
A Hierarchical Multiprocessor Bandwidth Reservation
Scheme with Timing Guarantees∗

Hennadiy Leontyev
James H. Anderson

Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract

A multiprocessor scheduling scheme is presented for supporting hierarchical containers that
encapsulate sporadic soft and hard real-time tasks. In thisscheme, each container is allocated a
specified bandwidth, which it uses to schedule its children (some of which may also be contain-
ers). This scheme is novel in that, with only soft real-time tasks, no utilization loss is incurred
when provisioning containers, even in arbitrarily deep hierarchies. Presented experiments show
that the proposed scheme performs well compared to conventional real-time scheduling tech-
niques that do not provide container isolation.

1 Introduction

In the Linux community, two recent developments have occurred that are of relevance to real-
time software design processes. The first is the introduction of “real-time” features such as high-
resolution timers, priority inheritance, and shortened non-preemptable sections in mainline Linux
(in versions 2.6.16 to 2.6.22). The second is the introduction (in version 2.6.24) of mechanisms for
supportingcontainer hierarchies(LVS, 2007; Eriksson and Palmroos, 2007; Lessard, 2003). Con-
tainers are an abstraction that allows different task groups to be isolated from one another (mainly, by
providing different name spaces to different task groups for referring to tasks, files,etc.). Containers
are seen as a lightweight way to achieve many of the benefits provided by virtualization, without the
expense of hosting multiple operating systems. From the standpoint of scheduling, containers are
similar to various “server” abstractions considered in thereal-time-systems literature.

These Linux-related developments are happening at a time when multiprocessor platforms are
becoming increasingly common. This is partly due to the advent of multicore technologies as an
alternative to single-core chip designs. Additionally, reasonably-priced “server class” multiproces-
sors have been available for some time now. These hardware-related developments are profound,
because they mean that multiprocessors are now a “common-case” platform that software designers
must deal with.

Motivated by these trends, we consider in this paper the problem of efficiently scheduling arbi-
trary real-time container hierarchies on a multiprocessorplatform. Unlike most prior related efforts
(see below), we are mainly interested in supportingsoft timing constraints. This is partly due to our

∗This is an extended version of the ECRTS paper (Leontyev and Anderson, 2008b).

1

C1

w(C)=4/31

H w(H)=4

T (1,3)1 T (2,3)2

T (1,4)3 T (2,4)4

Figure 1: A host containerH that encapsulates another containerC1 and four real-time tasks
T1, . . . , T4. Some of the notation used in this figure is explained in latersections.

interest in Linux: while there is much interest in using Linux to support soft real-time workloads,
Linux is not a real-time operating system and thus cannot be used to support “true” hard timing
constraints. In addition, there is growing awareness in thereal-time-systems community that, in
many settings, soft constraints are far more common than hard constraints (Rajkumar, 2006). If hard
constraints do exist, then ensuring themefficientlyon most multiprocessor platforms is problematic
anyway, due to a lack of effective timing-analysis tools fordetermining task execution costs. (While
timing analysis is needed for soft real-time systems as well, less-accurate empirically-derived costs
often suffice in such systems.)

The problem. For our purposes, acontaineris a scheduling abstraction. Containers are organized
hierarchically in a tree. A container may have as children other containers or tasks, as seen in
the example in Figure 1. (In Linux, the container hierarchy may change dynamically; we defer
consideration of dynamic changes to future work.) Each real-time task is assumed to be sporadic
(see Section 2) and is either hard or soft: hard tasks cannot miss their deadlines, while soft tasks can.
However, misses in the latter case may be by bounded amounts only. Associated with each container
is a specifiedbandwidth, which denotes the fraction of the overall (multiprocessor) system’s capacity
to which it is entitled. When a container receives processortime, it allocates that time to one of its
children. Our goal is to devise a scheme for performing such allocations throughout the container
hierarchy. Although we do allow for the presence of hard real-time tasks, we implicitly assume
that they are few in number. That is, our main objective is to ensure that allocations are performed
efficiently when most (or all) tasks are soft.

Of course, one way to meet this objective is by simply viewingall timing constraints as hard.
However, in a container hierarchy, this will result in significant utilization loss. In particular, the
schedulability of the tasks within a container depends on the processing capacity allotted to that
container—thesupply—and the processing capacity required by the tasks within the container—
the demand. Very loosely speaking, verifying schedulability involves showing that demand (over
some time interval of interest) cannot exceed supply. When timing constraints are hard, supply and
demand are characterized using functions that cause supplyto be under-estimated and demand to
be over-estimated. The net effect is that, at each level of a container hierarchy, some non-negligible
amount of overall utilization is lost. The deeper the container hierarchy, the greater the loss. In fact,
the overall loss can be so great, unrestricted hierarchicalcontainment simply becomes untenable.

Prior work. As noted earlier, the notion of a “container” as considered in this paper is more
commonly called a “server” in the real-time-systems literature. Server-based abstractions were first
considered in the context of uniprocessor systems, and a number of schemes intended for such
systems have been proposed (many of them can be found in (Liu,2000)). Several multiprocessor
schemes that are extensions of prior uniprocessor schemes have also been proposed (Baruah et al,

2

2002; Baruah and Lipari, 2004; Pellizzoni and Caccamo, 2008). However, in all of these schemes,
it is assumed that all task deadlines are hard. Systems that may also have tasks with soft dead-
lines have been considered very recently (Brandenburg and Anderson, 2007). In addition, several
Pfair-based multiprocessor server schemes have been proposed, again, mostly for systems with only
hard deadlines (Anderson et al, 2006; Holman and Anderson, 2006; Moir and Ramamurthy, 1999;
Srinivasan et al, 2002). In all of the work cited so far, only two-level container hierarchies are
considered. Moreover, the Pfair-based schemes just cited are subject to higher runtime overheads
than other schemes, due to the fact that Pfair scheduling algorithms may preempt and migrate tasks
often. The only prior work of which we are aware in which multi-level container hierarchies are
considered on multiprocessor platforms is a recent paper byShin et al. (Shin et al, 2008). However,
as with most other prior work, only hard deadlines are considered in their paper. To the best of
our knowledge, soft deadlines have not been considered before in scheduling-related research on
supporting multi-level container hierarchies on multiprocessors.

In the approach of Shin et al. (Shin et al, 2008), the global earliest-deadline-first algorithm
(GEDF) is used as the per-container scheduler. UnderGEDF, tasks are scheduled from a single
run queue and their jobs are prioritized on an earliest-deadline-first (EDF) basis. One interesting
property ofGEDF is that, under it, bounded deadline tardiness can be ensuredfor sporadic tasks
without severely constraining overall utilization (Devi and Anderson, 2008). In recent work, it has
been shown that the same is true for a wider class of global scheduling algorithms (Leontyev and
Anderson, 2008a). In this paper, we exploit these results toobtain a hierarchical scheme in which
deadline tardiness is bounded for soft real-time tasks.

Contributions. Our main contribution is a new multiprocessor scheduling approach for multi-
level container hierarchies in which both hard and soft sporadic real-time tasks can be supported.
With hard real-time tasks, some utilization loss is incurred (which seems inevitable). However, in a
system with only soft real-time tasks, no utilization loss is incurred (assuming that system overheads
are negligible—such overheads will cause some loss in any scheme in practice). This statement is
true, provided the goal is to schedule soft real-time tasks so that their tardiness is bounded, no
matter how great the bound may be. In addition to presenting our overall scheme, we also present
the results of experiments conducted to assess its usefulness. In these experiments, our scheme
exhibited performance—in terms of both necessary processing capacity and tardiness—comparable
to that of schemes that exhibit good performance but are oblivious to containers (and hence, do not
provide any container isolation).

The rest of this paper is organized as follows. In Section 2, we present our system model. In
Section 3, we formally characterize the “supply” availableto a container and propose a container
scheduling scheme. In Sections 4 and 5, we present methods for checking the schedulability of
real-time tasks within a container and for computing the supply available to its child containers (if
any). In Section 6, we discuss tradeoffs pertaining to having hard real-time tasks in containers. In
Section 7, we examine the extent to which temporal isolationis ensured in container hierarchies
under our scheduling scheme. In Section 8, we present our experimental results. We conclude in
Section 9.

3

2 System Model

In order to support the scheduling of containers within an arbitrary hierarchy, it suffices to consider
the problem of scheduling a single containerH on a set ofM(H) unit-speed processors, where
some processors may not be available for execution during certain time intervals. The set of child
containers and real-time tasks encapsulated inH is referred to assucc(H). (Non-real-time tasks
could be contained as well, but we do not consider such tasks in this paper.) At any time, the
container may be scheduled on several available processors. When the container is scheduled, some
of its children are selected for execution using some internal scheduling policy.

2.1 Sporadic Task Model

The set of real-time tasks encapsulated in the containerH is denotedτ = {T1, . . . ,
Tn}. In this paper, we assume such tasks are sporadic. Each sporadic task is invoked orreleased
repeatedly, with each such invocation called ajob. Associated with each such taskTi are two
parameters,ei andpi: ei gives the maximumexecution timeof one job ofTi, while, pi, called the
periodof Ti, gives the minimum time between consecutive job releases ofTi. For brevity, we often
use the notationTi = (ei, pi) to specify task parameters. Theutilization of taskTi is defined as
ui=ei/pi, and theutilization of the task systemτ as

Usum(τ)=
∑

Ti∈τ

ui. (1)

Thejth job of taskTi, wherej ≥ 1, is denotedTi,j . A task’s first job may be released at any
time t ≥ 0. The release time of jobTi,j is denotedri,j and its (absolute) deadlinedi,j is defined as
ri,j + pi (implicit deadlines). IfTi,j completes at timet, then itstardinessis max(0, t − di,j). A
task’s tardiness is the maximum of the tardiness of any of itsjobs. When a job of a task misses its
deadline, the release time of the next job of that task is not altered. However, at most one job of a
task may execute at any time, even if deadlines are missed. Wecall an unfinished jobTi,j readyat
time t if t ≥ ri,j and the predecessor jobTi,j−1 (if any) has completed execution by timet. JobTi,j
cannot commence execution before it is ready.

Given these assumptions, if a task has bounded deadline tardiness, then its long-term allocation
is proportional to its utilization, as shown later. Forhard real-time (HRT) tasks, we require that
all deadlines are met, while forsoft real-time (SRT) tasks, we require that deadline tardiness be
bounded (regardless of how high the bound may be).

In that which follows, we find it convenient to view a real-time task as a specialized container
with no nested children that can be scheduled on at most one processor at any time and that has hard
or soft deadlines.

2.2 Container Bandwidth

Each containerH is characterized by itsbandwidthw(H) ≥ 0, which specifies the processing

capacity to which it is entitled. For a real-time taskTi, we definew(Ti)
∆
= ui. Since the containers in

succ(H) are scheduled when the parent container is scheduled, theirallocation time cannot exceed

4

that ofH . Therefore, we require

w(H) ≥
∑

Cj∈succ(H)

w(Cj). (2)

Example 1. In Figure 1, a host containerH with bandwidthw(H) = 4 encapsulates a child con-
tainerC1 with bandwidthw(C1) = 4/3, two HRT tasksT1(1, 3) andT2(2, 3), and two SRT tasks
T3(1, 4) andT4(2, 4).

Overview of our approach. In the following sections, we solve the problem described atthe be-
ginning of Section 2 via a decomposition into two subproblems, each of which can be solved by
applying previously-published results. First, we split the bandwidth of each container, parent and
child, into integral and fractional parts and argue that theintegral parts can easily be dealt with.
The fractional part of each child container is then handled by creating a special SRTserver task
with utilization equal to that fractional portion. This leads to our first subproblem, which is that of
scheduling within the parent container, using the “supply”available to it, all child HRT and SRT
tasks (where some of the SRT tasks may be server tasks). We then deal with any HRT tasks by
encapsulating them within a new child container that schedules these tasks on an integral number of
processors via a prior HRT scheduling scheme. This leaves uswith our second subproblem, which
is to schedule within the parent container a collection of SRT tasks. We solve this problem by ex-
ploiting prior results on using global scheduling algorithms to ensure bounded tardiness. So that
our overall scheme can be applied recursively in a containerhierarchy, we finish our analysis by
characterizing the supply available to each child container.

3 Container Scheduling

The host containerH receives processor time fromM(H) individual processors. We now further
constrain the manner in which any containerC receives processor time by assuming the following.

(P) At any time, a containerC can be scheduled onm(C)
∆
= bw(C)c or M(C)

∆
= dw(C)e

processors.

This restriction minimizes the execution parallelism available toC so that, for any interval of
length∆, C ’s allocation is within[bw(C)c∆, dw(C)e∆]. For real-time tasks, this restriction
holds implicitly, because a real-time taskTi is scheduled on at most one processor at any time
andw(Ti) = ui ≤ 1, sodw(Ti)e = 1 andbw(Ti)c = 0. We say that a processor isfully available
toC, if it is dedicated exclusively toC. Given Restriction (P), we can assume thatm(C) processors
are fully available toC.

As explained in detail later, there are two reasons for introducing Restriction (P). First, increas-
ing the amount of supply parallelism (the number of available processors) restricts the maximum
per-task utilization and the total system utilization if the long-term supply remains fixed. Second,
maximizing the number of processors fully available toC lessens deadline tardiness for any child
real-time task. Intuitively, this is because such tasks aresequentialand thus may leave processors
unused if parallelism is increased too much.

Example 2. Consider a containerH with bandwidthw(H) = 4/3 that encapsulates a taskT1(5, 6),
as shown in Figure 2(a). Suppose that processor time is supplied as shown in Figure 2(b) so that

5

H w(H)=4/3

T (2,3)1 T (2,3)2

T1,1 T1,1 T1,1 T1,2

0 1 2 3 4 5 6 7 8 9 t

T1,1
T1 T1,1

0 1 2 3 4 5 6 7 8 9 t

T1,2

job release job deadline H

T1 T1,1 T1,2

0 1 2 3 4 5 6 7 8 9 t

T1,3

T2 T2,1 T2,2 T2,3

T1 T1,1 T1,2

0 1 2 3 4 5 6 7 8 9 t

T1,3

T2 T2,1 T2,2 T2,3

H w(H)=4/3

T (5,6)1

(a) (b) (c)

(d) (e) (f)

Figure 2: Comparison of supply parallelism in Examples 2 and3.

H occupies two processors for two time units every three time units. The supply available toH
is approximately4·∆3 for any sufficiently long interval∆. However,H does not execute during
the interval[2, 3), so Restriction (P) is violated, becausebw(H)c = b4/3c = 1. TaskT1’s jobs
demand five execution units every six time units, but becausethey must execute sequentially, they
can execute for only four time units every six time units. Thus, taskT1’s tardiness can be unbounded.
In the schedule in Figure 2(c), containerH also receives four execution units every three time units,
but in contrast to Figure 2(b), Restriction (P) is satisfied.Because one processor is fully available to
H , taskT1 meets all of its deadlines.

As one may suspect, enforcing Restriction (P) may sometimeshave negative consequences. In-
deed, a task set with a large number of tasks may benefit from a larger number of available processors
if all deadlines have to be met.

Example 3. Consider the containerH from the previous example, except that it now encapsulates
two real-time tasksT1(2, 3) andT2(2, 3), as shown in Figure 2(d). In the schedule shown in Fig-
ure 2(e), which is equivalent from the container’s perspective to that in Figure 2(b), jobs ofT1 and
T2 meet their deadlines. However, in the schedule in Figure 2(f), where Restriction (P) is enforced
as in Figure 2(c), jobT2,1 misses its deadline at time3 because it cannot execute on two processors
simultaneously during the time interval[2, 3). Still, in this schedule,T2’s tardiness is only one time
unit.

The two examples above illustrate that, while minimizing supply parallelism may negatively im-
pact timeliness, it allows the widest range of loads to be scheduled with bounded deadline tardiness,
which is in accordance with our focus on SRT tasks. In (Shin etal, 2008), mentioned earlier, the
objective is instead to schedule HRT tasks. There, the alternative approach of maximizing supply
parallelism is used.

We now develop a scheduling policy that enforces Restriction (P) for child containers assuming
that it holds for the host containerH . Given the latter,H is supplied time fromM(H) processors,
wherem(H) processors are always available for schedulingsucc(H) and at most one processor is
partially available.

6

A child containerCi ∈ succ(H) must occupy at leastm(Ci) processors at any time. By (2),
w(H) ≥

∑
Ci∈succ(H) w(Ci), and hence,m(H) = bw(H)c ≥ b

∑
Ci∈succ(H) w(Ci)c ≥∑

Ci∈succ(H)bw(Ci)c =
∑

Ci∈succ(H)m(Ci). Therefore, we can makem(Ci) processors fully
available to each child containerCi ∈ succ(H) by using them(H) processors fully available toH .
Note that, for containers withw(Ci) < 1 (including real-time tasks),m(Ci) = bw(Ci)c = 0. In
any event, given this design decision, each child containerCi receives at leastm(Ci)∆ units of time
over an interval of length∆.

If a child containerCi is not a real-time task andm(Ci) < w(Ci), then it occasionally needs
supply from an additional processor. For this, we constructa SRT periodicserver taskSi(ei, pi),
whereui = ei/pi = w(Ci)−m(Ci) < 1. (The termperiodicmeans thatri,j = (j − 1) · pi holds
for eachj ≥ 1.)

We denote the set of server tasks asτS = {S1, . . . , Sn}. Jobs of these tasks are scheduled to-
gether with the jobs of encapsulated real-time tasks using the remainingm(H)−

∑
Cj∈succ(H)m(Cj)

fully available processors and at most one partially available processor. When taskSi’s jobs are
scheduled, an additional processor is available to container Ci. Because server taskSi is con-
structed only ifw(Ci) > m(Ci) = bw(Ci)c, we havedw(Ci)e = m(Ci) + 1 = M(Ci). Thus,
containerCi always occupiesm(Ci) processors, andM(Ci) processors are occupied when a job of
Si is scheduled. Thus, Restriction (P) is ensured for each child container.

Example 4. Consider containerH from Example 1. For containerC1, one processor is reserved
becausebw(C1)c = b4/3c = 1. For this container, we also construct a SRT server taskS1(1, 3), so
thatbw(C1)c+ e1/p1 = 1+1/3 = w(C1). When jobs ofS1 are scheduled, an additional processor
is available to containerC1, as shown in Figure 3(b).

Let HRT(H) (respectively,SRT(H)) be the set of HRT (respectively, SRT) tasks encapsulated
in H . The remaining problem at hand, referred to as Subproblem 1,is that of scheduling tasks from
the setsHRT(H), SRT(H), andτS on some number of fully available processors and at most one
partially available processor.

4 Subproblem 1

To schedule the tasks inHRT(H), we encapsulate them into a child containerChrt with integral
bandwidthw(Chrt) = m(Chrt) =M(Chrt). Applying Restriction (P) toChrt,m(Chrt) processors
must be reserved for this container. In this section, we consider two approaches for scheduling the
remaining tasks inSRT(H) andτS ; in the first approach, HRT and SRT tasks do not execute on the
same processors, and in the second approach, they may.

Basic approach. The tasks inHRT(H) can be scheduled withinChrt using a variety of ap-
proaches. Given our emphasis on SRT tasks, we simply use the partitionedEDF (PEDF) algorithm
for this purpose, deferring consideration of other approaches to future work. UnderPEDF, tasks
are statically assigned to processors and each processor schedules its assigned tasks independently
on anEDF basis. Assume that processorh is among them(Chrt) processors reserved for container
Chrt and letτh denote the set of sporadic HRT tasks assigned to that processor. All task deadlines
will be met on processorh if

Usum(τh) =
∑

Ti∈τh

ui ≤ 1, (3)

7

C1

w(C)=4/31

H w(H)=4

T (1,3)1 T (2,3)2

T (1,4)3 T (2,4)4

Chrt
w(C)=1hrt

(a)

job release job deadline C1

T1 T1,1

0 1 2 3 4 5 6 7 8 9 t

T1,2

T2 T2,1 T2,2

T1,3

T2,3

T3
T3,1 T3,2

T4,1 T4,2 T4,3
T4

S1

Chrt

S1,1 S1,2 S1,3

C1

(b)

Figure 3: Example 5.(a) Isolating HRT tasks.(b) A schedule with the two HRT tasks in a separate
container.

which is a well-known uniprocessorEDF schedulability test (Liu and Layland, 1973). This test,
when applied in a multiprocessor system, presumes a given assignment of tasks to processors. Such
an assignment (and correspondingly, the number of processors required forChrt) can be determined
using any of various bin-packing heuristics. Further results concerningPEDF schedulability tests
can be found in (Baruah and Fisher, 2005; Chakraborty and Thiele, 2005; Liu, 2000).

As mentioned earlier, HRT policies may introduce utilization loss. ForPEDF, there exist task
sets, for which the reserved processors could be underutilized. However, if HRT tasks are relatively
few in number, such loss will likely be small, compared to thetotal utilization of SRT tasks. Loss
is incurred when creatingChrt if its bandwidth (given by the number of processors requiredfor it)
exceeds the sum of the utilizations of the HRT tasks it contains. If this is the case, then (2) must be
validated with the tasks inHRT(H) replaced by the containerChrt.

Example 5. Consider again containerH from Example 1. In our approach, we encapsulate the two
HRT tasksT1(1, 3) andT2(2, 3) into a containerChrt, as shown in Figure 3(a). The total utilization
of these two tasks isUsum = u1 + u2 = 1/3 + 2/3 = 1. By (3), these two tasks will meet their
deadlines if scheduled using uniprocessorEDF. We setw(Chrt) = 1, so the containerChrt will
require one processor. The total bandwidth of containerH ’s children is

∑
Ci∈succ(H) w(Ci) =

w(C1) + w(Chrt) + w(T3) + w(T4) = 4/3 + 1 + 1/4 + 2/4 = 37/12 < 4 = w(H), so (2)
is satisfied. When scheduling the modified containerH on dw(H)e = 4 processors, as shown in
Figure 3(b), one processor is reserved for the HRT containerChrt and tasksT1 andT2 are scheduled
on that processor. Note that no utilization loss is incurredby HRT tasks. In Example 4, we reserved
one processor for containerC1 and constructed the server taskS1(1, 3). Jobs of this server task are
scheduled with the jobs of tasksT3 andT4 on the two remaining fully available processors.

Note that, if a system has a small number of processors, then it may not be possible to dedicate
an integral number of processors for a HRT container as described above. For example, if the
parent containerH has fractional bandwidth, then its encapsulated HRT tasks may be required to
execute on a partially available processor, which would require different analysis from that in this
paper. Given our focus on SRT tasks, such analysis is beyond the scope of this paper. However, if a
system is purely SRT, an arbitrarily deep hierarchy of SRT containers can be maintained even in the
uniprocessor case.

8

In the case when it is possible to reserve an integral number of processors for HRT tasks, it may
not be possible to accommodate SRT tasks using the remainingbandwidth as the following example
illustrates.

Example 6. Consider Figure 4(a), which depicts a containerH that is similar to that from Exam-
ple 1, except thatT2 has a smaller execution time and there are two additional SRTtasks,T5(1, 2)
andT6(1, 2). In our approach, we encapsulate the two HRT tasksT1(1, 3) andT2(1, 3) into a con-
tainerChrt, as shown in Figure 4(a). The total utilization of these two tasks isUsum = u1 + u2 =
1/3 + 1/3 = 2/3. By (3), these two tasks will meet their deadlines if scheduled using uniproces-
sor EDF. We setw(Chrt) = 1, so the containerChrt requires one processor. When scheduling
the modified containerH on dw(H)e = 4 processors, as shown in Figure 4(b), one processor is
reserved for the HRT containerChrt, and tasksT1 andT2 are scheduled on that processor (inset (c)
is considered later). As in Example 4, we reserve one processor for containerC1 and construct a
server taskS1(1, 3). Jobs of this server task are scheduled with the jobs of tasksT3, . . . , T6.

Under the basic approach, the processor time that remains after schedulingT1 andT2 is unused
(see intervals[2, 3) and[5, 6) within Chrt in Figure 4(b)). Thus, the bandwidth available to tasks
S1 andT3, . . . , T6 is w(H) −m(Chrt) −m(C1) = 4 − 1 − 1 = 2. However, the total bandwidth
required by tasksS1 andT3, . . . , T6 isw(S1) +w(T3) +w(T4) +w(T5) +w(T6) = 1/3 + 1/4 +
2/4 + 1/2 + 1/2 = 25/12 > 2, and hence, tasksS1 andT3, . . . , T6 will have unbounded deadline
tardiness. Note that, in the schedule in Figure 4(b), the ready job T6,2 is not scheduled during
the interval[2, 3) even though there is an available processor. Similarly, theready jobT4,2 is not
scheduled during the interval[5, 6).

Extended approach. In order to allocate the available bandwidth more efficiently, we can use
the time not allocated to HRT tasks on some of them(Chrt) processors reserved for such tasks to
schedule tasks inSRT(H)∪τS (in addition to the supplied time on other processors). We allow this
approach to be selectively applied by defining the parameterK(H) below.

Definition 1. LetK(H) ∈ [0,m(Chrt)] be the number of processors where tasks inHRT(H) and
SRT(H) ∪ τS are co-scheduled.

We assume that HRT tasks are statically prioritized over SRTand server tasks. Thus, HRT tasks
still execute as if an integral number of processors were dedicated to their exclusive use. After
assigning all HRT tasks to them(Chrt) processors reserved for them and then selectingK(H), the

utilization loss due to partitioning isUlost =
∑m(Chrt)

k=K(H)+1(1 − Usum(τk)) (we assume that HRT-
allocated processors are numbered in order of increasingUsum(τk)). Though engaging additional
processors for scheduling tasks inSRT(H) ∪ τS (i.e., increasingK(H)) reduces utilization loss
and sometimes is imperative in order to accommodate all SRT tasks, a large value forK(H) may
negatively impact SRT schedulability as discussed later inSection 5; tradeoffs involved in selecting
K(H) are discussed in Section 6. After weighing such tradeoffs and selecting a value forK(H),
(4) below must be validated to account for any lost bandwidth.

w(H) ≥
∑

Cj∈succ(H)

w(Cj) + Ulost (4)

Example 7. Consider containerH from Example 6. A schedule where HRT processor time is
reclaimed (i.e.,K(H) = 1) is shown in Figure 4(c). The bandwidth available to tasksS1 and

9

C1

w(C)=4/31

H w(H)=4

T (1,3)1 T (1,3)2

T (1,4)3 T (2,4)4

Chrt
w(C)=1hrt

T (1,2)5 T (1,2)6

(a)

job release job deadline C1

T1 T1,1

0 1 2 3 4 5 6 7 8 9 t

T1,2

T2 T2,1 T2,2

T1,3

T2,3

T3
T3,1 T3,2

T4,1 T4,2 T4,3
T4

S1

Chrt

S1,1 S1,2 S1,3

C1

T5,1 T5,2 T5,3
T5

T6,1 T6,2 T6,3
T6

T5,4

T6,4

(b)

job release job deadline C1

T1 T1,1

0 1 2 3 4 5 6 7 8 9 t

T1,2

T2 T2,1 T2,2

T1,3

T2,3

T3
T3,1 T3,2

T4,1 T4,2 T4,3
T4

S1

Chrt

S1,1 S1,2 S1,3

C1

T5,1 T5,2 T5,3
T5

T6,1 T6,2 T6,3
T6

T5,4

T6,4

(c)

Figure 4:(a) Container considered in Examples 6 and 7. A schedule(b) with and(c) without HRT
time reclamation.

T3, . . . , T6 isw(H)−w(T1)−w(T2)−m(C1) = 4− 1/3− 1/3− 1 = 7/3, which is greater than
the bandwidth required by these tasks. Note that, in this schedule, the processors supplied toH are
idle only if there are not enough ready tasks to occupy all of them.

Having dispensed with any HRT tasks, we can complete our solution to Subproblem 1 by devis-
ing a scheduling policy that ensures bounded tardiness for the remaining SRT tasks, some of which
may be server tasks.

Definition 2. (τs,Ms, and Subproblem 2)Let τs = SRT(H)∪τS . These tasks are to be scheduled
onMs processors, of whichm(H)−

∑
Cj∈succ(H)m(Cj)−m(Chrt) are fully available andK(H)+

G, whereG ≤ 1, are partially available. Note thatK(H) processors are partially available due to
HRT tasks internal toH and at most one additional processor is partially availablebecause the
supply provided byH ’s parent is subject to Restriction (P).

We refer to this last remaining subproblem as Subproblem 2.

5 Subproblem 2

In solving Subproblem 2, restrictions on supplied processor time are of relevance. Such restrictions
can be dealt with using per-processorsupply or availability functions(Chakraborty and Thiele,
2005).

10

Definition 3. (supply functions)The supply (or availability) functionβl
k(∆) : R → R, provides a

lower bound on the amount of processor time processork can guarantee during any time interval of
length∆. This function is defined as

βl
k(∆) = max(0, ûk · (∆− σk)), (5)

whereûk ∈ (0, 1] andσk ≥ 0. ûk is called theprocessor bandwidthandσk themaximum blackout
time, becauseσk is the maximum interval when processork may not provide any supply (Easwaran
et al, 2007).

The following property is a straightforward application ofthe above definition.

(FA) If processork is fully available, thenβl
k(∆) = ∆, ûk = 1, andσk = 0.

From the earlier statement of Subproblem 2 in Definition 2, oftheMs processors under consid-
eration,K(H) +G are partially available. We assume that theseMs processors are indexed so that
the supply from them can be described usingMs supply functions:βl

k(∆) = max(0, ûk(∆− σk)),
where0 < ûk ≤ 1 andσk ≥ 0, for 1 ≤ k ≤ K(H) +G; andβl

k(∆) = ∆, forK(H) +G + 1 ≤
k ≤ Ms. If K(H) +G ≤ 1, i.e., at most one processor is partially available, then wesay that such
a collection of functions is inMinimum Parallelism(MP) form. As explained later, ensuring that
supply is in MP form allows the widest range of SRT workloads to be supported without incurring
utilization loss.

Before continuing, note that ifMs = 1, i.e., all remaining SRT tasks are to be scheduled on
one processor, thenEDF can be used on that processor. If this processor is fully available, then
tardiness will be zero for these tasks (due to the optimalityof EDF), and if it is partially available,
then it can be easily shown to be bounded, using real-time calculus (Chakraborty and Thiele, 2005),
providedUsum(SRT(H) ∪ τS) ≤ û1. In the remainder of this section, we concentrate on the more
interesting case,Ms ≥ 2. In this case, our approach leverages some recent theoretical results, which
we describe next.

5.1 Window-Constrained Scheduling

The problem of scheduling a set of sporadic SRT tasks on multiple processors with restricted supply
was considered in (Leontyev and Anderson, 2008a). In this work, a class of global scheduling
policies that ensure bounded deadline tardiness was considered. This class of algorithms is described
next.

Let τ be a set of sporadic SRT tasks scheduled onM ≥ 2 processors, with supply functions
βl
k(∆) = max(0, ûk(∆− σk)), where1 ≤ k ≤M . (Note thatτ was defined earlier in Section 2.1.

Here, we meanτ to denote any sporadic SRT task set. The distinction should be clear from the
context.) Assume

Usum(τ) ≤
M∑

k=1

ûk, (6)

i.e., the total system utilization is at most the total supplied bandwidth. Released jobs are placed
into a single global ready queue. When choosing a new job to schedule, the scheduler selects (and
dequeues) the ready job of highest priority. Priorities aredetermined as follows assuming that any
ties are broken arbitrarily but consistently.

11

Definition 4. (prioritization functions) Associated with each released jobTi,j is a function of time
χ(Ti,j , t), called itsprioritization function. If χ(Ti,j , t) < χ(Tk,h, t), then the priority ofTi,j is
higher than the priority ofTk,h at timet.

Definition 5. (window-constrained priorities) A scheduling algorithm’s prioritization functions
arewindow-constrainediff, for each taskTi, there exist constantsφi andψi such that, for each job
Ti,j of Ti and timet,

ri,j − φi ≤ χ(Ti,j , t) ≤ di,j + ψi. (7)

Note that (7) requires a job’sχ-values to lie within a window[ri,j −φi, di,j +ψi] that is defined
with respect to its release time and deadline. Note also thatthe constantsφi andψi may be positive
or negative; however, if negative, the interval[ri,j − φi, di,j + ψi] cannot be empty.

GEDF is an example of a global algorithm with window-constrainedpriorities. Under it,χ(Ti,j , t) =
di,j for each jobTi,j . In (Leontyev and Anderson, 2008a), a tardiness bound is established that ap-
plies to any window-constrained global scheduling algorithm. To state this bound, let

ρ = max

(
0,max

i6=a
(φi + ψa)

)
and µ = max

(
0,max

i6=a
(ψa + pa + φi)

)
. (8)

Further, letU(τ, y) be the set of at mostmin(|τ |, y) tasks fromτ of highest utilization, and let

UL =
∑

Ti∈U(τ,M−1)

ui. (9)

Similarly, letE(τ, y) be the set of at mostmin(|τ |, y) tasks fromτ of highest execution cost, and let

EL =
∑

Ti∈E(τ,M−1)

ei.

Finally, letF be the number of processors withβl
k(∆) 6= ∆, and letx = max(ρ, z), where

z =

EL + max
1≤`≤|τ |

(A(`))

M∑

k=1

ûk −max(F − 1, 0) · max
1≤`≤|τ |

(u`)− UL

, (10)

and

A(`) = e` ·

(
M∑

k=1

(1− ûk)− 1

)
+ 2

M∑

k=1

ûk · σk

+
∑

Ti∈τ\T`

(⌈
ρ+ µ

pi

⌉
+ 1

)
· ei +min(M − F,M − 1) · ρ.

(11)

Theorem 1. (Proved in (Leontyev and Anderson, 2008a))The tardiness of any taskTk ∈ τ
under a window-constrained scheduling algorithmA is at mostx+ ek, wherex is as defined above,
provided the denominator of (10) is positive.

12

5.2 Minimizing the Tardiness Bound

Given the theorem stated above, we now argue in favor of Restriction (P) and show how enforcing
this restriction affects the tardiness bound in Theorem 1. Consider the denominator of (10):

M∑

k=1

ûk −max(F − 1, 0) · max
1≤`≤|τ |

(u`)− UL. (12)

The requirement for (12) to be positive implicitly restricts the maximum per-task utilization ifF >
1, i.e., if two or more processors are partially available. Note also that the value ofx is minimized
if (12) is maximized. Suppose that the total supplied bandwidthW =

∑M
k=1 ûk is fixed. Then, (12)

will be maximized if eithermax(F − 1, 0) · max1≤`≤|τ |(u`) or UL or both are minimized. The
value ofUL depends exclusively on task utilizations and the total number of processorsM , as (9)
suggests. Therefore,UL will be minimized if the total number of processorsM is minimized. The
expressionmax(F − 1, 0) · max1≤`≤|τ |(u`) is minimized ifF ≤ 1, that is, at most one processor
is partially available. Thus, if the total processor bandwidthW is fixed, then (12) is maximized
by settingM = dW e and havingbW c processors fully available. The bandwidth of at most one
partially available processor (if any) iŝu1 =W − bW c.

The above discussion suggests that bounded tardiness amongSRT and server tasks can be
achieved for the widest range of task utilizations if the supply to SRT(H) ∪ τS is given in MP
form. This is the case if eitherK(H) = 0, (e.g., whenHRT(H) = ∅ or no spare HRT capacity
is reused) orG = 0 andK(H) ≤ 1 (i.e., when the bandwidth supplied toH is integral and HRT
capacity is reused on at most one processor). IfK(H) + G > 1, then bounded tardiness may be
guaranteed for certain SRT workloads. Various tradeoffs are possible with regard to the selection of
K(H). These tradeoffs are discussed in Section 6. After applyingTheorem 1 to Subproblem 2, we
have the following.

Corollary 1. Let τs, Ms, K(H), andG be as defined in Definition 2. The tardiness of any task
Tk ∈ τs under a window-constrained scheduling policy is at mostmax(z, ρ) + ek, where

z =

EL + max
1≤`≤|τs|

(A(`))

Ms −K(H)−G+

K(H)+G∑

h=1

ûh −max(K(H) +G− 1, 0) max
1≤`≤|τs|

(u`)− UL

, (13)

A(`) = e` ·

K(H)+G∑

k=1

(1 − ûk)− 1

+ 2 ·

K(H)+G∑

k=1

ûk · σk

+
∑

Tk∈τs\T`

(⌈
ρ+ µ

pk

⌉
+ 1

)
· ek +min(Ms −K(H)−G,Ms − 1) · ρ

provided (6) holds (withM replaced withMs andτ replaced withτs) and (14) below holds.

Ms −K(H)−G+

K(H)+G∑

h=1

ûh −max(K(H) +G− 1, 0) max
1≤`≤|τs|

(u`)− UL > 0 (14)

13

Proof. We prove the corollary using results from Section 5.1; henceforth, when such results are
applied, we assume thatM is replaced withMs andτ is replaced withτs. In the formulation of
Subproblem 2,K(H) +G supply functionsβl

1(∆) may differ from∆. Thus,F = K(H) +G. By
(FA),

(∀k : K(H) +G+ 1 ≤ k ≤Ms :: σk = 0 ∧ ûk = 1). (15)

Thus,

Ms∑

h=1

ûh =

K(H)+G∑

h=1

ûh +

Ms∑

h=K(H)+G+1

ûh =

K(H)+G∑

h=1

ûh + (Ms −K(H)−G), (16)

(
Ms∑

k=1

(1 − ûk)− 1

)
=

K(H)+G∑

k=1

(1− ûk)− 1

 , (17)

and

2 ·
Ms∑

k=1

ûk · σk = 2 ·

K(H)+G∑

k=1

ûk · σk. (18)

SettingF = K(H) + G and substituting (17) and (18) into (11), we getA(`) as defined in the
statement of the corollary. Finally, substituting (16) into (10), we getz as defined in the statement
of the corollary.

If GEDF is used for SRT tasks, then the tardiness bound in Corollary 1can be further tightened
by settingA(`) in (13) toe` ·(

∑K(H)+G
k=1 (1− ûk)−1)+2 ·

∑K(H)+G
k=1 ûk ·σk, as shown in (Leontyev

and Anderson, 2008a).
The following lemma shows that providing supply in MP form allows the widest range of SRT

workloads to be supported.

Lemma 1. If the supply to the tasks inτs is in MP form, then (14) always holds.

Proof. If the supply toτs is in MP form, thenK(H) +G ≤ 1. We thus have

Ms −K(H)−G+

K(H)+G∑

h=1

ûh =Ms − 1 + û1. (19)

SettingK(H) +G ≤ 1 and (19) into the LHS of (14) we have

Ms −K(H)−G+

K(H)+G∑

h=1

ûh −max(K(H) +G− 1, 0) max
1≤`≤|τs|

(u`)− UL

=Ms − 1 + û1 − UL. (20)

We now consider two cases depending on the number of tasks inτs.

Case 1:|τs| ≤Ms − 1. In this case, by (9),

14

UL =

|τs|∑

i=1

ui ≤Ms − 1 < Ms − 1 + û1,

where the latter inequality follows from Definition 3.

Case 2:|τs| > Ms − 1. In this case, by (9),

UL < Usum(τs)
{by (6)}
≤

Ms∑

h=1

ûh =Ms − 1 + û1,

where the latter equality follows from (15). The required result follows from (20) and the two
cases above.

Corollary 2. If at most one processor is partially available toτs, then Corollary 1 only requires
that (6) holds. That is, bounded tardiness can be ensured with no utilization loss.

Note that, if allMs ≥ 2 processors are fully available, then a HRTGEDF schedulability test
(e.g., (Baruah, 2007; Bertogna et al, 2009; Baruah and Baker, 2008)) can be applied toτ before
calculating tardiness bounds. If this test passes, then maximum tardiness is zero.

5.3 Computing Next-Level Supply

The remaining issue is to compute the supply of each child container in MP form, so that our analysis
can be applied recursively in a container hierarchy. Note that we can do this regardless of whether
the basic or extended approach described in Section 4 is used. Ensuring that child-container supplies
are in MP form ensures that Property (P) holds for such containers.

If a server taskSi(ei, pi) has bounded deadline tardiness, then the total guaranteed long-term
supply to containerCi will be proportional to the long-term supply ofm(Ci) fully available proces-
sors, which can be described by a set ofm(Ci) supply functions equal to∆, plus that of a partially
available processor with bandwidthui = ei/pi. We are left with characterizing the processor time
that is available toCi when the server taskSi is scheduled.

The supply guaranteed to the server taskSi will depend on its parameters,ei andpi, and its
tardiness. The latter depends on the scheduling algorithm used for SRT and server tasks, their
parameters, and (if extended approach is used) the amount ofsupply reclaimed on HRT-occupied
processors.

Definition 6. LetA(Ti, t1, t2,Q) be the allocation of taskTi during the interval[t1, t2) in the sched-
uleQ. LetA(Ti,j , t1, t2,Q) be the allocation of jobTi,j during the interval[t1, t2) in the schedule
Q.

Lemma 2. LetΘi be the maximum deadline tardiness of the server taskSi’s jobs inQ. Then, the
allocationA(Si, 0, t,Q) satisfies the following.

A(Si, 0, t,Q) ≤ ui · t+ ei(1− ui) (21)

A(Si, 0, t,Q) ≥ ui · t− ui ·Θi − ei(1− ui) (22)

15

Proof. We first prove (21). LetSi,k be the latest job ofSi in scheduleQ such thatri,k ≤ t. (Such a
job exists becauseSi is a periodic server task.) Then, by Definition 6, the allocation ofSi in [0, t) is

A(Si, 0, t,Q)

{becauseSi,k ’s successors do not execute beforet in any schedule}

≤ A(Si,k, 0, t,Q) +
∑

j<k

A(Si,j , 0, t,Q)

{because the worst-case execution time ofSi is ei}

≤ A(Si,k, 0, t,Q) +
∑

j<k

ei

{becauseSi,k is not scheduled beforeri,k}

≤ min(ei, t− ri,k) +
∑

j<k

ei. (23)

The latter expression is maximized if the number of jobs ofSi released beforeri,k is maximized,

as shown in Figure 5(a). Therefore, (23) is maximized ifk =
⌊

t
pi

⌋
+ 1 andri,k = (k − 1) · pi.

Setting these values into (23), we have

A(Si, 0, t,Q)

≤ min

(
ei, t−

⌊
t

pi

⌋
· pi

)
+ ei ·

⌊
t

pi

⌋

{setting t
pi

= q}

= min (ei, (q − bqc) · pi) + ei · bqc

= min (ei, (q − bqc) · pi) + ei · bqc+ e · q − e · q

= min (ei · (bqc − q + 1), (q − bqc) · (pi − ei)) + ei · q

{settingq − bqc = z}

= min (ei · (1− z), z · (pi − ei)) + ei · q{
themin(. . .) summand is maximized when its two
arguments are equal, which is the case whenz = ui

}

≤ min (ei · (1− ui), ui · (pi − ei)) + ei · q

{settingq = t
pi
}

= ui · t+ ei · (1− ui).

We now prove (22). LetSi,k be the earliest job ofSi such thatdi,k +Θi ≥ t. For this job, since
di,k = ri,k + pi, we haveri,k + pi +Θi ≥ t. Let

ri,k = t− pi −Θi + ε, (24)

whereε ≥ 0. By the selection ofSi,k, for any jobSi,j such thatj < k, we havedi,j + Θi < t.
By the statement of the lemma, each job ofSi completes withinΘi time units after its deadline.
Therefore, all jobsSi,j such thatj < k complete by timet, i.e.,

16

0 pi
t

pi pi ei

Si,2Si,1 Si,k

ri,k 0 ri,k
t

pi qi
ei

di,k

Si,kSi,k-1

2pi

job release job deadline

(b)(a)

Figure 5: Server task’s(a) maximum and(b) minimum allocation scenarios.

A(Si,j , 0, t,Q) = ei for eachj < k. (25)

The allocationA(Si,k, 0, t,Q) is minimized ifA(Si,k, t, di,k + Θi,Q) is maximized. The latter
is at mostmin(ei, di,k +Θi − t), as illustrated in Figure 5(b). Thus,

A(Si,k, 0, t,Q)

= ei − A(Si,k, t, di,k +Θi,Q)

≥ ei −min(ei, di,k +Θi − t)

= max(0, ei − (di,k +Θi − t))

= max(0, ei − (ri,k + pi +Θi − t))

{by (24)}

= max(0, ei − ε). (26)

SinceSi’s jobs are released periodically from time zero (since it isa server task), there areri,kpi

jobs released before jobSi,k. Thus,

A(Si, 0, t,Q)

= A(Si,k, 0, t,Q) +
∑

j<k

(A(Si,j , 0, t,Q))

{by (25)}

= A(Si,k, 0, t,Q) +
ri,k
pi

· ei

{by (26)}

≥ max(0, ei − ε) +
ri,k
pi

· ei

{by (24)}

= max(0, ei − ε) +
t− pi −Θi + ε

pi
· ei

= max(0, ei − ε) + ui · t− ui ·Θi − ei + ε · ui

= max(ui · ε− ei, ε · (ui − 1)) + ui · t− ui ·Θi

17

0 2 4 6 8 10
0

1

2

3

4

t

A(S ,0,t,Q)1

G(t)=t/3 2/3+

Figure 6: Server task allocationA(S1, 0, t,Q) in Example 8 and its linear upper boundG(t).

{
themax(. . .) summand is minimized if its two
arguments are equal, which is the case whenε = ei

}

≥ max(ui · ei − ei, ei · (ui − 1)) + ui · t− ui ·Θi

= ui · t− ui ·Θi − ei · (1 − ui).

Example 8. Consider the scheduleQ shown in Figure 3(b). In this schedule, jobs of the server task
S1(1, 3) execute in the intervals[0, 1), [3, 4), and[6, 7). By time 1,S1 has received one allocation
unit, by time 4, its allocation is two units, and so on. The allocationA(S1, 0, t,Q) is shown in

Figure 6 as a function oft. The figure also shows the upper bound (21), which isG(t)
∆
= ui · t +

ei(1 − ui) = 1/3 · t+ 1(1− 1/3) = 1/3 · t+ 2/3. It is easy to see thatA(S1, 0, t,Q) ≤ G(t).

We now can find guarantees on the supplied processor time for server tasks for an arbitrary time
interval.

Theorem 2. Suppose that the scheduling algorithm used by the containerH ensures a deadline
tardiness bound ofΘi for the server taskSi(ei, pi). ThenSi is guaranteed at leastγli(∆) =
max(0, ui ·∆− 2ei(1− ui)− ui ·Θi) time units during an interval of length∆.

Proof. Our goal is to bound the allocation ofSi during an interval[t1, t2) by a function of the length
of the interval∆ = t2 − t1.

A(Si, t1, t2,Q)

= A(Si, 0, t2,Q)− A(Si, 0, t1,Q)

{by (21) and (22)}

≥ ui · t2 − ui ·Θi − ei(1−ui)− (ui · t1+ei(1−ui))

= ui · (t2 − t1)− 2ei(1− ui)− ui ·Θi

= ui ·∆− 2ei(1− ui)− ui ·Θi.

A(Si, t1, t2,Q) cannot be less than zero, thusA(Si, t1, t2,Q) ≥ max(0, ui ·∆ −2ei(1− ui)− ui ·
Θi).

Corollary 3. The supply to containerCi, as defined above, is described byM(Ci) = dw(Ci)e
availability functions in MP form, wherem(Ci) = bw(Ci)c supply functions satisfyβl

j(∆) = ∆

and at most one supply function satisfiesβl
1(∆) = γli(∆) as given by Theorem 2. The total supplied

bandwidth forCi isw(Ci).

18

5.4 Computing Available Supply on HRT-Occupied Processors

In the previous section, we computed the supply available toa child container provided the tardiness
bounds of tasks inτs are known. In order to calculate these tardiness bounds using Corollary 1, we
need to determine the supply available toτs onK(H) processors where HRT and SRT tasks are
co-scheduled (if HRT capacity is reclaimed) in addition to the supply provided by the parent ofH .

We first compute an upper bound on the allocation of an HRT taskover the time interval[t, t+∆).

Lemma 3. If jobs of Ti finish by their deadlines in the scheduleQ, thenA(Ti, t, t + ∆,Q) ≤
ui ·∆+ 2 · ei · (1− ui), for anyt and∆ ≥ 0.

Proof. LetTi,k be job ofTi with smallest indexk that executes within[t1, t2). If no such job exists,
thenTi’s allocation within[t, t+∆) is zero and the required result holds trivially. Letfi,k beTi,k ’s
completion time. The allocation ofTi,k is thus

A(Ti,k, t, t+∆,Q) ≤ min(ei,∆, ε), (27)

whereε = fi,k − t, as illustrated in Figure 7. We consider two cases based uponthe relationship
betweenε and∆.

Case 1:ε > ∆. In this case,Ti,k commences execution at or beforet+∆ and finishes aftert+∆.
By the selection ofk, Ti,k is the only job ofTi that executes within[t, t + ∆). Therefore,Ti’s
allocation in this interval cannot be greater thanmin(ei,∆). By (27) and the condition of Case 1,
we have

A(Ti,k, t, t+∆,Q)

≤ min(ei,∆)

= ui ·min(ei,∆) + (1− ui) ·min(ei,∆)

≤ ui ·∆+ (1− ui) · ei

≤ ui ·∆+ 2 · (1− ui) · ei.

Case 2:ε ≤ ∆. Because, by the condition of the lemma,Ti,k finishes by its deadline,fi,k ≤ di,k =
ri,k + pk ≤ ri,k+1. The allocation ofTi,k ’s successor jobs in the interval[t, t+∆) is maximized if
all of these jobs are released as soon as possible afterfi,k, as shown in Figure 7. Therefore,

∑

j>k

A(Ti,j , t, t+∆,Q)

≤ max

(
0,

⌊
t+∆− fi,k

pi

⌋
· ei +min(ei, (t+∆− fi,k)mod pi)

)

{settingfi,k − t = ε}

= max

(
0,

⌊
∆− ε

pi

⌋
· ei +min(ei, (∆− ε)mod pi)

)
. (28)

19

t

e pi ei

Ti,k+1Ti,k Ti,k+x

job release job deadline

fi,k t+Dri,k+1

Figure 7: Maximum allocation scenario for a hard real-time taskTi.

By Definition 6 and the selection ofk,

A(Ti, t, t+∆,Q)

= A(Ti,k, t, t+∆,Q) +
∑

j>k

A(Ti,j , t, t+∆,Q)

{by (27) and (28)}

≤ min(ei,∆, ε) + max

(
0,

⌊
∆− ε

pi

⌋
· ei +min(ei, (∆− ε)mod pi)

)

{by the condition of Case 2}

= min(ei, ε) +

⌊
∆− ε

pi

⌋
· ei +min(ei, (∆− ε)mod pi)

{
setting

∆− ε

pi
= q

}

= min(ei, ε) + bqc · ei +min(ei, q · pi − bqc · pi)

= min(ei, ε) + q · ei − q · ei + bqc · ei +min(ei, q · pi − bqc · pi)

= min(ei, ε) + q · ei +min(ei · (bqc − q + 1), (q − bqc) · (pi − ei))

{settingq − bqc = z}

= min(ei, ε) + q · ei +min(ei · (1− z), z · (pi − ei)){
min(ei · (1 − z), z · (pi − ei)) is maximized if both its
arguments are equal, which is the case whenz = ui

}

≤ min(ei, ε) + q · ei +min(ei · (1− ui), ui · (pi − ei)){
settingq =

∆− ε

pi

}

= min(ei, ε) +
∆− ε

pi
· ei + ei · (1− ui)

= min(ei, ε) + (∆− ε) · ui + ei · (1− ui)

{maximized ifε = ei}

≤ ei + (∆− ei) · ui + ei · (1− ui)

= ui ·∆+ 2 · ei · (1 − ui).

20

Lemma 4. Let τh be the set of HRT tasks assigned to a fully available processor h such that
Usum(τh) < 1. For any time interval of length∆, at leastβl

h(∆) = max(0, ûh · (∆ − σh))

time units are available, wherêuh = 1− Usum(τh) andσh =
2
∑

Ti∈τh
ei·(1−ui)

1−Usum(τh)
.

Proof. Consider an interval[t, t+∆). By Definition 6, the time available after schedulingτh within
this interval is

max

(
0,∆−

∑

Ti∈τh

A(Ti, t, t+∆)

)

{settingt1 = t andt2 = t+∆ into Lemma 3}

≥ max

(
0,∆−

∑

Ti∈τh

(ui ·∆+ 2 · ei · (1− ui))

)

{by (1)}

≥ max

(
0,∆ · (1− Usum(τh))− 2 ·

∑

Ti∈τh

ei · (1− ui)

)

{by the definition of̂uh andσh in the statement of the lemma}

= max(0, ûh · (∆− σh)).

Definition 7. Let M(H) be the total number of processors that provide supply toH . Let Y =
M(H) −

∑
Cj∈succ(H)m(Cj) − m(Chrt) be the number of processors that are not reserved for

HRT tasks and child containers ofH .

The following theorem summarizes the analysis discussed inthe previous sections. In the
statement of the theorem,G, K(H), and τs are as defined earlier in Definitions 1 and 2, and
Ms = Y +K(H).

Theorem 3. If the host containerH ’s supply is in MP form, then hard real-time schedulability
for HRT tasks and bounded deadline tardiness for SRT and server tasks encapsulated inH are
guaranteed if (6) holds (withM is replaced withMs andτ is replaced withτs) and (14) holds. If
deadline tardiness is bounded for a server task, then the supply to the corresponding child container
is in MP form and the supplied bandwidth matches that specified for the child container.

Proof. We illustrate the proof using Figure 8. In this figure, the supply available toH is represented
asM(H) bins for which the height of the bin represents the availableutilization on the respective
processor. We first dedicate an integral number of processors to supply the integral part of the
child containers’ bandwidths (these processors are shadedblack). We then partition the tasks in
HRT(H) amongm(Chrt) processors and find the numberY as defined in Definition 7. For each
processorh such thath ∈ [Y +1, Y +m(Chrt)], we find the unused bandwidtĥuh = 1−Usum(τh)
using Lemma 4, as shown in Figure 8. After determiningK(H), we findMs = Y + K(H) and
the bandwidth available to SRT and server tasks (this bandwidth is shaded light gray in Figure 8).
In order to apply Corollary 1, we need to re-number the processors with indices1 to Ms so that
partially available processors are listed first. Finally, we apply Corollary 1 to calculate tardiness
bounds for the tasks inτs and use Corollary 3 to find the supply functions for child containers. Each
child containerCj ∈ succ(H) is thus guaranteed supply from an integral number of fully available

21

1 2 3 Y M(H) Processor

0.0

0.5

1.0
bandwidth availale to SRT tasks

integral bandwidth allocated
to child containers

bandwidth allocated to HRT tasks

K(H)

m(C)hrt

Ms

Figure 8: Illustration of Theorem 3.

processors plus the time allocated on an additional processor whenever the respective server task
Sj is scheduled. By Corollary 3, this allocation is proportional to Sj ’s utilization, which is the
fractional part ofCj ’s bandwidth. Therefore, the supplied bandwidth to each child containerCj is
proportional to its required bandwidth and is in MP form.

Applying the above theorem recursively, we can analyze the properties of a container hierarchy.
Note that the tardiness of SRT tasks may be higher as comparedto a corresponding non-hierarchical
approach, where all tasks are scheduled at the same level because the degree of parallelism of the
available supply is lower under our approach. This is the price for having temporal isolation among
containers. In Section 7, we discuss in greater detail the conditions under which temporal isolation
is guaranteed.

6 Tradeoffs for HRT Tasks

If there are no HRT tasks in the system, then no utilization loss is incurred. If the system has HRT
tasks, then tradeoffs between the schedulability and tardiness of SRT tasks and utilization loss are
possible, as illustrated by the example below.

Example 9. Consider a containerH encapsulating three HRT tasksT1, T2, andT3 with utilization
0.51 and six SRT tasksSRT(H) = {T4, . . . , T9} with utilization 0.5 as shown in Figure 9(a).H ’s
bandwidth ofw(H) = 5.5 is supplied by a partially available processor1 with û1 = 0.5 and five
fully available processors, as shown in Figure 9(b). In thisfigure, the processors are represented as
six bins. By (3), the HRT tasks require three dedicated processors since no two of these tasks can
be assigned to one processor without violating HRT constraints. These tasks are therefore assigned
to processors 4–6. The bandwidth consumed by the HRT tasks isshaded. After the HRT tasks are
allocated, the total bandwidth provided by processors 1–3,which is 2.5, is insufficient to handle
all SRT tasks, whose total utilization isUsum(SRT(H)) = 3. We reclaim the unused bandwidth
on processors 4 and 5 by settingK(H) = 2 (see Definition 1). The supply available to the SRT
tasks is now given byMs = 5 processors with utilizationŝu1 = 0.49, û2 = 0.49, û3 = 0.5,
û4 = 1.0, andû5 = 1.0, respectively. (Note that processors are ordered by increasing utilizations.
The first two utilization values were obtained using Lemma 4.) The total supplied bandwidth is
thus

∑Ms

k=1 ûk = 3.48, which exceeds the total utilization of the SRT tasks, and hence, (6) holds.

22

H

w(H)=5.5

T (5.1,10)1

T (5.1,10)2

T (5.1,10)3

T (50,100)4

T (50,100)5

T (50,100)6

T (50,100)7

T (50,100)8

1 2 3 4 5 6 Processor
0.0

0.5

1.0

lost bandwidth bandwidth used by HRT tasks

bandwidth available to SRT tasks

T1 T2 T3

(a) (b)

T (50,100)9

Figure 9: Bandwidth allocation and utilization loss in Example 9.

Because the supply to the SRT tasks is not in MP form (i.e., more than one processor is partially
available), by Corollary 1, we have to test whether (14) holds in order to check the schedulability of
T4, . . . , T9. Setting the supply and task parameters into (14), we have

Ms −K(H)−G+

K(H)+G∑

h=1

ûh −max(K(H) +G− 1, 0) max
1≤`≤|τs|

(u`)− UL

{
becauseMs = 5,G = 1,K(H) = 2, max(u`) = 0.5,
andUL = (Ms − 1) · 0.5 = 2

}

= 5− 2− 1 + (0.49 + 0.49 + 0.5)−max(3− 1, 0) · 0.5− 2

= 0.48

> 0.

Thus, bounded tardiness for the SRT tasks is guaranteed ifK(H) = 2. Also, the utilization loss,
which is the bandwidth that is unused by HRT tasks and that is unavailable to SRT tasks, is0.49 in
this case (this unused utilization is shaded black in Figure9(b)). If we try to reduce the utilization
loss even further by settingK(H) to 3, then, even though the total utilization available to the SRT
tasks becomes3.97, (14) no longer holds.

The example above shows that the co-scheduling of HRT and SRTtasks may be necessary in
order to accommodate a workload using the supplied bandwidth. However, SRT schedulability can
be compromised for largeK(H) due to (14). To find the maximumK(H) so that the tasks inτs
remain schedulable, we can apply Theorem 3 for eachK(H) fromm(Chrt) to zero.

From (14) and (9), we conclude that (14) is more likely to holdif K(H) or max1≤`≤|τs|(u`) is
small. Therefore, reclaiming processor time can be successful if the maximum per-task utilization
of SRT and server tasks is small.

23

T6
T2 T4

C2 T3

T5

T1

C1
C3

H

Figure 10: Container isolation.

7 Misbehaving Tasks

We call a taskTi misbehavingif its worst-case execution time may exceedei. In this section, we
describe the impact of misbehaving tasks on a system and showhow to alleviate any adverse effects.
Consider the container configuration shown in Figure 10. In this figure,T1 is a misbehaving task
and is denoted by a star-shaped outline. In the configurationshown in Figure 10, the processor
supplies ofC1 andC3 depend solely on the supply ofH and the parameters of the server tasks
S1 andS3, which cannot be misbehaving since a server task is not scheduled when its budget is
depleted. By Corollary 3, the parameters ofS3 and its deadline tardiness define the guaranteed
supply ofC3, and hence, the tardiness ofT5 andT6. Thus, the misbehaving taskT1 does not affect
the timeliness of tasks belonging toC3. That is, the tasks in containerC3 aretemporally isolated
from the misbehaving task. More generally, any two tasksTi ∈ succ(Ck) andTj ∈ succ(Cl) are
temporally isolated iffCk is not a member of the hierarchy rooted atCl andCl is not a member of
the hierarchy rooted atCk.

On the other hand, a misbehaving taskTi canaffect the timeliness of tasks encapsulated in that
part of container hierarchy that is rooted atTi’s parent. In our example, due to the misbehaving
taskT1, taskT2’s tardiness may exceed its computed bound. As a consequence, the tardiness of the
server taskS2 of containerC2 may exceed its computed bound thereby invalidating the bounds on
processor allocation for containerC2. This, in turn, may affect the timeliness of the encapsulated
tasksT3 andT4. To prevent such problems, any potentially misbehaving task should be isolated in a
container for which a budget can be enforced.

8 Experiments

We now present the results of experiments conducted to compare our container-aware scheduling
scheme with conventional scheduling techniques. In these experiments, performance was compared
using randomly-generated task sets, which have both HRT andSRT tasks.

Task generation procedure. In order to gain intuition about the properties of a large multiproces-
sor platform running multiple isolated components, we evaluated a three-level container hierarchy
consisting of a root containerC0, four second-level containers, and then the contained tasks, as
shown in Figure 11. Thei-th second-level container is denotedC [i]

sys and its contained HRT and

SRT tasks asτ [i]hrt andτ [i]srt, respectively. Randomly-generated tasks were added to these sets while

24

C0

C
[1]

sys C
[4]

sys

T1 Tn T1 Tn

Figure 11: Experimental setup.

U(τ
[i]
hrt) is at mostUhrt ≤ 1 andU(τ

[i]
srt) ≤ 3.5. Task utilizations were taken randomly from

[0, 0.15) for HRT tasks and from[umin, umax) for SRT tasks. We examined three HRT total utiliza-
tion capsUhrt and four SRT utilization ranges, as described later. Integral task periods were taken
randomly from[100, 1000] for HRT tasks and from[10000, 50000] for SRT tasks. Integral execution
times were computed using periods and utilizations.

We compared our container-aware scheduling scheme (CA) with PEDF and a hybridEDF-
based scheme (HS), both of which are oblivious to containers. TheHS scheme, which is described
later in this section, is a naı̈ve combination ofPEDF andGEDF. PEDF was selected because it ex-
hibits good timeliness, andHS was selected because it can satisfy the requirements of HRT and SRT
tasks using relatively few processors. However,HS andPEDF do not provide any isolation among
containers. In our experiments, we compared the tested schemes based onthe required number of
processors(RNP) anddeadline tardiness bound(TB). We did not consider any system overheads or
other container hierarchies. Such things are very application- and implementation-specific, respec-
tively, and our intent here is only to provide a basic sense ofhow our scheme compares to the other
implementation alternatives.

Defining RNP. UnderPEDF, RNP is defined as the minimum number of processors required to
partition all real-time tasks using the first-fit heuristic.UnderPEDF, all tasks have zero tardiness.

UnderHS, HRT and SRT tasks run on disjoint processor sets, with all HRT tasks scheduled
together usingPEDF with the first-fit heuristic, and all SRT tasks scheduled together usingGEDF.
RNP for the SRT tasks is thus

Msoft=

⌈
4∑

i=1

Usum(τ
[i]
srt)

⌉
.

LettingMhard denote the HRTRNP, overallRNP underHS is simplyMhard+Msoft.

UnderCA, we set containerC [i]
sys’s bandwidth tow(C [i]

sys) = WI +Wf whereWI is the num-
ber of required fully available processors, andWf is the minimum utilization due to (at most one)
partially available processor. As explained next,WI andWf were determined based upon whether
it is possible to reclaim bandwidth not used by HRT tasks (we illustrate this explanation with an
example below). BecauseU(τ

[i]
hrt) ≤ Uhrt ≤ 1, the HRT tasks of each second-level container

require at most one processor. We checked whether any bandwidth on this processor can be re-
claimed for SRT tasks as follows. We setKr(H) = 1 (reclaiming is possible) ifτ [i]srt is schedu-

lable on
⌈
Usum(τ

[i]
hrt ∪ τ

[i]
srt)
⌉

processors such that one processor has an available utilization of

1 − Usum(τ
[i]
hrt) and one processor has an available utilization offrac(Usum(τ

[i]
hrt ∪ τ

[i]
srt)), where

frac(x) is the fractional part ofx. Otherwise, we setKr(H) = 0 (i.e., reclaiming is not possible).

25

Csys

[i]

T (200,300)1

T (100,400)2

T (100,400)3

T (100,400)4

T (500,800)5

1 2 3 Processor
0.0

0.5

1.0

lost bandwidth bandwidth used by HRT tasks

bandwidth available to SRT tasks

T1

T3

(a) (b)

1 2 3 Processor
0.0

0.5

1.0

T1

(c)

Wf

Wf

WI=2 WI=2

T1

Figure 12: Determining the required container bandwidth inExample 10.

After the degree of reclamation was determined, we set

WI =

{
bUsum(τ

[i]
srt ∪ τ

[i]
hrt)c if Kr(H) = 1

bUsum(τ
[i]
srt)c+ 1 otherwise.

The fractional part of the bandwidthWf was set to

Wf =

{
frac(Usum(τ

[i]
srt ∪ τ

[i]
hrt)) if Kr(H) = 1

frac(Usum(τ
[i]
srt)) otherwise.

Example 10.Consider containerC [1]
sys with HRT taskT1(200, 300)and SRT tasksT2(100, 400), . . . ,

T4(100, 400), andT5(500, 800) as shown in Figure 12(a). (Note that these task parameters are not
allowed by out task generation method; however, allowing them simplifies the example.) For this
task set,Usum(τ

[1]
hrt) = 2/3, Usum(τ

[1]
srt) = 11/8, andUsum(τ

[1]
srt ∪ τ

[1]
hrt) = 49/24. We first check

the schedulability ofT2, . . . , T5 on
⌈
Usum(τ

[1]
srt ∪ τ

[1]
hrt)

⌉
= 3 processors such that one processor is

fully available and two processors have available utilizations of1/24 and1/3 (see processors 1 and
3 in Figure 12(b)). It can be shown that (14) does does not holdfor this task system, and hence, we
have to setK(H) = 0. With this setting ofK(H), we cannot co-schedule the HRT and the SRT

tasks on processor 3. It can be verified that the SRT tasks are schedulable ondUsum(τ
[1]
srt)e = 2

processors such that one processor is fully available and one processor has an available utilization of
frac(Usum(τ

[1]
srt)) = 3/8 (see processors 1 and 2 in Figure 12(b)). Therefore, we setWI = 2, since

the HRT and the SRT tasks together require two fully available processors, andWf = 3/8, because

the SRT tasks additionally need a bandwidth offrac(Usum(τ
[1]
srt)) = 3/8.

The execution timeei and the periodpi of the server taskS[i]
srt should be set such thatei/pi =

Wf . OnceWf has been determined and a value forei is selected,pi is implicitly determined.
However, a tradeoff exists in selectingei. On one hand, a smaller value ofei effectively reduces
the server task’s maximum tardiness, and correspondingly,the supply blackout time, as (13) and

26

Theorem 2 suggest. On the other hand, small server task execution times could lead to frequent
context switches in a real implementation. As a compromise,we set the execution time of each
server task to be100, which is close to the average execution time of SRT tasks inH . Server tasks’

periods were set to
⌊
100
Wf

⌋
if Wf 6= 0, so that the utilization of the server task is slightly higher than

the fractional part of the required container bandwidth. The required container bandwidthC [i]
sys was

then inflated accordingly by

uS =

{
0 if Wf = 0

100
b100/Wf c

−Wf otherwise,

whereuS is the utilization loss associated with the choice of servertask parameters.
As an example consider containerC [i]

sys from Example 10. BecauseWf = 3/8, we setuS =
100

b100/(3/8)c − 3/8 = 0.001.

Overall,RNP for CA is simply the bandwidth of the root containerC0,w(C0) = d
∑4

i=1 w(C
[i]
sys)e.

RNP results. Insets (a), (c), (e), and (g) of Figure 13 showRNP results forPEDF, HS, andCA,
for the SRT utilization ranges[0.01, 0.1) (light), [0.1, 0.5) (medium), and[0.5, 1) (heavy), respec-
tively. We also examined the SRT utilization range[0.5, 0.7) (extreme) as well, as it is an extreme
case wherePEDF shows poor performance. Thex axis in each inset corresponds to the HRT uti-
lization cap,Uhrt.

For each utilization range, 100 task sets were generated andtheirRNP averaged. The figure also
shows the average total system utilization, so that we can estimate the utilization loss associated with
each scheme.

For the light and medium SRT per-task utilization ranges (insets (a) and (c)), all three schemes
show similar performance. This is becauseCA is able to minimize the bandwidth of individual
second-level containers by co-scheduling HRT and SRT taskstogether. As SRT per-task utilization
increases,RNP for PEDF also increases because more processors are needed to bin-pack the SRT
tasks. The extreme case (inset (g)) is the utilization range[0.5, 0.7), where each SRT task requires a
separate processor.

When SRT per-task utilizations are large (inset (e)), the difference betweenHS andCA is max-
imal, due to the utilization loss associated with HRT tasks in the containers. UnderCA, the four
HRT task sets require four processors, while underHS, all HRT tasks may be packed onto a smaller
number of processors.

Tardiness. Insets (b), (d), (f), and (h) of Figure 13 show the average of the per-task-set tardiness
bounds underHS andCA for the task set categories discussed above (underPEDF, tardiness is
zero). For these two schemes, these tardiness bounds are comparable in most cases, with the tar-
diness underCA being slightly higher due to uneven supply by the server tasks. UnderCA, the
maximum tardiness bound is significantly higher when the maximum total utilization of HRT tasks
is high (see the HRT utilization cap of0.9 in insets (b) and (d) of Figure 13). This is becauseCA at-
tempts to reclaim scarce processor supply available after scheduling HRT tasks within the container
and use that supply to schedule SRT tasks. However, even though the maximum task tardiness in
these cases is higher, the number of processors required byCA is lower (see insets (a) and (c) of
Figure 13).

Overall, these experiments show that in some cases there is aprice to be paid for temporal
isolation among containers, in the form of more required processors (if HRT tasks are present) or

27

higher tardiness. However, in our proposed scheme, this price is reasonable, when considering the
performance of schemes that ensure no isolation.

As a final comment, we remind the reader that if no HRT tasks arepresent, then our scheme
incursnoutilization loss.

9 Conclusion

We have presented a multiprocessor bandwidth-reservationscheme for hierarchically organized real-
time containers. Under this scheme each real-time container can reserve any fraction of processor
time (even the capacity of several processors) to schedule its children. The presented scheme pro-
vides temporal isolation among containers so that each container can be analyzed separately.

Our scheme is novel in that soft real-time components incur no utilization loss. This stands in
sharp contrast to hierarchical schemes for hard (only) real-time systems, where the loss per level can
be so significant, arbitrarily deep hierarchies simply become untenable.

Several interesting avenues for further work exist. The most important open problem is to enable
dynamic container creation and the joining/leaving of tasks. Also of importance is the inclusion of
support for synchronization. It would also be interesting to investigate other global scheduling
algorithms such as Pfair algorithms to see whether a more accurate analysis can be established
for them. Finally, the new scheduling policy needs to be implemented on a real multiprocessor
platform so that overheads associated with the hierarchical nature of the system could be determined.
Given that work on Linux containers partially motivated ourresearch, a Linux-based system such as
LITMUSRT (LITMUSRT homepage, 2008), whereGEDF is implemented along with other global
scheduling algorithms, would be desirable to use in such an effort.
Acknowledgement: Work supported by grants from Intel and IBM Corps., by NSF grants CNS
0408996, CCF 0541056, and CNS 0615197 and by ARO grant W911NF-06-1-0425.

References
(2007) Linux vserver documentation Http://linux-vserver.org/Documentation

Anderson J, Calandrino J, Devi U (2006) Real-time scheduling on multicore platforms. In: Proceedings of the
12th IEEE Real-Time and Embedded Technology and Applications Symposium, pp 179–190

Baruah S (2007) Techniques for multiprocessor global schedulability analysis. In: Proceedings of the 28th
IEEE Real-Time Systems Symposium, pp 119–128

Baruah S, Baker T (2008) Global EDF schedulability analysisof arbitrary sporadic task systems. In: Proceed-
ings of the 20th Euromicro Conference on Real-Time Systems,pp 3–12

Baruah S, Fisher N (2005) The partitioned multiprocessor scheduling of sporadic task systems. In: Proceedings
of the 26th IEEE Real-Time Systems Symposium, pp 321–329

Baruah S, Lipari G (2004) A multiprocessor implementation of the total bandwidth server. In: Proceedings of
18th International Parallel and Distributed Processing Symposium, p 40

Baruah S, Goossens J, Lipari G (2002) Implementing constant-bandwidth servers upon multiprocessor plat-
forms. In: Proceedings of the IEEE International Real-Timeand Embedded Technology and Applications
Symposium, pp 154–163

28

Bertogna M, Cirinei M, Lipari G (2009) Schedulability analysis of global scheduling algorithms on multipro-
cessor platforms. IEEE Transactions on Parallel and Distributed Systems 20(4):553–566

Brandenburg B, Anderson J (2007) Integrating hard/soft real-time tasks and best-effort jobs on multiprocessors.
In: Proceedings of the 19th Euromicro Conference on Real-Time Systems, pp 61–70

Chakraborty S, Thiele L (2005) A new task model for streamingapplications and its schedulability analysis.
In: Proceedings of the IEEE Design Automation and Test in Europe (DATE), pp 486–491

Devi U, Anderson J (2008) Tardiness bounds for global EDF scheduling on a multiprocessor. Real-Time Sys-
tems 38(2):133–189

Easwaran A, Anand M, Lee I (2007) Compositional analysis framework using EDP resource models. In: Pro-
ceedings of the 28th IEEE Real-Time Systems Symposium, pp 129–138

Eriksson M, Palmroos S (2007) Comparative study of containment strategies in solaris and security enhanced
Linux Http://opensolaris.org/os/community/security/news/20070601-thesis-bs-eriksson-palmroos.pdf

Holman P, Anderson J (2006) Group-based Pfair scheduling. Real-Time Systems 32(1-2):125–168

LITMUSRT homepage (2008) Http://www.cs.unc.edu/˜ anderson/litmus-rt

Leontyev H, Anderson J (2008a) Generalized tardiness bounds for global multiprocessor scheduling. Real-
time Systems In submission, Preliminary version appeared in proceedings of the 28th Real-Time Systems
Symposium, pp 413–422, 2007

Leontyev H, Anderson J (2008b) A hierarchical multiprocessor bandwidth reservation scheme with timing
guarantees. In: Proceedings of the 20th Euromicro Conference on Real-Time Systems, pp 191–200

Lessard P (2003) Linux process containment: A practical look at chroot and user mode Linux
Http://www.sans.org/readingroom/whitepapers/linux/1073.php

Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard real-time environment. Journal
of the ACM 30:46–61

Liu J (2000) Real-Time Systems. Prentice Hall

Moir M, Ramamurthy S (1999) Pfair scheduling of fixed and migrating periodic tasks on multiple resources.
In: Proceedings of the 20th IEEE Real-Time Systems Symposium, pp 294–303

Pellizzoni R, Caccamo M (2008) M-CASH: A real-time resourcereclaiming algorithm for multiprocessor plat-
forms. Real-Time Systems 40(1):117–147

Rajkumar R (2006) Resource Kernels: Why Resource Reservation should be the Preferred Paradigm of Con-
struction of Embedded Real-Time Systems. Keynote talk, 18th Euromicro Conference on Real-Time Sys-
tems, Dresden, Germany

Shin I, Easwaran A, Lee I (2008) Hierarchical scheduling framework for virtual clustering of multiprocessors.
In: Proceedings of the 20th Euromicro Conference on Real-Time Systems, pp 181–190

Srinivasan A, Holman P, Anderson J (2002) Integrating aperiodic and recurrent tasks on fair-scheduled multi-
processors. In: Proceedings of the 14th Euromicro Conference on Real-Time Systems, pp 19–28

29

 12
 14
 16
 18
 20
 22
 24
 26
 28

0.25 0.5 0.9

A
ve

ra
ge

 R
N

P

HRT Utilization Cap

HS RNP
CA RNP

PEDF RNP
Total Util

(a)

 0.44
 0.46
 0.48
 0.5

 0.52
 0.54
 0.56
 0.58

0.25 0.5 0.9

A
vg

. M
ax

 ta
rd

in
es

s
x1

04

HRT Utilization Cap

HS TB
CA TB

(b)

 12
 14
 16
 18
 20
 22
 24
 26
 28

0.25 0.5 0.9

A
ve

ra
ge

 R
N

P

HRT Utilization Cap

HS RNP
CA RNP

PEDF RNP
Total Util

(c)

 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2

0.25 0.5 0.9

A
vg

. M
ax

 ta
rd

in
es

s
x1

04

HRT Utilization Cap

HS TB
CA TB

(d)

 12
 14
 16
 18
 20
 22
 24
 26
 28

0.25 0.5 0.9

A
ve

ra
ge

 R
N

P

HRT Utilization Cap

HS RNP
CA RNP

PEDF RNP
Total Util

(e)

 2

 2.5

 3

 3.5

 4

 4.5

 5

0.25 0.5 0.9

A
vg

. M
ax

 ta
rd

in
es

s
x1

04

HRT Utilization Cap

HS TB
CA TB

(f)

 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

0.25 0.5 0.9

A
ve

ra
ge

 R
N

P

HRT Utilization Cap

HS RNP
CA RNP

PEDF RNP
Total Util

(g)

 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

0.25 0.5 0.9

A
vg

. M
ax

 ta
rd

in
es

s
x1

04

HRT Utilization Cap

HS TB
CA TB

(h)

Figure 13: (a,c,e,g)Required number of processors and(b,d,f,h) maximum tardiness bounds for
randomly generated task sets (with 95% confidence intervals) for (a)–(b) light, (c)–(d) medium,
(e)–(f) heavy, and(g)–(h) extreme SRT utilization distributions.

30

