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Abstract The multicore revolution is having limited impact in safety-critical applica-
tion domains. A key reason is the “one-out-of-m” problem: when validating real-time
constraints on anm-core platform, excessive analysis pessimism can effectively negate
the processing capacity of the additional m− 1 cores so that only “one core’s worth”
of capacity is utilized even though m cores are available. Two approaches have been
investigated previously to address this problem: mixed-criticality allocation tech-
niques, which provision less-critical software components less pessimistically, and
hardware-management techniques, which make the underlying platform itself more
predictable. A better way forward may be to combine both approaches, but to show
this, fundamentally new criticality-cognizant hardware-management tradeoffs must
be explored. Such tradeoffs are investigated herein in the context of a new variant
of a mixed-criticality framework, called MC2, that supports configurable criticality-
based hardware management. This framework allows specific DRAM memory banks
and areas of the last-level cache (LLC) to be allocated to certain groups of tasks. A
linear-programming-based optimization framework is presented for sizing such LLC
areas, subject to conditions for ensuring MC2 schedulability. The effectiveness of the
overall framework in resolving hardware-management and scheduling tradeoffs is
investigated in the context of a large-scale overhead-aware schedulability study. This
study was guided by extensive trace data obtained by executing benchmark programs
on the new variant of MC2 presented herein. This study shows that mixed-criticality
allocation and hardware-management techniques can be much more effective when
applied together instead of alone.
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1 Introduction

Multicore platforms have the potential of enabling a wealth of new computationally
intensive features in safety-critical domains such as in the avionics and automotive
industries. However, certifying the real-time correctness of a system running on
m cores can require analysis that is so pessimistic, the processing capacity of the
additionalm−1 cores is entirely negated. In effect, only “one core’s worth” of capacity
can be utilized even though m cores are available. In domains such as avionics, this
“one-out-of-m” problem has led to the common practice of simply disabling all but
one core.1 This problem is the most serious unresolved obstacle in work on real-time
multicore resource allocation today.

The root of this problem is that shared hardware resources, such as caches, buses,
and memory banks, are not predictably managed. As reviewed later, several proposals
for predictably managing such resources have been presented that strive to reduce
pessimism by enabling tighter task execution-time estimates. While these approaches
seem promising, another way forward is the application of mixed-criticality (MC) anal-
ysis assumptions, as originally proposed by Vestal (2007). Under such assumptions,
less-critical tasks are provisioned somewhat optimistically, allowing for increased
platform utilization. These research directions share a similar goal of improving plat-
form utilization, but are themselves orthogonal, raising broader research questions
pertaining to the combination of both approaches. Can better platform utilization be
realized if resources are managed differently at different criticality levels? If so, how
should resources be managed both within and across criticality levels?

Isolation versus sharing. Addressing these questions requires delving into sharing
and isolation tradeoffs that have not been considered before. For example, while
higher-criticality tasks might require strong hardware-isolation guarantees, more
optimistically provisioned lower-criticality tasks might actually benefit from less
restricted hardware sharing because shared hardware is often designed to improve
average-case performance or throughput. With respect to caches, higher-criticality
tasks might tolerate severe restrictions on cache usage, because they are provisioned
pessimistically anyway. For lower-criticality tasks, the opposite may be true.

In this paper, we report on our efforts to construct an experimental platform that
enables such tradeoffs to be assessed, and discuss the results of an experimental
investigation conducted to provide such an assessment. Our new platform extends a
framework called MC2 (mixed-criticality on multicore) (Herman et al. 2012; Mollison
et al. 2010; Ward et al. 2013), which has been the subject of continuing research by our
group, by adding support for several hardware-management techniques. Specifically,
we provide management that allows specific DRAM memory banks and areas of the
last-level cache (LLC) to be assigned to certain groups of tasks; in the allocations
considered herein, such task groups are determined in a criticality-cognizant way.
Additionally, we provide techniques that isolate the operating system (OS) from user-
space tasks with respect to the LLC and DRAM banks; to our knowledge, the issue of

1 Multicore-related certification difficulties are extensively discussed in a recent position paper from the
U.S. Federal Aviation Administration (Certification Authorities Software Team (CAST) 2014).
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OS isolation has not been considered before in work on hardware management. To
enable LLC areas to be sized appropriately, we also present an optimization framework
that determines such areas subject to MC2 schedulability conditions. We regard MC2

as a rich and interesting platform for our investigation because (as discussed later) it
supports several criticality levels (not just two, as typically assumed in work on MC
scheduling), has both hard real-time (HRT) and soft real-time (SRT) components, both
priority-scheduled and time-triggered components, and both partitioned and globally
scheduled components.

Contributions. Our contributions are fourfold. First, after providing needed back-
ground (Sec. 2), we describe the hardware-management mechanisms we added to
MC2 (Sec. 3). The resulting MC2 variant is highly configurable and breaks new ground
by allowing sharing and isolation tradeoffs to be studied in a criticality-cognizant way.

Second, we discuss the results of micro-benchmark experiments conducted to
assess such tradeoffs (Sec. 4). In these experiments, the impact of strong hardware
isolation on task executions times is compared to the impact of permissive hardware
sharing for tasks of both high criticality and low criticality.

Third, we provide techniques for optimizing the allocation of LLC areas in the
context of our new MC2 variant (Sec. 5). In particular, based on the results of the
micro-benchmark experiments just mentioned, we propose a formal model in which
the impacts of different allocation strategies are factored into the determination of
LLC-related overheads and task execution times. Based on this model, we then present
a linear program (LP) that determines LLC allocations that are beneficial for MC2

schedulability.
Fourth, we provide evidence in favor of combining MC analysis with hardware

management in attacking the one-out-of-m problem. This evidence is provided in
the form of a large-scale overhead-aware schedulability study (Sec. 6.1) that we
conducted to demonstrate the benefits of combining both approaches, and associated
runtime experiments that we conducted to partially assess the reasonableness of some
of the assumptions underlying this study (Sec. 6.2). To our knowledge, this is the
first overhead-aware schedulability study that considers MC scheduling, hardware
management, and a combination of both.

In work on MC systems, there has been some limited prior work in which hardware
management was applied (see Sec. 2). However, to our knowledge, we are the first
to provide criticality-aware isolation—with respect to both the OS and some of the
most problematic sources of hardware interference—within a framework as diverse
as MC2, under Vestal’s notion of MC analysis, which was proposed with the express
goal of improving platform utilization.

2 Background

We begin by reviewing needed background and related work.

Task model. We consider real-time workloads specified using the implicit-deadline
periodic task model and assume familiarity with this model. We specifically consider
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a task system τ = {τ1, . . . , τn}, scheduled on m processors,2 where task τi’s period
and worst-case execution time (WCET) are denoted Ti and ei, respectively.3 (We
generalize this model below when considering MC scheduling.) The utilization of
task τi is given by ui = ei/Ti and the total system utilization is defined as

∑
i ui. A

periodic task system may be scheduled following a partitioned scheduling approach
(tasks are statically assigned to processors), a global scheduling approach (any task
may execute on any processor), or some hybrid of the two. If a job of τi has a deadline
at time d and completes execution at time t, then its tardiness is max{0, t− d}.
Tardiness should be zero for any job of a HRT task, and should be bounded by a
(reasonably small) constant for any job of a SRT task.

Mixed-criticality scheduling. The roots of most recent work on MC scheduling can
be traced to a seminal paper by Vestal (2007). For systems where tasks of differing
criticalities exist, he proposed adopting less-pessimistic execution-time assumptions
when checking the schedulability of less-critical tasks. More formally, in a system
with L criticality levels, each task has a provisioned execution time (PET)4 specified
at every level, and L system variants are analyzed: in the Level-` variant, the real-time
requirements of all Level-` tasks are verified with Level-` PETs assumed for all tasks
(at any level). The degree of pessimism in determining PETs is level-dependent: if
Level ` is of higher criticality than Level `′, then Level-` PETs will generally be
greater than Level-`′ PETs. For example, in the systems considered by Vestal (2007),
observed WCETs were used to determine PETs for tasks at lower levels, and such
times were inflated to determine PETs at higher levels. The task model resulting from
Vestal’s work has come to be known as the MC task model.

CE CE CE CE

RM RM RM RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

CPU 0 CPU 1 CPU 2 CPU 3

higher

(static)

priority

lower
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Fig. 1 Scheduling in MC2 on a quad-core machine.

MC2. Vestal’s work led to a
significant body of follow-up
work (see Burns and Davis
(2016) for an excellent sur-
vey). Within this body of
work, MC2 was the first MC
scheduling framework for mul-
tiprocessors (to our knowl-
edge) (Herman et al. 2012;
Mollison et al. 2010; Ward
et al. 2013). MC2 is imple-
mented as a LITMUSRT plugin5 and supports four criticality levels, denoted A (high-
est) through D (lowest), as shown in Fig. 1. Higher-criticality tasks are statically
prioritized over lower-criticality ones. Level-A tasks are partitioned and scheduled

2 We use the terms “processor,” “core,” and “CPU” interchangeably.
3 The notation Ci is now commonly used to denote a task execution time, but the term “C” has a

pre-existing meaning in the context of MC2.
4 We use “PET” instead of “WCET” because under MC2, some tasks are SRT, and hence may not be

provisioned on a worst-case basis.
5 LITMUSRT is a real-time extension of the Linux kernel. Source code is available at http://www.

litmus-rt.org.
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on each core using a time-triggered table-driven cyclic executive.6 Level-B tasks are
also partitioned but are scheduled using a rate-monotonic (RM) scheduler on each
core.6 On each core, the Level-A and -B tasks are required to be simply periodic (all
tasks commence execution at time 0 and periods are harmonic), with the Level-B
task periods being integer multiples of the Level-A hyper-period. Level-C tasks are
scheduled via a global earliest-deadline-first (GEDF) scheduler.6 Level-A and -B tasks
are HRT, Level-C tasks are SRT, and Level-D tasks are non-real-time; in this work,
we assume that Level D is not present. MC2 is a flexible framework. For example,
it can be configured to have only two HRT criticality levels (as in most theoretical
work on MC scheduling) or to fully assign the Level-A and -B subsystems to distinct,
dedicated cores.

We adopt a measurement-based approach to determining PETs because work on
static timing-analysis tools for multicore machines has not matured to the point of
being directly applicable. Moreover, measurement-based processes for determining
PETs are often used in practice. As in other prior work on MC2 (Herman et al. 2012;
Mollison et al. 2010; Ward et al. 2013), we assume that Level-C PETs reflect measured
average-case execution times7 (since Level C is SRT) and that Level-B PETs reflect
measured worst-case execution times (since Level B is HRT). Further, we assume
that Level-A PETs are defined by applying an inflation factor to Level-B PETs (since
Level A is of highest criticality).

In MC2 as implemented in LITMUSRT, a task’s PET at its own criticality level
is treated as an OS-enforced execution budget. If a job of a Level-` task τi has an
execution time exceeding τi’s Level-` budget, then more than one budget allocation
will be required to service it. Note that a Level-A job’s budget may be sliced. Under the
cyclic-executive model (Baker and Shaw 1988), scheduling is based on fixed-length
frames. Each Level-A job runs non-preemptively within a frame unless it is sliced. Job
slicing allocates different portions of a job (job slices) to different frames.

MC2 was originally designed in consultation with colleagues in the avionics
industry. A major thesis underlying its design is that Levels A and B would be mostly
comprised of quite deterministic “fly-weight” tasks with rather low utilizations; less-
deterministic computationally intensive tasks of higher utilization would likely be
assigned to Level C.

Page coloring. One of the mechanisms applied in our new variant of MC2 to manage
hardware is an old technique called page coloring, which can be applied to eliminate
interference within both the LLC and memory banks (Kessler and Hill 1992). We
explain the basic idea here with respect to the LLC (which we assume to be set-
associative). Consider the pages of physical memory in turn. Assign the color “0”
to the first page, and assign the same color to the sets in the LLC to which its
content’s addresses map. In a similar way, assign the color “1” to the next page

6 Other per-level schedulers optionally can be used, and Level-C tasks can be defined according to the
sporadic task model. These options, and other considerations, such as slack reallocation, are discussed in
prior papers (Herman et al. 2012; Mollison et al. 2010; Ward et al. 2013).

7 As explained in Mills and Anderson (2011), tardiness bounds with respect to deterministic budget
allocations at Level C can be used to bound tardiness in expectation when average-case task execution times
are assumed.
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and corresponding cache sets, and so on. Eventually, such color assignments will
“wrap” and we will sequence through the same colors again. This process ensures
that differently colored pages map to different sets in the LLC. Thus, accesses to two
differently colored pages cannot cause cache conflicts. Note that this coloring process
is based on physical memory addresses. Such addresses also determine how memory
pages map to DRAM banks, so pages can also be colored with respect to the banks to
which they are mapped.

Ensuring isolation with respect to the LLC. In most prior work on eliminating or
reducing interference in the LLC, some variant of cache partitioning is used (see Kirk
(1989) for an overview). Set-based cache partitioning can be implemented by page
coloring: each partition corresponds to a disjoint subsequence of colors that maps
to some disjoint subsequence of sets in the LLC. Way-based cache partitioning is
also possible, but this requires hardware support. The ARM platform utilized in our
experiments provides such support, which we describe in detail later in Sec. 3 (see
Fig. 3).

Ensuring isolation with respect to memory banks. Modern DRAM designs contain
multiple banks, which can be interleaved to parallelize memory accesses. Each bank
consists of memory in an array of rows and columns, along with a row buffer. For a
memory location to be read or written via the data bus, that location’s row must be
stored in the row buffer. If the row was already in the buffer, then we have a row-buffer
hit, otherwise we have a row-buffer miss. In the event of a miss, the row previously in
the buffer must be copied back to the array. Row-buffer misses create extra latency.
Tasks executing on different processors can be prevented from causing each other to
experience such misses by partitioning DRAM banks among processors (Liu et al.
2012).

Prior related work. This work follows a long line of research examining shared-
resource contention in real-time systems (Kotaba et al. 2013). The use of cache
partitioning in real-time systems has been considered before in the context of unipro-
cessor (Altmeyer et al. 2014) and multicore (Xu et al. 2016; Kim et al. 2013) platforms.
However, these papers do not consider MC systems. While cache partitioning ostensi-
bly affords strong isolation guarantees with respect to the LLC, Valsan et al. (2016)
recently showed that contention may still exist on some architectures due to accesses
of special cache-related registers called miss status holding registers (MSHRs). As
an alternative to cache partitioning, a technique called cache lockdown can be used
that prevents designated cached data or instructions from being evicted (Campoy et al.
2001).

Regarding memory-related issues generally, prior efforts have focused on DRAM
controllers (Audsley 2013; Jalle et al. 2014; Kim et al. 2015; Krishnapillai et al.
2014), and bus-access control (Alhammad and Pellizzoni 2016; Alhammad et al. 2015;
Giannopoulou et al. 2013; Hassan and Patel 2016; Hassan et al. 2015; Pellizzoni
et al. 2010). Other work has focused on reducing shared-resource interference when
per-core scratchpad memories are used (Tabish et al. 2016), accurately predicting
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DRAM access delays (Kim et al. 2014), throttling lower-criticality tasks’ memory
accesses (Yun et al. 2012), and allocating memory (Yun et al. 2014).

Of the just-cited papers, only four consider the notion of MC scheduling espoused
by Vestal (Audsley 2013; Hassan and Patel 2016; Jalle et al. 2014; Kim et al. 2015).
These papers focus on hardware issues and only peripherally touch on the issue of
achieving better platform utilization from a schedulability point of view through less
pessimistic analysis assumptions as proposed by Vestal. This issue is the subject of
three prior MC2-related papers by our group, two of which (Chisholm et al. 2015;
Kim et al. 2016b) are precursors to this one. The other of these papers (Ward et al.
2013) considers a scheduling-based approach to LLC management for high-criticality
tasks only. In that work, the OS prefetches all potentially accessed pages before a
high-criticality job executes, and enforces that co-scheduled jobs do not conflict in the
LLC. Lower-criticality jobs are allowed to execute in periods of high LLC contention
that otherwise would have idled a processor.

In contrast, we take a more holistic approach to hardware management here, and
consider hardware-management tradeoffs within and among all criticality levels. Our
research breaks new ground on several fronts. First, we are the first to investigate
sharing and isolation tradeoffs with respect to shared hardware in a criticality-cognizant
way (prior work only emphasized isolation). Second, we consider systems with more
than two criticality levels (as opposed to only two, as in almost all prior work). Third,
we are the first to investigate cache partitioning in MC systems, and in systems in
which both partitioned and global schedulers are used. Fourth, we are the first to
consider interference with respect to both the LLC and DRAM memory banks in
MC multicore systems. Fifth, we are the first to consider the optimization problem of
allocating cache space among tasks in MC systems. Finally, we are the first to address
shared-hardware interference due to the OS.

3 Implementation

Fig. 2 Quad-core ARM Cortex A9.

We now describe the hardware-management
extensions8 we added to MC2. To discuss
the specific hardware resources to be man-
aged, we must first describe our considered
hardware platform, which is a quad-core
ARM Cortex A9 machine. Each core on
this machine is clocked at 800MHz and
has separate 32KB L1 instruction and data
caches. Additionally, the LLC is a shared,
unified 1MB 16-way set-associative L2
cache. 1GB of off-chip DRAM is avail-
able, and this memory is partitioned into eight 128MB banks. The basic architecture
is illustrated in Fig. 2.

8 All source code for our new MC2 framework is available online at https://wiki.litmus-rt.
org/litmus/Publications.
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(a) Way-based partitioning.

(b) Set-based partitioning.

Fig. 3 LLC partitioning.

Way- and set-based LLC partitioning. Our ARM platform provides per-CPU lockdown
registers that enable the LLC to be partitioned by way. This is illustrated in Fig. 3(a). In
the depicted situation, the lockdown bit corresponding to Way 2 is cleared on CPU 0,
which directs cache allocations from CPU 0 to Way 2 of the LLC. The per-CPU
lockdown registers are supported by an ARM Level 2 Cache Controller (L2C-310 or
PL310), which is used on most Cortex A9 platforms.

As an alternative to way-based partitioning, our implementation allows set-based
partitioning via page coloring. This is illustrated in Fig. 3(b) for our ARM platform,
which has an LLC with 16 colors and a page size of 4KB. Way- and set-based
partitioning can be combined to flexibly create rectangular LLC areas that can be
designated for the sole use of certain tasks. This is illustrated in Fig. 6, which depicts
our various allocation strategies; we consider this figure in detail later.

DRAM banks. Our test platform allows DRAM bank interleaving to be optionally
enabled. With bank interleaving enabled, successive pages map to different banks;
with it disabled, the first 32K pages map to Bank 0, the next 32K to Bank 1, and so on.
Bank interleaving results in increased memory throughput in certain general-purpose
applications that gain additional memory-level parallelism from interleaving. However,
when enabled on our test platform, the bits within a physical address that determine the
mapped-to bank overlap those that determine the LLC color, and as a result, each bank
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contains pages of only two LLC colors. In contrast, with interleaving disabled, each
bank contains pages of all LLC colors. The latter permits more fine-grained control
over page allocations, so we disable bank interleaving. However, when allocating
pages to tasks, we attempt to distribute a task’s pages across all of the banks that it
can access (if more than one), to obtain the benefits of bank interleaving. The manner
in which we allocate pages is discussed next.

Allocating pages to tasks. A memory location’s physical address determines both
its LLC color and DRAM bank. To properly allocate LLC colors and DRAM banks
to tasks, we construct pools of pages for each color and bank combination. We then
reallocate pages to tasks from these pools via a system call. (Since MC2 is built on
LITMUSRT, an extension of Linux, reallocation is an easier way of handling page
allocations for real-time tasks than modifying the memory-management subsystem
in the kernel.) For a given task and assignment of colors to the task, this system call
iterates through the page pools of the assigned colors in round-robin order. A page is
allocated to the task from each pool in turn.
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Fig. 4 Reallocation of seven pages to a task assigned
the first four LLC colors. Each box represents a
page.

Fig. 4 shows a possible
outcome of this reallocation
for a task assigned colors 0–
3. The system call that reallo-
cates pages is performed be-
fore tasks commence execu-
tion, and as a result, they in-
cur no runtime overheads due
to page reallocations. In our
experiments, we were able
to fully allocate to the page
pools all pages from four of
the DRAM banks, Banks 3 through 6. Each of these four banks is dedicated to the
Level-A and -B tasks on a specific CPU of our quad-core platform. The other four
banks are shared by the OS and all Level-C tasks. As a result, the OS can allocate
pages only from these banks and dynamic memory allocation is only supported for
Level-C tasks.9 With the exception of a rarely accessed signal-handling page, our
page-coloring process can color all pages associated with each task. However, we do
not allocate shared pages, though shared libraries can be dealt with via static linking.
In recent work (Chisholm et al. 2016), we extended the MC2 variant considered herein
to support data sharing among tasks via shared memory, and in other recent work (Kim
et al. 2016a), we further extended it to support the sharing of libraries via replicated
pages; such extensions are beyond the scope of this paper.

Way-based OS isolation. Our prototype isolates the OS from Level-A and -B tasks in
the LLC via way-based partitioning. Specifically, whenever the kernel begins executing
on a CPU as the result of an interrupt, exception, or system call, we save the current

9 According to the thesis underlying the design of MC2 (mentioned in Sec 2), Level-A and -B tasks are
expected to be fly-weight, deterministic tasks, and hence should not require dynamic memory allocation.
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Fig. 5 DRAM allocation strategy.

value of that CPU’s lockdown register and then modify it so that the OS accesses only
certain LLC ways in kernel mode. When exiting kernel mode, we restore the lockdown
register using the saved value. Together with the DRAM isolation just described, this
ensures that the OS only minimally interferes with Levels A and B.

Unmanaged hardware resources. Our prototype does not provide management for
L1 caches, MSHRs (Valsan et al. 2016; Kroft 1981), translation lookaside buffers
(TLBs), memory controllers, or memory buses. However, under a measurement-based
approach to determining PETs, such unconsidered resources are implicitly considered
when PETs are determined.

Overall allocation strategy. Our DRAM allocation strategy, discussed earlier, is
depicted in Fig. 5. The LLC-allocation strategies studied in this paper are depicted in
Fig. 6. We categorize these allocation strategies into three separate variants.

LLC-Allocation Variant 1, shown in Fig. 6(a), ensures strong isolation guarantees
for higher-criticality tasks while allowing for fairly permissive hardware sharing for
lower-criticality tasks when used in combination with our DRAM-allocation strategy.
As seen, Level C and the OS share a subsequence of the available LLC ways and
all LLC colors. As noted in Sec. 2, we assume that Level-C tasks (being SRT) are
provisioned on an average-case basis. Under this assumption, LLC sharing with the
OS should not be a major concern. The remaining LLC ways are partitioned among
Level-A and -B tasks on a per-CPU basis. That is, the Level-A and -B tasks on a
given core share a partition. Each of these partitions is allocated 1/4 of the available
colors, as depicted. This scheme ensures that Level-A and -B tasks do not experience
LLC interference due to tasks on other cores (spatial isolation). LLC interference
between Level-A and Level-B tasks on the same core may be permissible, as this
interference only affects Level-B tasks, as will be explained in Sec. 5.2. However, it
may still be desirable to limit this interference. As a consequence, different LLC areas
are allocated to Level A and B within a core partition, but these areas may overlap.10

Variants 2 and 3, depicted in insets (b) and (c) of Fig. 6, are analyzed in later
sections to characterize the advantages and disadvantages of isolation and sharing
for each criticality level. In Variant 2, the LLC area allocated to Level C and the OS
is partitioned by way on a per-CPU basis. This variant provides stronger isolation
guarantees to Level-C tasks but reduces the LLC area that such a task can utilize. In
Variant 3, Level-A and -B tasks are not partitioned by core, thus giving each Level-A

10 We often use the term “area” instead of “partition” to describe these allocated LLC regions because of
the potential for some regions to overlap.
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(a) Variant 1.
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Fig. 6 LLC allocation variants. LLC boundaries indicated by double lines are settable
parameters. Note that the Level-A and -B LLC areas for each core can overlap in
Variants 1 and 2. Overlap for all cores is allowed in Variant 3. In Variant 2, the LLC
space allocated to Level C is distributed among cores as evenly as possible, since any
Level-C task may run on any core. Hence, we do not tune individual per-core Level-C
partition sizes independently of the overall space allocated to Level C. Because of this,
we do not use double lines in indicating these per-core partition boundaries.
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and -B task access to all 16 colors. This reduces isolation guarantees at Levels A and
B, but increases the LLC area that Level-A and -B tasks can utilize.

The specific number of LLC ways assigned to each allocated LLC area is a tunable
parameter that affects the execution times of tasks, as demonstrated later in Sec. 4.
We determine values for these parameters on a per-task-set basis using optimization
techniques presented in Sec. 5.3. These optimization techniques seek to minimize a
task set’s Level-C utilization while ensuring schedulability at all criticality levels.

4 Micro-Benchmark Experiments

We experimentally assessed the impact of combining MC allocation and hardware
management in attacking the one-out-of-m problem via the following process. First,
to assess the impact of hardware management, we collected extensive trace data for
synthetic micro-benchmark programs and six benchmark programs. Next, to assess
the impact of interference caused by the OS, we examined the impact of providing OS
isolation. In this section, we present a subset of this data and resulting observations.

Measurement process. We examined isolation impacts by collecting trace data for
both synthetic micro-benchmark programs devised by us and publicly available bench-
mark programs. The micro-benchmark programs were designed as stress cases to
demonstrate the upper limits of potential performance improvements made possible
by LLC and DRAM-bank management. Each micro-benchmark program consists of a
main loop that is repeated 500 times. During each loop iteration, a different randomly
chosen sequence of unique word addresses is read, where each address aligns with the
first word in a cache line (32 bytes on our hardware). Note that the word read at an ad-
dress identifies the next address to read, eliminating the need to call a pseudo-random
number generator during the benchmark’s execution. Every available cache line is
referenced once in an iteration. This access pattern has the effect of forcing each cache
reference to a random line and eliminating hits for successive references within a line
(reducing spatial and temporal locality in references). Each micro-benchmark program
has a specified working set (WS), which is the set of addresses used to reference data,
and correspondingly a working set size (WSS).

The benchmark programs we considered are listed in Table 1 and come from the
Data Intensive Systems (DIS) Stressmark Suite (Musmanno 2003). This suite was
defined to reflect memory-usage patterns common in real-world use cases.

Quantifying cache-usage patterns is harder for real application code than micro-
benchmark programs. However, there must naturally be a point of diminishing returns
for larger and larger LLC allocations for any program (assuming it is executed in
isolation). We call this point, where execution times do not substantially decrease
given a larger LLC allocation, a program’s ideal cache allocation size (ICAS). Note
that it is possible for a program to have an ICAS larger than the LLC. In such cases,
we define its ICAS to match the LLC size. Our micro-benchmark programs have a
very small code footprint, so for them, ICAS is the same as WSS.
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Table 1 DIS Stressmark programs (Musmanno 2003).

Programs Memory Access
Pointer Small blocks at unpredictable locations.
Update Small blocks at unpredictable locations with memory updates.
Matrix Irregular or mixed, with mixed levels of reuse.

Neighborhood Regular access to pairs of words at arbitrary distance.
Field Regular, with little reuse.

Transitive Closure Reads and writes to different matrices concurrently.

Impact of providing full isolation at Levels A and B. In our first set of experiments,
we examined the impact of providing full isolation to a task by giving it a dedicated
LLC area and/or DRAM bank that are accessed by no other task. When full isolation
is provided, these experiments have implications when determining PETs for Level-A
and -B tasks. Such tasks can only experience interference from other tasks due to
preemptions, and any execution-time increases due to preemptions are dealt with in
overhead accounting.

To assess the impacts of providing full isolation, we ran experiments in which a
measured program (either a micro-benchmark program or a DIS program) was run
alone on one core either in the presence of no other running programs—we call this
the idle scenario—or along with stress-inducing programs running concurrently on
the other three cores—we call this the loaded scenario. The loaded scenario was
further factored into four cases: (i) no cache or bank isolation, (ii) bank isolation but
no cache isolation, (iii) cache isolation but no bank isolation, and (iv) both cache and
bank isolation. This yielded a total of five isolation configurations. The stress-inducing
programs were configured like our synthetic micro-benchmark programs, with a WSS
of 1MB. When bank isolation was not provided, these programs were configured to
specifically target the DRAM bank used by the measured program.

For each measured program and isolation configuration, we considered 272 pos-
sible LLC area sizes (given by 0 to 16 ways and 1 to 16 colors) for allocation to the
measured program. Each additional way or color increases the allocated LLC space by
4KB. This process yielded 272× 5 = 1,360 experiments per measured program. In
each such experiment, we ran the measured program 100 times and recorded the (ob-
served) WCET and average-case execution time (ACET) from the data collected. We
are interested in both WCETs and ACETs because both are used in MC2 provisioning,
as discussed in Sec. 2.

We collected trace data (8GB in total) for all six programs in Table 1 and for
micro-benchmark-programs with WSSs in {32, 64, 256, 512}KB. (Recall that the
L1 caches on our hardware platform are 32KB.) We now make several observations
based on this data. We support these observations using the data in Figs. 7–9, which
depict recorded WCETs and ACETs for the 256KB-WSS and 32KB-WSS variants of
the micro-benchmark program and the Matrix program, given an allocated LLC area
consisting of 16 colors and some number of ways, and 16 ways and some number of
colors. The rest of our collected data is given online (Kim et al. 2016c).

Obs. 1 Providing LLC isolation reduced WCETs by up to 369% for the micro-
benchmark program and by up to 142% for the Matrix program.
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(a) WCET assuming 16 colors.
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(b) ACET assuming 16 colors.
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(c) WCET assuming 16 ways.
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(d) ACET assuming 16 ways.

Fig. 7 Execution-time data for the 256KB-WSS micro-benchmark program.
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(b) ACET assuming 16 colors.
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(d) ACET assuming 16 ways.

Fig. 8 Execution-time data for the Matrix program.
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The noted 369% (respectively, 142%) reduction can be seen by comparing the curves
in Fig. 7(c) (respectively, Fig. 8(a)) at the data points corresponding to five colors
(respectively, twelve ways). However, isolation comes at a cost. For example, if we
choose to isolate Level-C tasks by way on a per-CPU basis (refer to Fig. 6(b)), then
each Level-C task would only be able to access 1/4 of the available LLC area size
(assuming it is divisible by four) instead of sharing the entire area.

Obs. 2 LLC isolation had a greater impact on WCETs as LLC space approached the
ICAS. Beyond this point, WCETs were only marginally greater than in an idle system,
implying that unmanaged hardware resources (TLB, MSHRs, memory bus, memory
controllers—see Sec. 3) had only a small impact.

In insets (a) and (c) of Fig. 7, the WCET with LLC isolation becomes quite close
to that in an ideal system at four colors, which yields an LLC area matching the
micro-benchmark program’s WSS, and therefore its ICAS. A similar trend can be seen
in Fig. 8(a) at ten ways and in Fig. 8(c) at seven colors.

Obs. 3 Isolation with respect to both the LLC and DRAM banks improved WCETs
over LLC isolation alone especially when the allocated LLC area is less than the
ICAS.

This effect can be seen in insets (a) and (c) of Fig. 7 and in insets (a) and (c) of Fig. 8.
Note that, if the allocated LLC area is at least the given program’s ICAS, then DRAM
bank isolation has only a small impact.

Recall from Sec. 2 that Level-A and -B tasks are included in the Level-C analysis,
which assumes Level-C PETs for all tasks. Thus, ACETs are important to consider for
all tasks.

Obs. 4 The WCET trends noted in Obs. 1–3 also apply to ACETs. ACETs were lower
than WCETs by approximately 5-10% (respectively, 80%) for the micro-benchmark
program (respectively, Matrix program).

This can be seen by comparing insets (a) and (b) in Fig. 7 and insets (a) and (b) in
Fig. 8. (The 5-10% reduction may be somewhat hard to see because of the scale.) The
Matrix program exhibits a relatively lower ACET because it is less deterministic than
the micro-benchmark program.

Obs. 5 The execution times of the 32KB-WSS micro-benchmark program were anoma-
lously high for some allocated LLC area sizes.

We originally expected that since this WSS matches the size of the L1 data cache,
all memory references would hit in the L1 caches with the exception of compulsory
misses. However, the results in insets (c) and (d) of Fig. 9 do not support this hypothesis.
Observe that, in these insets, some odd-numbered color allocations resulted in “spikes”
in the execution times. The baseline execution time of 20ms corresponds to all
references hitting in the L1 caches, as shown in insets (a) and (b) of Fig. 9, so these
spikes are due to L1 cache misses. To explain these spikes, we must carefully consider
the cache structure.
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(a) WCET assuming 16 colors.
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(b) ACET assuming 16 colors.
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(c) WCET assuming 16 ways.
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(d) ACET assuming 16 ways.

Fig. 9 Execution-time data for the 32KB-WSS micro-benchmark program.
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Our L1 data cache is a 32KB 4-way set-associative cache and has two colors, which
we denote here as X and Y to distinguish them from the LLC colors. For each physical
address, the least significant bit of its LLC color bits determines its L1-data-cache color.
Even-numbered LLC colors are mapped to Color X and odd-numbered LLC colors
are mapped to Color Y. The WSS of the considered micro-benchmark program is
32KB, so there are eight data pages to be colored. The spikes were observed when the
required LLC colors were not equally distributed between the L1-Colors X and Y. For
example, the eight pages of the micro-benchmark program could be allocated using the
first three LLC colors as follows: three pages of Color 0, three pages of Color 1, and
two pages of Color 2. In this case, as shown in Fig. 10, five pages are mapped to to the
L1-Color X and three pages are mapped to the L1-Color Y. Since our L1 cache is only
4-way set associative, the five pages of Color X compete for four ways, thereby causing
evictions. This behavior was not observed for all odd-numbered color allocations.
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Fig. 10 Conflict in the L1 cache.
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(a) A case where the color starts from 3.
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(b) A case where the color starts from 4.

Fig. 11 Two potential mappings of eight data pages
with nine LLC colors. White regions are mapped to
Color X while gray regions are mapped to Color Y.

For instance, suppose the
micro-benchmark program is
given an LLC area with Col-
ors 0 through 8. Fig. 11 shows
two potential mappings of the
program’s eight pages to LLC
colors. In the first mapping,
illustrated in Fig. 11(a), four
pages are mapped to Color X
(denoted in white) and four
pages are mapped to Color
Y (denoted in gray), and L1
evictions do not occur. In the
second mapping, illustrated
in Fig. 11(b), LLC-Color 3 is
not used. As a result, there
are five pages of Color X
and three pages of Color Y,
which again causes evictions,
explaining the execution-time
spikes. The presence of these
execution-time spikes where
none was expected provides a cautionary note for designers concerned with provi-
sioning systems. In particular, a complete understanding of the caching and memory
characteristics of the considered platform is needed in order to avoid producing
execution-time estimates that are problematic. With respect to the results discussed in
later sections, no special consideration of execution-time spikes was required because
all of the allocation schemes we considered provide an even number of colors to all
tasks.

Space tradeoffs. While the data discussed above shows clear execution-time benefits
from isolation, this does not address the additional LLC space constraint imposed by
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partitioning. Here, we compare specific execution times associated with the different
LLC allocation variants shown in Fig. 6. For example, suppose we can allocate the
entire LLC to Levels A and B under Variant 1 or 3. From the perspective of the
micro-benchmark program considered in Fig. 7(c), these two allocation choices can
be examined by comparing the curve for a loaded system with LLC and DRAM
bank isolation at four colors to that for a loaded system with no LLC isolation, but
DRAM bank isolation, at 16 colors. By comparing these two points, we see that
the WCETs under these two allocations are 317ms and 665ms, respectively, a 52%
WCET improvement under isolation at Levels A and B. Similarly, suppose we can
allocate the entire LLC to Level C under Variant 1 or 2. From the perspective of the
micro-benchmark program considered in Fig. 7(b), these two allocation choices can
be examined by comparing the curve for a loaded system with no LLC isolation at 16
ways to that for a loaded system with LLC isolation at four ways (we assume that bank
isolation is not provided, as is the case for Level C). By comparing these two points,
we see that the ACETs for these two options are 677ms and 466ms, respectively,
a 31% ACET improvement under isolation at Level C. To more clearly investigate
the execution-time differences afforded by sharing versus isolation, we generated
histograms, four of which are given in Fig. 12. The manner in which each histogram
should be interpreted is explained in the figure’s caption.

Obs. 6 WCETs under per-core partitioning at Levels A and B were almost always
lower than WCETs under cross-core sharing of the available LLC space.

Insets (a) and (b) of Fig. 12 show that isolation improves WCETs in all cases for
the Matrix and 256KB-WSS micro-benchmark programs. Similar results were found
for other programs. Given that isolation is overwhelmingly preferable to sharing at
Levels A and B, we chose not to consider Variant 3 of our general allocation strategy
illustrated in Fig. 6(c) in the schedulability experiments presented later.

Obs. 7 For a given LLC allocation, sharing an entire allocated LLC area at Level C
without isolation and partitioning that area and providing isolation are incomparable
with respect to ACETs. This exposes a tradeoff that is dependent upon the given task
system to be supported, as well as the size and configuration of the LLC-allocation
space under consideration.

Fig. 12(c) shows that for the Matrix program, isolation tends to improve ACETs,
while Fig. 12(d) shows that for the 256KB-WSS micro-benchmark program, the
reverse is true. Also, there exist cases in which one approach may be substantially
better, as demonstrated by the leftmost “outlier” in Fig. 12(d), where isolation yields a
45% improvement. Given this tradeoff, we opted to fully consider in the schedulability
experiments presented later Variant 2 of our allocation strategy, shown in Fig. 6(b), in
which the Level-C/OS LLC area is partitioned instead of shared.

Impact of sharing at Level C: additional considerations. If hardware isolation is
provided, then ACETs can be computed without much regard for the background
workload. However, the situation is murkier for Level-C tasks assuming Variant 1 of
the LLC-allocation strategy in Fig. 6 since Level-C tasks share the same LLC area and
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(d) 256KB-WSS micro-benchmark ACETs.

Fig. 12 Histograms showing the percentage improvement in the ACETs and WCETs of
one micro-benchmark program and one benchmark program provided by sharing the
program’s allocated LLC area, instead of ensuring isolation. The x-axis gives different
percentages, and for a given percentage, the histogram shows the number of cases
observed across all considered LLC-allocation sizes that exhibited that percentage
improvement. Negative (respectively, positive) percentages indicate that isolation
(respectively, sharing) produces lower execution times. WCETs are with respect to
allocation variants (see Fig. 6) at Levels A and B with bank isolation. ACETs are with
respect to allocation variants at Level C without bank isolation.
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Fig. 13 ACETs of the Matrix program with varying LLC sizes and background
workloads.

DRAM banks. To better understand this issue, we conducted experiments in which a
mixture of DIS programs was executed at Level C and ACETs were determined for
individual programs. The following observation follows from these experiments.

Obs. 8 Level-C ACETs for Level-C tasks increased when the allocated Level-C LLC
area was reduced or when the utilization of the background Level-C workload was
increased.

Data supporting this observation is given in Fig. 13, which gives ACETs for
the Matrix program assuming various LLC area sizes and total background Level-C
utilization. To determine Level-C PETs for Level-C tasks in practice, some domain
knowledge would be required when defining an appropriate background workload.
In our schedulability experiments, we determined such PETs by “indexing into” a
graph similar to that in Fig. 13, which is reflective of the assumption that the back-
ground workload is a mix of DIS programs. In Sec. 6.2, we present the results of
runtime experiments involving observed timeliness that partially validate this and
other provisioning assumptions made in this paper.

OS isolation. Our new MC2 prototype isolates the OS from Levels A and B with
respect to the LLC and DRAM banks (recall Figs. 5 and 6). As a result, execution
within the OS does not cause any interference of Level-A and -B tasks with respect
to the LLC or DRAM banks. We examined the impact of this feature by conducting
an experiment in which a Level-B micro-benchmark program was executed with and
without OS isolation. The micro-benchmark program was modified to invoke a dummy
system call once per loop iteration that allocated and read 16 pages of memory. While
such a system call may seem somewhat extreme, the point here is that if OS isolation
is not provided, then predictability can be lost, unless the code paths the OS will take
are known with high assurance. Fig. 14 shows measured execution times for 100 jobs
of the micro-benchmark program, with and without OS isolation.

Obs. 9 OS isolation reduced the WCET and ACET of the micro-benchmark program
considerably.

The WCET (respectively, ACET) decreased by 24% (respectively, 16%) in Fig. 14.
The execution of the dummy system call can evict cache lines of 16 pages of the
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Fig. 14 A histogram of execution times for 100 jobs of a Level-B micro-benchmark
program with and without OS isolation.

micro-benchmark program, which results in cache misses when user-mode execution
resumes. OS isolation prevents evictions of user pages at Levels A and B in kernel
mode since the OS only accesses the Level-C/OS partition.

In the experiment considered above, OS code executes on the same core as the
program invoking the system call. In addition to such same-core interference, the OS
can also cause cross-core interference. In particular, because OS pages are spread over
all cache colors, they can cause LLC evictions of tasks on any core if not managed. To
demonstrate the potential ill effects of cross-core OS interference, we executed two
micro-benchmark programs concurrently at Level B on different cores. One program,
referred to as the caller, issued dummy system calls after each loop iteration, while
the other program, referred to as the victim, did not. The caller ran on Core 0 while the
victim ran on Core 1. The two programs were allocated separate LLC partitions and
DRAM banks. Recorded WCETs and ACETs for these programs, with and without
OS isolation, are shown in Fig. 15.

Obs. 10 OS isolation reduced the WCET and ACET of both the caller and victim by
20%.

These results suggest that isolating user-space programs from each other with
respect to the LLC and DRAM banks alone is not sufficient to mitigate execution-time
interference; the OS must be isolated as well.

OS-related overheads can induce pessimism in schedulability analysis (Branden-
burg 2011), but Figs. 14 and 15 suggest that per-overhead costs can be significantly
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Fig. 15 Cross-core OS interference.

reduced through OS isolation. One potential concern, however, is that restricting the
OS to execute within a smaller LLC area might increase its own execution times unac-
ceptably. However, in additional experiments, we found that providing OS isolation
increased system-call overheads by a mere 35 ns in the worst case and by 15 ns on
average. Such small overheads are negligible in comparison with the noted reductions
in WCETs and ACETs.

While our OS-isolation technique prevents the OS from evicting data from Level-A
or -B tasks, it does not address communication between a Level-A or -B task and
the kernel itself. Consider, for example, the read() system call, in which the kernel
copies data from kernel space into user space. When the kernel copies data into user-
space pages, it will load the data into OS LLC ways, which are subject to interference
from Level-C tasks and other kernel invocations. In future work, we intend to fully
consider this issue and other issues that arise when Level-A and -B tasks use OS
services.

In this section, we have provided recommendations for how to handle several
tradeoffs (such as tradeoffs for cross-core isolation vs. sharing in the LLC at Levels
A and B), but other tradeoffs still require further analysis. For example, as seen in
Fig. 7, providing more LLC space to Level-A or -B tasks may reduce their execution
times dramatically, but this may limit the available LLC space for Level C, which
could increase Level-C execution times. How do we handle this tradeoff? In Sec. 5,
we show that this tradeoff can be addressed by means of an optimization framework
based on linear programming. Additionally, we still must provide evidence in support
of the major thesis of this paper, namely, that combining MC analysis and hardware
management is more effective in attacking the one-out-of-m problem than applying
either technique alone. We provide such evidence in the form of a large-scale overhead-
aware schedulability study in which the aforementioned optimization framework was
applied. The results of this study are discussed in Sec. 6.
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5 An Optimization Framework for Determining LLC Allocations

As indicated by the double lines in Fig. 6, our proposed variants for allocating LLC
space allow some flexibility. In this section, we present an optimization framework for
sizing LLC areas based on linear programming. We focus particularly on Variant 1 of
our allocation strategy, but our techniques can be applied to the other variants with
minor modifications.

5.1 Overview of Notation and MC2 Schedulability

In order to formulate the linear program (LP) that underlies our optimization frame-
work, we must first refine the notation presented earlier in Sec. 2 to allow certain
details to be considered that were heretofore unimportant. We consider a set of
implicit-deadline periodic tasks τ = {τ1, τ2, τ3, ..., τn} to be scheduled under the
MC2 framework on m cores. We only consider Levels A–C, as stated earlier. Each
task τi has a period Ti, and three PETs, eAi , eBi , and eCi , where e`i denotes its Level-`
PET (recall the discussion concerning MC schedulability analysis in Sec. 2). We let
τA, τB , and τC denote the subset of tasks in τ at Levels A, B, and C, respectively.
Also, we let τA,p and τB,p denote the subset of tasks in τA and τB , respectively,
that are assigned to core p. We denote the total utilization of all Level-` tasks assum-

ing Level-`′ execution times as U `
′

` =
∑
τi∈τ`

e`
′

i

Ti
. We denote the total utilization

of all Level-A or -B tasks assigned to core p assuming Level-`′ execution times as

U `
′

A,p =
∑
τi∈τA,p

e`
′

i

Ti
and U `

′

B,p =
∑
τi∈τB,p

e`
′

i

Ti
, respectively. The schedulability

condition for Level C is dependent on the largest Level-C utilization of any Level-C
task, which we denote as h, and the sum of the m − 1 largest Level-C utilizations
among Level-C tasks, which we denote as H . The following are sufficient conditions
for ensuring schedulability at all three criticality levels (Mollison et al. 2010).

∀p :: UAA,p ≤ 1 ∧ (1)

∀p :: UBA,p + UBB,p ≤ 1 ∧ (2)

UCA + UCB + UCC ≤ m ∧ (3)

UCA + UCB + (m− 1)h+H < m (4)

As noted in Sec. 2, we assume that PETs are determined via a measurement
process. As shown in Sec. 4, these measurement-based PETs will generally depend on
allocated LLC areas. We denote the Level-` PET of task τi when its allocated LLC
area consists of W ways and S colors (refer to Fig. 6) as e`i(W,S). (We use “S” in
denoting colors because colors determine LLC sets, and the term “C” has a predefined
meaning in the context of MC2.)



Attacking the One-Out-Of-m Multicore Problem 25

Canonical LLC allocation and problem to be solved. We consider a canonical LLC
allocation, given by the LLC-allocation variant illustrated in Fig. 6(a), with respect
to our quad-core ARM platform. Assuming an LLC with Wmax ways in total, all
Level-C tasks together are allocated an LLC area that consists of all colors (sets)
associated with the last WC ways, Ways Wmax − 1−WC through Wmax − 1, for
some WC . All LLC areas for Level-A and -B tasks are taken from the colors (sets)
associated with Ways 0 through WC − 1. The Level-A and -B tasks on each core use
an LLC area consisting of 1/m (m = 4 on our platform) of the colors (sets) associated
with these ways, as depicted in Fig. 6(a). Each per-core Level-A and -B LLC area is
subdivided into potentially overlapping Level-A and -B areas.

The technical LLC allocation problem considered here is to determine how to
precisely size these LLC areas so as to enhance schedulability given the characteristics
of the task system in question. That is, we seek to determine how the doubled lines in
Fig. 6(a) should be set given execution time data, such as that in Fig. 8, for all tasks in
question. In addressing this problem, we assume that an assignment of all Level-A
and -B tasks to cores has already been determined.

5.2 MC2 LLC-Managed Overhead Accounting

As a precursor to setting up our LP, we begin by discussing how to alter the schedula-
bility conditions given in (1)–(4) to account for overheads. This is important because
the manner in which LLC areas are sized can affect overheads, and overheads in turn
impact schedulability.

Many overhead sources can be modeled independently of LLC allocations with
prior overhead-modeling techniques. Further discussion of such overhead sources can
be found in Appendix A. Here, we consider a particularly important overhead that is
dependent on LLC allocations, cache-related preemption delays (CRPDs), and how
this overhead is affected by our LLC allocation methods. CRPDs are delays a task
may incur to reload lines evicted from the LLC (and other caches) due to a preemption
and write back to memory dirty data in these evicted lines. We discuss how to quantify
CRPDs with respect to LLC allocation sizes, so that these delays can be integrated
into schedulability analysis.

There are two basic ways to account for CRPD costs, as shown in Fig. 16. Under
task-centric accounting, the execution time of the preempted job is inflated to account
for the preemption. Under preemption-centric accounting, the execution time of the
preempting job is inflated to “pay” for the CPRD cost of any preempted job that
resumes execution when the preempting job completes. We consider preemption-
centric accounting here (with one exception, discussed later), because it usually
introduces less pessimism in schedulability analysis, and because it can be linearly
modeled by simply adding an inflation term to each execution cost. (Task-centric
accounting often entails the introduction of non-linear ceiling and/or floor operators.)

CRPD-overhead inflations. The inflation term we add to a task’s execution times is
generally a function of that task’s allocated LLC area size. For example, we can inflate
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release deadline inflation

(a) Task-centric accounting. (b) Preemption-centric accounting.

Fig. 16 Forms of overhead accounting.

the Level-` execution time of any Level-B or -C task that has an LLC area consisting
of W ways and S colors as follows:

∀i : τi ∈ τB ∪ τC :: e′
`
i(W,S) = e`i(W,S) + E`(W,S), (5)

where E`(W,S) is the time required, according to Level-` analysis, to reload all cache
lines and write back any dirty lines to memory within a region of the LLC consisting
of W ways and S colors. Note that this is the LLC area of both the preempting and
preempted task: for preemptions of Level-B tasks by Level-B tasks (or Level-C tasks
by Level-C tasks), the preempting job shares the same LLC area as the preempted
job. We denote b` as an upper-bound on the worst-case time required under Level-`
analysis assumptions to load the lines within an LLC area consisting of only one way
and one color. Under this assumption, our inflation term is

E`(W,S) =W · S · b`. (6)

We now explain how to introduce inflations into the schedulability conditions
(1)–(4) discussed earlier. To do so, we can substitute for each utilization term a
corresponding inflated utilization term. We denote the inflated Level-` utilizations of
each task τi as u′`i =

e′`i
Ti
. We can then define inflated Level-B and -C utilizations as

follows.
∀p :: U ′BB,p =

∑
τi∈τB,p

u′
B
i

∀p :: U ′CB,p =
∑

τi∈τB,p

u′
C
i

U ′
C
C =

∑
τi∈τC

u′
C
i

We also replace h and H in condition (4) with inflated terms h′ and H ′. h′ is the
highest inflated Level-C utilization of any Level-C task, and H ′ is the sum of the
m− 1 largest inflated Level-C utilizations among Level-C tasks.

Note that we do not apply the inflation described in Equation (5) to Level-A tasks.
Recall from our discussion in Sec. 2 that each Level-A job (or job slice) runs non-
preemptively. Under some system implementations, the execution time of each job
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Fig. 17 Overlap for Level-A and -B
LLC areas on core p.
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Fig. 18 Per-frame Level-B inflation for
Level A.

slice can be measured independently of other slices when PETs are initially determined.
This ensures the PETs of one slice are not affected by cache lines loaded by other job
slices. In former presentations of our work on LLC allocation optimization, we took
advantage of this possibility and applied no inflation at Level A (Chisholm et al. 2015).
However, under the budgeted job executions of our implementation, we do not a priori
know the slicing point. Therefore, we must account for cache-related delays due to job
slicing. The frame size for the cyclic executive of Level-A tasks on core p is equal to
the smallest period of any task in τA,p, which we denote TminA,p . Given this frame size,
an upper bound on the number of slices per job that a task may incur is si =

Ti

Tmin
A,p

.
We use this upper bound to define the following per-task inflated execution times and
per-core utilizations:

∀i : τi ∈ τA :: e′
`
i(W,S) = e`i(W,S) + (si − 1) ∗ E`(W,S),

∀p :: U ′`A,p =
∑

τi∈τA,p

u′
`
i .

This is the one case of task-centric overhead accounting in our model, since each job
pays for its own CRPDs from job-slicing.

Level-A jobs may produce other CRPD overheads as well in the event that the
LLC areas for Levels A and B on core p overlap. In Fig. 17, consider the shaded region
representing this overlap. Level-A tasks may evict all cache lines of Level-B tasks
within this region of WO

p ways and SOp colors. This might suggest that the Level-B
execution time of each Level-A job requires inflation to account for possible evictions
in the LLC space shared with Level B. However, the required inflation can be less
pessimistically determined. As shown in Fig. 18, Level-A jobs allocated to a frame run
sequentially at the beginning of the frame. In this scenario, Level B is only preempted
by Level A at most once per frame. Hence, an inflation is only required once per
frame, as shown, rather than once per job. While some CRPDs incurred by Level B
are applied to Level A, we emphasize that this preemption-centric modeling does not
negatively impact the schedulability of the higher criticality Level-A tasks. These
CRPD penalties are only considered when analyzing the schedulability of Level B and
Level C.
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Set 1

… τA,0 τB,0

(a) Portion of Core-0 LLC areas.

Way 1 Way 2 Way 3 Way 4 Way 5

Set 1
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(b) Level B loads d1–d3.
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(c) Level A loads d4–d6.
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(d) Level B reloads d1.

Fig. 19 Example of an eviction indirectly caused by Level A in a Level-B cache line
isolated from Level A. Inset (a) shows the LLC areas of τA,0 and τB,0. First, Level B
loads data d1, d2, and d3 into its ways in Set 1 (inset (b)). Then, Level A evicts data
d1 in the overlap between the LLC areas of τA,0 and τB,0 (inset (c)). Then, Level B
evicts d3 in order to reload d1 (inset (d)).

Depending on the replacement policy of the cache, evictions of Level-B cache
lines by Level-A tasks may cause Level-B tasks to evict additional lines throughout
the ways allocated to Level B. Fig. 19 shows one example of such a Level-B eviction
occurring under one possible LLC configuration for τA,0 and τB,0. For Level B, we
make the pessimistic assumption that the number of evictions directly or indirectly
caused by a Level-A task is equal to the area allocated to Level B in sets it shares with
Level A. For Level C, we make the more optimistic assumption that, on average, the
number of evicted cache blocks is equal to the size of the overlap.

If Level B is allocated WB,p ways on core p, then we can model the overhead
associated with reloading cache lines allocated to Level B once per Level-A frame

by applying the inflation term IBA,p =
EB(WB,p,S

O
p )

Tmin
A,p

to the Level-B utilization of τA,p

when WO
p > 0 and SOp > 0. If either WO

p or SOp is 0, then τA,p and τB,p do not share

cache lines, and thus IBA,p = 0. We similarly apply the inflation ICA,p =
EC(WO

p ,S
O
p )

Tmin
A,p

to the Level-C utilization of τA,p.

∀p :: U ′′BA,p = U ′
B
A,p + IBA,p

∀p :: U ′′CA,p = U ′
C
A,p + ICA,p

Our schedulability conditions with CRPD overheads accounted for are the follow-
ing.

∀p :: U ′AA,p ≤ 1 (7)

∀p :: U ′′BA,p + U ′
B
B,p ≤ 1 (8)
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m∑
p=1

(
U ′′

C
A,p + U ′

C
B,p

)
+ U ′

C
C ≤ m (9)

m∑
p=1

(
U ′′

C
A,p + U ′

C
B,p

)
+ (m− 1)h′ +H ′ < m (10)

5.3 Linear Program

In this section, we show how to solve the canonical LLC allocation problem described
in Sec. 5.1 via an LP. The LP we obtain determines a choice of ways for each allocated
LLC area such that the schedulability conditions (7)–(10) are maintained. This requires
treating ways as continuous variables. We explain later how to ultimately obtain an
integral solution. We now describe the various sets of constraints in our final LP.

LLC size constraints. The simplest constraint set ensures that there is no overlap
between Level-C’s partition and any allocated LLC areas at higher criticality levels.
We let ŴA,p and ŴB,p denote LP variables indicating the number of ways allocated to
Levels A and B, respectively, on core p. We let ŴC denote an LP variable indicating
the number of ways allocated to Level C. Depending on whether we are formulating a
mixed-integer or non-integer linear program, we can treat these LP variables as either
continuous or integer. Later in this section, we discuss in more detail the tradeoffs
between the continuous and integer modeling of ways.

LLC size constraints also determine the overlap between Levels-A and -B LLC
areas. ŴO

p denotes a continuous LP variable modeling the overlap on core p. Recall
that Wmax is the total number of ways in the considered LLC cache. If Level-A and
-B LLC areas overlap on core p, the overlap is

WO
p =WA,p +WB,p +WC −Wmax.

Constraint Set 1. The LLC size constraints are as follows.

∀p :: ŴA,p + ŴC ≤Wmax

∀p :: ŴB,p + ŴC ≤Wmax

ŴO
p ≥ ŴA,p + ŴB,p + ŴC −Wmax.

Modeling execution times. In order to determine LLC allocations for which a task sys-
tem is schedulable, we need to model the impact of LLC area sizes on the utilizations
used in (7)–(10). A model for utilizations, in turn, requires a model for task PETs. The
manner in which we model the impact of allocated LLC area sizes on PETs affects
the choice of optimization techniques that can be applied to determine such sizes. In
particular, our LP requires strictly linear relationships between LLC area sizes and
PETs.

Execution-time measurements, such as those required for PETs under MC2, often
exhibit a property that we will exploit:
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Execution-Time Assumption. The derivative of a task’s execution time (at any level)
with respect to its allocated LLC area size is non-increasing. That is, the execution-time
function is non-convex.

Bui et al. (2008) presented graphs for execution times of several avionics appli-
cations that approximately meet this condition, suggesting that this behavior is not
uncommon. The measurement data discussed in Sec. 4 exhibits similar behavior. We
note three properties that directly follow from this assumption.

Lemma 1 The derivative of a task’s inflated execution time (at any level) with respect
to its allocated LLC area size is non-increasing.

Proof For our LLC allocation problem, colors are fixed at each level, such that the
execution-time function for each task τi is a function of the number of ways allocated
to τi. By (6), the inflation function E` varies linearly with allocated ways, and is thus
non-convex. The sum of two non-convex functions is non-convex.ut

Lemma 2 The derivative of a task’s inflated utilization (at any level) with respect to
its allocated LLC area size is non-increasing.

Proof This follows from the fact that task utilizations are directly proportional to task
execution times.ut

We could proceed with the construction of our LP by treating individual task
utilizations as variables, but this would entail having O(n) variables. We can limit the
number of variables to O(m) by instead considering the combined utilizations of sets
of tasks. This is supported by one final property.

Lemma 3 The derivative of the inflated utilizations (at any level) of a set of tasks
with respect to their allocated LLC area size is non-increasing.

Proof As stated earlier, the sum of non-convex functions is non-convex.ut

While some of the assumptions made here concerning execution times may result
in over-approximations of such execution times so that these assumptions are met,
we have determined via schedulability studies in prior work that our LLC allocation
methods still yield substantial schedulability improvements (Chisholm et al. 2015).

PET- and overhead-based constraints. Consider the hypothetical utilization plot
shown in Fig. 20(a) for U ′CC with respect to some integer number of allocated LLC
ways W . We can construct such a plot from execution-time measurement data (like
that presented in Sec. 4), known task periods, and known values for bB and bC . In
Fig. 20(b), we create a set of lines from each pair of adjacent data points, using the
standard two-point line formula f(x) = f(x0) + (x− x0)(f(x0 + 1)− f(x0)). This
is the formula for the line that contains the points (x0+1, f(x0+1)) and (x0, f(x0)).
We can describe the value of f over a continuous domain with LP variables f̂ and x̂
constrained by such lines. Let xmax denote the maximum value of x for which we
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(a) Utilization.
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(b) LP model of utilization.

Fig. 20 Determining LP constraints from utilizations. Inset (a) shows an example of
the Level-C utilization for a task set with respect to the number of ways allocated at
Level C. Inset (b) shows LP-constraint functions derived from the utilization values
in inset (a). The shaded region is the continuous region in which ÛCC and ŴC are
constrained in the LP.

have a data point for f(x). A value can be determined for f̂ by solving the following
LP.

minimize f̂
subject to:
∀x ∈ {0, 1, ..., xmax − 1} :
f̂ ≥ f(x) + (x̂− x)(f(x+ 1)− f(x))
f̂ ≥ 0

0 ≤ x̂ ≤ xmax

If this LP produces an integer value for x̂, then f̂ will equal f(x̂). In the case
considered in Fig. 20(b), our discrete function is U ′CC(W ), for which we define the
LP variable ÛCC to describe U ′CC(W ) over a continuous domain.

ÛCC ≥ U ′
C
C(W ) + (ŴC −W )(U ′

C
C(W + 1)− U ′CC(W ))

Note that ŴC is the only variable in the right-hand-side expression above, i.e., this is
a linear expression. We define similar LP variables ÛAA,p, ÛBA,p, ÛCA,p, ÛBB,p, and ÛCB,p
for the inflated utilizations of Levels A and B for each core p.

The LP constraints for ÛBA,p and ÛCA,p must also include the impact of per-core
inflations IBA,p and ICA,p. Consider the following constraints for ÛBA,p and ÛCA,p:

ÛBA,p ≥ U ′
B
A,p(W ) + (ŴA,p −W )(U ′

B
A,p(W + 1)− U ′BA,p(W )) + IBA,p

ÛCA,p ≥ U ′
C
A,p(W ) + (ŴA,p −W )(U ′

C
A,p(W + 1)− U ′CA,p(W )) + ICA,p
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(a) Overhead value. (b) LP model.

Fig. 21 (a) Value of IBA,0 with respect to WB,0, assuming WC +WA,0 = m − 2,
SO0 = 4, TminA,0 = 1 ms, and bB = 0.025 ms. Under this scenario, LLC areas allocated
to τA,0 and τB,0 overlap when WB,p > 2. (b) Linear model of IBA,0 in the LP. An
inflation is applied for all values of ŴB,p in the LP model to avoid the non-linear
“jump” at 2 ways seen in inset (a).

IBA,p and ICA,p denote LP terms for IBA,p and ICA,p, respectively. These LP terms
equate to the following LP expressions, based on our definitions of IBA,p and ICA,p:

IBA,p =
EB(ŴB,p, S

O
p )

TminA,p

ICA,p =
EC(ŴO

p , S
O
p )

TminA,p

Note that, for an LLC with Smax colors, SOp = Smax/m on each core p in the
LLC-allocation variant depicted in Fig. 6(a). At Level B, an inflation is applied even
without overlap. This conservatively models Level-A inflations at Level B to avoid
non-linear constraints (see Fig. 21). This completes the LP variable relations needed
to describe constraints derived from measured execution times.

Constraint Set 2. The linear constraints for utilization variables based on task
execution-time data with CRPD overheads added are as follows.

∀W ∈ {0, 1, ...,Wmax − 1} ::
ÛCC ≥ UCC(ŴC ,W )

∀p ∈ {1, ...,m} ::
ÛBB,p ≥ U ′

A
B,p(W ) + (ŴB,p −W )(U ′

A
B,p(W + 1)− U ′AB,p(W ))

ÛCB,p ≥ U ′
B
B,p(W ) + (ŴB,p −W )(U ′

B
B,p(W + 1)− U ′BB,p(W ))

ÛAA,p ≥ U ′
A
A,p(W ) + (ŴA,p −W )(U ′

A
A,p(W + 1)− U ′AA,p(W ))

ÛBA,p ≥ U ′
B
A,p(W ) + (ŴA,p −W )(U ′

B
A,p(W + 1)− U ′BA,p(W )) + IBA,p

ÛCA,p ≥ U ′
C
A,p(W ) + (ŴA,p −W )(U ′

C
A,p(W + 1)− U ′CA,p(W )) + ICA,p
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Modeling h andH . To construct an LP that applies all schedulability conditions to task
systems, linear constraints are also required for quantities specific to Expression (10).
We let h′(W ) and H ′(W ) denote the values of h′ and H ′, respectively, when W ways
are allocated to Level C. We let ĥ and Ĥ be our LP variables for h′(W ) and H ′(W ),
respectively. Our constraints for these variables are constructed in a similar fashion to
the constraints for utilization variables. Values for h′(W ) and H ′(W ) are determined
from measured execution times for each integer number of ways W allocated to Level
C after inflation. Linear constraints are then constructed from adjacent data points.

This requires h′(W ) and H ′(W ) to be non-convex as well. These data functions,
in fact, are non-convex under our Execution Time Assumption. To see this, let τh(W )
denote the Level-C task with the highest inflated utilization whenW ways are allocated
to Level C. Note that, for any two way values, W1 and W2, τh(W1) may indicate a
different task from τh(W2), since Level-C task utilizations may vary with the number
of ways allocated. If τh(W ) happens to denote the same task for different values of
W , then the non-convexity of h′(W ) follows trivially, because the Level-C utilization
of any task is non-convex. The more interesting possibility is that the task denoted by
τh(W ) changes with W . In this case, consider way values W and W + 1 such that
τh(W ) 6= τh(W + 1). This implies that the derivative of τh(W + 1)’s utilization is
greater than the derivative of τh(W )’s utilization at W . Hence, the derivative of h′ is
greater at W + 1 than W , and h remains non-convex at W + 1.

By similar logic, H ′(W ) is guaranteed to be non-convex.

Constraint Set 3. The linear constraints for ĥ and Ĥ based on measured task-set
utilizations with CRPD overheads are as follows.

∀W ∈ {0, 1, ...,Wmax − 1} ::
Ĥ ≥ h′(W ) + (ŴC −W )(h′(W + 1)− h′(W ))

ĥ ≥ H ′(W ) + (ŴC −W )(H ′(W + 1)−H ′(W ))

Schedulability constraints. To fully characterize all constraints on utilizations and
ways, we must include the schedulability constraints based on Expressions (7)–(10).
Expression (10) is a strict inequality. We apply a small decrease, ε = 10−6, to its
right-hand side to change this.

Constraint Set 4. The linear constraints based on the schedulability conditions (7)–
(10) are as follows.

∀p :: ÛAA,p ≤ 1

∀p :: ÛBA,p + ÛBB,p ≤ 1
m∑
p=1

(
ÛCA,p + ÛCB,p

)
+ ÛCC ≤ m

m∑
p=1

(
ÛCA,p + ÛCB,p

)
+ (m− 1)ĥ+ Ĥ ≤ m− ε
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Linear program for LLC allocation. From Lemmas 1-3 and the discussion above, we
have the following.

LP Allocation Theorem. An allocation scheme that produces the minimum Level-
C utilization for a task set while maintaining all schedulability conditions can be
determined by solving the following LP.

minimize
m∑
p=1

(
ÛCA,p + ÛCB,p

)
+ ÛCC

subject to: Constraint Sets 1-4
Non-negativity constraints on all variables.

The objective of minimizing total Level-C utilization is used here as a greedy
heuristic because this reduces tardiness bounds for Level-C tasks (Devi and Anderson
2008). However, this objective function serves a secondary purpose. Recall from
our discussion of the LP variable f̂ that if f̂ is minimized, then it will equal f(x̂)
at integer values of x̂. Minimizing total Level-C utilization ensures that utilization
variables reflect actual system utilization values determined from PETs when LLC
area variables are at integer values.

Approximations. Under certain scenarios, the LP above will converge to integer way
values for many task systems. Consider the LP with Constraint Set 4 removed. The
remaining constraints on Level-C utilizations from Constraint Set 2 intersect at integer
way values. Level-C utilization is minimized at the intersection of linear constraints,
and the LP will thus converge to integer values. However, the way-parameter values
that minimize Level-C utilization may violate schedulability conditions (7), (8), or
(10). In this scenario, the LP with Constraint Set 4 may not converge to integer way
values.

If the program solution does not return integer values, we can round way values,
or convert the LP to a mixed-integer LP (MILP). In prior work, we compared schedu-
lability for rounded LP-based LLC allocation sizes to schedulability for MILP-based
LLC allocation sizes (Chisholm et al. 2015). Note that non-integral LP-based LLC
allocation sizes are not necessarily guaranteed to be nearest to integral LLC allocations
that are schedulable when schedulable allocations exist. We found in our comparison
that the schedulability loss due to rounded LP-based programming is fairly small
in many cases. We also found that the time required to solve the MILP version was
comparable to that required to solve the LP version. We therefore used the more-exact
MILP version in the schedulability study considered next. However, we also consid-
ered the LP version in a subset of the experiments in this study to provide additional
comparisons to the MILP version.

6 Evaluation

In Sec. 4, we analyzed the effect of different hardware-management choices on the
performance of individual benchmark and micro-benchmark programs. In this section,
we analyze the impact of different hardware-management and scheduling choices
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on overall task-system schedulability. We conducted a large-scale overhead-aware
schedulability study involving task systems randomly generated using a process based
on our collected execution time data. A subset of these experimental results is presented
in Sec. 6.1. In these schedulability experiments, certain provisioning assumptions
were made regarding PETs. To partially assess the soundness of these assumptions, we
conducted experiments in which runtime data was collected for systems of benchmark
and micro-benchmark programs. This data is presented and discussed in Sec. 6.2.

6.1 Overhead-Aware Schedulability Experiments

To quantify the gains afforded by criticality-cognizant isolation, we randomly gener-
ated millions of task systems and evaluated their schedulability with implementation-
related overheads considered under the following scheduling- and resource-allocation
schemes.

– MC2-V1: MC2 under LLC-Allocation Variant 1 with DRAM bank isolation at
Levels A and B.

– MC2-V2: MC2 under LLC-Allocation Variant 2 with DRAM bank isolation at
Levels A and B. Differences in schedulability between MC2-V1 and MC2-V2
allow us to analyze the tradeoffs noted in Obs. 7 at Level C.

– MC2-V3: MC2 under LLC-Allocation Variant 1 with no DRAM bank isolation.
Differences in schedulability between MC2-V1 and MC2-V3 allow us to analyze
the extent to which LLC-isolation alone contributes to isolation benefits.

– MC2: MC2 with no DRAM bank or LLC isolation. This scheme provides the
advantage of MC analysis only.

– PEDF-ISO: Partitioned EDF (PEDF) with DRAM bank and LLC isolation. This
scheme provides the advantage of hardware-management only, thus all tasks use
Level-A PETs. PEDF has been shown in previous work (Brandenburg 2011) to
be perhaps the most competitive known HRT scheduling algorithm for multipro-
cessors when considering implementation overheads.

– PEDF: PEDF with no DRAM bank or LLC isolation.
– EDF: EDF on only one core. As stated in Sec. 1, this scheme represents the current

industry best practice of disabling all but one core.

These seven schemes allow us to independently investigate the gains afforded by
isolation and MC analysis, and fully quantify the value of combining both approaches.

Schedulability experimental framework. In our schedulability experiments, we as-
sumed that PETs for each criticality level are defined as in Sec. 2. Task sets were
randomly generated by using five uniform distributions to choose task and task-set
parameters. The specific distributions used were selected from the per-distribution
choices listed in Table 2. These distributions are defined with respect to the single-core
EDF scheme. All combinations of these choices were considered. These distributions
determine the criticality utilization ratio (i.e. the fraction of the overall utilization
assigned to each criticality level), task periods, task utilizations, the maximum LLC
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Table 2 Task-set parameters and distributions.
Choice Level A Level B Level C

A-Heavy [50, 70) [10, 30) [10, 30)
B-Heavy [10, 30) [50, 70) [10, 30)

Criticality C-Heavy [10, 30) [10, 30) [50, 70)
Utilization AB-Moderate [35, 45) [35, 45) [10, 30)
Ratios AC-Moderate [35, 45) [10, 30) [35, 45)

BC-Moderate [10, 30) [35, 45) [35, 45)
All-Moderate [35, 45) [35, 45) [35, 45)

Period (ms)
Short {3, 6} {6, 12} [3, 33)
Contrasting {3, 6} {96, 192} [10, 100)
Long {48, 96} {96, 192} [50, 500)

Task Util.
Light [0.001, 0.03) [0.001, 0.05) [0.001, 0.1)
Moderate [0.02, 0.1) [0.05, 0.2) [0.1, 0.4)
Heavy [0.1, 0.3) [0.2, 0.4) [0.4, 0.6)

Max Light [0.01, 0.1) [0.01, 0.1) [0.01, 0.1)
Reload Moderate [0.1, 0.25) [0.1, 0.25) [0.1, 0.25)
Time Heavy [0.25, 0.5) [0.25, 0.5) [0.25, 0.5)

Level-A Constant [0.5, 0.5) [0.5, 0.5) [0.5, 0.5)
Inflation Small Variation [0.3, 0.7) [0.3, 0.7) [0.3, 0.7)
(%) Large Variation [0.1, 0.9) [0.1, 0.9) [0.1, 0.9)

reload time after a preemption or migration (specified as a fraction of overall task
execution time), and per-task Level-A inflation factors (which are similar to those
considered by Vestal (2007)).

At a high level, our overall experimental framework was as follows:

Step 1 Select the specific five distributions used from among the choices listed in
Table 2.

Step 2 Generate task and task-set parameters under the single-core EDF scheme
using these distributions.

Step 3 Based on the generated EDF PETs, generate PETs for other isolation con-
figurations and MC-provisioning assumptions (e.g., PETs should be smaller in
schemes that provide isolation compared to those that do not)—this step is de-
scribed in greater detail in Appendix B.

Step 4 Adjust task parameters to account for relevant overheads—this step is de-
scribed in greater detail in Appendix A.

Step 5 Check the schedulability of the resulting task set under each considered
scheme.

In the third and fourth steps, the adjustments to apply were based upon mea-
surement data. (We collected 8GB of task execution-time data and 9GB of overhead
data.)

The distributions in Table 2 were defined to enable the systematic study of different
factors impacting schedulability, such as MC analysis, isolation, and overheads. We
denote each combination of distribution choices using a tuple notation. For example,
(C-Heavy, Long, Moderate, Heavy, Constant) denotes using the C-Heavy, Long,
Moderate, etc., distribution choices in Table 2. We call such a combination a scenario.
We considered all possible such combinations, and for each one, we generated between
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Fig. 22 Representative schedulability plots. The points highlighted with a circle and
squares are referenced in Secs. 6.1 and 6.2, respectively.

100 and 2,000 task sets, while ensuring that enough were generated to estimate the
mean schedulability under a given combination to within ±0.05 with 95% confidence.

For the schemes that support LLC isolation, we determined allocated LLC areas
using the optimization methods in Sec. 5.3 with small variations where necessary.
Under the MC2-V2 scheme, we divided the overall Level-C area into fourths (rounding
as necessary) to give per-core areas. For schemes requiring task partitioning, we used
the worst-fit-decreasing bin-packing heuristic.

Schedulability results. In total, we evaluated the schedulability of approximately
three million randomly generated task sets, which took roughly 18 CPU-days of
computation. From this abundance of data, we generated over 500 schedulability plots,
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of which six representative plots are shown in Fig. 22. The full set of plots is available
online at http://www.cs.unc.edu/˜anderson/papers.html.

Each schedulability plot corresponds to a specific task-set category corresponding
to a specific combination of the parameter distributions in Table 2. To understand how
these plots are interpreted, consider Fig. 22(a). For this plot’s task-set category, the
circled point indicates that 63% of the generated task sets with EDF utilizations of 6.5
were schedulable under MC2 with criticality-cognizant isolation. Note that, because
the x-axis represents system utilizations under the single-core HRT EDF scheme, it is
possible under MC2 to support systems with an EDF utilization exceeding four, as
the MC-provisioning assumptions decrease PETs.

We now state several observations that follow from the full set of collected schedu-
lability data. We illustrate these observations using the data presented in Fig. 22.

Obs. 11 MC2 schemes were able to schedule at least one more core’s worth of
utilization in comparison to the PEDF schemes in 64% of considered scenarios.
Within this 64%, the MC2 schemes were able to schedule 1.8 to 2.8 cores’ worth of
additional utilization on average.

This observation is supported by insets (a), (b), (e) and (f) of Fig. 22. The scenario
in inset (a) corresponds to the industry-inspired motivation underlying the specification
of MC2 (see Sec. 2), as in this scenario, only tasks of rather light utilizations exist at
Levels A and B. For some scenarios where loads are concentrated at higher criticality
levels, the MC2 schemes also yielded substantial schedulability improvements. Insets
(e) and (f) provide examples.

Obs. 12 LLC and DRAM bank isolation allowed PEDF to only schedule 0.26 cores’
worth of additional utilization on average. However, MC2 was able to schedule 0.93
cores’ worth of additional utilization on average under LLC and DRAM bank isolation,
sometimes scheduling two, and occasionally almost four, cores’ worth of additional
utilization.

Insets (e) and (f) of Fig. 22 give two examples of this for A-heavy and B-heavy
task sets. In the MC2-V1 scheme, high-criticality tasks are afforded the benefits of the
LLC while the unmanaged cases are not. However, isolation yields little improvement
under PEDF. This is because, under PEDF-ISO, all tasks are assigned to cores and
contend for LLC allocations, while in MC2, Level-C tasks share LLC space apart from
higher criticality levels. This shows that criticality-cognizant isolation can provide
major schedulability benefits not seen in criticality-oblivious isolation.

Obs. 13 PEDF scheduled more task sets than MC2 in 22% of the considered sce-
narios, particularly those most affected by overheads (short periods, light-utilization
tasks, or both). In 9% of scenarios, schedulability under MC2 and PEDF differed by
less than 25%.

Fig. 22(c) presents a scenario for which PEDF outperformed unmanaged MC2 at
certain utilizations, due to additional overheads for MC2. Fig. 22(d) presents a scenario
for which most schemes have nearly equivalent schedulability performance. However,
for most scenarios, the benefits of MC provisioning outweighed the disadvantages of
additional overheads under MC2.
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Obs. 14 Adding LLC isolation for Level C in MC2 resulted in less than 5% difference
between MC2-V1 and MC2-V2 schedulability in 98% of the considered scenarios and
resulted in a 3–7% gain in schedulability under MC2-V2 in 10% of scenarios.

In the specific scenarios in Fig. 22, the impact of adding Level-C LLC isolation
ranges from negligible (inset (c)) to slight (inset (e)) to moderate (inset (a)).

Obs. 15 Under MC2-V3, schedulability gains from LLC isolation were 75% of the
gains from combining LLC isolation and DRAM bank isolation under MC2-V1.

Insets (d) and (e) of Fig. 22 show cases where DRAM bank isolation provided
significant increases to the schedulability benefits of isolation, as determined by com-
paring the MC2, MC2-V1, and MC2-V3 curves. In contrast, insets (a) and (b) show
cases where DRAM bank isolation contributed very little to isolation-related schedu-
lability gains. While DRAM bank isolation provided notable benefits in some cases,
LLC isolation was the predominant contributor to isolation-related schedulability
benefits under MC2-V1.

Obs. 16 Under the MC2-V1 scheme, the LP and MILP methods for determining
LLC allocations yielded similar schedulability results and required similar computing
times.

We re-ran the schedulability experiments for the MC2-V1 scheme and evaluated
both LP- and MILP-derived LLC allocations. Across all task sets, the LP method took
0.338 seconds to run on average and 5.6 seconds in the worst case, and the MILP
method took 0.343 seconds to run on average and 120.3 seconds in the worst case. The
difference in schedulability under these two schemes, as determined by comparing
the area under each schedulability curve, was less than 0.01% across all categories. In
extremely rare cases (less than 0.001% of all task sets evaluated), the MILP method’s
computing time spiked. If the MILP method ran longer than 2 minutes on a given task
set, we terminated it and deemed the task set not schedulable. The MILP method’s
maximum runtime over all samples not timed out was 3.1 seconds.

The schedulability study presented shows that, in many cases, MC2 and hard-
ware management significantly improve schedulability performance when combined.
However, the conclusions drawn from this study are predicated on our provisioning
assumptions, in particular the assumption that tasks can be reasonably provisioned
based on measured WCETs and ACETs. Sec. 6.2 presents our investigation into the
safety of this assumption.

6.2 Case Studies

To investigate the validity of our MC2 provisioning assumptions, we created ten task
systems for the scenarios in insets (a) and (e) of Fig. 22 corresponding to the highest-
utilization point in the MC2-V1 and MC2-V2 curves with non-zero schedulability.
(The scenarios of these two insets represent interesting use cases for MC2-V1 and
MC2-V2, given that schedulability under MC2-V1 or MC2-V2 is significantly greater
than schedulability under other schemes.) The point chosen for MC2-V1 is highlighted
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by a square in each figure. Each task system was composed of synthetic micro-
benchmark programs for Levels A and B, since they are quite deterministic and have
smaller WSSs, and DIS benchmark programs for Level C. Table 3 gives an example
of one of these task systems. Each of these task systems was executed for ten minutes
each.

Across all of these task systems, there were no Level-A or -B deadline misses. At
Level C, there were deadline misses—recall this is acceptable at Level C—but of the
Level-C tasks, the largest relative deadline miss (response time divided by period)
under MC2-V1 (respectively, MC2-V2) was 1.35 (respectively, 1.02), and the largest
deadline-miss ratio under MC2-V1 (respectively, MC2-V2) was 1.40% (respectively,
0.06%). These results are likely acceptable for most SRT applications. These results
suggest that our provisioning assumptions are reasonable, and support our analytical
schedulability results.

7 Conclusion

We presented a significant extension to the MC2 framework that provides LLC and
DRAM-bank isolation and that isolates the OS from high-criticality tasks. We also
presented an optimization framework for determining LLC allocations beneficial
to MC2 schedulabillity. Additionally, we conducted extensive experiments (with
substantially more data found online (Kim et al. 2016c)) in which the impact of the
newly provided isolation mechanisms was assessed individually as well as collectively
from a system-wide schedulability point of view. To our knowledge, this is the first
work to explore criticality-cognizant hardware-management techniques with the goal
of improving platform utilization, the first work that considers isolating the OS from
application-level real-time tasks, the first work to optimize LLC allocations in the
context of MC systems, and the first work to show that the one-out-of-m problem can
be effectively addressed through criticality-cognizant hardware management.

This paper suggests many avenues for future work. While we have considered a
vast array of possible LLC and DRAM-bank configurations, we made several assump-
tions to keep the design space tractable. For example, we assumed an even distribution
of colors among cores at Levels A and B is preferable for LLC allocation variants that
provide isolation at these levels. Other allocation strategies could potentially yield
improved results. We also assumed that Level-C tasks were provisioned based on
ACETs. While our case studies suggest this assumption yields positive results, in
the future we plan to explore alternative provisioning assumptions and the tradeoff
between increased platform utilization and deadline tardiness and miss ratios. For
example, if we provision Level-C tasks based on the 70th percentile, how much smaller
would observed tardiness be? Regarding our implementation itself, the most pressing
concern is further extensions to handle shared data. As mentioned earlier, some work
in this direction has already been conducted (Chisholm et al. 2016; Kim et al. 2016a).

This paper builds upon two prior conference papers (Chisholm et al. 2015; Kim
et al. 2016b). The main additions are: (i) we evaluated all possible combinations of
LLC and DRAM bank isolation techniques; (ii) we examined and discussed unex-
pected results in a subset of the micro-benchmark experiments that were performed
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Table 3 An example of the generated task system.

Task ID
(program)

Assigned
CPU

Criticality
Level

eAi
(ms)

eBi
(ms)

eCi
(ms)

Ti
(ms)

τA1 (micro-benchmark) 0 A 7.78 5.19 4.84 96

τA2 (micro-benchmark) 1 A 2.23 1.49 1.30 48

τA3 (micro-benchmark) 2 A 5.02 3.35 3.12 48

τA4 (micro-benchmark) 3 A 4.71 3.14 2.93 48

τA5 (micro-benchmark) 1 A 1.64 1.09 0.90 48

τA6 (micro-benchmark) 1 A 4.81 3.21 2.99 96

τA7 (micro-benchmark) 0 A 4.28 2.85 2.66 48

τA8 (micro-benchmark) 3 A 2.35 1.57 1.39 48

τA9 (micro-benchmark) 2 A 7.09 4.73 4.41 96

τA10 (micro-benchmark) 1 A 5.09 3.34 3.12 96

τB11 (micro-benchmark) 3 B - 5.95 5.59 192

τB12 (micro-benchmark) 0 B - 22.40 20.64 96

τB13 (micro-benchmark) 2 B - 6.47 6.10 192

τB14 (micro-benchmark) 1 B - 10.71 10.20 96

τB15 (micro-benchmark) 3 B - 9.55 9.14 192

τB16 (micro-benchmark) 2 B - 16.44 15.37 96

τB17 (micro-benchmark) 3 B - 4.28 4.00 192

τB18 (micro-benchmark) 0 B - 17.80 16.60 96

τB19 (micro-benchmark) 1 B - 19.34 17.94 192

τB20 (micro-benchmark) 3 B - 8.42 8.03 192

τB21 (micro-benchmark) 2 B - 22.75 20.94 96

τB22 (micro-benchmark) 1 B - 4.78 4.46 192

τB23 (micro-benchmark) 3 B - 13.33 12.56 96

τB24 (micro-benchmark) 0 B - 13.88 13.06 96

τB25 (micro-benchmark) 1 B - 12.49 11.80 192

τB26 (micro-benchmark) 2 B - 9.51 9.10 96

τB27 (micro-benchmark) 1 B - 9.52 9.12 96

τB28 (micro-benchmark) 3 B - 10.76 10.25 192

τB29 (micro-benchmark) 0 B - 20.46 19.01 96

τB30 (micro-benchmark) 3 B - 11.51 10.92 192

τC31 (Update) - C - - 5.85 125.40

τC32 (Update) - C - - 5.85 47.88

τC33 (Field) - C - - 9.16 219.80
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(see Obs. 5 and Fig. 9 in Sec. 4 and associated discussion); (iii) we evaluated cross-core
OS interference (see Fig. 15 in Sec. 4 and associated discussion); (iv) we considered a
new LLC-allocation strategy (see discussion of Fig. 6 (c)).
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A Overhead Accounting

In our schedulability study, to account for implementation-related overheads beyond
those discussed in Sec. 5.2, we applied several existing overhead-accounting tech-
niques (Brandenburg 2011). While a complete, formal description of all techniques is
beyond the scope of this paper, in what follows, we give a high-level description of
the techniques employed, and highlight the most relevant ideas. We account for all
overhead sources through PET inflation, i.e., increasing the PET of each task before
evaluating schedulability. In addition to CRPDs, we considered the following overhead
sources, defined in Brandenburg (2011): context switching, release latency, timer ticks,
scheduling, job release, and inter-processor interrupts (IPIs).

To account for these overheads, we applied techniques pioneered by Brandenburg
(2011) for PEDF and GEDF, for Level B and Level C, respectively, with minor mod-
ifications to account for interactions among criticality levels in MC2. When analyzing
tasks at each criticality level, we used measured overheads acquired using similar
assumptions as used for PETs, e.g., at Level C, average-case measured overheads were
considered. Also, in the case of scheduling and release overheads, we have to account
for per-core partitioned scheduling and release overheads at Levels A and B, and also
global scheduling and release overheads that may be incurred on any core for Level C.
Releases and IPI overheads from task migrations at Level C may cause delays at all
criticality levels.

Our MC2 implementation heavily uses PET budgets. The management of such
budgets gives rise to a new overhead source. These overheads are incurred when a
budget is replenished or depleted, and are accounted for similarly to other overheads
by inflating PETs.

B PET-Generation Process

The PETs assumed in Sec. 6.1 are based on an analytical model, which we derived
by distilling the measured execution-time data discussed in Sec. 4. This appendix
describes this PET-generation model in greater detail. As described in Sec. 6.1, all
PETs required in our schedulability experiments are defined based on EDF-scheme
PETs, which correspond to A-inflated WCETs in an idle system with the full LLC
allocated to the task in question. We denote this WCET parameter as C0

i for task τi. In
our experimental framework, the C0

i values are obtained implicitly from the randomly
generated task utilizations and periods. All execution-time values used to obtain all
other PETs for τi for different isolation and analysis assumptions are listed in Table 4.
Table 5 shows how these values are used to define all PETs under each scheme. The
columns of Table 4 indicate how each execution-time value is defined (i.e., whether
the value is a Level-A-inflated WCET, a non-inflated WCET, or an ACET, whether
the system is assumed to be under load or idle, etc.). Each of these values is generated
by applying scaling factor(s) to the prior-listed execution-time values. We present an
overview of this entire process here.
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Table 4 Generated PET values.

Exec. Time WCET or ACET? Idle or Load? LLC Iso.? DRAM Iso.? LLC Area

C0
i A-infl. WCET Idle N/A N/A Entire LLC

C1
i A-infl. WCET Load Yes Yes Entire LLC

C2
i A-infl. WCET Load Yes Yes Any Area

C3
i A-infl. WCET Load Yes No Any Area

C4
i A-infl. WCET Load No No Any Area

C5
i WCET Load All Relevant Cases Any Area

C6
i ACET Load Yes Yes Any Area

C7
i ACET Load Yes No Any Area

C8
i ACET Load No No Any Area

Table 5 Assignment of execution time parameters to PETs.

Task PET MC2 MC2 MC2 PEDF PEDF EDF
Level Level -V1 -V2 -ISO

A/HRT C2
i C2

i C4
i C2

i C4
i C0

i

A B C5
i C5

i C5
i N/A N/A N/A

C C6
i C6

i C8
i N/A N/A N/A

A/HRT N/A N/A N/A C2
i C4

i C0
i

B B C5
i C5

i C5
i N/A N/A N/A

C C6
i C6

i C8
i N/A N/A N/A

A/HRT N/A N/A N/A C2
i C4

i C0
i

C B N/A N/A N/A N/A N/A N/A
C C8

i C7
i C8

i N/A N/A N/A

Step 1: Generate C1
i by scaling C0

i to account for interfering workload. We
choose C1

i uniformly from [120, 150)% of C0
i , based on WCET measurement data in

idle and loaded systems with the full LLC allocation.
Step 2: Generate C2

i by scaling C1
i for different LLC allocations. Our C0

i

values are defined from generated utilizations. The process for generating such uti-
lizations was carefully defined to produce trends similar to those seen from measure-
ment data. Since our C1

i values are simply scaled versions of our C0
i parameters,
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Fig. 23 Utilizations generated under different
LLC allocations for three example tasks.

similar utilization trends will be
seen when utilizations are defined
in terms of C1

i values. Fig. 23
illustrates typical generated uti-
lizations. As seen in this figure,
task utilizations monotonically de-
crease with increasing LLC space
and converge at the ICAS. This is
in accordance with Obs. 2. To re-
flect this, we obtain C2

i values for
different LLC-allocation choices
by applying a scaling factor to C1

i

that exponentially increases with
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the minimum of the ICAS and LLC space. The actual scaling factors employed were
selected to reflect measurement data.

Task ICASs were deduced using the Load Time parameter in Table 2. The two
both hinge on a task’s cache footprint. Our Load Time parameter was defined to
reflect Obs. 1, which showed that cache isolation can improve a task’s WCET by up to
369%. For example, when the Light Load Time distribution is assumed, LLC isolation
typically reduces WCETs by 20-50%, while when the Heavy distribution is assumed,
the reduction is typically 200-500%. In addition, for all parameter combinations, tasks
at Levels A and B tend to be more insensitive to LLC space than those at Level C.
This reflects the underlying motivation for MC2 that Level-A and -B tasks will tend to
be rather deterministic fly-weight tasks and that Level-C tasks will tend to be more
complex data-intensive tasks (see Sec. 2).

Step 3: Generate C3
i by scaling C2

i to account for shared DRAM banks. As
seen in Fig. 7, the impact of DRAM bank isolation on task execution times tended
to range from imperceptible to 20% under small LLC allocations. Based on these
results, we uniformly choose C3

i to be [100, 130)% of C2
i to account for the lack of

bank isolation. Similar to the last step, this step is affected by the task ICAS and LLC
allocation.

Step 4: Generate C4
i from C3

i based on known worst-case shared-cache be-
havior. When sharing a cache, cross-core interference may prevent a program from
reusing any data in any shared cache blocks, thus eliminating any benefit from the
LLC in the worst case. Therefore, we define C4

i to equal C3
i for the case when the

allocated LLC space is zero.
Step 5: Generate all Level-B PETs from previously generated Level-A PETs.

Using the A-Inflation Factor in Table 2, all Level-B PETs can be computed from
corresponding Level-A PETs. This gives us all C5

i values.
Step 6: Generate C6

i and C7
i to reflect expected ACET:WCET ratios under

cache isolation and varying background workloads. ACET:WCET ratio trends will
depend on the given background workload, i.e., the total utilization of all competing
tasks. Based on ACET:WCET ratio trends observed for benchmark and synthetic pro-
grams under different background workload utilizations, we identified an appropriate
distribution from which to uniformly choose an ACET:WCET ratio for each task.
For all tasks, these ratios were chosen uniformly among a range of percentages. For
Level-C tasks, these ratios range over 20-40% for the lightest background workloads,
and over 30-60% for the heaviest. For Level-A and -B tasks, these ratios range over
50-70% for the lightest background workloads, and 80-100% for the heaviest. This
reflects our assumption that higher-criticality tasks tend to be more deterministic in
their execution than Level-C tasks. Note that this process requires a means to calculate
the Level-C utilization of a background-workload, which is dependent on the ACETs
that are generated. This entails an iterative process, such as that in Fig. 24(a). However,
given the scale of our schedulability experiments, which involved millions of task
systems, an iterative process was infeasible. As a result, we used the non-iterative
process outlined in Fig. 24(b). We used the EDF-scheme utilization of the background
workload as an upper bound on its average-case utilization.

Step 7: Generate C8
i to reflect differences between ACETs for a fully unman-

aged system and ACETs for a cache-isolated system. From Fig. 7 and Obs. 8,
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Step 6.1 Assign all tasks Level-C PETs based on ACETs in an idle system.
Step 6.2 Based on assigned Level-C PETs, calculate the Level-C utilization of

the background workload of each task.
Step 6.3 Assign new Level-C PETs based on ACETs under the background-

workload utilizations calculated in Step 6.2.
Step 6.4 Repeat Step 6.2 and 6.3 if any PETs increased in Step 6.3.

(a) Iterative process.

Step 6.1 Based on the assigned EDF-scheme PET for each task, calculate the
EDF-scheme utilization of the background workload of each task.

Step 6.2 Assign Level-C PETs based on ACETs under the background workload
utilizations calculated in Step 6.1.

(b) Non-iterative process.

Fig. 24 Two methods for calculating ACETs in Step 6.

we see that ACETs in an unmanaged cache gradually decline in a linear fashion
as the allocated LLC space increases, even beyond the ICAS of the task. However,
these ACETS generally remain higher than ACETs under cache isolation. When
the LLC allocation is zero, both ACETs are the same, since LLC management does
not affect tasks bypassing the LLC. To reflect this behavior, we generated C8

i as
shown in Fig. 25. On the right axis, we depict a scale showing the range of C7

i ’s
reduction in value as the allocated LLC space increases. On this scale, C7

i is at
0% reduction under zero allocated LLC space, and 100% under maximum allo-
cated LLC space. C8

i at maximum allocated LLC space for the Matrix program
would fall at approximately 50% on this scale. For each generated task, we choose
a value from 30-70% on this scale for our generated C8

i at maximum LLC space.
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Fig. 25 Comparison of C7
i and C8

i for a generated task.

At zero allocated LLC
space, C8

i matches C7
i . For

all other LLC allocation
sizes, we interpolate values
for C8

i linearly between
values generated for zero
allocated LLC space and
maximum allocated LLC
space.

From these steps, we
now have all required
PETs. We note once again
that this process produces a model for producing PETs. As such, all claims resulting
from our schedulability experiments apply only within the context provided by this
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model. Still, we have taken great pains to ensure that the range of PETs generated
by this model encompass those that we have seen based on real measurement data,
and that trends among related PETs for the same task correspond to those seen in our
measurement data.


