arbitrary schedul§ in [tq, t2).
Then, the difference between the allocationgitg up to timet in aPS schedulé”S and an arbitrary
scheduleS, termed thdag of 7; ; at timet in scheduleS, is given by

lag(T;,;,t,S) = A(T;,;,0,t, PS) — A(T; ;,0,t,S). (5)
Task lags can be similarly defined:
lag(T;,t,S) =Y lag(T3;,t,8) = > A(T;;,0,t,PS) — A(T;;,0,t,S). (6)
Jj=1 Jj=1
Finally, thelag for a finite job setb at timet in the schedulé& is defined by
LAG(®,t,S) = Y lag(Ti; t.S) = Y (A(T;;,0,t,PS) = A(T;;,0,t.5)).  (7)
T; ;€D T; ;€
SinceLAG(®, 0, S) = 0, the following holds for’ < ¢.
LAG(®,t,S) = LAG(®,t',S) + A(®,t', t,PS) — A(®,t',t,S) (8)
The concept of lag is important because, if lags remain bednithen tardiness is bounded as well.

Definition 6. A time interval[t,, t5) is busyfor a job set® in scheduleS if, at each time € [t1, t2),
all m processors execute jobs frabnin this schedule, and ison-busyfor ® otherwise.

When using the above terminology, we will omit “fdr” if the job set under consideration is
clear. According to the lemma below, the lag for a job&etannot increase across a busy interval
for ®. This fact was proved in the context of glolDF in (Devi et al, 2006). However, since the
proof relies only on the fact that the interval in questiobusy, and not on how jobs are scheduled,
it applies in our context as well. Later, we will examine trehhvior of theLAG function over an
interval where some processors are unavailable.
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Figure 8: A schedule for in Example 10.

Lemma 1. For any interval[t,, t2) that is busy fo@, LAG(®, t2, S) < LAG(®, 1, S).
Proof. By (8),

LAG(®,t2,S) = LAG(®D,t1,S) + A(D, t1,t2, PS) — A(D, 11,12, S). 9)

Because the intervéd,, t2) is busy,m processors execute jobs frabnthroughout the interval, and
thusA(®,t1,t2,S) = m - (t2 — t1). In the idealPS schedulePS, each jobT; ; executes with a
constant rate; ; < u; from its release to its deadline, and thus

A, t1,12,PS) < > Y ATy, t1,t2, PS) < Y i+ (b — t1) = Usum - (t2 — ).

T;eT 3>0 T;eT

Setting this inequality and(®, t1, t2,S) = m-(t2 —t1) into (9) and applying/sy,m, < > ;- ur <
m, we get

LAG(®, t2, S) = LAG(®, t1,8) + A(®, t1, 2, PS) — A(®, t1, 12, 8)
< LAG((I),tl,S) + Usum(tg — tl) —-m- (tg — tl)
< LAG(®,t4,S). O

We are interested in non-busy intervals (for a job set) beedotal lag (for that job set) can
increase only across such (non-busy) intervals, and sucbases may lead to deadline misses. The
following example illustrates how lag can change acrosyg bnsl non-busy intervals.

Example 10. Consider a two-processor system upon which a task set {77 = (1,2),7T» =
(2,6),T75 = (2,8),T, = (11,12)} is to be scheduled, where the first jobsTaf 7%, 75, andT)
are released at times 2, 1, 0, and O respectively. The tatelatibn of the system id/,,,, =
1/24+2/6+2/8+11/12 = 2. Assume that both processors are always availableyi.es, us; = 1
ando; = o2 = 0, and A is theFIFO algorithm, i.e., jobs are prioritized using(T; ;,t) = r; ;
(assume there are no early releases). Consider the sctiedulg Figure 8. UndetA, T} ; misses
its deadline at time 4 by one time unit because it cannot ppe&hy, and”y 1, which have earlier
release times and later deadlines.
Let® = {Th1,...,T15, 121,151,741} be the set of jobs with deadlines at most 12. The

interval [4,7) in Figure 8 is a busy interval fo®, because all processors execute jobs fidm
throughout the interval. By (8L,AG(®,7,S) = LAG(®,4,S) + A(®,4,7,PS) — A(9,4,7,S),
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whereS is the schedule unded4. The allocation ofb in the PS schedulePS during the interval
[4,7)isA(D,4,7,PS) =3 (u1 +uz +us+us) =3/2+6/6+6/8+33/12 = 6. The allocation
of ® in S throughout4, 7) is also 6. ThusLAG(®,7,S) = LAG(®, 4, S).

Now let® = {T} 1} be the set of jobs with deadlines at most 4. Because theJphsand
T4 1, which have deadlines after time 4, execute within the itde, 4) in Figure 8, this interval is
non-busy ford in S. By (7),LAG(®,4,S) = A(®,0,4,PS) —A(P,0,4,S). The allocation ofp in
the PS schedulePS throughout the interveD, 4) is A(®, 0,4, PS) = 2-1/2 = 1. The allocation
of ®inSisA(®,0,4,S8) =0. Thus,LAG(®,4,S) = 1 —0 = 1. Figure 8 shows that at time %, ;
from ® is pending. This job has unit execution cost, which is equ#hé amount of pending work
given byLAG(®, 4, S).

4.2 Tardiness Bound for.A

Given an arbitrary non-concrete task systefh (where the eligibility times and release times of
jobs are not specified — see Definition 5), we want to detertfieenaximum tardiness of any job
of any task in any concrete instantiationsdf scheduled om: processors. The approach for doing
this is based on techniques from (Devi and Anderson, 2008) 7 lbe a concrete instantiation of
7N, First, we order the jobs in the concrete instantiation gisive following rule:T; ; < T, iff
di’j < da,b or (di’j = da,b) ANt < a.

Let

p = max (O7 m;?x(wa, + (;57)) and p = max (O7 H;‘:lx(pa, + Yo + ¢z)> (10)

LetTy , be ajob of atasky in 7, letty = d; 4, and letS be a schedule, produced foiby the
scheduling algorithrd. We assume that the sched@ldas the following property.

(P) The tardiness of every jabj, 5, such thatl}, ;, < 1y 4 is at moste + ey, wherex > p > 0.

Our goal is to determine the smallest> p such that the tardiness @} , remains at most + e,.
Such aresult would by induction imply a tardiness of at most;, for all jobs of every task}, € 7.
Becauser is arbitrary, the tardiness bound will hold for every coneriestantiation of-" .

The objective is easily met i, , completes by its deadling;, so assume otherwise. The
completion time ofy , then depends on the demand of the jobs that can competd wjtaftert,
and on the amount of available processor time &fteHence, a value far: can be determined via
the following steps.

1. Compute an upper bound on the demand for jobs (inclutling that can compete witlfy ,
aftert,.

2. Determine the amount of such demand necessary for thieg¢asdofl; , to exceed: + e,.

3. Determine the smallest> p such that the tardiness @} , is at mostz + e, using the upper
bound in Step 1 and the necessary condition in Step 2.

To reason about the tardinessiof,, we need to determine how other jobs delay its execution.
To do that, we first define a boolean function of two jdhs and7, ; that will allow us to exclude
certain jobs from consideration:

LP(Ti’k, Ta,b) = (Vt : da,b + P, < X(T@k,t)). (1)
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Claim 1. If LP(T} ,Tq,») holds for jobsT; ;, andT, », theny (T, 5, t) < x(T; k. t) for any timet.

Proof. We upper boung (7, s, t) as follows.

X(Tap,t)
{by (4)}
<dgp+Ya
{by the condition of the claim and (1})
< X(Tiks 1) O

Claim 1 provides a sufficient condition for a jdi ;. to have lower priority (a largeg-value)
than that off, ;, at any time and therefore not compete with, for processor time. In the rest of
the proof, four job sets], DH, DLH, andDLL , are considered andDH are defined as follows.

d={Ti = dip <dgqg=ta} (12)

DH = {Ti,k i (di,k > td) AN (Z #* f) A (3 Tap € d:(a #* Z) ::ﬁLP(Ti’k, Ta,b))} (13)

In this notationd andD denote, respectively, jobs with deadlines at most and grélaant,. The
letterH in DH denotes thal; ;'s priority at some timenay be highethan that of a job of different
task ind (refer to Claim 1). Note that, becaude, < d¢ 4 = tq,

Vy:y<q:Tp,cd). (14)
The remaining two job sets are defined as follows.

DLH = {Ti,k i (di,k > td) AN (Z #* [) A (V Tap € d:(a #* Z) i LP(Ti’k, Ta,b))
N3 Top €DH:(a#14):oLP(Ti g, Tap))} (15)

DLL ={Ti = (dig >ta) NG FONNVTop €d:(a#1):LP(Tk, Tap))
ANNVTop € DH:(a #1) = LP(Tik, Tap))} (16)

If T; 1 is in DLH or DLL , then, for each jol, ;, € d such thatu # i, LP(T; 1, T, ) holds, and
henceT; ;’s priority is always loweithan that of any job il of a different task. The second letter
L in DLH andDLL is intended to denote this. Similarly, the third lettéin DLH denotes that job
T; 1’s priority may be higher than that of a job of a different tékthat belongs t®H. Finally,
the third letterL in DLL denotes that jold; ;s priority is always lower than that of any job of a
different taskf’, that belongs t®H.

Example 11. Consider the task set = {T7 = (1,2), 7o = (1.5,3),75 = (5,5)} and thePS
schedule foritin Figure 9. Jab, ; is released at time 1, and jods ; andT3 ; are released at time

0. Consider the joll , = 74,1, which has a deadline at time 3. Assume that there are no early
releases and jobs are prioritized as follows. For tAsky (7 ;,t) = dy ; for all j. For taskTy,
X(To,5,t) = ro ; if jis evenand((Ts ;,t) = ds; if j is odd. For taskls, x(153;,t) = rs ; for all

J-
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Figure 9: Job set partitioning.

We thus havegy = —p1, ¢2 = @3 = 0, 91 = 0, »o = 0, andyps = —ps3. With respect to
T 1, the four sets mentioned above are= {111,751}, DH = {T31,T% 2}, DLH = {T3 5}, and
DLL = {T53,T%4,T53}. The jobT,, € DH because((T»2,t) = 1920 =3 < d11 = 3, and
hencelP(T3 2, T} 1) does not hold. The joff; » € DLH because((T52,t) =732 =5 <dso =
6, and hencel.P (T3 2, T% ) does not holdDLL would also include any jobs of tasks other tign
released after time 12.

We now prove some important relationships between theipéesiof jobs in the four sets men-
tioned above.

Lemma 2. If T, , € DH andT; ;, € DLL , wherea # i, thenyx (T, t) < x(T; x, t) for any timet.

Proof. If T; ;, in DLL , then, by (16)(VT,, € DH: (a # i) :: LP(T; &, T,.5)). By the condition of
the lemma, this implies thatP (T i, T, ;) holds. The required result follows from Claim 1. O

by

Lemma 3. If T, , € d andT;, € DLL UDLH, wherea # i, thenx (T4 5, t) < x(Tix,t) for any
timet.

Proof. If T; , € DLL U DLH, then, by (15) and (16)\¥T5 5, € d: (a # ) :: LP(T; 1, Tas)) holds.
By the condition of the lemma, this implies tha®(T; , T, ») holds. The required result follows
from Claim 1. O

Lemmad4. IfajobT; ; € DLL is scheduled at timeor there is an idle available processor at time
t,and7,;, € d U DH is ready at time, wherea # i, thenT}, ; is scheduled at time

Proof. The case when an available processor is idle at timmérivial so suppose that this is not the
case. IfT; ,, andTy, , are defined as in the statement of the lemma,Bndis scheduled at timg
thenT, ; is scheduled at timéas well since, by Lemmas 2 and 375 5, t) < x (T .k, ). O

Lemmas. IfajobT; , € DLH UDLL is scheduled at timeandT}, , € dis ready at time, where
a # i, thenT, ; is scheduled at time

Proof. If T} ,, and7, ; are defined as in the statement of the lemma,Bndis scheduled at timg
thenT, ; is scheduled as well, since by Lemma@7,.+,t) < x(Ti k. t). O

Corollary 1. Ifajob T;;, € DLH UDLL is scheduled at time > ¢4 and jobTy , is pending at
timet, thenT) is scheduled at.
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Proof. If Ty , is pending at time& > ¢4, then the earliest pending job 8§, 7} ,, wherey < ¢ is
ready at time. The required result follows from (14) and Lemma 5. O

Determining an upper bound on competing demand.We are now ready to establish the upper
bound mentioned in the first step of the proof outline giverieraas a function of job setd, DH,
DLH, andDLL .

Definition 7. Let W («) be the total allocation of jobs in the setin scheduleS after timet; while
job Ty 4 is pending.

We are interested in the allocation of jobsdiny DH U DLH because these jobs may delay the
execution offy ,. (By Lemma4, jobsiDLL cannotdelayy , or prior jobs ofl;.) Their allocation
afterty while 7, , is pending, is

W(dUDH UDLH) = W(d) + W (DH UDLH). (17)

Because jobs frond have deadlines at most, they do not execute in theS schedulePS
beyondt,. Thus, the allocation of jobs ithafter timet,; is upper-bounded by the amount of pending
work due to jobs in this set at tinmtg as given byLAG(d, ¢4, S), which must be positive in order for
T, , to miss its deadline &t; (by (14)). Therefore,

W(d) < LAG(d, tq,S). (18)
From (17) and (18), we have
W(dUDHUDLH) < LAG(d, tq,S) + W(DH UDLH). (19)

Thus, an upper bound é#f (dUDHUDLH ) can be obtained by determining boundslfaG(d, ¢4, S)
andW (DH U DLH ) individually.

Upper bound on LAG(d, t4,S). In deriving this bound, we assume that all busy and non-busy
intervals considered are with respectitand the schedul§ is produced by the scheduling algorithm
A.

To begin, note that, by Lemma 1, if no non-busy interval eiis{0, t4), thenLAG(d, ¢4, S) <
LAG(d,0,S8) = 0. In that which follows, we consider the more interestingecagierein some
non-busy interval exists ifd), t4). An interval could be non-busy for two reasons:

1. There are not enough ready jobsdino occupy all available processors, so it is immaterial
whether jobs fronDH, DLH, or DLL execute during the interval.

2. There are tasks with ready jobsdrthat cannot execute because, within certain sub-intervals
some processors are not available (because of capacitigtiests) or jobs inrDH occupy one
or more processors because they have higher priority. Nate by Lemma 5, jobs iDLH
andDLL cannot execute at time instants when there are ready undeldgdbs ind.

Jobs with deadlines after timg may prevent the execution of jobsdbefore timet, (if such
jobs become eligible beforg) and hence increase thé&G for d.

Definition 8. (mpy) Let oy be the set of tasks that have job<Al.
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Definition 9. (6;) Let d; be the total allocation of task;’s jobs inDH in the schedul& by timet,.

In much of the rest of the analysis, we focus on a timeefined as follows.

Definition 10. If there exists a time instamtsuch that there are at most— 1 tasks with ready jobs
in d at timet— and all these tasks execute at titite then defing,, to be the latest such time instant
at or before; if no sucht exists, then let,, = 0.

We express a bound ai\G(d, ¢4, S) in terms of individual task parameters and processor avail-
ability functions using Lemmas 6, 7, and 8, which are provearn appendix. Lemma 7 establishes
a relationship betweebAG(d, ¢,,,S) andLAG(d, t4,S). Lemmas 6 and 8 were initially proved
in (Devi et al, 2006) in the context of globBDF, for the case where all processors are fully avail-
able. The proof of each lemma relies only on Property (P) fond,emma 7, the definition of,. In
particular, the exact way in which jobs are scheduled doeanse.

Lemma 6: lag(T%,t,S) < x - uy, + e for any taskT}, andt € [0, t4].
Lemma 7: LAG(d, ta,S) < LAG(d, 10, S) + Xop,erp, 0 + Do Uk * O

Definition 11. (U(7,y) and E(r,y)) LetU(r,y) (E(r,y)) be the set of at mostin(|7|, y) tasks
from 7 of highest utilization'execution cogt where|r| is the number of tasks in, and let

Er, = Z e; and Up = Z Uj.

T;€E(T,m—1) T;€eU(r,m—1)

Lemma 8: LAG(d,t,,S) < Fr + - Up.
Using Lemmas 7 and 8, we can upper bouAd(d, t4, S) in (19).
Lemma 9: LAG(d,td,S) <FEr+z-U,+ ETiETDH o; + Z;anl Uk - Ok

Upper bound onW (DHUDLH). The jobsinDHUDLH may delay the execution @, , because
some of these jobs may have higher priority tiar at some time. We now upper-bound the total
execution demand due to jobsiiH UDLH . Lemmas 10 and 11, which are proved in the appendix,
upper-bound the release times of job$H U DLH usingp andyu from (10).

Lemma 10. If T ;, € d U DH, thenr; ;, < t4 + p.
Lemmal1l. If T; , € DLH, thenr; ;, <tq+ p + p.
Similarly to Definition 8, we define the following task set.

Definition 12. (rpLn) Let oLy be the set of tasks that have jobddhH .

Lemma 12. TaskT; € mpy can have at mosﬁpﬁj jobs in DH with release times aftet;. Task

T; € 7oLn can have at mo#”}‘f—f“-‘ jobs inDLH with release times aftef;.

Proof. Suppose thal; , € DH UDLH andr; > tq. If T}, € DH, then, by Lemma 10;; ,, <
tq + p. If T; , € DLH, then, by Lemma 11;; ;, < t4 + p + p. Because tasK;’'s consecutive job
releases are separated by at lgasime units, the lemma follows. O
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Lemma 13: W(DHUDLH) < Sp o ((Wﬂ + 1) e) ~ ey O

Proof. Considerl; € mpn U mpin. Each jobT; ;, in DH U DLH is released either at or befotg
or afterty. Because each job ibH U DLH has a deadline aftey, eachT; has at most one job
in DH U DLH with a release time at or befotg. The demand due to this job is at mest By

Lemma 12, the demand of jobs @f in DH U DLH released aftet, is at most{”*"-‘ -e;. The

allocation of taskl;’s jobs in DH in scheduleS before timet, is ¢;, by Definition 9. Thus the
allocation of all jobs irDH U DLH after timet, in scheduleS while Ty , is pending is

W(DH UDLH)

D>

Ti€TDHYTDLH

N U

TieTDHUTDLH T; ETDH

Ti€TpH

w el—l—el)— > 6

Upper bound on W (d UDH UDLH ).

Definition 13. Leta(7,€) > 3 r, e ibro 1 (([/)ﬂl—‘ + 1) ) be a scheduling-algorithm-dependent
bound on the competing demand due to jobBkhandDLH .

From (19), Lemma 9, and Lemma 13 we have

W(duUDHUDLH)
{by (19);
< LAG(d, t4,S) + W (DH UDLH)
{by Lemmas 9 and 13

<Ep+z-UL+ Y, 6i+) o
T;€TpH k=1

+T,ieTWZUTDLH<qp;ﬂ“> )— 36

oo T ([

k=1 T; ETDH UTDLH
{by Definition 13

SEL-HC'UL-FZ@'UI@-FOZ(T,@ (20)
k=1

Claim 2. The expressioETieT\Te (([”*“1 + 1) : ei) (conservatively) upper-boundsgr, ¢) for
any window-constrained scheduler.

Proof. The claim follows frommpy U o1 € 7\ 1% O
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In Section 5, we will discuss how to compute tighter boundscfr, ¢) for GEDF andFIFO
schedulers.
Necessary condition for tardiness to exceed + e,. We now find the amount of competing work
that is necessary fdf; , to miss its deadline by more than+- e, time units. Joll} ,’'s tardiness
depends on the amount of competing demHBn@ U DH U DLH ) and on the amount of processor
time available tar after timet.

Definition 14. Let 8; > Bx(« + e,) be the amount of processor time available to tasksduring
the intervallty, t4 + = + ;) on processok in scheduleS. LetR = ;" | (z+ e, — 3};) be the total
amount of processor time thatnet availableto = during[tq, tq + = + e;).

Definition 15. Let F' be the number of processors that could be unavailablefi.e. |k :: 5, (A) <
Al.

Lemma 14. If at mostm — F' tasks with ready jobs il U DH U DLH are scheduled at time
t* € [ta+ p,ta+x+er), To 4 Is pending at*, and there is an idle available processor at titrieor

a job fromDLL is scheduled at time&*, then(i) task7} is scheduled at*, and(ii) 7, is guaranteed
uninterrupted execution until the jdlj , completes.

Proof. (i) follows from Corollary 1. To prov€ii), assume that the antecedent of the lemma holds.
Let A(t) (B(t)) be the number of tasks that have ready jobd (DH) at timet > ¢*. By Lemma 4,
all tasks with ready jobs id U DH are scheduled at tim¢, and hence,

At*)+B(t*)<m—F. (21)

Suppose, contrary to the statement of the lemma,Ehakecutes uninterruptedly within*, ¢') but

is preempted at tim& so that7} , is pending at’. By Lemma 5, no job irDLH U DLL can be
scheduled at timé¢ (sinceTy , € d). Therefore, at time’, all available processors are occupied by
tasks with ready jobs id U DH, andT; has ready job (ird) at timet’ that is not scheduled. This
impliesA(t') + B(t') > m — F, and, by (21),

A"+ B(t') > A(t*) + B(t¥). (22)

By Lemma 10, all jobs il UDH are released at or befotg+ p. Therefore, the number of tasks
with ready jobs ird U DH at timet’ > t*, A(t") + B(t'), cannot be higher thaA(t*) + B(t*), i.e.,
A(t') + B(t') < A(t*) + B(t*). This contradicts (22). O

The following lemma establishes a lower bound on the comgetemand foff} ,.

Lemma 15. If the tardiness of; , exceeds: + e, wherez > p, then
W(PUDHUDLH)+R> (m—(m—a)-us)-x+ (1 —a)-p+ey, (23)
wherea = min(m,m — F + 1).
Proof. Assume that
W(AUDHUDLH)+R<(m—(m—a)-u) -x+(1—a)-p+es (24)

holds and suppose, contrary to the statement of the lemmia, th
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(T) the tardiness df; , exceeds: + e,.

In the rest of the proof, we say that a time instapt ¢, (or an interval) iSNVR-occupiedf each
processor either executes a job frdmiDH UDLH or is unavailable; otherwise, we say thég WR-
free The prefiXWR” denotes that all processors contribute to the allocaligdUDHUDLH )+ R.

If the time instantt > t,; is WRfree, then either at least one available processor is idie@ a
job fromDLL is scheduled at time& Because, by (T)[},, € d is pending throughout the interval
[ta,ta + x + e¢), the following property holds by Corollary 1:

(E) taskT, executes at eadWRfree instant withinta, t4 + = + eg).
By (P), the preceding job, ,; (if it exists) completes by time
t' <tqg—pi+er+x<tqs+z. (25)

Thus,t; + « is the latest time at whicliy , may become ready. If the latéstRoccupied instant in
the intervallty, tq + x + e;) is at or before, + z, then, by (E)/I; , executes uninterruptedly after
tq + x and its tardiness is at most+ e, , < x + ey, contrary to (T). In the rest of the proof, we
assume that the latedtRoccupied instant in the intervil, tq + « + e/) is afterty + x.

Suppose that at most — F' processors execute jobs franu DH U DLH at someWRfree
instantt* € [tq + p,tq + x). In this case, becausé is WRfree, some processor is idle or a job in
DLL is scheduled there. Thus, by Lemma 1% s guaranteed uninterrupted execution at or after
time t* until 7y, finishes. By (25)7; ,—1 (if it exists) finishes its execution by timé < ¢; + z,
s071y , finishes by time’ + e, < tq+ z + erq < tq + = + ¢, thereby having tardiness at most
x + eg, contrary to (T).

In the rest of the proof, we assume the following:

(N) atleasta = min(m,m — F'+ 1) processors execute jobs fralty DH UDLH at eachVRfree
instant in[tq + p, tq + x).

Let By, B2, andBs; be the total length dfVRoccupied intervals withift 4, ta+p), [ta+p, ta+z),
and[ty + x,tq + x + eg), respectively. (Recall, from (P), that> p.) Let B = By + By + Bs. This
is illustrated in Figure 10.

We now find a lower bound oB. Suppose firstthaB < = — x - u,. In this case, the total length
of WRfree intervals duringfq, tq+x+es) isx+e,— B > x+ep— (x —x-uy) > x-ug+eg. Thus,
by (E), T, executes for at least- u; + e, time units after time, within the intervaltq, tq + 2z +e;).
By Lemma 6, the total amount of pending work fr at timet,, including work due tdly ,, is at
mostz - u; + e¢, and thusly , completes by timeéy + = + e, and its tardiness is at mast- e,. This
contradicts (T). In the rest of the proof, we consider theepgossibility, i.e.,

B=x—x uy+w, (26)

wherev > 0.

By (E), at least one processor executes a job fdoat eachWRfree instant withint,, tq + p)
(becausé, executes at each such instant). The total length &¥V&Hree intervals withir{tq, ta+p)
is

Li=p—Bi. (27)

By (N), at leasta processors execute jobs frotnu DH U DLH at eachWRfree instant in

[ta + p,tqa + x). The total length of alWRfree intervals withint, + p,tq + z) isx — p — By =
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Figure 10: Structure oVRoccupied intervals in Lemma 15.

x — p — (B — By — Bs). Thus, the total processor allocation to jobslio DH U DLH in WRfree
intervals within[t, + p, tq + z) is at least

nga-(x—p—B+B1+Bg). (28)

By (E), at least one processor executes a job fdostheachVRfree instant withirt, + «, tq +
x + eg¢) (again, becausg; executes at each such instant). The total length oiV&lifree intervals
in [td—|—a:,td—|—a:+eg) is
L3 = €y — B3 (29)

By (26), the sum of the total allocation to jobsdnu DH U DLH and the unavailable processor
time in all WRoccupied intervals ifitq, tq + = + e;) is

Ly=m-B=m-(z—x us+v). (30)

Let Z be the total allocation to jobs ithU DH U DLH within [t4,t4 + = + e¢). Because each
processor is either unavailable or executes a job flaDH U DLH at everyWRoccupied instant
and at least one processor executeat everyWRfree instant, summing the lengths of @R free
intervals in[tq, tq + p) and[tqy + =, tq + x + eg), given by (27) and (29), the allocation of jobs in
d UDH UDLH in WRfree intervals withint, + p, tq + ), given by (28), and the total processor
allocation and the unavailable processor tim&MRoccupied intervals it 4, tq + x + e¢), given by
(30), we have

Z+R>Ly+ Lo+ Ls+ Ly,
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whereR is defined earlier in Definition 14. From the inequality above have

Z+R

>Li+ Lo+ L3+ Ly

{by (27), (28), (29), and (30)
=p—Bi+a-(x—p—B+By+B3)+e—Bs+m-(x—x u+v)

{settingB’ = B; + Bz andB = z — z - u; + v, which follows from (26}
=e+p—B +a-(x-uy—v—p+B)+m-(x—x u +v)
=e+p-B +a-z-w—av—a-pta-B+m-z—m-z-u+m-v
=er+(m—(m—a) w)-x+(m—a)-v+(a—1)-B +(1—a)-p. (31)

By our assumption at the beginning of the prodf,,’s tardiness exceeds + ¢,. Because

Ty,q € d, attimety + x + ey, there is therefore unfinished work on jobsdu DH U DLH. Let
Z' > 0 be this remaining work. To find’, we subtracZ + R from W (d UDH UDLH ) + R.

Z/
=W(dUDHUDLH)+ R—-Z—R
{by (24)}
<(m-(m-—a) u) z+(1—a)-p+e—Z—R
{by (31)
<(m—-(m—a) - u)-z+(1—a)-p+e —ep
—(m—(m—a)-w) - x—(m-a)-v—(a—1)-B —(1—a)-p
=(1—-a)-B —(m—a)-v.

By(N),1-—a =1—min(m,m— F+1) = max(F —m,1 —m) < 0andm —a =
m — min(m,m — F + 1) = max(F — 1,0) > 0, and thusZ’ < 0. Therefore, there is no work
pending at time, + = + e, for jobs ind UDH UDLH , which implies thafl} ,'s tardiness is at most
x + eg, contrary to (T). O

Deriving a tardiness bound. In that which follows, it is more convenient to use the follog/
form of (23):

W(dUDHUDLH) + R > (m —max(F —1,0) - ug) -  + max(F —m,1 —m) - p+ e (32)
This expression is obtained from (23) by replacing a by max(F — m,1 — m) andm — a by
max(F —1,0).

Earlier, in (19), we established an upper bound®(d U DH UDLH ). Using Definition 14, we
can upper-bound as follows.
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R
{by Definition 14
=D (z+e—5p)
k=1
{by Definition 14

< Z(ﬂf + e — Br(x + e))

k=1

{by (1)}

Zx—l—eg—uk (x4 e — o)) (33)
k=1
To this point,z has only been constrained to be at leastWe now show that ifz is further
constrained according to the definition below, then theitass ofl} , is at most: + e,.

Definition 16. Letxz = max(p, z), where

— Ep, + max(A(())
z= S, — max(F — 1,0) - max(ug) — U’ (34)

andA(0) =e;- (30, (L —ag) — 1)+ 2300 ap - o + (7, £) + min(m — F,m — 1) - p.

Lemma 16. With = as defined in Definition 16, the tardinessIof, is at mostz + e, provided the
denominator of (34) is positive.

Proof. Suppose that the denominator of (34) is positive and, contoghe statement of the lemma,
that the tardiness df; , exceeds: + e,. By (20) and (33),

W(dUDH UDLH) + R

<FEp+z- UL—|—Zuk o + a(r,0) —I—Z x+e—uy-(x+e— o))
k=1 k=1

:EL—I—LC-UL-FQZ@-U]C-FO((T,K)
k=1

x-(m—z:@)—i-eg-z:(l—ﬂ;). (35)
k=1 k=1

Since, by our assumptiofly ,'s tardiness is greater than+ e, andz > p, by Lemma 15, (32)
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holds. From (35) and (32), we have
(m—max(F —1,0) - ug) - & + max(F —m,1 —m)-p+es

<EL+x-UL+2Z@-Uk+a(T,€)
k=1

X - <m—2@> +eg-Z(1 —uy).
k=1 k=1
Rearranging, we have

(m—max(F—l,O)-u@)-x—m-x—i—x-ZﬂE—x-UL
k=1

<EL+ZZ@-Uk+a(T,€)
k=1

—max(F—m,1l—m)-p+eg- <Zl—uk —1)
k=1

which implies

x <Z@—maX(F— 1,0)-w—UL>
k=1

<EL—|—2ZuAk-ak—|—o¢(7’,€)—|—min(m—F,m—1)-p
k=1

e (o= -1).

oy — max(F —1,0) -ug — Uy,
Er, + max(A(?))
P Stk — max(F —1,0) - max(ug) — UL>

From this, we have

xr <

< max <

where A(?) is defined as in Definition 16. However, this contradicts teémdtion of x in Defini-

tion 16. 0
From the above reasoning, we have the following theorem.

Theorem 2. The tardiness of any task, under a window-constrained scheduling algoritbtris
at mostz + ey, wherez is as in Definition 16, provided the denominator of (34) isipos.

25



5 Discussion

In this section, we discuss some implications of Theorem®amsider some extensions and im-
provements to the analysis given above, such as tightenetatdiness bound for specific schedul-
ing algorithms and processor configurations.

5.1 Relative Deadlines Different from Periods

First, note that, the definition of a prioritization funatieve have assumed is flexible enough to
allow task systems with relative deadlines different froenipds to be analyzed. By Theorem 2 and
the definition of tardiness, each j@h ; is guaranteed to complete within+-e; + 2 time units after
its release time; ;. We thus can compute a maximum tardiness bound with respect arbitrary
relative deadline.

5.2 Implications of Theorem 2

The requirement to have the denominator of (34) to be pesitiylicitly restricts the maximum
per-task utilization the system is able to accommodateawithaving unbounded deadline tardiness.
(Recall that (2) is assumed to hold, and by our task mddek- n.)

Corollary 2. Bounded tardiness is guaranteed if
(A) n<m-—F,or

>Ry Uk
max(F—1,0)+min(m—1,n)"’

(B) max(ur) < or

(C) m>2andF < 1.

Proof. (A) follows trivially from the fact that if tasks do not comigefor available processors, then
no deadlines are missed. To prove (B), suppose that

2 U
max(F —1,0) + min(m — 1,n)

max(ug) <

From this, we ged_;" | @ > max(ug) - max(F — 1,0) 4+ max(ug) - min(m — 1,n) > max(ug) -
max(F — 1,0) + Uy, where the last inequality follows from Definition 11. Thines, the denomi-
nator of (34) is positive, and by Theorem 2, the tardinesswgftask inr is bounded. As for (C), if
it holds, thenmax(F — 1,0) = 0. Because, by Definition 11 and (Z);, < >_,"_, uz, this implies
that the denominator of (34) is positive. Again, by Theoregnth2 tardiness of any task inis
bounded. O

The conditions of Corollary 2 are not necessary. Dependirtye processor availability pattern,
it may be possible to schedule a task system for which someeat@nditions from Corollary 2 do
not hold yet tardiness is still bounded as the following egbaillustrates.

Example 12. Consider a four-processor system, where the first procesfdty available, and all
other processors are available for one time unit every thinee units as shown in Figure 11(a).
For these processorg; = 1, us = uz = ug = 1/3, 01 = 0, andoy = 03 = 04 = 2. The
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Figure 11: Task execution for different processor avdliigtpatterns.

total processing capacity of the systemZEs‘;:1 ur = 1+ 3-1/3 = 2. Suppose that the task set
T={Th = (3,3), 7> = (3,3)} is scheduled. Applying Corollary 2 to this task system, we fimat
bounded deadline tardiness can be guaranteed if

2 Uk
max(F —1,0) + min(m — 1,n)
_ 2
~ max(3 — 1,0) + min(3, 2)

max(ug) <

—2/4=1/2.

Thoughmax(ug) = 1 > 1/2, jobs of T} andT5 always meet their deadlines because at every time
instant two processors are available. However, if we attamgcheduler on a system with the
availability pattern shown in Figure 11(b), which is debed by the same service functions as the
pattern in Figure 11(a), we indeed will have unbounded deadhrdiness, because the arriving jobs
demand six time units every three time units (assuming theajoival pattern continues as shown)
but can utilize only four time units.

Uniform multiprocessors. Service functions as defined by (1) can also be used to desarib
uniform multiprocessor platform, i.e., a platform wheregassors have different (constant) speeds.
Particularly, a service function for whiaky, = 0 describes a processor with spegd< 1. This
can be thought of as a unit-speed processor that is unaleiiteibfinitesimally small time intervals.
The following example illustrates this approximation.

Example 13. Consider a processor that is available for two time unitsyese time units. The
amount of available servigg*['/(A) is shown in Figure 12(a) with a solid line. The service func-
tion for this processor igl'/(A) = max(0,7 - (A — 7)), wherea = 1/3 ando = 4 as shown

in Figure 12(a). The superscripfl]” denotes that this is a first approximation of a processor
with speed 1/3. It is possible to make processor availghifibre even, so that the processor is
available for one time units every three time units. The eetipe service curves3*!?(A) and
BRI(A) = max(0,1/3 - (A — 2)), are shown in Figure 12(b). Continuing this process, we can
approximate a processor with speetB by using the limiting service functiog”™(A) = A/3,
shown in Figure 12(b), as the availability function.
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Figure 12: Approximating a slow processor with a unit-speextessor.

In order to apply Theorem 2 to a uniform multiprocessor systesk execution times have to
be measured with respect to the fastest processor. Thesspkaitiprocessors must be scaled down
so that the fastest processor has unit speed. When comgjdesystem with partially-available
processors in Section 4, we did not make any assumptiond #imway that jobs are assigned to
processors except that these processors select atmo$is of highest priority. Therefore, Corol-
lary 2, under which bounded tardiness is guaranteed, maybecessarily restrictive for uniform
multiprocessors. This is because Theorem 2 treats diffesgered processors and partially-available
unit-speed processors in a unified fashion. In the case offaranmultiprocessor, it may be more
advantageous to assign jobs with larger utilizations ocetien times or higher priorities to faster
processors in order to achieve better performance. Alteely a partitioning scheme that restricts
the set of processors where jobs may execute can be empleyedsee (Leontyev and Anderson,
2007b)).

5.3 Systems With Full Processor Availability

In previous work on deriving tardiness bounds for differglobal scheduling algorithms (Devi and
Anderson, 2005; Devi et al, 2006; Leontyev and Anderson/2Q)(a system where all processors
are always available for scheduling soft real-time tas@mfr was considered. In this section, we
instantiate Theorem 2 for this important subcase.

If all processors are fully available to tasks#nthen for eachk, 3, (A) = A, ux = 1, and
or = F' = 0. Setting these values into Theorem 2 we have the followimglzoy.

Corollary 3. If all processors are always available for scheduling theksinr, then the tardiness
of any taskT}, under a window-constrained scheduling algorittdnis at mostmax(p, z) + ey,
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where
_ Erp +max(A(Y))

m — UL
andA(l) = —ep+a(r, )+ (m—1)-p

; (36)

Note that the denominator of (36) is always positive siige< m holds, by Definition 11.

5.4 Tightening the Bound for Specific Algorithms

The bounds in Theorem 2 and Corollary 3 can be improved fdrqouéer algorithms by exploiting
the structure of the setgy andp 4, and the way jobs are prioritized. (Indeed, it is difficult to
establish a tight bound when considering only very genegrties of a scheduling algorithm.)

For example, for globaEDF, x(T; ;,t) = d,;, SO jobs with deadlines aftey have lower
priority thanT ,. Thus,¢, = —p;, ¥; = 0, andp = 0. By (13), we haveDH = (), and hence,
DLH = @, which by Definitions 7 and 13, implies(7, £) = 0. As a result, tardiness under global
EDF for taskT}, is at most

By 42300, Uk ok + maxy,er (en - (3, (1 — ) — 1)) 37)
Sk — max(F —1,0) - max(up) — Uy, ’

e + max <O,

provided the denominator of the second argumentaf is positive.
If at most one processor is partially available, tHér< 1, u, = 1 for eachk except one and
o, = 0 for eachk except one. From this, we have

S 1uk =m — 1+ min(uy),

Zk LU - o) = max(uh on), (38)
S (1~ @) — 1 = — min(@),

max(F — 1,0) - max(up) = 0.

Setting (38) into (37), we have a tardiness bound for sknderGEDF if at most one processor
is partially available:

Er +2max(uy, - o) — min(ay,) - ming, e (ep)
m — 1+ min(uy) — Uy

(39)

Finally, if all processors are fully available, themx(u, - 0,) = 0, becauser;, = 0 for all
h, andmin(uy) = 1, and hence, by (39), the tardiness under gl&aF for task 7}, is at most
er + ELLW The latter tardiness bound was first established by Devifardkrson in
(Devi and Anderson 2005).

Under globalFIFO, jobs are prioritized by their release times, ixe(7; ;,t) = r; ;. We thus
havey; = 0 andy; = —p, for each task’;, and hence, by (10p, = 0 andu = 0. Using these values
and Claim 2, we can upper-boundr, ) by 3 .. . . 1, e;. After setting these values into (36), from

Er+maxe (>, E-r\Tg e;i—ey)

Corollary 3, the maximum tardiness of taékunder globaFIFO is ej, +
This bound is slightly worse than that obtained in (Leontsged Anderson, 2007c) WhICh i% +
ELerax/(ZT :pi>pp G er)

meL
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5.5 Non-Preemptive Execution

As shown in Section 3, the notion of window-constrained ities allows a wide range of schedul-
ing algorithms to be described. Some of these algorithngs, globalFIFO, execute jobs non-
preemptively. Non-preemptivity is useful when overheasisoaiated with rescheduling are high
or when exclusive access to shared resources is heeded. sBapie but efficient resource access
protocols require using short non-preemptive code rediBlusk et al, 2007).

Non-preemptive execution causes priority inversions wadower-priority job is scheduled
and a higher-priority job is ready but not scheduled. In #astion, we show how to model non-
preemptivity using window-constrained prioritizatiomfttions in a system where all processors are
always available for scheduling the tasksrinwe leave the analysis of non-preemptive execution
under partial processor availability as an open problendeéd, it is not clear how to deal with the
situation where a processor becomes unavailable while & jekecuting on it non-preemptively.)
We assume some additional constraints on the task systeth@sdheduler.

Definition 17. We call a task systemestricted early-releasd there exists a constant > 0 such
that, for each jold; ;,
€5 = Tij — - (40)

Definition 18. Let x*(7; ;,t) be a prioritization function imposed by the scheduling atyon A.
We call A eventually-monotoniif there exists a constadt/ > 0 such that for each jot; ;, for all
t>d;; + M andv >0, xA(T;,t) < x Tyt +v).

From the above definition, any algorithm for whigH (7} ;, ) is constant, e.g., glob&DF,
FIFO, andRM, is eventually-monotonic. Also, it is easy to verify thatF andEDZL, as specified
as in Examples 7 and 8, are eventually-monotonic. In theafestis section, we concentrate on
restricted early-release task systems scheduled undeeatually-monotonic schedulet assum-
ing that (4) holds fon(A(Ti,j,t). We show how to modify the prioritization functions gf in a
window-constrained way to ensure non-preemptive exeg(tiohis is not ensured already).

Definition 19. Let ¢4 = maxy,er(0i), Pmaz = maxrer(pi), andG = u+ v + dmae + M +
an(l.’L‘ J’_ 1-

As mentioned earlier, non-preemptive execution causesifyrinversions when a low-priority
jobT; ; is scheduled and there is a ready high-priorityJoh, that is not scheduled. This means that
T; ;'s priority is effectively higher than that df, ; for the duration of the non-preemptive region.
We can explicitly model this behavior by changing prioation functions of4 as follows.

If a ready jobT; ; is not executing within a non-preemptive region, thé; ;, t) = x*(7i ;, ).

If T} ; begins executing a non-preemptive region at timand leaves that region at a later titg
then we “boost” its priority while it executes non-preempty by settingy (7; ;,t) = r;; — G for
allt e (tl,tg).

Theorem 3. (proved in the appendix)f A is an eventually-monotonic scheduling algorithm and its
prioritization functions are augmented as described abthen no job is preempted while executing
in a non-preemptive region.

The augmented prioritization functior{T; ;, t) remains window-constrained because—G <
x(Ti;,t) < d;; — ; holds, whereG is constant. By Corollary 3, this implies that tardiness
is bounded for any restricted early-release task systeneruadvindow-constrained eventually-
monotonic scheduler om fully available processors even if the tasksrirhave non-preemptive
regions.
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6 Experiments

As noted in Section 5, different algorithms to which Theor2pplies may exhibit very different
behavior in terms of tardiness. To provide a sense of howifgignt such differences can be, we
present here the results of some experiments that we cadtiiactompare observed tardiness under
different scheduling algorithms.

In these experiments, we examinedprocssesor systems for which task sets were randomly
generated as follows. First, we generated an initial set $8t adding tasks with integral execu-
tion times uniformly distributed over the rande 10] and utilizations uniformly distributed over
the rang€umin, Umaz) UNtl Us,, €xceededm + 1)/2. We considered three utilization ranges:
[0.01,0.05) (light), [0.05, 0.5) (medium), and0.5,0.9) (heavy). For each utilization range, we
generated 500 independent task sets. After the initialdaddent task set was generated we in-
crementally added tasks tountil its total utilization exceedeth. For each resulting task set, we
produced schedules (with job releases occurring in a sgncus, periodic manner) for each of
EDF, FIFO, LLF, andEDZL for min (20000, 20 - max(p;)) time units. In producing these sched-
ules, system and scheduling overheads were taken to bgibégliFor each schedule, the maximum
observed tardiness was recorded.

Figure 13 shows the maximum observed tardiness values @idler FIFO, LLF, andEDZL
as a function ofUs,,, for m = 4 for the light (inset (a)), medium (inset (b)), and heavy éins
(c)) utilization ranges. These observed values are derot&EDF, O-FIFO, O-LLF, and O-
EDZL, respectively. Additionally, for each task set, a maximamdiness bound undélF and
EDZL was computed using Corollary 3 and assuming= ¢; = 0 for each taskl’;. This bound
is denotedC-GEN (it is a generalized bound, which is also applicablé=t6O and EDF). We
also computed tighter bounds fBDF andFIFO, denotedC-GEDF andC-FIFO, respectively, as
discussed in Section 5.4. To compute the maximum deadlndéentss undeFIFO, we used the
slightly improved bound mentioned earlier in Section 5@hir(Leontyev and Anderson, 2007c).
Figure 14 depicts similar data for the cagse= 8.

Of the four scheduling algorithms under considerationeoled tardiness undet.F andEDZL
was smaller than that undétFO andEDF (muchsmaller than undefIFO). While LLF may be
impractical in reality because it preempts jobs frequerpZL could be a viable approach for
scheduling soft real-time workloads when tardiness isnadtb

The general tardiness bound obtained using Corollary 3egdiwix times larger than the maxi-
mum task execution time, which seems quite reasonabléyéanedium and heavy per-task utiliza-
tion ranges (see insets (b) and (c) of Figures 13 and 14).rtrast, for the light utilization range,
the maximum tardiness bound is about twenty times larger tha maximum per-task execution
cost. However, the observed tardiness uril€iO for that utilization range is also quite high so it
is unlikely that the general bound can be improved much (&t (a) of Figures 13 and 14). Even
though observed tardiness undé= andEDZL is practically zero, the tardiness bound given for
them by Corollary 3C-GEN) is very pessimistic, due to the use of a conservative estméor
a(,¢) (from Claim 2). Obtaining a better estimation for these &tfms is difficult, due to their
dynamic nature.

The experiments also show that thE-O bound improvement discussed in Section 5.4 is only
a slight improvement@-GEN and C-FIFO do not differ much in any graph). In contrast, the
improved bound foEDF is significantly better. (Note that the improved bound EF is two to
three times larger than the maximum per-task executionfioma| utilization ranges.) These results
suggest that it might be possible to improve the tardinessmthdor each algorithm (particularly
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Figure 13: Maximum deadline tardiness observed and cordgatd€a) light, (b) medium, andc)
heavy per-task utilization ranges for = 4 processors.

EDZL andLLF) further. We leave the development of tighter bounds fos¢h@gorithms as open
problems.
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Figure 14: Maximum deadline tardiness observed and cordgatd€a) light, (b) medium, andc)
heavy per-task utilization ranges for = 8 processors.

7 Conclusion

We have presented a general tardiness-bound derivativrapipdies to a wide variety of global
scheduling algorithms. Our results show that, with the piioa of static-priority algorithms, most
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global algorithms of interest in the real-time-systems oamity have bounded tardiness. When
considering new algorithms, the question of whether tasbkns bounded can be answered in the
affirmative by simply showing that the required prioritipatcan be specified. Of course, a tardiness
bound that is tighter than that given by our results might bgsfple through the use of reasoning
specific to a particular algorithm. Indeed, it is difficultdabtain a very tight bound when assuming
so little concerning the nature of the scheduling algorit@ur goal in this paper was not to produce
the tightest bound possible, but rather to produce a bowtcctuld be widely applied.

Since their publication in preliminary form (Leontyev andderson, 2007a), the results of this
paper have been used in several other efforts. For exanmglekility to re-define priority points
at runtime has been used in a scheduling framework that deeksnimize cache thrashing on
multicore platforms (Calandrino and Anderson, 2008). Atbe fact that per-task utilizations are
not severely constrained when at most one processor isibaevailable (see Corollary 2 and (39))
was used in developing a hierarchical bandwidth resenvattheme for multiprocessors (Leontyev
and Anderson, 2008). This scheme allows hierarchies of gaslps to be scheduled with soft
real-time constraints with no utilization loss (assumingreads are negligible).

Several interesting avenues for further work exist. Fitsiyould be interesting to investigate
reactive techniques that could be applied at runtime t@fetardiness for certain jobs by redefining
priority points, as circumstances warrant. Such techraquight exploit the fact that our framework
allows priority definitions to be changed rather arbitsagt runtime. Second, our experimental
results suggest that actual tardiness uri®z L is likely to be very low. It would be interesting to
improve our analysis as it appliesEDZL in order to obtain a tight tardiness bound.
Acknowledgement: Work supported by a grant from Intel Corp., by NSF grants CM88996,
CCF 0541056, and CNS 0615197 and by ARO grant W911NF-0625-04
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Appendix

The following claim is used in proving Lemma 6 and Lemma Al.

Claim Al.
(a) If, for job T; 4, 7,4 > t, thenA(T; ;,0,¢,PS) = 0 for eachj > g.
(b) If, forjob T; 4, 7 g <t < d; 4, thenA(T; ;,0,¢,PS) = 0 for eachj > g.

Proof. (a) follows from the fact that no jol; ; such that; ; > ¢ receives an allocation before its
release time in the’S schedulePsS. If r; , <t < d; 4, thenj > g impliesthatr; ; > r; o + p; =
di 4 > t, which, by (a), implies (b). U

Lemma 6: lag(T%,t, S) < z - uy, + e, for any taskl}, andt € [0, t4].

Proof. Letdy, ; be the deadline of the earliest pending jold®f T}, ;, in the schedul& at timet.
Letyi,; < ex,; be the amount of time for whicthj, ; executes beforein the schedules. By (6)
and the selection dfj, ;,

Iag(Tka t, S)
= Z Iag(TkJ,,, t,S)
h>1
=) lag(Tnt,S)
h>j
= (ATkn,0,t,PS) = A(Tin,0,t,S))
h>j
= ATk, 0,6, PS) = A(Th 3, 0,£,8) + > ATin.0,t,PS) = Y A(Tkn,0,1,8). (41)

h>j h>j

We now bound each term in the equation above. Since the sigréading jold}, ; executes foty,,
time units before time in the schedulé,

A(Tr;,0,t,8) =v; and > A(Tx,0,t,8) = 0. (42)

h>j

Bounds for the remaining terms depend on the relationsttipdsnd,, ; andt.
Case 1:d;; < t. SinceTy ; does not execute before its release time and finishég atn PS,
from the condition of Case 1, it follows that

A(Tk’j, O,t,PS) = A(T;w',r;w', dk’j,'PS) = é€k,j. (43)

Since the jold’; ;+1 cannot commence execution®S earlier than timely, ;,

> ATin, 0., PS) < ug - (t — di ). (44)
h>j

Setting (42), (43), and (44) into (41), we get

lag(Tk,t,S) < exj — V,j +up - (t —dj). (45)
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Becausely, ; < t < tq holds, by Property (P} ; has tardiness at most+ ey,. Letcompl (T} ;,t)
be the length of the interval after tintavhereT}, ; is pending. Thert, + compl(Ty ;,t) < di ; +
x + ek, and hence,

t—di; <x+ep—compl(Ty j,t). (46)

Becausel}, ; executes foty ; time units before time, compl(T}, j,t) > er; — vi,;. Setting the
last inequality into (46), we gét— d; ; < = + e — ex,; + Yk, ;. From (45), we therefore have
lag(Ty, t,S)

< g, — Vi +uk - (t—dgy)

<erj—Vhj+uk- (T +er —exj+ Yrj)

=e€k; t UL T+ Vg5 (uk — 1) + ug - (ek — ek,j)

< ug STt ekt ug - (ek - ek,j)

=up-r+ep; - (1—ug)+ug- ek

{maximized ifey ; = e}
<up-x+eg.

Case 2:d, ; > t. Inthis case,
A(de,o,t,'PS) = A(Tk7j,7“k7j,t,778) < u;w--(t—rk’j) < uk-(dkd—mJ) = uk-px = eg. (47)

By the condition of Case 2, for any job, , such thath > j, r;;, > ¢ holds, and hence, by
Claim A1,
Z A(Tk’h, 0,t,PS) =0. (48)
h>j
Setting (42), (47), and (48) into (41) we get

lag(T%,t,S) < ek —Yi,j < er +up -,
where the latter inequality trivially follows, since> p > 0 (see (P)). The lemma follows. [
Lemma 7: LAG(d, t4, ) < LAG(d, tn, S) + Xopepp,, 0i + S Uy O
Proof. By (8),
LAG(d, t4,S) = LAG(d, t,,, S)+A(d, ty, ta, PS)—A(d, tp, tq,S). (49)

To computeA(d, t,,, tq4, PS)—A(d, t,, tq,S), we split]t,, t4) into b non-overlapping intervals
[tp.stg.), 1 < s < b, such that,, = t,,, t,, , = t,., andt,, = tq. These intervals are defined
so that, for each intervat,_, ¢, ), if processorh is unavailable at time¢ € [t,,,%,.), then it is
unavailable throughout the entire interyg), ,¢,,). We further assume that each inter{@| , ¢, )

is defined so that if a jolf}, ; executes at some point in the interval in schedul¢éhen it executes
continuously throughout the interval #. Note that such a jolf}, ; does not necessarily execute
continuously throughout,,, t4). The allocation difference fad throughout the intervdk,,, t4) is

thus

b
A(d, tn,ta, PS) = A(d, tp, ta, S) = > (A(d, tp, . tg,, PS) — A(d, by, . 4., S)) .

s=1
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We now bound the allocation difference in tR& schedulePS and the schedul§ across each of
the intervalgt,,, t,.). The sum of these bounds gives us a bound on the total atbocaiiference
throughoutt,,, t4). By the definition of &S schedule,

A(d, ty,,tg., PS) < Usum - (tg, — tp.)- (50)

For each intervalt,, qg) we leta, C 7py denote those tasks that execute their jobBlih
continuously throughout,_ . t,,) in the schedul&s. Due to selection of,,, within each interval
[tp.,tq.) iNn SCheduleS two alternatlves are possible:

1. m available processors are occupied by tasks with ready joths i

2. Some tasks with ready jobs thdo not execute because some processors are unavailable
and/or other available processors execute tasks .ir(Note that, by Lemma 5, jobs ibLH
andDLL cannot execute at time instants when there are ready undeldgdbs ind.)

For each intervalt,,, t,,), we definex, to be the number of unavailable processors in that
interval. The number of available processor§jn, ¢,,) is thusm — «,. Therefore,

A(d’tps’tqs78)
= (tg, — tp,) - (M — || — Ks)
= — (tg. = tp.) - los| + (tg. —tp.) - (m — Ky). (51)
Subtracting (51) from (50), we get
A, tp,, tq., PS) — A(d, tp,, tg,, S)
<(tg, —tp.) - Usum — (=(tq, —tp,) - las| + (tq, — tp.) - (m — Ks))
=(tg, —tp,) " Usum + ( —tp,) - |as| = (tq, — tp,) - (m — Ks)
=(tq. = tp.)  Usum + (tq. — tp.) - Z 1= (tg, — tp,) - (M — Ks). (52)

Ti€as
Summing (52) over all intervals,, , t,. ), we have

A(d,tn,td,PS) — A(d, tn, td,S)

b b
SZ(tqe tp.) - Usum + Z Z (tp, —tq.) — Z(tqe tp,) - (m — Ks)
s=1 s=1T;Eas s=1
b b
=(td —tn) - Usum + Z Z (tp, —tq.) — Z(tqs —tp,) - (M — ks). (53)
s=1T;,Ex s=1

For each task; € 7pn, the sum of the lengths of the intervals_, ¢,.), in which jobs ofT;
from DH execute continuously before tinigis at most; (see Definition 9). Thus,

Z Yot —te) < Y G (54)

s=1T;€Eay Ti;€TpH
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Now considerzizl(tqs —tp,) - (m — Ks). Sincek, is the number of unavailable processors
within the interval(t,,, t,.), (m — ks) - (t4, — tp.) is the amount of processor time available to
tasks inT within [¢,,,,t,.). The sum of these times for all the interv@ds , ¢,,) is at least the total
processor time guaranteed withitn, t4), because each processor is either unavailable or executes a
task fromr within [t,,, ¢, ). Thus,

Z(m — k) - ( Z (tag —tn) (55)

By (1) and (55), we have

b

> (m— k) (tg, — >Zﬁk ta—tn) Z (ta —tn — o). (56)

s=1 =

Substituting (54) and (56) into (53), we have

A(d,tn,td,PS) — A(d,tnatdas)

< (ta = tn)Usum + Z 5-2% (ta —tn — ok)

Ti;€TpH
:(td_tn) <Usum_zﬂz> Z 5+ZUk Ok
k=1 T €TpH
{by (2}
<Zuk or + Z i (57)
T:€TpH
By (57) and (49), the lemma follows. O

The following definition and Lemmas Al and A2 and used in pmguiemma 8.

Definition 20. Let¢ = {T; :: 3T; ; € d such thafl} ; is ready at,, in scheduleS}.
LemmaAl. If T; ¢ &, then)_ . Jed lag(T; ;,tn,S) < 0.

Proof. Consider task; ¢ ¢ at time instant;. LetT; , be the latest job such that, < ¢,. Then
t, <r;; foreachj > g. By Claim Al (b),

> A(T; ;,0,t,, PS) = 0. (58)

Ti,j Ti,jEd/\j>g
Also, in thePS schedulePS, T; ,'s allocation cannot be larger than its actual executior ).

A(T%,_cpo;tnalps) S €ig- (59)

39



Becausdl; ¢ ¢, all jobsT; ; such thatl; ; € d andj < g complete by time;; in both schedules§
andPS, and hence,

A(T;,;,0,t,, PS) = A(T;,4,0,t,,S) foreachj < g andT; ; € d. (60)

Also, all jobs with eligibility times at most,,, including jobT; 4, for whiche; ; < ;4 < t5,
complete byt,, in scheduleS. We thus have

A(T%,ga O,tn,S) = €i,g- (61)
By (7), we have

Z Iag(Tm, tn, S)

Ti,,jed

= Y (A(T1,0,t,, PS) = A(T35,0, . )
Ti,,jed
{by (60)}

= S (AT,0, 60, PS) = A(T3 5,0, 1, S))
Ty = Tijednj>g
{by (59) and (61)

< > A(T;.;,0,tp, PS) — > A(T;;,0,t,,S)
Ty Tiy€dni>g Ty Tij€0nj>g
{by (58)}

< - > AT 0., S)

Ty = Tijednj>g
<0.
The lemma follows. O

Lemma A2.If T; € & then)_ . _qlag(T;j, tn, S) < lag(Ti, tn, S).

Proof. Becausd; € &, there exists a jold; , such thatl; , < t; andZ; 4 is pending at;; . Because
jobs of T; execute sequentially, jobs @f with deadlines aftet; , do not execute before tims,
and hence,

A(T;,;,0,t,,S) = 0 for each jobl; ; & d. (62)
We therefore have,
lag(T;,tn,S)
{by (6)}
= > (A(T3,0,t0, PS) — A(T};,0, 15, S))
j>1

= Z (A(EJ,O,tn,'PS)

(i>1AT; ;ed
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— AT, 0,0, S)+ Y (A(T05,0,tn, PS) = A(T35,0,t,,S))
(G=DAT;;¢d

{by ()}
= > lag(Tijitn,S)+ Y (A(T1;,0,t0, PS) = A(T; 4,0, t,,S))
T, ;ed T ;¢d
{by (62);
= Z |ag(ﬂ,j7tn78)+ Z A(E7J7O’tn77)8)
T; ;ed 7;,;¢d
> S lag(Tijtn, S). H
T,;,jEd

Lemma 8: LAG(d, t,,,S) < Ep +x - Up.

Proof. If t,, = 0, thenLAG(d, ¢,,, S) = 0 and the lemma holds trivially, so assume that> 0. By
Definition 10 and Definition 20, all tasks fhexecute at., and hencel¢| < m — 1. Therefore,

LAG(d, t,,S)
{by (")}
= Z Iag(Ti,j,tn,S)
Ti,jed
= Z Z Iag(Ti,j,tn,S) + Z Z Iag(Ti,jatnaS)
TriEETw-ed Tz‘€ETi‘jed
{by Lemma A%
<> lag(Titn, S)
Tie&Ti,_jEd
{by Lemma A2
< ) lag(Ti, tn, S)
T;€€
{by Lemma 6
<D (@ouite)
T;€€
{because¢| <m —1}
<FEp+zx-Up. O

The following claim is used in proving Lemmas 10 and 11.
Claim A2. If T} ,, € DH, thenx (7} x,t') < tq + ¢, for somea # i and timet’.

Proof. If T}, € DH, then, by (13), there existg, ;, € d such that # i and—-LP (T} x, T;, ;) holds.
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By (11), there exist$’ such that

X(Tik,t')
<dap+ VYa
{becausd,; € d, by (12),da < tq }
<tq+ Yq.

The claim follows. O
Lemma 10.If 75 ,, € dUDH, thenr; ;, <tq+ p.

Proof. Because setd andDH are disjoint we consider two cases.
Case 1:T; ;, € d. Inthis caser; , < d; <tq <tq+ p, Sincep > 0.

Case 2:7;, € DH. By the condition of Case 2 and Claim A2, there existg 7 and¢’ such that
X(Tii, ') < tq+ 1,. We thus have, for timé,

Tik
{by (4)}
< X(Ty e, t') + ¢
<tag+ e + @
{by (10)}
<tq+p.

The lemma follows. O
Lemma 11.1f 75, € DLH, thenr; ;, <tq+p + p.

Proof. Suppose thaf; , € DLH. Then, by (15), there exists,, € DH such thatz # i and
-LP(T; %, Ta») holds. The latter implies tha{(T; x,t') < da» + 9, holds for some time’. We
thus have, for time’,

Tik
{by (4)}
<X (T, ') + i
<dgp+ Y+ &
=Tap + Pa+ Va + &
{by (10}
<Tap+ i
{by Lemma 10
<ta+p+op. 0
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Theorem 3. If A is an eventually-monotonic scheduling algorithm and it®fitization functions
are augmented as described above, then no job is preempiélexlecuting in a non-preemptive
region.

Proof. Suppose, contrary to the statement of the theorem, thaijjobbegins executing a non-
preemptive region at timg and, while still within that region, is preempted at timeby job 77, ;
that is either ready but not scheduled at titpeor becomes eligible at,. Becaus€/}, , cannot be
scheduled earlier thas, 1, we have

€pn <11 < t; < tp. (63)

According to the priority augmentation ruleg(T, », t,) = x*(Tus,t,). Below, we show that
eitherx (T, p,tp) > ri.n — G = X (T 1, tp) holds or the tie-breaking between jobs;, andT}, 5,
attimest,; andt, is not consistent, and hence, j6h, cannot be scheduled at timgas assumed.
Let

Te =Thh — b —"— Pmaz — M. (64)

Two cases are possible, based upon the release tiffig,of
Case 1:r. < rg4. Inthis case,

XA(T(LJH tp)
{by (4)}
> Tab — Pa
{by the condition of Case}l
>Te— P
{by (64)}
=Tkh — ML~ — Pmaz — M — ¢a
{by Definition 19
> Tgh — G

Case 2:r,, < rc. Inthis case, we can show thét, + M < e 5 holds.

dap+ M
=Tap +Pa+ M
{by the condition of Case}2
<re+pa+ M
{by (64)}
=Trh — MU~ — Pmaz — M +ps + M
ST —H—"7
{by (40)}
< €pn—H
{becausg: > 0 (see (10))
< €k (65)
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Two subcases are possible, depending on whethefjghs ready at time ;.
Subcase 1715, is not ready at time,, . In this case, by the selection 9}, ,, it becomes eligible at
t,, and hence, by (63),
€ih < tp = €qp. (66)

We can lower-boung (7, 1, t,) as follows.

XA(T(LJU tp)
{by (4)}
> Tab — Pa
> €ap — Ga
{by (66)}
> €k,h — Pa
{by (40}
> Tkh =7~ ®a
{by Definition 19
> Trh — G

Subcase 2:Ty, ; is ready at timet;. In this case, becauss, ;, is scheduled at, and7y,p is not
scheduled, we have

o — G = X(Tinsty) < X(Tapsty ) = X (Tanst,). (67)

The latter equality holds becausg,, is not scheduled df; and thus is not executing non-preemptively
then. By (63) and (651, + M < t, <t,. Therefore, by Definition 18, we have

XA (Ta,by t;) < XA (Ta,by tp)~ (68)
By (67) and (68), we havey, ,, — G < x*(Tup,tp). If 7 — G < x(Tup,t,) holds, therl,,

cannot preempTy 5. If 1., — G = x*(Tus, tp), then by (67) and (68), we have , — G =
x4 (Tap, t;), and hence, the tie-breaking between jébg and7}, ; is not consistent. O
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