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Abstract

A multiprocessor scheduling scheme is presented for stipgduierarchical containers that
encapsulate sporadic soft and hard real-time tasks. Irsthisme, each container is allocated a
specified bandwidth, which it uses to schedule its childsemimie of which may also be contain-
ers). This scheme is novel in that, with only soft real-tiragkss, no utilization loss is incurred
when provisioning containers, even in arbitrarily deepdniehies. Presented experiments show
that the proposed scheme performs well compared to coovexttreal-time scheduling tech-
niques that do not provide container isolation.

1 Introduction

In the Linux community, two recent developments have o@uthat are of relevance to real-
time software design processes. The first is the introdnaifd'real-time” features such as high-
resolution timers, priority inheritance, and shortened-poeemptable sections in mainline Linux
(in versions 2.6.16 to 2.6.22). The second is the introduadfin version 2.6.24) of mechanisms for
supportingcontainer hierarchiegLVS, 2007; Eriksson and Palmroos, 2007; Lessard, 2003jh- Co
tainers are an abstraction that allows different task gsdaipe isolated from one another (mainly, by
providing different name spaces to different task groupsdterring to tasks, filegtc). Containers
are seen as a lightweight way to achieve many of the beneditédad by virtualization, without the
expense of hosting multiple operating systems. From thedgptint of scheduling, containers are
similar to various “server” abstractions considered inréhad-time-systems literature.

These Linux-related developments are happening at a tinem wiultiprocessor platforms are
becoming increasingly common. This is partly due to the atle¢ multicore technologies as an
alternative to single-core chip designs. Additionallgsenably-priced “server class” multiproces-
sors have been available for some time now. These hardwkred developments are profound,
because they mean that multiprocessors are now a “comnsa’i{giatform that software designers
must deal with.

Motivated by these trends, we consider in this paper thelenobf efficiently scheduling arbi-
trary real-time container hierarchies on a multiprocegsatform. Unlike most prior related efforts
(see below), we are mainly interested in supporsiofftiming constraints. This is partly due to our

*This is an extended version of the ECRTS paper (Leontyev artt&rson, 2008b).
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Figure 1: A host containeH that encapsulates another contaidgrand four real-time tasks
Ti,...,T4. Some of the notation used in this figure is explained in Isgetions.

interest in Linux: while there is much interest in using Lo support soft real-time workloads,
Linux is not a real-time operating system and thus cannotdes o support “true” hard timing
constraints. In addition, there is growing awareness inrdad-time-systems community that, in
many settings, soft constraints are far more common thahdwarstraints (Rajkumar, 2006). If hard
constraints do exist, then ensuring thefficientlyon most multiprocessor platforms is problematic
anyway, due to a lack of effective timing-analysis toolsdetermining task execution costs. (While
timing analysis is needed for soft real-time systems as, ‘es§-accurate empirically-derived costs
often suffice in such systems.)

The problem. For our purposes, @ontaineris a scheduling abstraction. Containers are organized
hierarchically in a tree. A container may have as childrdreotontainers or tasks, as seen in
the example in Figure 1. (In Linux, the container hierarchgynchange dynamically; we defer
consideration of dynamic changes to future work.) Eachtiga task is assumed to be sporadic
(see Section 2) and is either hard or soft: hard tasks canissttireir deadlines, while soft tasks can.
However, misses in the latter case may be by bounded ammigts*ssociated with each container
is a specifiedbandwidth which denotes the fraction of the overall (multiproce¥sgstem’s capacity
to which it is entitled. When a container receives procetist, it allocates that time to one of its
children. Our goal is to devise a scheme for performing suiclcations throughout the container
hierarchy. Although we do allow for the presence of hard-teaé tasks, we implicitly assume
that they are few in number. That is, our main objective isrtsuge that allocations are performed
efficiently when most (or all) tasks are soft.

Of course, one way to meet this objective is by simply viewétigiming constraints as hard.
However, in a container hierarchy, this will result in siigant utilization loss. In particular, the
schedulability of the tasks within a container depends @npiftocessing capacity allotted to that
container—thesupply—and the processing capacity required by the tasks withenctintainer—
the demand Very loosely speaking, verifying schedulability invossehowing that demand (over
some time interval of interest) cannot exceed supply. Whmimg¢) constraints are hard, supply and
demand are characterized using functions that cause stpply under-estimated and demand to
be over-estimated. The net effect is that, at each level oh#amer hierarchy, some non-negligible
amount of overall utilization is lost. The deeper the camtahierarchy, the greater the loss. In fact,
the overall loss can be so great, unrestricted hierarcbargbinment simply becomes untenable.

Prior work.  As noted earlier, the notion of a “container” as consideredhis paper is more
commonly called a “server” in the real-time-systems litera. Server-based abstractions were first
considered in the context of uniprocessor systems, and d&uof schemes intended for such
systems have been proposed (many of them can be found in2Q00)). Several multiprocessor
schemes that are extensions of prior uniprocessor scheswesalso been proposed (Baruah et al,



2002; Baruah and Lipari, 2004; Pellizzoni and Caccamo, p08d8wever, in all of these schemes,
it is assumed that all task deadlines are hard. Systems tiatateo have tasks with soft dead-
lines have been considered very recently (Brandenburg amttson, 2007). In addition, several
Pfair-based multiprocessor server schemes have beengaamain, mostly for systems with only
hard deadlines (Anderson et al, 2006; Holman and Ander€i6;2Moir and Ramamurthy, 1999;

Srinivasan et al, 2002). In all of the work cited so far, onlotlevel container hierarchies are
considered. Moreover, the Pfair-based schemes just ditedudbject to higher runtime overheads
than other schemes, due to the fact that Pfair schedulimgitdghs may preempt and migrate tasks
often. The only prior work of which we are aware in which mdétvel container hierarchies are

considered on multiprocessor platforms is a recent pap&hiayet al. (Shin et al, 2008). However,
as with most other prior work, only hard deadlines are carsid in their paper. To the best of
our knowledge, soft deadlines have not been consideredebafescheduling-related research on
supporting multi-level container hierarchies on multigessors.

In the approach of Shin et al. (Shin et al, 2008), the globdie=t-deadline-first algorithm
(GEDF) is used as the per-container scheduler. UGIEDF, tasks are scheduled from a single
run queue and their jobs are prioritized on an earliestditeadirst (EDF) basis. One interesting
property of GEDF is that, under it, bounded deadline tardiness can be en$oreporadic tasks
without severely constraining overall utilization (DevichAnderson, 2008). In recent work, it has
been shown that the same is true for a wider class of globadsdimg algorithms (Leontyev and
Anderson, 2008a). In this paper, we exploit these resultbtain a hierarchical scheme in which
deadline tardiness is bounded for soft real-time tasks.

Contributions.  Our main contribution is a new multiprocessor schedulingraach for multi-
level container hierarchies in which both hard and soft agiorreal-time tasks can be supported.
With hard real-time tasks, some utilization loss is incdrf@hich seems inevitable). However, in a
system with only soft real-time tasks, no utilization losficurred (assuming that system overheads
are negligible—such overheads will cause some loss in dmgnse in practice). This statement is
true, provided the goal is to schedule soft real-time task¢hat their tardiness is bounded, no
matter how great the bound may be. In addition to presentimgpeerall scheme, we also present
the results of experiments conducted to assess its ussfulria these experiments, our scheme
exhibited performance—in terms of both necessary proegssipacity and tardiness—comparable
to that of schemes that exhibit good performance but ar@iobk to containers (and hence, do not
provide any container isolation).

The rest of this paper is organized as follows. In Section& pwesent our system model. In
Section 3, we formally characterize the “supply” availatdea container and propose a container
scheduling scheme. In Sections 4 and 5, we present methodfdoking the schedulability of
real-time tasks within a container and for computing thepdppvailable to its child containers (if
any). In Section 6, we discuss tradeoffs pertaining to lgphiard real-time tasks in containers. In
Section 7, we examine the extent to which temporal isolaoansured in container hierarchies
under our scheduling scheme. In Section 8, we present owariexpntal results. We conclude in
Section 9.



2 System Model

In order to support the scheduling of containers within diteary hierarchy, it suffices to consider
the problem of scheduling a single contaidéron a set ofM (H) unit-speed processors, where
some processors may not be available for execution durirtgindime intervals. The set of child
containers and real-time tasks encapsulateH iis referred to asucc(H). (Non-real-time tasks
could be contained as well, but we do not consider such taskisis paper.) At any time, the
container may be scheduled on several available proced¥ben the container is scheduled, some
of its children are selected for execution using some irtlescheduling policy.

2.1 Sporadic Task Model

The set of real-time tasks encapsulated in the contdihisrdenoted- = {71, . . .,

T,.}. In this paper, we assume such tasks are sporadic. Eactdaéptask is invoked oreleased
repeatedly, with each such invocation callefpb. Associated with each such tagk are two
parametersg; andp;: e; gives the maximunexecution timef one job ofT;, while, p;, called the
periodof T;, gives the minimum time between consecutive job releasgs. ¢for brevity, we often
use the notatiol; = (e;, p;) to specify task parameters. Thélization of taskT; is defined as
u; =e;/p;, and theutilization of the task systemas

T,eT

Thejt" job of taskT;, wherej > 1, is denotedl; ;. A task’s first job may be released at any
timet > 0. The release time of jol; ; is denoted-; ; and its (absolute) deadling ; is defined as
ri,; + p; (implicit deadlines). IfT; ; completes at time, then itstardinessis max(0,t — d; ;). A
task’s tardiness is the maximum of the tardiness of any gblis. When a job of a task misses its
deadline, the release time of the next job of that task is heteal. However, at most one job of a
task may execute at any time, even if deadlines are missed:alvan unfinished jold; ; readyat
timetif t > r; ; and the predecessor jdh ;_, (if any) has completed execution by timeJobZ; ;
cannot commence execution before it is ready.

Given these assumptions, if a task has bounded deadliriegasithen its long-term allocation
is proportional to its utilization, as shown later. Huard real-time (HRT) tasks, we require that
all deadlines are met, while f@oft real-time (SRT) tasks, we require that deadline tardiness b
bounded (regardless of how high the bound may be).

In that which follows, we find it convenient to view a real-gntask as a specialized container
with no nested children that can be scheduled on at most ategsor at any time and that has hard
or soft deadlines.

2.2 Container Bandwidth

Each containel is characterized by itbandwidthw(H) > 0, which specifies the processing

capacity to which itis entitled. For a real-time tégk we definew(T;) 2 u;. Since the containersin
succ(H) are scheduled when the parent container is scheduledaflaation time cannot exceed



that of H. Therefore, we require

wH)> Y w(C)). @)

Cj€esucc(H)

Example 1. In Figure 1, a host containdf with bandwidthw(H) = 4 encapsulates a child con-
tainerC; with bandwidthw(C,) = 4/3, two HRT tasksT (1,3) and7%(2, 3), and two SRT tasks
T3(1,4) andTy(2,4).

Overview of our approach. In the following sections, we solve the problem describethatbe-
ginning of Section 2 via a decomposition into two subproldepach of which can be solved by
applying previously-published results. First, we spli thandwidth of each container, parent and
child, into integral and fractional parts and argue thatititegral parts can easily be dealt with.
The fractional part of each child container is then handigdigating a special SR¥erver task
with utilization equal to that fractional portion. This ato our first subproblem, which is that of
scheduling within the parent container, using the “supplydilable to it, all child HRT and SRT
tasks (where some of the SRT tasks may be server tasks). \Waldad with any HRT tasks by
encapsulating them within a new child container that sclesdhese tasks on an integral number of
processors via a prior HRT scheduling scheme. This leavesthur second subproblem, which
is to schedule within the parent container a collection of $&ks. We solve this problem by ex-
ploiting prior results on using global scheduling algamithto ensure bounded tardiness. So that
our overall scheme can be applied recursively in a contdirearchy, we finish our analysis by
characterizing the supply available to each child containe

3 Container Scheduling

The host containeH receives processor time frodM (H) individual processors. We now further
constrain the manner in which any contaigéreceives processor time by assuming the following.

(P) At any time, a containe€ can be scheduled om(C) = lw(C)] or M(C) £ [w(C)]

processors.

This restriction minimizes the execution parallelism &fale to C so that, for any interval of
length A, C’s allocation is within[|w(C)| A, [w(C)] A]. For real-time tasks, this restriction
holds implicitly, because a real-time taSk is scheduled on at most one processor at any time
andw(T;) = u; < 1, so[w(T;)] = 1and|w(T;)] = 0. We say that a processorfiglly available

to C, if itis dedicated exclusively t¢'. Given Restriction (P), we can assume thd(C') processors
are fully available ta”'.

As explained in detail later, there are two reasons for tging Restriction (P). First, increas-
ing the amount of supply parallelism (the number of avadgimocessors) restricts the maximum
per-task utilization and the total system utilization iétlong-term supply remains fixed. Second,
maximizing the number of processors fully availabletdessens deadline tardiness for any child
real-time task. Intuitively, this is because such taskssaientiabnd thus may leave processors
unused if parallelism is increased too much.

Example 2. Consider a containgt with bandwidthw(H) = 4/3 that encapsulates a ta®k(5, 6),
as shown in Figure 2(a). Suppose that processor time isisdpgd shown in Figure 2(b) so that
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Figure 2: Comparison of supply parallelism in Examples 23nd

H occupies two processors for two time units every three timiésu The supply available téf

is approximately“:TA for any sufficiently long intervalA. However, H does not execute during
the interval[2, 3), so Restriction (P) is violated, becauge(H)| = |4/3] = 1. TaskTy’s jobs
demand five execution units every six time units, but becthese must execute sequentially, they
can execute for only four time units every six time units. $haski;’s tardiness can be unbounded.
In the schedule in Figure 2(c), containéralso receives four execution units every three time units,
but in contrast to Figure 2(b), Restriction (P) is satisfiddcause one processor is fully available to
H, taskT; meets all of its deadlines.

As one may suspect, enforcing Restriction (P) may sometitaee negative consequences. In-
deed, atask set with a large number of tasks may benefit frangarinumber of available processors
if all deadlines have to be met.

Example 3. Consider the containdi from the previous example, except that it now encapsulates
two real-time taskgd? (2, 3) andT:(2, 3), as shown in Figure 2(d). In the schedule shown in Fig-
ure 2(e), which is equivalent from the container’s perspedb that in Figure 2(b), jobs d¢f; and

T> meet their deadlines. However, in the schedule in Figurg @fiere Restriction (P) is enforced
as in Figure 2(c), joll ; misses its deadline at tinfebecause it cannot execute on two processors
simultaneously during the time interval 3). Still, in this schedule]?’s tardiness is only one time
unit.

The two examples above illustrate that, while minimizinggy parallelism may negatively im-
pact timeliness, it allows the widest range of loads to bedualed with bounded deadline tardiness,
which is in accordance with our focus on SRT tasks. In (Shial,e2008), mentioned earlier, the
objective is instead to schedule HRT tasks. There, thenatise approach of maximizing supply
parallelism is used.

We now develop a scheduling policy that enforces Restrndii®) for child containers assuming
that it holds for the host containéf. Given the latterH is supplied time from\/ (H) processors,
wherem(H) processors are always available for scheduting:(H) and at most one processor is
partially available.



A child containerC; € succ(H) must occupy at least.(C;) processors at any time. By (2),
’LU(H) 2 ZC,LES?LCC(H) ’LU(CZ‘), and hencenl(H) = Lw(H)J > LZC,;ES?I,CC(H) w(CZ)J >
Y cresucetny L W(C) ] = Y0 csucerry M(Ci). Therefore, we can make:(C;) processors fully
available to each child contain€} € succ(H) by using then(H) processors fully available tH'.
Note that, for containers witv(C;) < 1 (including real-time tasks)n(C;) = |w(C;)] = 0. In
any event, given this design decision, each child contaiheeceives at least(C;) A units of time
over an interval of lengti.

If a child containerC; is not a real-time task ana(C;) < w(C;), then it occasionally needs
supply from an additional processor. For this, we constauSRT periodicserver taskS;(e;, pi),
whereu; = e;/p; = w(C;) — m(C;) < 1. (The termperiodicmeans that; ; = (j — 1) - p; holds
foreachj > 1.)

We denote the set of server tasksrds= {51, ..., S,}. Jobs of these tasks are scheduled to-
gether with the jobs of encapsulated real-time tasks ubgamainingn(H)—>_ o c gucc(a) m™(C5)
fully available processors and at most one partially alséglaprocessor. When task’s jobs are
scheduled, an additional processor is available to comtaif). Because server tas¥; is con-
structed only ifw(C;) > m(C;) = |w(C;) [, we have[w(C;)] = m(C;) +1 = M(C;). Thus,
containetC; always occupies:(C;) processors, andl/ (C;) processors are occupied when a job of
S; is scheduled. Thus, Restriction (P) is ensured for eacl cbihtainer.

Example 4. Consider containefl from Example 1. For contain&r;, one processor is reserved
becauséw(C1)| = |4/3] = 1. For this container, we also construct a SRT server 4k, 3), so
that|w(Cy)] +e1/p1 = 1+1/3 = w(C1). When jobs of5; are scheduled, an additional processor
is available to containef’;, as shown in Figure 3(b).

Let HRT(H) (respectivelySRT(H)) be the set of HRT (respectively, SRT) tasks encapsulated
in H. The remaining problem at hand, referred to as Subprobléstiiat of scheduling tasks from
the setHRT(H), SRT(H), and7° on some number of fully available processors and at most one
partially available processor.

4 Subproblem 1

To schedule the tasks IHRT(H ), we encapsulate them into a child contaiggy,.; with integral
bandwidthw(Chryt) = m(Chyt) = M (Chyt). Applying Restriction (P) t@,,.¢, m(Ch,t) processors
must be reserved for this container. In this section, we idenswo approaches for scheduling the
remaining tasks iISRT(H) andr?; in the first approach, HRT and SRT tasks do not execute on the
same processors, and in the second approach, they may.

Basic approach. The tasks inHRT(H) can be scheduled withig',,; using a variety of ap-
proaches. Given our emphasis on SRT tasks, we simply usattiegnedEDF (PEDF) algorithm
for this purpose, deferring consideration of other appheado future work. UndePEDF, tasks
are statically assigned to processors and each processmtges its assigned tasks independently
on anEDF basis. Assume that procesgois among then(C},.) processors reserved for container
Chr+ and letr, denote the set of sporadic HRT tasks assigned to that parcesdstask deadlines
will be met on processar if

Ueum (Th) - Z Uj S 1; (3)

Ti€Th
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Figure 3: Example 5(a) Isolating HRT tasks(b) A schedule with the two HRT tasks in a separate
container.

which is a well-known uniprocess&®DF schedulability test (Liu and Layland, 1973). This test,
when applied in a multiprocessor system, presumes a gisgrasent of tasks to processors. Such
an assignment (and correspondingly, the number of processguired folC},,.;) can be determined
using any of various bin-packing heuristics. Further rsscbncernind®EDF schedulability tests
can be found in (Baruah and Fisher, 2005; Chakraborty aneldi2005; Liu, 2000).

As mentioned earlier, HRT policies may introduce utilinatioss. FOIPEDF, there exist task
sets, for which the reserved processors could be undeadilHowever, if HRT tasks are relatively
few in number, such loss will likely be small, compared to thial utilization of SRT tasks. Loss
is incurred when creating?,,; if its bandwidth (given by the number of processors requiczdt)
exceeds the sum of the utilizations of the HRT tasks it costdif this is the case, then (2) must be
validated with the tasks iHRT (H) replaced by the containét, ..

Example 5. Consider again containéf from Example 1. In our approach, we encapsulate the two
HRT tasksTi(1,3) andT>(2, 3) into a containe€’,,.;, as shown in Figure 3(a). The total utilization
of these two tasks i, = u1 +uz2 = 1/3+2/3 = 1. By (3), these two tasks will meet their
deadlines if scheduled using uniprocese®F. We setw(Ch,+) = 1, so the containe€',,.; will
require one processor. The total bandwidth of contaitier children is}_ . .., .. w(Ci) =
w(C1) + w(Chrt) + w(T3) + w(Ty) = 4/3+1+1/44+2/4 = 37/12 < 4 = w(H), so (2)

is satisfied. When scheduling the modified contaiffeon [w(H)| = 4 processors, as shown in
Figure 3(b), one processor is reserved for the HRT contdipgrand taskgd; andT; are scheduled
on that processor. Note that no utilization loss is inculrg#iRT tasks. In Example 4, we reserved
one processor for contain€ and constructed the server task(1, 3). Jobs of this server task are
scheduled with the jobs of tasi andT; on the two remaining fully available processors.

Note that, if a system has a small number of processors, tmeayi not be possible to dedicate
an integral number of processors for a HRT container as itbestabove. For example, if the
parent containef! has fractional bandwidth, then its encapsulated HRT taskg Ime required to
execute on a partially available processor, which wouldiirecdifferent analysis from that in this
paper. Given our focus on SRT tasks, such analysis is beywenstope of this paper. However, if a
system is purely SRT, an arbitrarily deep hierarchy of SRitaimers can be maintained even in the
uniprocessor case.



In the case when it is possible to reserve an integral nunft@ocessors for HRT tasks, it may
not be possible to accommodate SRT tasks using the remdiamdyvidth as the following example
illustrates.

Example 6. Consider Figure 4(a), which depicts a contaifiethat is similar to that from Exam-
ple 1, except thal, has a smaller execution time and there are two additionaltaids, 75(1, 2)
andTg(1,2). In our approach, we encapsulate the two HRT t&8K$, 3) andT»(1, 3) into a con-
tainerCy,+, as shown in Figure 4(a). The total utilization of these tasks iUy, = u1 + ug =
1/3+1/3 = 2/3. By (3), these two tasks will meet their deadlines if schedulsing uniproces-
sor EDF. We setw(Ch,+) = 1, so the containe€},,.; requires one processor. When scheduling
the modified containef on [w(H)]| = 4 processors, as shown in Figure 4(b), one processor is
reserved for the HRT containél,.,.., and taskg; and7; are scheduled on that processor (inset (c)
is considered later). As in Example 4, we reserve one procésscontainerC; and construct a
server taskS; (1, 3). Jobs of this server task are scheduled with the jobs of tBgks . , T§.

Under the basic approach, the processor time that remaérssaheduling’ and7; is unused
(see interval$2, 3) and|[5, 6) within C},,; in Figure 4(b)). Thus, the bandwidth available to tasks
Sy andTs,. .., Tgisw(H) — m(Chrt) — m(C1) = 4 — 1 — 1 = 2. However, the total bandwidth
required by tasks$, andTs, ..., T is w(S1) + w(T3) + w(Ty) + w(Ts) +w(Ts) = 1/3+1/4 +
2/44+1/2+1/2 =25/12 > 2, and hence, task$, andTs,. .., Ts will have unbounded deadline
tardiness. Note that, in the schedule in Figure 4(b), thdygab 75 » is not scheduled during
the interval[2, 3) even though there is an available processor. Similarlyrelady jobT 5 is not
scheduled during the intervgl, 6).

Extended approach. In order to allocate the available bandwidth more efficientle can use
the time not allocated to HRT tasks on some of th@”},,.;) processors reserved for such tasks to
schedule tasks iBRT(H) U7 (in addition to the supplied time on other processors). Wenethis
approach to be selectively applied by defining the parani€{éf) below.

Definition 1. Let K(H) € [0, m(Ch,+)] be the number of processors where taskdRT (H) and
SRT(H) u 74 are co-scheduled.

We assume that HRT tasks are statically prioritized over &Y server tasks. Thus, HRT tasks
still execute as if an integral number of processors werédcdéstl to their exclusive use. After
assigning all HRT tasks to the(C},.) processors reserved for them and then seledting ), the

utilization loss due to partitioning g5t = Z;((I?L(’}}))H(l — Usum /(7)) (we assume that HRT-
allocated processors are numbered in order of incredsing (7)). Though engaging additional
processors for scheduling tasksSRT(H) U 7° (i.e., increasingk (H)) reduces utilization loss
and sometimes is imperative in order to accommodate all 8BKst a large value fdk (H) may
negatively impact SRT schedulability as discussed lat&eiction 5; tradeoffs involved in selecting
K (H) are discussed in Section 6. After weighing such tradeoffssatecting a value foK (H),

(4) below must be validated to account for any lost bandwidth

wH)> Y w(C) + Ujgst (4)

Cj€succ(H)

Example 7. Consider containeff from Example 6. A schedule where HRT processor time is
reclaimed (i.e.,K(H) = 1) is shown in Figure 4(c). The bandwidth available to tasksand
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Figure 4:(a) Container considered in Examples 6 and 7. A scheth)laith and(c) without HRT
time reclamation.

T3,....Tsisw(H) —w(Th) —w(Tz) —m(Cy) =4—1/3—-1/3—1 = 7/3, which is greater than
the bandwidth required by these tasks. Note that, in thisdule, the processors suppliedioare
idle only if there are not enough ready tasks to occupy ahefrt.

Having dispensed with any HRT tasks, we can complete outisalto Subproblem 1 by devis-
ing a scheduling policy that ensures bounded tardinessiéremaining SRT tasks, some of which
may be server tasks.

Definition 2. (75, M, and Subproblem 2)Let 7, = SRT(H)UTS. These tasks are to be scheduled
onM; processors, of whichu(H)—>_ ¢ ¢ oyce(ar) m(C5)—m(Chre) are fully available ands (1)+

G, whereG < 1, are partially available. Note thaf (H) processors are partially available due to
HRT tasks internal tadd and at most one additional processor is partially availdigleause the
supply provided by’s parent is subject to Restriction (P).

We refer to this last remaining subproblem as Subproblem 2.

5 Subproblem 2

In solving Subproblem 2, restrictions on supplied procetiste are of relevance. Such restrictions
can be dealt with using per-processupply or availability function§Chakraborty and Thiele,
2005).
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Definition 3. (supply functions) The supply (or availability) functio;ﬁ?,@(A) : R — R, provides a
lower bound on the amount of processor time proceBs@n guarantee during any time interval of
lengthA. This function is defined as

BL(A) = max(0,ug - (A — o)), (5)

whereu;, € (0,1] andoy, > 0. uy, is called theprocessor bandwidtandsy, the maximum blackout
time, because, is the maximum interval when procesgomay not provide any supply (Easwaran
et al, 2007).

The following property is a straightforward applicationtbé above definition.
(FA) If processotk is fully available, thersl (A) = A, uy, = 1, andoy, = 0.

From the earlier statement of Subproblem 2 in Definition 2hef\; processors under consid-
eration, K (H) + G are partially available. We assume that th@$eprocessors are indexed so that
the supply from them can be described ushdgsupply functionsp (A) = max(0, uz(A — o%)),
where0 < uy, < landoy, > 0,for1 <k < K(H)+ G;andgl(A) = A, for K(H) + G +1 <
k< M, If K(H)+ G < 1,ie., at most one processor is partially available, thesayethat such
a collection of functions is itMinimum Parallelism(MP) form. As explained later, ensuring that
supply is in MP form allows the widest range of SRT workloaal®é supported without incurring
utilization loss.

Before continuing, note that i#/; = 1, i.e., all remaining SRT tasks are to be scheduled on
one processor, thelBDF can be used on that processor. If this processor is fullyiablai then
tardiness will be zero for these tasks (due to the optimalfitgDF), and if it is partially available,
then it can be easily shown to be bounded, using real-tinteied (Chakraborty and Thiele, 2005),
providedU,,,, (SRT(H) U 7°) < uy. In the remainder of this section, we concentrate on the more
interesting casel/, > 2. In this case, our approach leverages some recent thesmretsults, which
we describe next.

5.1 Window-Constrained Scheduling

The problem of scheduling a set of sporadic SRT tasks on pheiftirocessors with restricted supply
was considered in (Leontyev and Anderson, 2008a). In thikwa class of global scheduling
policies that ensure bounded deadline tardiness was egesidThis class of algorithms is described
next.

Let 7 be a set of sporadic SRT tasks scheduledWn> 2 processors, with supply functions
BL(A) = max(0,ug(A — o)), wherel < k < M. (Note thatr was defined earlier in Section 2.1.
Here, we mean to denote any sporadic SRT task set. The distinction shoalldidar from the
context.) Assume

M
Usirn(7) < 3 )
k=1

i.e., the total system utilization is at most the total siggbbandwidth. Released jobs are placed
into a single global ready queue. When choosing a new jobhedde, the scheduler selects (and
dequeues) the ready job of highest priority. Prioritiesdetermined as follows assuming that any
ties are broken arbitrarily but consistently.

11



Definition 4. (prioritization functions) Associated with each released jb}; is a function of time
x(T;,;,t), called itsprioritization function If x(7; ;,t) < x(Tk,h,t), then the priority off; ; is
higher than the priority of, ;, at timet.

Definition 5. (window-constrained priorities) A scheduling algorithm’s prioritization functions
arewindow-constrainedf, for each taskT;, there exist constants and+); such that, for each job
T; ; of T; and timet,

= ¢i < x(Tij,t) < dij + i (7

Note that (7) requires a jobg-values to lie within a windovr; ; — ¢;, d; ; + ;] that is defined
with respect to its release time and deadline. Note alsdlieatonstants; andq; may be positive
or negative; however, if negative, the inter\ial; — ¢;, d; ; + ;] cannot be empty.

GEDF is an example of a global algorithm with window-constraipedrities. Under ity (T; ;,t) =
d; ; for each jobT; ;. In (Leontyev and Anderson, 2008a), a tardiness boundabkstied that ap-
plies to any window-constrained global scheduling aldynit To state this bound, let

p = max (o, max(6: + wa)) and = max (o, max(va + pa + @)) . ®
Further, letU (7, y) be the set of at moshin(|7|, y) tasks fromr of highest utilization, and let

U= Y  u )
T,eU(r,M—1)
Similarly, let E(7, y) be the set of at mosthin(|7|, y) tasks fromr of highest execution cost, and let

EL = Z €;.

T, €E(r,M—1)
Finally, let I be the number of processors with(A) # A, and letr = max(p, z), where

Z: Ep+ 2?@'(1‘1(4)) | o)

M
Zu/\k —max(F —1,0) - max (us) — Up
1<t<]|

and

M
—eg <Zl—uk —1)4—22@% Ok

=1 k=1 (11)
+ 3 (Vﬂﬂ )-ei—i-min(M—F,M—l)-p.

Tier\Te pi

Theorem 1. (Proved in (Leontyev and Anderson, 2008a))he tardiness of any task, € 7
under a window-constrained scheduling algorithtis at mostz + e, wherez is as defined above,
provided the denominator of (10) is positive.
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5.2 Minimizing the Tardiness Bound

Given the theorem stated above, we now argue in favor of Restr (P) and show how enforcing
this restriction affects the tardiness bound in Theoremdnsitier the denominator of (10):

M
Zuk — max(F —1,0) - éré?lcﬂ(w) -Ur. (12)

The requirement for (12) to be positive implicitly restsa¢he maximum per-task utilization ¥ >

1, i.e., if two or more processors are partially availableteNalso that the value af is minimized

if (12) is maximized. Suppose that the total supplied badtwil” = 221:1 uy, is fixed. Then, (12)
will be maximized if eithermax(F — 1,0) - max;<¢<|-|(u¢) Or Uz, or both are minimized. The
value of Uy, depends exclusively on task utilizations and the total nemalh processord/, as (9)
suggests. Thereforé€;, will be minimized if the total number of processars is minimized. The
expressiomax(F — 1,0) - max; <<, (ue) is minimized if F < 1, that is, at most one processor
is partially available. Thus, if the total processor bardtwili” is fixed, then (12) is maximized
by settingM = [W] and having| W | processors fully available. The bandwidth of at most one
partially available processor (if any)ig = W — |[W].

The above discussion suggests that bounded tardiness ag®hand server tasks can be
achieved for the widest range of task utilizations if themygo SRT(H) U 7° is given in MP
form. This is the case if eithek (H) = 0, (e.g., wherHRT(H) = @ or no spare HRT capacity
is reused) oG = 0 and K (H) < 1 (i.e., when the bandwidth supplied  is integral and HRT
capacity is reused on at most one processor{ (H) + G > 1, then bounded tardiness may be
guaranteed for certain SRT workloads. Various tradeo#gasssible with regard to the selection of
K (H). These tradeoffs are discussed in Section 6. After applymeprem 1 to Subproblem 2, we
have the following.

Corollary 1. Letrs, My, K(H), andG be as defined in Definition 2. The tardiness of any task
T, € 7, under a window-constrained scheduling policy is at mask(z, p) + e, where

Er + 1;512@‘(14(13))

Z= K(H)+G ’ (13)
M, — K(H) -G+ }; w, — max(K(H) + G —1,0) é?%fisw(“” - U

(H)+G K(H)+G
Y=ep- ( Z (1 —ay) —1) Z Up - Ok

k=1

+ Y (Vﬂﬂ +1> “er +min(M, — K(H) — G, M, —1)-p

TreTs\Te Pk

provided (6) holds (with\/ replaced withAM; and T replaced withr,) and (14) below holds.

K(H)+G
M, — K(H) -G @ — max(K(H) + G — 1,0 —UL>0 (14
s—K(H)—G+ hz::l wn — max(K (H) + ) Doax (ue) = UL > (14)
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Proof. We prove the corollary using results from Section 5.1; hésrtle, when such results are
applied, we assume thaf is replaced withM; and is replaced withr,. In the formulation of
Subproblem 2K (H) + G supply functions3! (A) may differ fromA. Thus,F = K(H) + G. By
(FA),

(VkE:KH)+G+1<k<Ms:op,=0Au,=1). (15)
Thus,
M, K(H)+G M, K(H)+G
un= Y mwm+ >, w= Y un+(M.-KH)-G),  (16)
h=1 h=1 h=K (H)+G+1 h=1
M, K(H)+G
(Z(l—@—l>= Yoo-m) -1, (17)
k=1 k=1
and
Mg K(H)+G
Q-Zﬂz-akzl Z Up - 0. (18)
k=1 k=1

Setting ' = K(H) + G and substituting (17) and (18) into (11), we g&f¢) as defined in the
statement of the corollary. Finally, substituting (16)irfL0), we get as defined in the statement
of the corollary. O

If GEDF is used for SRT tasks, then the tardiness bound in Corollagnlbe further tightened
by settingA(¢) in (13) toe,- (XK TC (1) — 1) +2. S KIDTE 41 54, as shown in (Leontyev
and Anderson, 2008a).

The following lemma shows that providing supply in MP fornoals the widest range of SRT
workloads to be supported.

Lemma 1. If the supply to the tasks in is in MP form, then (14) always holds.
Proof. If the supply tors is in MP form, thenK (H) + G < 1. We thus have
K(H)+G

h=1

Setting K (H) + G < 1 and (19) into the LHS of (14) we have

K(H)+G
M, — K(H) -G - K(H)+G—1,0 U
: (H) + hz::l up, — max (K (H) + )152\}54(“@) L
=M, —1+u; —Uy. (20)

We now consider two cases depending on the number of tasks in

Case 1:|75| < M, — 1. In this case, by (9),

14



75|
Up=3 ui <M, —1<M, 1+,
=1
where the latter inequality follows from Definition 3.

Case 2:|75| > M, — 1. In this case, by (9),

oy I .
UL < Usu,rrL(Ts) < Zuh = Ms — 14+ U1,
h=1

where the latter equality follows from (15). The requiredui¢ follows from (20) and the two
cases above. O

Corollary 2. If at most one processor is partially available 19, then Corollary 1 only requires
that (6) holds. That is, bounded tardiness can be ensurddmatutilization loss.

Note that, if all M > 2 processors are fully available, then a HBEEDF schedulability test
(e.g., (Baruah, 2007; Bertogna et al, 2009; Baruah and B&K&x8)) can be applied to before
calculating tardiness bounds. If this test passes, therinem tardiness is zero.

5.3 Computing Next-Level Supply

The remaining issue is to compute the supply of each chiltbdoer in MP form, so that our analysis

can be applied recursively in a container hierarchy. Noag wWe can do this regardless of whether
the basic or extended approach described in Section 4 is BEsedring that child-container supplies
are in MP form ensures that Property (P) holds for such coetai

If a server taskS;(e;, p;) has bounded deadline tardiness, then the total guarardegetdrm
supply to containe€’; will be proportional to the long-term supply of(C;) fully available proces-
sors, which can be described by a set:qiC;) supply functions equal tA, plus that of a partially
available processor with bandwidify = ¢; /p;. We are left with characterizing the processor time
that is available t@’; when the server task; is scheduled.

The supply guaranteed to the server t&kwvill depend on its parameters; andp;, and its
tardiness. The latter depends on the scheduling algoritbeal for SRT and server tasks, their
parameters, and (if extended approach is used) the amowsnpply reclaimed on HRT-occupied
processors.

Definition 6. LetA(T;, t1, t2, Q) be the allocation of task; during the intervalt, , t2) in the sched-
ule Q. LetA(T; ;, 1,12, Q) be the allocation of jolT; ; during the intervalty, t2) in the schedule
Q.

Lemma 2. Let ©; be the maximum deadline tardiness of the server fskjobs in Q. Then, the
allocationA(S;, 0, t, Q) satisfies the following.

A(S;,0,t,Q) <ui-t+ei(1—u) (21)
A(Si,O,t, Q) Zui-t—ui-e)i—ei(l—ui) (22)
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Proof. We first prove (21). Leb; ; be the latest job of; in scheduled such that; , <t. (Such a
job exists becaus§; is a periodic server task.) Then, by Definition 6, the all@rabf S; in [0, 1) is

A(Slv Oa tv Q)
{becauss; ;;'s successors do not execute befone any schedulg
<A(Sin,0,t,Q) + > A(Si;,0,t, Q)
i<k
{because the worst-case execution tim&0f e, }

< A(Six,0,t,Q) + Z e

i<k
{because5; ;, is not scheduled before ; }
< min(e;, t —r; ) + Z €;. (23)
i<k

The latter expression is maximized if the number of jobS,afeleased beforg ;, is maximized,
as shown in Figure 5(a). Therefore, (23) is maximizeH i LjiJ +landry, = (k—1) - pi.
Setting these values into (23), we have

A(Sia 07 ta Q)

t t
< min (ei,t — {—J -pi) +e; - {—J
pi pi

{setting-- = ¢}
= min (e;, (¢ — g]) - pi) +ei- 4]
min (e;, (¢ — [q]) pi) +ei-[g) +e-g—e-q
min (e; - (lg] —q+1),(¢—La]) - (pi — i) +ei-q
{settingg — |¢q| = =}
= min(e; - (1 —2),2-(pi —ei)) +ei-q
{ themin(. .. ) summand is maximized when its two}
arguments are equal, which is the case whenu;

< min(e; - (1 —w;),u; - (pi —ei)) +€ ¢
{settingg = -}
zui-t—kei-(l—ui).

We now prove (22). Leb; ;, be the earliest job of; such thati; ,, + ©; > t. For this job, since
di ;= 15k + pi, We haver; ,, +p; + 0; > t. Let

Tik =1t —Di —O; +¢, (24)
wheree > 0. By the selection ob; ;, for any jobS; ; such thatj < k, we haved; ; + ©; < t.
By the statement of the lemma, each jobSfcompletes within®; time units after its deadline.
Therefore, all jobsS; ; such thatj < k complete by time, i.e.,
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Figure 5: Server task’&) maximum andb) minimum allocation scenarios.

A(S;;,0,t, Q) = e; for eachy < k. (25)

The allocatiomA(S; , 0, ¢, Q) is minimized ifA(S; x, t, d; r + ©;, Q) is maximized. The latter
is at mostmin(e;, d;  + ©; — t), as illustrated in Figure 5(b). Thus,

A(Si’k,(),t, Q)
=e; —A(Sik, t,dix +0;,09)
> e; —min(e;, dip +©; — 1)
= max(0,e; — (d;, +©; — 1))
= max(0,e; — (rir +pi +6; — 1))
{by (24)}
= max(0,e; — €). (26)

SinceS;’s jobs are released periodically from time zero (since & g&erver task), there af—gﬁ
jobs released before jof . Thus,

A(Si70at7 Q)
- A(Si,]w Oa t7 Q) =+ Z(A(S%J’ 07 t’ Q))

i<k
{by (25)}
= A(Six. 0,1, Q) + 28 g,
{by (26)}
> max(0,¢e; —€) + rlk -e;
{by (24)}
= max(0, e; — ) + t—m;& e

= maX(O,ei—6)+ui-t—ui-@i—ei+6-ui

= max(u; - € — e e (u; — 1)) +u; -t —u; - 0
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Figure 6: Server task allocatidg¥(.Sy, 0, ¢, Q) in Example 8 and its linear upper bou6it).

themax(. .. ) summand is minimized if its two
arguments are equal, which is the case whene;

> max(u; - e; — €, - (u; — 1)) +u; -t —u; - 0;
:ui-t—ui-@i—ei-(l—ui). O

Example 8. Consider the schedultg shown in Figure 3(b). In this schedule, jobs of the servés tas
S1(1,3) execute in the interval®, 1), [3,4), and[6, 7). By time 1,.5; has received one allocation
unit, by time 4, its allocation is two units, and so on. TheeditionA(S;,0,t, Q) is shown in

Figure 6 as a function af The figure also shows the upper bound (21), whict(8) = u; - t+
ei(l—u;))=1/3-t+1(1—1/3)=1/3-t+2/3. Itis easy to see th&(51,0,¢,Q) < G(t).

We now can find guarantees on the supplied processor timeffegrstasks for an arbitrary time
interval.

Theorem 2. Suppose that the scheduling algorithm used by the contdihensures a deadline
tardiness bound 00, for the server taskS;(e;,p;). ThensS; is guaranteed at Ieast/f(A) =
max(0,u; - A — 2e;(1 — u;) — u; - ©;) time units during an interval of length.

Proof. Our goal is to bound the allocation 8f during an intervalt; , ¢2) by a function of the length
of the intervalA =t — ¢;.

A(Si,tl,tg, Q)
= A(S;,0,t2, Q) — A(S;,0,t1, Q)
{by (21) and (22)
>uj-to —u; - ©; — ei(l—ui) - (ui ~t1+6i(1—ul‘))
= U; - (tg —tl) — 26i(1 — ’Ll,l) — U * @i
=u; - A —2e;(1 —u;) — u; - O;.

A(S;,t1,t2, Q) cannot be less than zero, thAES;, t1,t2, Q) > max(0, u; - A —2¢;(1 — w;) — u; -
;). O

Corollary 3. The supply to containef;, as defined above, is described bf(C;) = [w(C;)]
availability functions in MP form, wherew(C;) = |w(C;)| supply functions satisfﬂj(A) =A
and at most one supply function satisfid$A) = v!(A) as given by Theorem 2. The total supplied
bandwidth forC; is w(C;).
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5.4 Computing Available Supply on HRT-Occupied Processors

In the previous section, we computed the supply availalbdedioild container provided the tardiness
bounds of tasks ims are known. In order to calculate these tardiness boundg @inollary 1, we
need to determine the supply availablertoon K (H) processors where HRT and SRT tasks are
co-scheduled (if HRT capacity is reclaimed) in additiontte supply provided by the parent &f.

We first compute an upper bound on the allocation of an HRTdaekthe time intervak, t+A).

Lemma 3. If jobs of T; finish by their deadlines in the schedule thenA(T;,t,t + A, Q) <
u; - A+2-e; - (1 —u), foranyt andA > 0.

Proof. LetT; , be job ofT; with smallest indexX that executes withifty, t2). If no such job exists,
thenT;’s allocation within[¢, ¢ + A) is zero and the required result holds trivially. gt beT; x's
completion time. The allocation &f; j, is thus

ATk, t,t+ A, Q) <min(e;, A e), (27)

wheree = f; ,, —t, as illustrated in Figure 7. We consider two cases based tigorelationship
betweer: andA.

Case 1:e > A. Inthis case]; ; commences execution at or befere A and finishes after + A.
By the selection of, T; ;. is the only job ofT; that executes withifit, t + A). ThereforeT;'s
allocation in this interval cannot be greater thaim(e;, A). By (27) and the condition of Case 1,
we have

A(Tik t,t + A, Q)
< min(e;, A)
= u; - min(e;, A) + (1 — u;) - min(e;, A)
S A+ (1—u)-e
<ui - A+2-(1—uy)-e;.

Case 2:¢ < A. Because, by the condition of the lemniay, finishes by its deadlingf; ,, < d; 1, =
rik +pr < i k+1. The allocation off; ,’s successor jobs in the intervial ¢ + A) is maximized if
all of these jobs are released as soon as possiblefaiteas shown in Figure 7. Therefore,

Y ATt t+ A, Q)

i>k
< max (0, {MJ -e; +min(e;, (t + A — fi ) mod pi)>
Di
{settingf; x —t =€}

= max (0, {Ap_, eJ - e; +min(e;, (A — €) mod pl)) . (28)
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Figure 7: Maximum allocation scenario for a hard real-tiaeki;.

By Definition 6 and the selection @f,

A(T;, t,t+ A, Q)
= ATt t+A,Q) + > ATt t+ A, Q)
j>k
{by (27) and (28)
A—¢
23

< min(e;, A, €) + max (O, { J - e; + min(e;, (A — €) mod p7))

{by the condition of Case}2

= min(e;, €) + { GJ - e; + min(e;, (A — €) mod p;)

Di

{ ! A . 6 }
setting =q
Di

= min(e;, €) + |q] - e; + min(e;, ¢ - pi — [q] - i)
= min(ej, €) +q-e; —q-e; + [q] - e; +min(e;, g pi — q] - pi)
= min(e;, €) + ¢ - e; + min(e; - ([g¢] —q+1),(¢— Lq]) - (pi —€i))
{settingg — |¢q] = 2}
= min(e;, €) +q-e; + min(e; - (1 —2),2- (pi — €;))
{ min(e; - (1 — 2), 2+ (p; — e;)) is maximized if both its}

arguments are equal, which is the case whenu;

IA

min(e;, €) + ¢ - e; +min(e; - (1 — w;),u; - (pi — e;))

{ . A—¢ }
settingg =
bi

_e-ei—l—ei-(l—ui)

2

= min(e;, €) +
= min(e;, €) + (A —¢€)-u;+e; - (1 —u)
{maximized ife = e;}
Sei—k(A—ei)-ui—Fei-(l—ui)
zui-A+2-ei-(1—ui).
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Lemma 4. Let 7, be the set of HRT tasks assigned to a fully available processsuch that
Usum(mn) < 1. For any time interval of length\, at leasts! (A) = max(0,uy - (A — o3))
2 ZT{/ET},’ ey(l—u,;)

time units are available, whef@, = 1 — Usym (71) andoy, = )

Proof. Consider an intervat, t + A). By Definition 6, the time available after schedulingwithin
this interval is

maX(O, A — Z A(T;, ¢t + A))

Ti€™h
{settingt, = ¢t andt, =t + A into Lemma 3

> maX(O,A— Z (ui'A—i‘Z'ei'(l_Ui)))

Ti;€Th

{by (1)}
> max (O,A (1 = Usum(h)) — 2~ Z e; - (1— uz)>

T;€Th
{by the definition ofi;, andoy, in the statement of the lemrha
= max(0,up, - (A — o). O

Definition 7. Let M (H) be the total number of processors that provide supplfftoLet Y =
M(H) = > ¢ csucerr) ™(C5) — m(Chre) be the number of processors that are not reserved for
HRT tasks and child containers &f.

The following theorem summarizes the analysis discussetthénprevious sections. In the
statement of the theorend;, K(H), and7, are as defined earlier in Definitions 1 and 2, and
Ms=Y + K(H).

Theorem 3. If the host containet’s supply is in MP form, then hard real-time schedulability
for HRT tasks and bounded deadline tardiness for SRT anctisémgks encapsulated iH are
guaranteed if (6) holds (witl/ is replaced withM, and 7 is replaced withr,) and (14) holds. If
deadline tardiness is bounded for a server task, then thplgtip the corresponding child container
is in MP form and the supplied bandwidth matches that spédifiethe child container.

Proof. We illustrate the proof using Figure 8. In this figure, the@y@vailable toH is represented
asM (H) bins for which the height of the bin represents the availalileation on the respective
processor. We first dedicate an integral number of procedsosupply the integral part of the
child containers’ bandwidths (these processors are shialde#). We then partition the tasks in
HRT(H) amongm(Cp,+) processors and find the numidéras defined in Definition 7. For each
processoh such that € [Y +1,Y +m(Ch+)], we find the unused bandwidty = 1 — Usym (7h)
using Lemma 4, as shown in Figure 8. After determiniigH ), we find M, = Y + K(H) and
the bandwidth available to SRT and server tasks (this badttivis shaded light gray in Figure 8).
In order to apply Corollary 1, we need to re-number the premeswith indicesl to M, so that
partially available processors are listed first. Finallg apply Corollary 1 to calculate tardiness
bounds for the tasks in, and use Corollary 3 to find the supply functions for child eomérs. Each
child containetC; € succ(H) is thus guaranteed supply from an integral number of fulbilable
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Figure 8: lllustration of Theorem 3.

processors plus the time allocated on an additional procegisenever the respective server task
S; is scheduled. By Corollary 3, this allocation is proporabto S;’s utilization, which is the
fractional part ofC;’s bandwidth. Therefore, the supplied bandwidth to eacldauntainerC; is
proportional to its required bandwidth and is in MP form. O

Applying the above theorem recursively, we can analyze thpgrties of a container hierarchy.
Note that the tardiness of SRT tasks may be higher as comfmaastbrresponding non-hierarchical
approach, where all tasks are scheduled at the same lewamlsrethe degree of parallelism of the
available supply is lower under our approach. This is thegpfior having temporal isolation among
containers. In Section 7, we discuss in greater detail theitions under which temporal isolation
is guaranteed.

6 Tradeoffs for HRT Tasks

If there are no HRT tasks in the system, then no utilizati@s lig incurred. If the system has HRT
tasks, then tradeoffs between the schedulability andriasdi of SRT tasks and utilization loss are
possible, as illustrated by the example below.

Example 9. Consider a containdil encapsulating three HRT tasks, 7>, andT3 with utilization
0.51 and six SRT taskSRT(H) = {1y, ..., Ty} with utilization 0.5 as shown in Figure 9(a}{’s
bandwidth ofw(H) = 5.5 is supplied by a partially available procesgowith z; = 0.5 and five
fully available processors, as shown in Figure 9(b). In figisre, the processors are represented as
six bins. By (3), the HRT tasks require three dedicated m®mes since no two of these tasks can
be assigned to one processor without violating HRT cormggailhese tasks are therefore assigned
to processors 4-6. The bandwidth consumed by the HRT taskeded. After the HRT tasks are
allocated, the total bandwidth provided by processors ®#fich is 2.5, is insufficient to handle

all SRT tasks, whose total utilization i&;,,,,,(SRT(H)) = 3. We reclaim the unused bandwidth
on processors 4 and 5 by settififf H) = 2 (see Definition 1). The supply available to the SRT
tasks is now given by\/;, = 5 processors with utilization8; = 0.49, us = 0.49, uz = 0.5,

uz = 1.0, andus = 1.0, respectively. (Note that processors are ordered by istreatilizations.
The first two utilization values were obtained using Lemmja fihe total supplied bandwidth is

thus Y a", uy = 3.48, which exceeds the total utilization of the SRT tasks, amthe(6) holds.
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Figure 9: Bandwidth allocation and utilization loss in Exaen9.

Because the supply to the SRT tasks is not in MP form (i.e. entioan one processor is partially
available), by Corollary 1, we have to test whether (14) batdorder to check the schedulability of
Ty, ..., Ty. Setting the supply and task parameters into (14), we have

K(H)+G
M,—K(H)-G+ }; uy, — max(K(H) + G —1,0) lgnglgﬁs‘(uz) — UL
becauséd/, =5,G =1, K(H) = 2, max(ug) = 0.5,
andUp, = (Ms—1)-05=2

=5—2—1+(0.49 4 0.49 + 0.5) — max(3 — 1,0) - 0.5 — 2
=0.48
> 0.

Thus, bounded tardiness for the SRT tasks is guarante€dif) = 2. Also, the utilization loss,
which is the bandwidth that is unused by HRT tasks and thatasvailable to SRT tasks, 549 in
this case (this unused utilization is shaded black in Fi(pg). If we try to reduce the utilization

loss even further by settiny (H) to 3, then, even though the total utilization available to th& SR
tasks becomex 97, (14) no longer holds.

The example above shows that the co-scheduling of HRT andt&KE may be necessary in
order to accommodate a workload using the supplied bandwittbwever, SRT schedulability can
be compromised for larg& (H) due to (14). To find the maximurii (H) so that the tasks in,
remain schedulable, we can apply Theorem 3 for da¢H ) from m(C},,.+) to zero.

From (14) and (9), we conclude that (14) is more likely to hbI& (/) or max;<y<|-,|(u¢) IS
small. Therefore, reclaiming processor time can be sufiddgthe maximum per-task utilization
of SRT and server tasks is small.

23



Figure 10: Container isolation.

7 Misbehaving Tasks

We call a taskl; misbehavindf its worst-case execution time may excegd In this section, we
describe the impact of misbehaving tasks on a system andtstwo alleviate any adverse effects.
Consider the container configuration shown in Figure 10.hig figure, T} is a misbehaving task
and is denoted by a star-shaped outline. In the configuratiown in Figure 10, the processor
supplies ofC; and Cs depend solely on the supply & and the parameters of the server tasks
S1 and Ss, which cannot be misbehaving since a server task is not stdeavhen its budget is
depleted. By Corollary 3, the parametersSf and its deadline tardiness define the guaranteed
supply ofC3, and hence, the tardiness’Bf and7g. Thus, the misbehaving tagdk does not affect
the timeliness of tasks belonging €&. That is, the tasks in containél; aretemporally isolated
from the misbehaving task. More generally, any two téBkg succ(Cy) andT; € succ(C;) are
temporally isolated ifiC;, is not a member of the hierarchy rooted’atandC; is not a member of
the hierarchy rooted aty.

On the other hand, a misbehaving t&skcanaffect the timeliness of tasks encapsulated in that
part of container hierarchy that is rootedZats parent. In our example, due to the misbehaving
taskTy, taskTy’s tardiness may exceed its computed bound. As a consequbedardiness of the
server taskS, of containerC, may exceed its computed bound thereby invalidating the d®on
processor allocation for contain€k. This, in turn, may affect the timeliness of the encapsdlate
tasksTs andTy. To prevent such problems, any potentially misbehavingsasuld be isolated in a
container for which a budget can be enforced.

8 Experiments

We now present the results of experiments conducted to canqua container-aware scheduling
scheme with conventional scheduling techniques. In theseraments, performance was compared
using randomly-generated task sets, which have both HRIS&Tdtasks.

Task generation procedure. In order to gain intuition about the properties of a largetipubces-
sor platform running multiple isolated components, we eatdd a three-level container hierarchy
consisting of a root containgry, four second-level containers, and then the containeds task

shown in Figure 11. The-th second-level container is denotéé@S and its contained HRT and
SRT tasks as}[fit andr!? respectively. Randomly-generated tasks were added $e gets while

srt?
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Figure 11: Experimental setup.

U(T}[Lﬂt) is at mostUp,+ < 1 and U(Ts[ﬂt) < 3.5. Task utilizations were taken randomly from
[0,0.15) for HRT tasks and fronfus,n, umaz) for SRT tasks. We examined three HRT total utiliza-
tion capsUy.+ and four SRT utilization ranges, as described later. laeigsk periods were taken
randomly from[100, 1000] for HRT tasks and froniL0000, 50000] for SRT tasks. Integral execution
times were computed using periods and utilizations.

We compared our container-aware scheduling schebdg (vith PEDF and a hybridEDF-
based schemédS), both of which are oblivious to containers. TH& scheme, which is described
later in this section, is a naive combinatiorREDF andGEDF. PEDF was selected because it ex-
hibits good timeliness, andS was selected because it can satisfy the requirements of HRERT
tasks using relatively few processors. Howevs, andPEDF do not provide any isolation among
containers. In our experiments, we compared the testedrehbased othe required number of
processorgRNP) anddeadline tardiness boundB). We did not consider any system overheads or
other container hierarchies. Such things are very apicaand implementation-specific, respec-
tively, and our intent here is only to provide a basic send®oof our scheme compares to the other
implementation alternatives.

Defining RNP. UnderPEDF, RNP is defined as the minimum number of processors required to
partition all real-time tasks using the first-fit heuristinderPEDF, all tasks have zero tardiness.

UnderHS, HRT and SRT tasks run on disjoint processor sets, with all kigks scheduled
together using’EDF with the first-fit heuristic, and all SRT tasks scheduled tbgeusingGEDF.
RNP for the SRT tasks is thus

4
Msoft= {Z USU«m(Ts[zr]t)“ .

i=1
Letting Mpgrg denote the HRRNP, overallRNP underHS is simply Mpa,q + Msoft

UnderCA, we set containe@@s’s bandwidth tOw(ng]s) = Wr + Wy whereWr; is the num-
ber of required fully available processors, at is the minimum utilization due to (at most one)
partially available processor. As explained néxt; andW; were determined based upon whether
it is possible to reclaim bandwidth not used by HRT tasks (lustrate this explanation with an
example below). Becaus[é(q[fit) < Up+ < 1, the HRT tasks of each second-level container
require at most one processor. We checked whether any bdthden this processor can be re-

claimed for SRT tasks as follows. We s&t.(H) = 1 (reclaiming is possible) ifrfr]t is schedu-

lable on [Us“,m(r}[f] UTii]t)-‘ processors such that one processor has an available tiditizaf

rt
1-— Usum(T}[:j,t) and one processor has an available utiIizatio:fraIE(Usum(n[flt U Ts[ﬂt)), where

frac(x) is the fractional part of. Otherwise, we sek,.(H) = 0 (i.e., reclaiming is not possible).
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Figure 12: Determining the required container bandwidtBxample 10.

After the degree of reclamation was determined, we set

Wi = [Usum (Ts[i]t U T}[Li'r]‘t)J if K (H) =1
U (710)] + 1 otherwise.

The fractional part of the bandwidifi; was set to

= 7T]t U 7—}[177]1‘)) it K,(H) =1
frac(Uyum (717,)) otherwise.

Example 10. Consider containe@ﬁ,]S with HRT taskT? (200, 300) and SRT task$5(100, 400), . . .,
T,(100, 400), andT5(500, 800) as shown in Figure 12(a). (Note that these task parametersoar
allowed by out task generation method; however, allowirggrttsimplifies the example.) For this

task Setlum (7}1) = 2/3, Usum (712)) = 11/8, and Uy (712} U 7Y ) = 49/24. We first check

srt hrt
the schedulability of’;, ..., 75 on {Usum(rs[i]t U r,[fr}tﬂ = 3 processors such that one processor is

fully available and two processors have available utileg of1/24 and1/3 (see processors 1 and
3 in Figure 12(b)). It can be shown that (14) does does not toolthis task system, and hence, we
have to sef{ (H) = 0. With this setting ofK (H), we cannot co-schedule the HRT and the SRT

tasks on processor 3. It can be verified that the SRT taskschesislable or[Usq,,m(rm )] =2

srt

processors such that one processor is fully available aagmtessor has an available utilization of
frac(Usum (7'[1] )) = 3/8 (see processors 1 and 2 in Figure 12(b)). Therefore, wl/set 2, since

srt

the HRT and the SRT tasks together require two fully avadlginbcessors, arid’; = 3/8, because
the SRT tasks additionally need a bandwidtrﬁrat(Usum(Tm )) =3/8.

sTt

The execution time; and the periog; of the server taslsgr]t should be set such that/p; =
W;. OnceW; has been determined and a value épiis selectedp; is implicitly determined.
However, a tradeoff exists in selectiag On one hand, a smaller value gf effectively reduces

the server task’s maximum tardiness, and corresponditigdysupply blackout time, as (13) and
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Theorem 2 suggest. On the other hand, small server task texe¢imes could lead to frequent
context switches in a real implementation. As a compromiseset the execution time of each
server task to b&00, which is close to the average execution time of SRT task$.ilserver tasks’

periods were set t%%‘” if Wy # 0, so that the utilization of the server task is slightly higtian

the fractional part of the required container bandwidthe Téquired container bandwidﬂ‘éﬂs was
then inflated accordingly by

(0 if Wy=0
us = Wogw — W; otherwise,

whereug is the utilization loss associated with the choice of setagk parameters.

As an example consider contair@ﬁ}s from Example 10. Becaus&; = 3/8, we setug =

100
oo/ 7] — o/8 = 0.001.

Overall,RNP for CA is simply the bandwidth of the root contain@y, w(Cy) = (Zle w(Cﬁﬂs)].

RNP results. Insets (a), (c), (e), and (g) of Figure 13 shBIMP results forPEDF, HS, andCA,

for the SRT utilization range).01,0.1) (light), [0.1,0.5) (medium), and0.5, 1) (heavy), respec-
tively. We also examined the SRT utilization rarge5, 0.7) (extreme) as well, as it is an extreme
case wher@EDF shows poor performance. Theaxis in each inset corresponds to the HRT uti-
lization capUp,¢.

For each utilization range, 100 task sets were generatethaimRNP averaged. The figure also
shows the average total system utilization, so that we dim&te the utilization loss associated with
each scheme.

For the light and medium SRT per-task utilization rangesdia (a) and (c)), all three schemes
show similar performance. This is becau3A is able to minimize the bandwidth of individual
second-level containers by co-scheduling HRT and SRT tagjether. As SRT per-task utilization
increasesRNP for PEDF also increases because more processors are needed tchimgSRT
tasks. The extreme case (inset (g)) is the utilization rdnge0.7), where each SRT task requires a
separate processor.

When SRT per-task utilizations are large (inset (e)), tfiledince betweeRS andCA is max-
imal, due to the utilization loss associated with HRT task¢hie containers. UndeZA, the four
HRT task sets require four processors, while urtdi®r all HRT tasks may be packed onto a smaller
number of processors.

Tardiness. Insets (b), (d), (f), and (h) of Figure 13 show the averagéefgder-task-set tardiness
bounds undeHS and CA for the task set categories discussed above (UREE®F, tardiness is
zero). For these two schemes, these tardiness bounds apau@bite in most cases, with the tar-
diness undefA being slightly higher due to uneven supply by the serverdasknderCA, the
maximum tardiness bound is significantly higher when theimarn total utilization of HRT tasks
is high (see the HRT utilization cap 619 in insets (b) and (d) of Figure 13). This is becaG#eat-
tempts to reclaim scarce processor supply available aftexduling HRT tasks within the container
and use that supply to schedule SRT tasks. However, eveghihtbe maximum task tardiness in
these cases is higher, the number of processors requir€dhhkyg lower (see insets (a) and (c) of
Figure 13).

Overall, these experiments show that in some cases thergriceato be paid for temporal
isolation among containers, in the form of more requireccpssors (if HRT tasks are present) or
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higher tardiness. However, in our proposed scheme, thig gireasonable, when considering the
performance of schemes that ensure no isolation.

As a final comment, we remind the reader that if no HRT taskgeseent, then our scheme
incursno utilization loss.

9 Conclusion

We have presented a multiprocessor bandwidth-resenatf@me for hierarchically organized real-
time containers. Under this scheme each real-time contaarereserve any fraction of processor
time (even the capacity of several processors) to schettubhildren. The presented scheme pro-
vides temporal isolation among containers so that eaclagwrtcan be analyzed separately.

Our scheme is novel in that soft real-time components inountilization loss. This stands in
sharp contrast to hierarchical schemes for hard (onlyjtieed systems, where the loss per level can
be so significant, arbitrarily deep hierarchies simply lmeaintenable.

Several interesting avenues for further work exist. Thetrimygortant open problem is to enable
dynamic container creation and the joining/leaving of $askiso of importance is the inclusion of
support for synchronization. It would also be interestingnvestigate other global scheduling
algorithms such as Pfair algorithms to see whether a moreraiec analysis can be established
for them. Finally, the new scheduling policy needs to be ampnted on a real multiprocessor
platform so that overheads associated with the hieraramédare of the system could be determined.
Given that work on Linux containers partially motivated oesearch, a Linux-based system such as
LITMUSET (LITMUSRT homepage, 2008), whe@EDF is implemented along with other global
scheduling algorithms, would be desirable to use in suchfarte
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Figure 13: (a,c,e,g)Required number of processors aftgd,f,h) maximum tardiness bounds for
randomly generated task sets (with 95% confidence intgri@lga)—(b) light, (c)~(d) medium,
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