
Globally Scheduled Real-Time Multiprocessor
Systems with GPUs ∗

Glenn A. Elliott and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

Graphics processing units, GPUs, are powerful processors that can offer significant perfor-
mance advantages over traditional CPUs. The last decade has seen rapid advancement in GPU
computational power and generality. Recent technologies make it possible to use GPUs as co-
processors to CPUs. The performance advantages of GPUs can be great, often outperforming tra-
ditional CPUs by orders of magnitude. While the motivations for developing systems with GPUs
are clear, little research in the real-time systems field has been done to integrate GPUs into real-
time multiprocessor systems. We present two real-time analysis methods, addressing real-world
platform constraints, for such an integration into a soft real-time multiprocessor system and show
that a GPU can be exploited to achieve greater levels of total system performance.

1 Introduction

The computer hardware industry has experienced rapid growth in the graphics hardware market

during this past decade, with fierce competition driving feature development and increased hard-

ware performance. One important advancement during this time was the programmable graphics

pipeline. Such pipelines allow program code, which is executed on graphics hardware, to interpret

and render graphics data. Soon after its release, the generality of the programmable pipeline was

quickly adapted to solve non-graphics-related problems. However, in early approaches, compu-

tations had to be transformed into graphics-like problems that a graphics processing unit (GPU)

could understand. Recognizing the advantages of general purpose computing on a GPU, lan-

∗Work supported by NSF grants CNS 0834270, CNS 0834132, and CNS 1016954; ARO grant W911NF-09-1-
0535; AFOSR grant FA9550-09-1-0549; and AFRL grant FA8750-11-1-0033.

1

guage extensions and runtime environments were released by major graphics hardware vendors

and software producers to allow general purpose programs to be run on graphics hardware without

transformation to graphics-like problems.1

Today, GPUs can be used to efficiently handle data-parallel compute-intensive problems and

have been utilized in applications such as cryptology [25], supercomputing [3], finance [11], ray-

tracing [13], medical imaging [39], video processing [36], and many others.

There are strong motivations for utilizing GPUs in real-time systems to perform general pur-

pose (non-graphical) computation. Most importantly, their use can significantly increase compu-

tational performance. For example, in terms of theoretical floating-point performance, GPUs offer

greater capabilities than traditional CPUs. This is illustrated in Fig. 1, which depicts the trends in

growth of floating-point performance between Intel CPUs and NVIDIA GPUs over much of the

past decade [6, 8, 35]. Growth in raw floating-point performance does not necessarily translate to

equal gains in performance for actual applications. However, a review of published research shows

that performance increases commonly range from 4x to 20x [4], though increases of up to 1000x

are possible in some problem domains [12]. Tasks accelerated by GPUs may execute at higher fre-

quencies or perform more computation per unit time, possibly improving system responsiveness

or accuracy.

GPUs can also carry out computations at a fraction of the power needed by traditional CPUs.

This is an ideal feature for embedded and cyber-physical systems. Further power efficiency im-

provements can be expected as processor manufacturers move to integrate GPUs in on-chip de-

signs [1, 7]. On-chip designs may also signify a fundamental architectural shift in commodity

processors. Like the shift to multicore, it appears that the availability of a GPU may soon be as

common as multicore is today. This further motivates us to investigate the use of GPUs in real-

time systems. However, it is not immediately self-evident how this should be done given the unique

characteristics of a GPU in a host system.

1Notable platforms include the Compute Unified Device Architecture (CUDA) from NVIDIA [5], Stream from
AMD/ATI [2], OpenCL from Apple and the Khronos Group [10], and DirectCompute from Microsoft [9].

2

 0

 200

 400

 600

 800

 1000

 1200

 1400

Dec-03 Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09

A
p

p
ro

x
im

a
te

 P
e

a
k
 G

F
L

O
P

S

Date

Trends in GFLOPS

[1] Intel CPUs [2] Nvidia GPUs

GTX-480

Westmere-EP

GTX-260

GTX-280

8800 GTX

7800 GTX

6800 Ultra
BloomfieldHarpertownClovertown

Irwindale

Figure 1: Historical trends in processor performance in terms of approximate peak floating-point
operations per second (FLOPS).

A GPU that is used for computation is an additional processor that is interfaced to the host

system as an I/O device, even in on-chip architectures. An I/O-interfaced accelerator co-processor,

like a GPU or digital signal processor, when used in a real-time system, is unlike a non-accelerator

I/O device. In work on real-time systems, the use of non-accelerator devices, such as disks or

network interfaces, has been researched extensively [26], with issues such as contention resolution

and I/O response time being the primary focus. While these are also concerns for GPUs, the role

of the device in the system is different. A real-time system that reads a file from a disk or sends a

packet out on a network uses these devices to perform a functional requirement of the system itself.

Further, these actions merely cause delays in execution on the CPU; the operations themselves do

not affect the actual amount of CPU computation that must be performed. This is not the case for a

GPU co-processor as its use accelerates work that could have been carried out by a CPU and does

not realize a new functional feature for the system. The performance of a real-time system with

a GPU co-processor is dependent upon three inter-related design aspects: how traditional device

issues (such as contention) are resolved; the extent to which the GPU is utilized; and the gains in

3

CPU availability achieved by offloading work onto the GPU.

In this paper, we consider the use of GPUs to perform general purpose computation in soft real-

time multiprocessor systems, where processing deadlines may be missed but deadline tardiness

must be bounded. Our focus on soft real-time systems is partially motivated by the prevalence of

application domains where soft real-time processing is adequate. Such a focus is further motivated

by fundamental limitations that negatively impact hard real-time system design on multiproces-

sors. In the multiprocessor case, effective timing analysis tools to compute worst-case execution

times are lacking due to hardware complexities such as shared caches. Also, in the hard real-time

case, the use of non-optimal scheduling algorithms can result in significant utilization loss when

checking schedulability, while optimal algorithms have high runtime overheads. In contrast, many

global scheduling algorithms are capable of ensuring bounded deadline tardiness in soft real-time

systems with no utilization loss and with acceptable runtime overheads. One such algorithm is the

global earliest-deadline-first (G-EDF) algorithm [20]. Under G-EDF, all schedulable threads of

execution share a single ready-queue for all CPUs and threads may migrate between them. In con-

trast, under partitioned schedulers, threads of execution are statically assigned to individual CPUs

and no migrations are allowed.

As G-EDF can be applied to ensure bounded tardiness with no utilization loss in systems with-

out a GPU, we consider it as a candidate scheduler for GPU-enabled systems. We note how-

ever, that existing G-EDF analysis has its limitations. Specifically, most analysis is suspension-

oblivious [17], in that it treats any self-suspension (be it blocking to obtain a lock or waiting time to

complete an I/O transaction) as execution time on a CPU. In contrast, suspension-aware analysis

allows part, or all, of a self-suspension to be treated as available CPU time. Analytical meth-

ods exist for partitioned earliest-deadline-first (P-EDF) and partitioned rate-monotonic (P-RM)

scheduling that are suspension-aware, so these scheduling approaches may also be good candidate

scheduling algorithms for systems with a GPU. However, partitioned approaches also have limi-

tations. Firstly, partitioned schedulers may suffer utilization loss due to bin-packing-like issues.

4

In pathological cases, this loss can be nearly as great as 50%. P-RM also suffers additional uti-

lization loss as rate-monotonic scheduling is not optimal on a uniprocessor under most real-time

task models. Secondly, systems with a resource shared among partitions often must use a form of

priority-boosting to provide reasonable bounds on the time a computation may wait before acquir-

ing the shared resource. Priority-boosting temporarily grants the holder of a resource maximum

scheduling priority, which may negatively affect the timely execution of work which would nor-

mally have been scheduled, including work that does not even require the shared resource. Lastly,

it is not entirely clear what an optimal partitioning for workloads using a GPU may be. Should

work requiring a GPU be isolated in one partition or scattered amongst them? For these reasons,

we defer an investigation of partitioned scheduling for systems with a GPU, which would be non-

trivial, to future work in order to keep our initial study tractable.

The use of G-EDF scheduling, and associated suspension-oblivious analysis, implies that the

interval of time a task suspends from a CPU to execute on a GPU must also be charged as execution

on a CPU. Under these conditions, it appears that a GPU may be useless if work cannot be offloaded

from the CPUs. However, a GPU is an accelerator co-processor; it can perform more work per unit

time than can be done by a CPU. Therefore, there may still be benefits to using a GPU even if CPU

execution charges must mask suspensions. In this paper, we determine the usefulness of a GPU in

a soft real-time multiprocessor system by answering the following two questions: (Q1) How much

faster than a CPU must a GPU be to overcome suspension-oblivious penalties and schedule more

work than a CPU-only system? And, (Q2) how much work should be offloaded onto a GPU to

make the most efficient use of both the system CPUs and GPU?

Related Work. The problem of arbitrating access to a shared GPU resource has been consid-

ered in both real-time and non-real-time domains. In studies concerning graphical displays, prior

studies have focused on the behaviors of the platformÕs window manager, such as the ubiquitous

X server. In older systems, graphics operations are serialized through the window manager pro-

cess, indirectly mediating access to the GPU. Non-real-time and real-time solutions have sought

5

to change the execution behavior of the window manager either by intercepting and scheduling

the calls made by client applications into the window manager [19] or by changing the scheduling

priority of the window manager itself [38, 33, 28]. However, in modern systems, the window man-

ager is often completely bypassed since applications may communicate directly with the GPU for

the sake of performance. Indeed, no window manager need be involved when a GPU is used for

general purpose computation.

More complete solutions for arbitrating access to a GPU can be realized through the interception

and individual scheduling of the low-level commands applications send to the GPU. This approach

is taken in [21] where a round-robin scheduler is used to approximate a fair allocation of the

GPU for non-real-time applications. A similar approach is taken in [29] for the real-time domain,

where commands are instead scheduled by fixed priority. This level of resource arbitration is finer-

grained than the solutions presented in this paper and is an interesting approach. However, such

solutions presently require the use of open-source drivers, which often do not offer the same level

of performance as closed-source counterparts and can be expected to lag behind closed-source

drivers in terms of support, features, and performance (at least until GPU manufactures more

actively contribute to open-source development).

Outside of graphics, both the hardware and software models of systems with digital signal pro-

cessors (DSPs) bear similarities to those with GPUs used for general purpose computation. The

primary difference is that the DSP often avoids the complication of large complex drivers (though

drivers may still need to be used). The use of DSPs was examined in [24] for static priority sys-

tems with a single CPU and single DSP. Similar work was performed for dynamic priority systems

in [32], also for single-CPU/single-DSP systems. In both studies, access to a non-preemptible

DSP is arbitrated by the use of real-time locking protocols (a technique also used in this paper).

Unfortunately, the suspension-aware solutions presented in these studies cannot be easily extended

to globally-scheduled multiprocessor platforms, and remains an open problem [30].

Finally, some early work has been done to determine the worst-case execution time of programs

6

running on a GPU [37], though such in-depth analysis may not be necessary in soft real-time

systems.

Contributions. The work presented in this paper differs from the aforementioned studies in that

we seek to develop solutions that may be applied to globally scheduled multiprocessor systems

(G-EDF scheduled systems, specifically) that adapt to closed-source drivers, and to also under-

stand how a GPU may be leveraged to increase overall system computational performance while

maintaining soft real-time scheduling guarantees. The contributions of this paper are as follows.

We first profile common usage patterns for GPUs and explore the constraints imposed by both the

graphics hardware architecture and the associated software drivers. We then present a real-time

task model that is used to analyze the widely-available platforms of four-, eight-, and twelve-CPU

systems with a single GPU. With this model in mind, we propose two real-time analysis methods,

which we call the Shared Resource Method and the Container Method, with the goal of providing

predictable system behavior while maximizing processing capabilities and addressing real-world

platform constraints. The second method attempts to ameliorate suspension-oblivious analysis

penalties that can arise in the first method, though this comes at the expense of other penalties.

We compare these methods through schedulability experiments to determine when benefits are

realized from using a GPU. Additionally, we present an implementation-oriented study that was

conducted to confirm the necessity of real-time controls over a GPU in an actual real-time oper-

ating system environment. The paper concludes with a discussion of other avenues for possible

real-time analysis methods and considers other problems presented by the integration of CPUs and

GPUs.

2 Usage Patterns and Platform Constraints

Before developing any real-time analysis approach it is worthwhile to first examine the usage

patterns of GPUs in general purpose applications as well as the constraints imposed by hardware

and software architectures. As we shall see, these real-world characteristics cannot be ignored in a

7

Problem Type Average Comm. Comm. To
Exe. Time Overhead Exe. Ratio

Eigenvalue Computation
512x512 6.74ms 0.21ms 3.12%

2048x2048 23.58ms 0.21ms 0.89%
4096x4096 42.73ms 0.23ms 0.54%

2D Convolution
512x512 1.50ms 0.47ms 31.33%

2048x2048 14.28ms 5.71ms 39.99%
4096x4096 55.91ms 22.53ms 40.30%

Matrix Multiplication
512x512 1.89ms 1.79ms 94.71%

2048x2048 60.15ms 60.11ms 99.93%
4096x4096 431.55ms 431.42ms 99.97%

2D Fluid Simulation
512x512 170µs — —

2048x2048 290µs — —
N-Body Simulation

1024 particles 210µs — —

Table 1: Observed GPU kernel execution times and communication overheads on a GTX-295
NVIDIA graphics card.

holistic system point-of-view. We begin by examining GPU execution environments.

A GPU-using program runs on system CPUs and may invoke one or more GPU programs, called

a kernels, to utilize the GPU. Similar to a remote procedure call, the execution of a kernel is trig-

gered by a function call made by the GPU-using program. Kernel execution time varies from

application to application and can be relatively long. To determine likely execution-time ranges,

we profiled sample programs from NVIDIA’s CUDA SDK on a GTX-295 NVIDIA graphics card.

We found that n-body simulations run on the order of 10 − 100µs per iteration on average while

problems involving large matrix calculations (multiplication, eigenvalues, etc.) can take 2−500ms

on average. Table 1 contains a summary of observed GPU execution times for several basic oper-

ations.

The execution times for these sample programs also include the time required to transmit data

between the CPU and GPU, which we called the communication overhead. These overheads were

8

measured using high-resolution time stamps placed before and after synchronous memory trans-

fers. Like a remote procedure call, the CPU code that invokes a GPU kernel must also transmit

input data. Likewise, the CPU code must also pull results back from the GPU. The time a job

spends transferring data between the CPU and GPU is entirely application dependent. We found

that data transfers can take anywhere from less than 1% to as much as 90% or more of the total

execution time; this can be seen in the “Communication To Execution Ratio” column of Table 1.2

The 2D Fluid Simulation and N-Body Simulation programs maintain simulation state on the GPU,

so communication overheads are negligible.

The results in Table 1 indicate that relatively long GPU access times are common. Additionally,

the I/O-based interface to a GPU co-processor introduces several additional unique constraints that

need to be considered. First, a GPU cannot efficiently access main memory directly, so memory

is most often copied between host and GPU memory. Memory is transferred over the bus (PCIe)

explicitly or through DMA to explicitly-allocated blocks of main memory (in integrated graphics

solutions, the GPU may use a partitioned section of main memory and data must be copied to

and from this GPU-reserved memory space). Thus, memory between the host and GPU is non-

coherent between synchronization points. Second, kernel execution on a GPU is non-preemptive:

execution of the kernel must be run to completion before another kernel may begin. Third, kernels

may not execute concurrently on a GPU even if many of the GPU’s parallel sub-processors are

unused.3 Finally, a GPU is not a system programmable device, i.e., a general OS cannot schedule

or otherwise control a GPU. Instead, a driver in the OS manages the GPU. This last constraint

bears additional explanation.

At runtime, the host-side program sends data to the GPU, invokes a GPU program, and then

waits for results. While this model looks much like a remote procedure call, unlike a remote

2The sample NVIDIA CUDA SDK programs were modified to use pinned memory, which prevents these memory
segments from being potentially paged to disk. The use of pinned memory can significantly reduce communica-
tion overheads as the system can take advantage of direct memory access (DMA) data transfers. For example, the
communication-to-execution ratio for the eigenvalue program increases to about 30% without it.

3NVIDIA’s Fermi architecture allows limited simultaneous execution of kernels as long as these kernels are sourced
from the same host-side context/thread. In this work, we will not consider such uses.

9

RPC-accessible system, the GPU is unable to schedule its own workloads. Instead, the host-

side driver manages all data transfers to and from the device, triggers kernel invocations, and

handles the associated interrupts. Furthermore, this driver is closed-source since the vendor is

unwilling to disclose proprietary information regarding the internal operations of the GPU. Also,

driver properties may change from vendor to vendor, GPU to GPU, and even from driver version

to version. Since even soft real-time systems require provable analysis, the uncertain behaviors of

the driver force integration solutions to treat it as a black box.

Unknown driver behaviors are not merely speculative but are a real concern. We performed

an evaluation of an NVIDIA CUDA driver in a real-time environment to better understand and

illustrate these limitations.

A workload was created consisting of ten simultaneously executing tasks, each of which would

periodically compute the Fast Fourier Transform, using the GPU, of a random 1024x1024 matrix

every 60ms. Executing in isolation, each FFT took 2.5ms to compute on average, though execution

times as little as 2ms were occasionally observed. Each computation was given an execution

budget of 5ms. Each task was configured in the CUDA runtime environment to suspend from

CPU execution while it waited for the GPU to compute the FFT. Each task computed 100 FFTs

before terminating.

This workload was run in LITMUSRT [18], UNC’s real-time Linux testbed, under G-EDF

scheduling. Our test platform was an Intel Core i7 quad-core system with an NVIDIA GTX-295

graphics card.4 The system CPUs operate at 2.67GHz with an 8MB shared cache. The NVIDIA

190.53 64-bit Linux proprietary driver was used on the platform without modification. NVIDIA’s

CUDA 2.3 SDK provided the CUDA runtime environment. No display of any kind was used. Thus,

the GPU was used exclusively for CUDA computations without interference from other processes.

The execution timing properties for the FFT workload are given in Table 2. The worst-case

response time measurements are consistent with those that would be expected from a FIFO-order

4The GTX-295 actually provides two independent GPUs on a single card, though only one GPU was used in this
work.

10

Average Response Time 13.5ms
Standard Deviation 7.232ms

Max Response Time 25ms
Min Response Time 2ms

Reported CPU Utilization 1.368

Table 2: The execution profile of ten simultaneously executing tasks using the GPU to compute
the FFT of a random 1024x1024 matrix.

lock prioritization. The worst-case response time of an FFT computation in this case is given by

the worst-case delay plus its own execution time, or 9 · 2.5 + 2.5 = 25ms. This suggests that the

NVIDIA driver uses a FIFO-ordered queue itself to prioritize GPU access requests. However, there

are several critical limitations to the NVIDIA driver’s solution. Firstly, the NVIDIA driver does

not implement priority inheritance. This is clear since LITMUSRT has its own unique notions of

priority and the NVIDIA driver is clearly unaware of LITMUSRT. Secondly, though each applica-

tion suspended CPU execution while it used the GPU to compute the FFT, the average CPU usage

as reported by the UNIX command top was 1.368, though it should have been less than approxi-

mately 0.4. This is because ten tasks executed for 2.5ms every 60ms, so CPU usage should have

been about 10 ·(2.5/60) ≈ 0.4 even if tasks did not suspend from the CPU while waiting for results

from the GPU. This indicates that some FFT programs were likely busy-waiting within the GPU

driver to either trigger kernel execution or send/receive data. Indeed, LITMUSRT detected jobs

that exceeded their execution budgets of 5ms, confirming that the GPU driver added additional

execution time to the jobs.

The uncontrollable spinning when the GPU is under contention, despite runtime controls in-

structing tasks to suspend instead of spin, prevents the maximization of CPU resources. The lack

of predictable real-time synchronization (i.e., the lack of priority inheritance) further makes it dif-

ficult to bound these spinning durations. It is very hard to make any real-time timing guarantees

as a result. These serious behavioral deficiencies of the driver in a real-time environment must be

resolved before a GPU can be used as a shared I/O device in a real-time system.

11

3 Task Model and Scheduling Algorithms

Real-time analysis offers several methods for describing the workload of a real-time system.

This paper analyzes mixed task sets of CPU-only and GPU-using tasks with the synchronous

implicit-deadline periodic task model, as it adequately describes many common workloads and

has well-understood analytical properties.

A synchronous implicit-deadline periodic task set, T , consists of a set of recurrent tasks, T1, · · · , Tn,

some of which may access a (single) GPU. We let G(T) denote the set of GPU-using tasks in T .

Each task, Ti, is described by three parameters: its period, pi, which measures the separation be-

tween task invocations, known as jobs, and also the (implicit) relative deadline of each such job; its

worst-case CPU execution time, ei, which bounds the amount of CPU processing time a job must

receive before completing; and its worst-case GPU execution time, si, which bounds the amount of

GPU processing time required by one of its jobs. For a simple GPU-using job which only uses the

GPU only once, si captures the interval of time between a kernel invocation and the signaling of

its completion to the driver. A more complex GPU-using job may use the GPU several times until

job completion. In this case, si captures the sum of the intervals of time between individual kernel

invocations. Like worst-case CPU execution, si is unique to each task. Preliminary work [37]

has been done to upper-bound GPU kernel execution time, though empirical tests are sufficient for

many soft real-time systems. For tasks that do not use the GPU, si = 0. The utilization of task Ti

is given by ui = ei/pi and the system utilization is given by U =
∑
ui.

Suppose that the GPU has a speed-up factor of f , i.e., it can complete the work required by

a task f times faster than a CPU. Then a task’s effective utilization is obtained by considering

a CPU-only version of it of the same functionality. This CPU-only version may have a differing

worst-case execution time. Let us denote the time a job of Ti spends communicating with the GPU,

which is already a part of ei, by comm i. Then, the effective utilization of task Ti is given by

ueff i
= (ei − comm i + f · (comm i + si))/pi. (1)

12

For example, suppose that a GPU-using task has parameters Ti(pi = 10, ei = 4, si = 2) and

comm i = 1. If f = 16, then ueff i
= (4− 1 + 16 · (1 + 2))/10 = 5.1.

Similar to system utilization, we also define effective system utilization by Ueff =
∑
ueff i

. We

use Ueff to help in comparing GPU-using systems to corresponding CPU-only ones.

It is important to note that published research on GPU-accelerated algorithms often derive the

speed-up offered by the GPU by comparing against multi-threaded implementations for multicore

CPU platforms. In contrast, we specify the speed-up as a measure against single-threaded CPU

implementations. We opted to conservatively specify speed-up in this manner to provide a gen-

eralized baseline for comparisons against CPU-only real-time systems since the number of CPUs

may change from system to system. A single-threaded measure of speed-up also allows us to avoid

the additional complexities posed by multi-threaded real-time tasks, the analysis of which would

require the consideration of schedulers for multi-threaded jobs, such as gang-schedulers [27].

We wish to make the most efficient use of CPU and GPU resources while supporting soft real-

time constraints. One might consider real-time methods for supporting heterogeneous systems,

where a system has processors of differing capacities or capabilities. Unfortunately, due to a GPU’s

unique constraints, direct approaches for heterogeneous systems [14, 15, 23] do not immediately

apply. These methods either require a partitioning of tasks amongst heterogenous processors (a

GPU-using job must execute on both a CPU and GPU for particular phases of execution) or re-

quire that jobs may be preempted and migrated between processors (a GPU cannot be preempted).

However, as noted earlier, previous work [20] has shown that G-EDF can ensure bounded tardiness

in ordinary multiprocessor systems (without a GPU) without system utilization constraints (pro-

vided the system is not overutilized). Thus, it is the primary scheduling algorithm considered in

this paper.5 As noted earlier, G-EDF is a global scheduler, meaning that jobs share a single ready

queue and can migrate between processors. G-EDF prioritizes work by job deadline, scheduling

5Some have recently speculated that the earliest-deadline-zero-laxity (EDZL) algorithm may be better suited to
accounting for self-suspensions (caused, for example, by using a GPU) [30], though actionable results have yet to be
presented, so better suspension accounting remains an open problem.

13

jobs with the earliest deadlines first.

4 Analysis Methods

We consider two methods for analyzing mixed task sets of CPU-only and GPU-using tasks on a

multiprocessor system with a single GPU: the Shared Resource Method and the Container Method.

Fundamental differences between these methods stem from how GPU execution time is modeled

and how potential graphics hardware driver behaviors are managed.

4.1 Shared Resource Method

It is natural to view a GPU as a computational resource shared by the CPUs of a multiprocessor

system. This is the approach taken by the Shared Resource Method (SRM), which treats the GPU

as a globally-shared resource protected by a real-time semaphore protocol.

The execution of a simple GPU-using job goes through several phases. In the first phase, the

job executes purely on the CPU. In the next phase, the job sends data to the GPU for use by the

GPU kernel. Next, the job suspends from the CPU when the kernel is invoked on a GPU. The GPU

executes the kernel using many parallel threads, but kernel execution does not complete until after

the last GPU thread has completed. Finally, the job resumes execution on the CPU and receives

kernel execution results when signaled by the GPU. Optionally, the job may continue executing on

the CPU without using the GPU. Thus, a GPU-using job has five execution phases as depicted in

Fig. 2. This model of a GPU-using job is a generalization of potentially more complex execution

patterns. A more complex job may execute multiple kernels, communicating with the GPU and

performing intermediate computations (perhaps determining which kernels to run based on results

from previous kernels) between invocations.6 However, despite this extra complexity, we may still

model this pattern with beginning and ending points. That is, when a job begins using the GPU

and when it is finishes using the GPU. The actual execution pattern within these framing points

6For performance, GPU operations may be performed asynchronously by the GPU-using job. This allows several
GPU operations to be batched together and treated as a single operation, reducing the number of times the job must
suspend to wait for GPU results. No changes to our task model are necessary to support this type of operation.

14

CPU
CPU:

Send

CPU:

Receive
CPUGPU

Request GPU Release GPU

Critical Section

(a) Simple GPU-using job.

CPU

CPU:

Send/Receive/Compute

CPU

Request GPU Release GPU

Critical Section

GPUGPUGPU

(b) Complex GPU-using job.

Figure 2: Execution phases of GPU-using jobs. A job obtains exclusive use of the GPU and the
GPU is not released until all GPU-related operations have completed. (a) A simple GPU-using
job runs one kernel with data transmissions occurring before and after kernel invocation. (b) A
complex job may run several GPU kernels and perform several data transmissions and intermediate
computations on the CPU.

does not affect suspension-oblivious analysis since the entire duration is treated as CPU execution

time.

We can remove the GPU driver from resource-arbitration decisions and create a suitable model

for real-time analysis through the use of a real-time semaphore protocol. Contention for a GPU

may occur when a job attempts to communicate with it or run GPU kernels. We resolve this

contention with a synchronization point between the first and second phases to provide mutual

exclusion through the end of the fourth phase; this interval is called a critical section and denoted

for each task Ti by csi.

The synchronization process to protect the critical sections is run entirely on the CPU and may be

15

implemented using the same types of primitives, such as mutexes, often used to protect traditional

shared resources and data objects. A GPU-using job requests use of the GPU by first attempting

to acquire a mutex designated to protect the GPU. The job enters its critical section once it has

acquired the mutex. The job relinquishes the GPU by releasing the mutex. This approach ensures

that the driver only services one job at a time, which eliminates the need for knowing how the driver

(which, again, is closed-source) manages concurrent GPU requests. Further, no modifications to,

or hooks into, the driver are necessary.

We may consider several real-time multiprocessor locking protocols to protect the GPU critical

section. Such a protocol should have several properties. First, it must be usable under G-EDF

scheduling. Second, it must allow blocked jobs to suspend since critical-section lengths may be

very long (recall Table 1). A spin lock would consume far too much CPU time. Third, the protocol

must support priority inheritance so blocking times can be bounded. Finally, the protocol need

not support critical-section nesting or deadlock prevention since GPU-using tasks only access one

GPU. Both the “long” variant of the Flexible Multiprocessor Locking Protocol (FMLP-Long) [16]

and the more recent global O(m) Locking Protocol (OMLP) [17] fit these requirements. Neither

protocol is strictly better than the other for all task sets since priority-inversion-based blocking (per

lock access), denoted by bi, is O(n) under the FMLP-Long and O(m) under the OMLP, where n

is the number of tasks and m is the number of CPUs. Thus, we allow the SRM to use whichever

protocol yields a schedulable task set.

The FMLP-Long uses a single FIFO job queue for each semaphore, and GPU requests are

serviced in a first-come first-serve order. The job at the head of the FIFO queue is the lock holder.

A job, Ji, of task Ti ∈ G(T) may be blocked by one job from the remaining GPU-using tasks.

Formally,

bi =
∑

G(T)\{Ti}

csj. (2)

The global OMLP uses two job queues for each semaphore: FQ, a FIFO queue of length at

16

most m; and PQ, a priority queue (ordered by job priority). The lock holder is at the head of FQ.

Blocked jobs enqueue on FQ if FQ is not full and on PQ, otherwise. Jobs are dequeued from PQ

onto FQ as jobs leave FQ. Any job acquiring an OMLP lock may be blocked by at most 2m − 1

jobs. Thus, we may loosely bound the blocking time for tasks in Ti ∈ G(T) with the formula

bi = (2m− 1) · csmax. (3)

However, Brandenburg et al. have presented in an appendix of [17] a tighter derivation of the worst-

case priority-inversion-based blocking that jobs in a hard real-time system may experience while

waiting for a resource using the OMLP under G-EDF scheduling. This derivation is summarized

by the following two theorems:

Theorem 1 ([17]). If |G| ≤ m, then Ji is blocked for at most

bi =
∑

Tj∈G\{Ti}

csj. (4)

Theorem 2 ([17]). Let the worst-case task interference be given by the formula

tif (Ti, Tj) = {csj,l | d(pi + rtj)/pje} , (5)

where rtj is the worst-case response time of job Jj , and the worst-case request interference be

given by the formula

A = xif (Ti) =
⋃

Tj∈G\{Ti}

tif (Ti, Tj). (6)

LetAmax be the 2m−1 jobs inA with the longest critical sections. Then a job Ji of Ti is blocked

for at most

17

bi =
∑

Jj∈Amax

csj. (7)

Theorem 1 describes the case when the number of resource-using tasks is at most m. The FIFO

queue, FQ, may hold all pending requests simultaneously in this case. Since FQ is FIFO-ordered,

Ji is worst-case blocked for the duration of the critical section of one job for each task in G\{Ti}.

Theorem 2 captures the case when pending requests may spill out into PQ. Determining worst-

case blocking in this instance is more difficult since Ji may be delayed by more than one job

generated by the same task. Eq. (5) gives the set of critical sections generated by Tj that may

interfere with Ji. Eq. (6) gathers the interference from all possible tasks. Finally, Eq. (7) specifies

the maximum time Ji may be blocked by all requests; the maximum number of requests that may

delay Ji provides an upper bound on the total number critical sections that must be completed

before Ji is unblocked. This upper bound is 2m−1. We refer the reader to [17] for a more detailed

description of the OMLP and these two theorems.

In the case of soft real-time systems scheduled with G-EDF, such as the one considered in

this paper, a revised form of Eq. (5) must be used since worst-case response times are not readily

available. This can be done by replacing the term pi in Eq. (5) by pi + xi and the term rt j by

pj +xj , where xi and xj are tardiness bounds computed using bounded tardiness analysis [20, 22].

This yields the formula

tif soft(Ti, Tj) = {csj,l | d(pi + xi + pj + xj)/pje} . (8)

However, the tardiness analysis used to compute xi and xj is dependent upon the execution re-

quirement, including blocking time, of every task in the task set, creating a co-dependence be-

tween determining blocking times and tardiness. A fixed-point iterative method must be used to

determine a stable bi before determining task set schedulability.

18

Job Scheduled

Job Holds GPU Lock

GPU Execution

Job Suspended on FIFO

T
1

T
2

T
3

T
4

T
5

T
6

T
7

5 10 15 20 25 300

Figure 3: Schedule for the example task set under the SRM on a four-processor single-GPU system.

Soft schedulability under the SRM is determined by the following two conditions. First,

ei + si + bi ≤ pi (9)

is required by the tardiness analysis for G-EDF [20]. Second, the condition

U =
∑

(ei + si + bi)/pi ≤ m (10)

must also hold. This is the soft G-EDF schedulability condition required by [20] to ensure bounded

tardiness. Like all suspension-oblivious tests, we must analytically treat suspension due to both

blocking and GPU execution as execution on the CPU. Note that no schedulability test is required

for the GPU co-processor since a job’s mutually exclusive GPU execution is masked by fictitious

CPU execution. Still, the suspension-oblivious nature of this test is a limiting characteristic as is

seen in Sec. 5.

19

Example. Consider a mixed task set with two CPU-only tasks with task parameters (pi =

30, ei = 5, si = 0) and five GPU-using tasks with parameters (pi = 30, ei = 3, si = 2, csi = 4)

to be scheduled on a four-CPU system with a single GPU. The CPU-only tasks trivially satisfy

Ineq. (9). The FMLP-Long is best suited for this task set and the blocking term for every GPU-

using task is
∑
csk = 16 as computed by Eq. (2). Tasks inG(T) satisfy Ineq. (9) since 3+2+16 =

21 ≤ 30. Ineq. (10) also holds since U = 2 · (5/30)+5 · ((3+2+16)/30) ≈ 3.83 ≤ 4. Therefore,

the task set is schedulable under the SRM.

A schedule for this task set is depicted in Fig. 3. T1 and T2 are the CPU-only tasks. Observe

that the last scheduled job in the figure completes at time 21, well before its deadline. The com-

puted system utilization of approximately 3.83 is quite close to the upper bound of 4.0 used in

Ineq. (10), which suggests a heavily-utilized system. However, the schedule in Fig. 3 shows that

the suspension-oblivious analysis is quite pessimistic (mostly due to blocking-term accounting)

given that the system is idle for much of the time. In fact, only one CPU is utilized after time 5.

The performance of the GPU must overcome these suspension-oblivious penalties if it is to be a

worthwhile addition to a real-time multiprocessor system.

4.2 Container Method

The SRM may be overly pessimistic from a schedulability perspective due to heavy utilization

penalties arising from the blocking terms introduced by the use of a multiprocessor locking proto-

col. Methods that lessen such penalties may offer tighter analysis. The Container Method (CM) is

one such approach.

In many cases, a single GPU will limit the total actual CPU utilization (where suspension effects

are ignored) of tasks in G(T). For example, if all tasks in G(T) perform most of their processing

on the GPU, then the total actual CPU utilization of these tasks will be much less than 1.0 when

the GPU is fully utilized. However, if we consider suspension-oblivious utilization (so-utilization),

given by the formula usoi
= (ei + si)/pi, then the actual GPU utilization and so-utilization, will

both be close to 1.0. This fact inspires the CM, which avoids heavy suspension-oblivious penalties

20

H, w(H)=7/6

T
1
(30,5,0)

T
2
(30,5,0)

T
3
(30,3,2)

T
4
(30,3,2)

T
5
(30,3,2)

T
6
(30,3,2)

T
7
(30,3,2)

G, w(G)=5/6

Figure 4: Container decomposition of an example mixed task set.

by removing contention for the GPU resource through the isolation of G(T) to a single (logical)

processor.

It was shown in [31] that bandwidth reservations, or containers, may be used to support soft

real-time guarantees in multiprocessor systems. In a container-based system, a task set is organized

into a hierarchical collection of containers. Each container may hold tasks or child containers. A

container C is assigned an execution bandwidth, w(C), equal to the sum of the utilizations (in our

case, so-utilizations) and bandwidths of its child tasks and containers, respectively.

For our GPU-enabled multiprocessor system, we place all CPU-only tasks in a root container,

H , and all tasks of G(T) in a child container G of H . In implementation, it is assumed that the

system designer has configured the system to place tasks in their proper containers, or that tasks

may be able to self-organize at initialization time through the use of one or several system calls.

Under the CM, suspensions are treated as execution time and contribute to task utilizations. This

suspension-oblivious analysis allows the CM to also support GPU-using jobs with complex usage

patterns, just like the SRM. A container decomposition of the example task set given in Sec. 4.1

is shown in Fig. 4. Observe that the tasks in G(T) are isolated in container G with a bandwidth

of 5/6, the total so-utilization of the tasks in G(T). Container G and the CPU-only tasks are

contained within H , which has a bandwidth of 7/6.

21

Containers provide temporal isolation by hierarchically allocating execution time to contained

tasks and containers. If each container schedules its contained tasks and containers using a window-

constrained scheduling algorithm,7 such as the G-EDF, then bounded tardiness can be ensured

with no utilization loss [31]. The CM exploits both this and the ability to apply different (window-

constrained) schedulers to subsets of jobs.

We schedule the children of H with G-EDF and schedule the children of G with uniprocessor

FIFO, which is a window-constrained algorithm that prioritizes jobs by release time. All GPU con-

tention is avoided through the use of the FIFO scheduler, which eliminates preemptions, assuming

jobs do not self-suspend or self-suspensions are analytically treated as CPU execution. This en-

sures that the GPU is always available to the highest-priority (according to FIFO) GPU-using job

which is implicitly granted exclusive access to the GPU because the job itself is scheduled. How-

ever, in implementation it is not necessary for G to suspend or idly consume CPU resources while

the GPU is in use. Instead, G may schedule other contained jobs, provided that the GPU critical

sections are protected by a simple release-ordered semaphore. This ensures that the highest-priority

(by FIFO) job may be scheduled immediately, without conflict, when it is ready to run. This work-

conserving approach would reduce observed tardiness, though this is not captured by our analysis

here.

Soft schedulability of a task set under the CM is determined by the following conditions. First,

w(G) ≤ 1 (11)

is required to ensure that G is schedulable with bounded tardiness on a uniprocessor. Second,

w(G) +
∑

Ti /∈G(T)

ui ≤ m (12)

must also hold. This condition ensures that the root container can be scheduled by G-EDF on m
7A window-constrained scheduling algorithm prioritizes a job by a time point contained within an interval window

that also contains the job’s release and deadline.

22

T
1

T
2

T
3

T
4

T
5

T
6

T
7

5 10 15 20 25 300

Job Scheduled GPU Execution

Figure 5: Schedule for the example task set under the CM on a four-processor single-GPU system.

CPUs with bounded tardiness.

Example. Consider the same mixed task set from Sec. 4.1. Ineq. (11) is satisfied since the

container bandwidth is w(G) = 5 · ((3 + 2)/30) ≈ 0.83 ≤ 1. Ineq. (12) also holds as U =

2 · (5/30) + 5 · ((3 + 2)/30) ≈ 1.16 ≤ 4. Therefore, the task set is schedulable under the CM. A

schedule for this task set is depicted in Fig. 5. T1 and T2 are the CPU-only tasks. Note that the last

scheduled job completes at time 25.

The SRM enforces more permissive constraints on the GPU while the CM enforces more per-

missive constraints on the CPUs. This trade-off is reflected in both the schedulability tests and

example schedules of these methods. Due to the mutually exclusive ownership of the GPU, there

may exist only one job within its critical section ready to be scheduled on any CPU at any given

time. This implies that system GPU utilization under the SRM can be bounded by the formula

∑
Ti∈G(T)

csi/pi ≤ 1 (13)

23

for schedulable task sets. This measure includes CPU execution time within critical sections since

entire critical sections must execute in sequence. Comparing the SRM’s and the CM’s measures

of GPU utilization for the previous example, we find the SRM’s GPU utilization (Ineq. (13)) is

approximately 0.67 while the CM’s (Ineq. (11)) is approximately 0.83; the SRM’s CPU constraint

(Ineq. (10)) is approximately 3.83 while the CM’s (Ineq. (12)) is approximately 1.16. Such trade-

offs are not merely limited to the tightness of analytical bounds, but are actually reflected in task

set schedules, as can be observed in Figs. 3 and 5. While the CM enforces more permissive CPU

utilization constraints, the GPU-using jobs complete later under the CM. This corresponds directly

to the CM’s higher measure of GPU utilization.

5 Evaluation of Theoretical Schedulability

We carried out SRM- and CM-related schedulability experiments to help answer the two ques-

tions raised at the beginning of this paper: (1) How much faster than a CPU must a GPU be to

overcome suspension-oblivious penalties and schedule more work than a CPU-only system? And,

(2) how much work should be offloaded onto a GPU to make the most efficient use of both the

system CPUs and GPU?

5.1 Experimental Setup

To better understand the schedulability of mixed task sets, we randomly generated task sets

with varying characteristics, testing them for schedulability on idealized systems (with no OS or

hardware overheads) using the schedulability tests described in Sec. 4. Though we ignore system

overheads, we may still observe important schedulability trends, make comparisons between the

SRM and the CM, and gauge the degree to which a GPU must speed up computations to make

their inclusion in a soft real-time system under suspension-oblivious analysis worthwhile.

Task sets were randomly generated using varied characteristics with values for parameters in-

spired by multimedia and computer vision applications, those where real-time GPUs may be read-

ily applied. These domains often perform image processing algorithms such as FFTs and matrix

24

operations (such as those given in Table 1) at various frame rates.8

The task set characteristics varied by the following: three task utilization intervals, three period

intervals, three GPU usage patterns, and ten GPU percentage task shares. Utilization intervals de-

termine the range of utilization for individual tasks and were [0.01, 0.1] (light), [0.1, 0.4] (medium),

and [0.5, 0.9] (heavy). Period intervals determine the range of task periods for individual tasks and

were [3ms, 33ms], [15ms, 60ms], and [50ms, 250ms]. The GPU usage pattern determines how

much of the execution time of each GPU-using task is spent using the GPU (this duration is equiv-

alent to critical section length); 25%, 50%, and 75% were used, in line with common CPU/GPU

workload distributions. Finally, the GPU percentage task share is the ratio of GPU-using tasks

to the total number of tasks; increments of 10% were used to test GPU task percentages from

0% to 100%. A schedulability experiment scenario was defined by any permutation of these four

parameters for systems with four, eight, and twelve CPUs, yielding a total of 810 scenarios. We

may safely ignore the effect of communication overheads because both the SRM and CM use

suspension-oblivious analysis. That is, the SRM analysis only considers the length of the criti-

cal section, not the work distribution inside it. Likewise, the CM analysis only uses the sum of

execution and suspension durations, ei + si, and not the parameters individually.

We generated random task sets for each scenario in the following manner. First, we selected a

total system utilization cap uniformly in the intervals (0, 4], (0, 8], and (0, 12], capturing the possi-

ble system utilizations of a platform with four, eight, and twelve CPUs (respectively) and a single

GPU when suspension-oblivious analysis is used. We then generated tasks by making selections

uniformly from the utilization interval and period interval according to the given scenario. We

derived execution times from these selections. We added the generated tasks to a task set until

the set’s total utilization exceeded the utilization cap, at which point the last-generated task was

discarded. Next, we selected tasks for G(T) from the task set; we determined the number of GPU-

8Common workload profiles were solicited from research groups at UNC that frequently make use of CUDA.
A poll was also informally taken at the NVIDIA CUDA online forums. Similar timing characteristics were later
confirmed in the domain of computer vision for real-time automotive applications [34].

25

using tasks by the GPU task percentage of the scenario. We then assigned the same GPU usage

pattern to each task in G(T) according to the scenario. We made cursory tests of CPU and GPU

utilization to ensure that the CPUs and GPU were not implicitly overutilized. Finally, we discarded

task sets with only one GPU-using task since this case is uninteresting as the GPU does not require

resource arbitration. We tested a total of 5,000,000 task sets for each scenario.

We tested the SRM and the CM according to the schedulability conditions already described in

Sec. 4.

5.2 Results

A representative subset of graphs resulting from our schedulability experiments is presented in this

section to show the schedulability properties of the SRM and the CM and to demonstrate their

advantages over pure CPU-only systems.9 We are limited by reasonable page constraints from

presenting results for all 810 scenarios.10 The presented subset of scenarios was selected because

they best utilized both the GPU and the CPUs, illustrating seen trends more broadly.

Schedulability results for task sets with a GPU percentage task share ranging from 20% to 30%

are shown in Fig. 6 for a four-CPU system; 10% to 20% for an eight-CPU system in Fig. 8; and up

to 10% for a twelve-CPU system in Fig. 9. These task percentage ranges were selected for each of

the respective systems as they represent the GPU percentage task share scenario where schedulable

effective system utilizations were maximized in general.

The graphs are organized to show trends as functions of per-task utilization (across the rows)

and GPU usage pattern (down the columns). Columns correspond to GPU usage patterns of 25%,

50%, and 75%. Likewise, rows correspond to light, medium, and heavy per-task utilizations. For

readability, each figure is broken up by column across several pages.

We were unable to generate schedulable heavy task sets in some scenarios for the four-CPU

case for the GPU percentage task share range 20% to 30% (Fig. 6 insets (h) and (i)). We were also
9Please note that some graphs appear to be missing data points at lower and upper system utilization ranges. This

is caused by the occasional inability to generate task sets meeting particular scenario constraints. This was usually due
to the inability to generate a task set with at least two GPU-using tasks under the given constraints.

10Graphs for all scenarios are available at http://www.cs.unc.edu/~anderson/papers.html.

26

http://www.cs.unc.edu/~anderson/papers.html

unable to generate any heavy task sets meeting scenario constraints for the twelve-CPU system

with the GPU percentage task share range up to 10% and are not shown. Instead, schedulability

results for heavy task sets with the GPU percentage task share ranges 30% to 40% (Fig. 7) and 10%

to 20% (Fig. 10) are presented as supplements for the four- and twelve-CPU systems, respectively.

Each figure plots schedulability for four assumed GPU speed-up factors (2x, 4x, 8x, and 16x)

applied uniformly to each GPU-using task. The x-axis in each figure gives the effective system

utilization and extends up to the maximum schedulable effective system utilization (for the greatest

tested speed-up factor) achievable by an optimal scheduler, which can schedule all CPUs and the

GPU to maximum capacity. For example, a four-CPU system with a speed-up factor of 16x has

maximum schedulable effective system utilization of 4 + 1 · 16 = 20.0.

Performance Gains

The presented test results allow us to draw conclusions on how much a system may benefit from

a GPU. They also help us answer (in the context of this experimental framework) our original

question of how fast a GPU must be to overcome penalties from suspension-oblivious analysis.

Observation 1. A GPU can be used to achieve effective system utilizations much greater than the

number of CPUs. In Fig. 6(d) we see that an effective system utilization of nearly 8.0 is achievable

on a four-CPU system when GPU-using tasks only use the GPU for 25% of their execution time.

This increases to 15.0 when the GPU is used for 75% of the GPU-using tasks’ execution time

(Fig. 6(f)). These maximum schedulable utilizations are two to three times greater than what a

four-CPU system can achieve without a GPU. Similarly, a GPU can give schedulable effective

utilizations up to approximately 20.0 (Fig. 8(i)), a 2.5 times increase in maximum schedulable

effective system utilization, for an eight-CPU system, and effective utilizations as great as 23.0

(Fig. 9(f)), nearly twice the CPU-only capacity, for a twelve-CPU system.

Observation 2. A GPU usually allows a four-CPU system to schedule more work than possible

with only CPUs when the GPU offers a speed-up of 4x or greater. The schedulability curves for

27

the CM with a speed-up of 4x or greater show that task sets with effective system utilizations

greater than 4.0, excepting heavy task sets, are schedulable as seen in Fig. 6. Not all task sets

with effective system utilizations of 4.0 are schedulable under the CM with a GPU speed-up of 4x

when the critical sections are only 25% of execution time, as seen in insets (a) and (d) of Fig. 6,

though roughly 80% and 90% of these task sets are still schedulable (excepting heavy task sets)

in these insets respectively; furthermore, effective system utilizations of up to 4.5 are possible

in each of these scenarios. The SRM provides similar benefits with a speed-up of 4x for heavy

task sets in Fig. 6(g) and Fig. 7 (which, as mentioned, supplements Fig. 6). The SRM is able

to achieve effective system utilizations greater than 5.0. In most scenarios, either the CM or the

SRM may be used to achieve effective utilizations greater than 4.0 with a GPU speed-up of 4x.

Helping us answer question Q1 stated in Sec. 1, we observe that in the context of this experimental

framework, a GPU must offer about a 4x speed-up over a CPU on a four-CPU system to overcome

suspension-oblivious penalties and schedule more work than a CPU-only system with four CPUs.

Observation 3. A GPU usually allows an eight-CPU system to schedule more work than possible

with only CPUs when the GPU offers a speed-up of 8x or greater, though a speed-up of 4x fre-

quently offers benefits. The schedulability curves for the CM with a speed-up of 8x or greater show

that task sets with effective utilizations greater than 8.0, excepting heavy task sets, are schedulable

as seen in Fig. 8. Not all task sets with effective utilizations of 8.0 are schedulable under the CM

with a GPU speed-up of 8x when the critical sections are only 25% of execution time, though

roughly 60% of these task sets are still schedulable in insets (a) and (d) of Fig. 8; furthermore,

effective utilizations of 9.0 to 9.5 are possible under these conditions. The SRM provides similar

benefits with a speed-up of only 4x for heavy task sets in insets (g), (h), and (i) of Fig. 8, where

28

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [20%, 30%]; Util [0.01, 0.1]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5] [6] [7] [8]

(a) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [20%, 30%]; Util [0.01, 0.1]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5]

[6]

[7] [8]

(b) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [20%, 30%]; Util [0.01, 0.1]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2][3] [4]

[5] [6] [7] [8]

(c) GPU Usage 75%

Figure 6: Four-CPU System: Light Task Sets, GPU Percentage Task Share 20–30%

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [20%, 30%]; Util [0.1, 0.4]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5] [6] [7] [8]

(d) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [20%, 30%]; Util [0.1, 0.4]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5]

[6]

[7] [8]

(e) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [20%, 30%]; Util [0.1, 0.4]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5] [6] [7] [8]

(f) GPU Usage 75%

Figure 6: (continued) Four-CPU System: Medium Task Sets, GPU Percentage Task Share 20–30%

30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [20%, 30%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5, 6, 7, 8]

(g) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [20%, 30%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1, 2, 3, 4, 5, 6, 7, 8]

(h) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [20%, 30%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1, 2, 3, 4, 5, 6, 7, 8]

(i) GPU Usage 75%

Figure 6: (continued) Four-CPU System: Heavy Task Sets, GPU Percentage Task Share 20–30%

31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [30%, 40%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5, 6, 7, 8]

(a) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [30%, 40%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5, 6, 7, 8]

(b) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [30%, 40%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5, 6, 7, 8]

(c) GPU Usage 75%

Figure 7: Supplemental, Four-CPU System: Heavy Task Sets, GPU Percentage Task Share 30–
40%

32

effective system utilizations greater than 8.0 are possible. Either the CM or the SRM may be used

to achieve effective system utilizations greater than 8.0 with a speed-up of 8x. Further, only a

speed-up of 4x is required in many cases. Helping us answer question Q1 stated in Sec. 1, we

observe that in the context of this experimental framework, a GPU must offer between 4x and 8x

speed-up over a CPU on an eight-CPU system to overcome suspension-oblivious penalties and

schedule more work than a CPU-only system with eight CPUs.

Observation 4. A GPU usually allows a twelve-CPU system to schedule more work than possible

with only CPUs when the GPU offers a speed-up of 4x or greater. We may make many of the

similar observations we have made in Obs. 2 and Obs. 3 in Fig. 9 and the supplemental Fig. 10.

However, the small required speed-up of 4x is somewhat unexpected. This small speed-up factor

is the result of the small percentage of GPU-using tasks (which ranges up to 10%, but at least

includes two in number) within the task set. Task sets are easier to schedule and allow greater

levels of CPU-only utilization when there are few GPU-using tasks. This is explained in more

detail in Obs. 9. Helping us answer question Q1 stated in Sec. 1, we observe that in the context

of this experimental framework, a GPU must offer about a 4x speed-up over a CPU on an twelve-

CPU system to overcome suspension-oblivious penalties and schedule more work than a CPU-only

system with twelve CPUs.

The SRM vs. the CM

We may also compare the performance of the SRM and the CM. Neither method is best in all

scenarios.

Observation 5. The Container Method frequently offers better schedulability than the Shared

Resource Method. The CM can often schedule task sets the SRM cannot for all tested systems as

illustrated by the large differences in the schedulability curves seen in insets (a), (b), (c), (e), and (f)

of Figs. 6, 8, and 9. In the SRM, each task inG(T) incurs an execution penalty of either |G(T)|−1

critical sections under the FMLP, or up to seven, 15, and 23 critical sections (recall that Eq. (7)

33

includes up to 2m−1 terms) for the four-, eight-, and twelve-CPU systems, respectively, under the

OMLP. If the constraint given by Ineq. (9) is not violated, then there is still a good chance that the

constraint of Ineq. (10) will be, especially at higher system utilizations. The CM clearly benefits

from avoiding the inclusion of blocking terms in its schedulability analysis, despite the fact that its

GPU utilization condition (Ineq. (11)) includes more CPU execution time.

Observation 6. The Shared Resource Method improves as per-task utilizations increase. Ob-

serve in Fig. 8 (eight-CPU system) how the schedulability curves for the SRM improve across

insets (a), (d), and (g). For example, the SRM with a speed-up of 16x may schedule task sets

with effective utilizations of roughly at most 13.0 in inset (a). This cap increases to about 18.0

in inset (g), though the percentage size of the critical sections have remained constant. The SRM

benefits from increased per-task utilizations since it reduces the total number of tasks in a given

task set and hence also reduces the number of tasks in G(T). This improves schedulability since

fewer GPU-using tasks result in smaller cumulative blocking-term penalties. Similar observations

may be made in Figs. 6 and 9 for the four- and twelve-CPU systems, respectively.

34

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [10%, 20%]; Util [0.01, 0.1]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1]

[2]

[3]

[4]

[5]

[6]

[7] [8]

(a) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [10%, 20%]; Util [0.01, 0.1]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2]

[3]

[4]

[5]

[6]

[7] [8]

(b) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [10%, 20%]; Util [0.01, 0.1]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5] [6] [7] [8]

(c) GPU Usage 75%

Figure 8: Eight-CPU System: Light Task Sets, GPU Percentage Task Share 10–20%

35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [10%, 20%]; Util [0.1, 0.4]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(d) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [10%, 20%]; Util [0.1, 0.4]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1]

[5]

[2][6]

[3] [7]

[4] [8]

(e) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [10%, 20%]; Util [0.1, 0.4]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5]

[6] [7] [8]

(f) GPU Usage 75%

Figure 8: (continued) Eight-CPU System: Medium Task Sets, GPU Percentage Task Share 10–
20%

36

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [10%, 20%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1]

[5, 6, 7, 8]

[2] [3] [4]

(g) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [10%, 20%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1]

[5, 6, 7, 8]

[2] [3] [4]

(h) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [10%, 20%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1]

[5, 6, 7, 8]

[2]
[3] [4]

(i) GPU Usage 75%

Figure 8: (continued) Eight-CPU System: Heavy Task Sets, GPU Percentage Task Share 10–20%

37

Observation 7. The Container Method cannot schedule task sets with per-task utilizations greater

than 0 .5 . The CM cannot schedule any heavy task set due to its strict container bandwidth con-

straints as seen in the insets (g), (h), and (i) in Figs. 6 (four-CPU system) and 8 (eight-CPU sys-

tem) as well as insets (a), (b), and (c) in supplemental Fig. 7 (four-CPU system) and supplemental

Fig. 10 (twelve-CPU system). Recall that the condition given by Ineq. (11) must be met for a task

set to be schedulable under the CM. A heavy task set is schedulable under the CM only if G(T)

contains two tasks with utilizations equal to 0.5. However, the occurrence of this case is highly

improbable since utilizations are chosen at random. This illustrates that the CM may suffer from

bin-packing limitations with heavy tasks.

Observation 8. The Container Method is best suited for systems with medium or light per-task

utilizations. While the CM may be used to varying degrees of success it frequently offers better

schedulability than the SRM (Obs. 5). This margin is often significant, as is best observed in Fig. 6

(four-CPU system), inset (c), where the CM, with a speed-up of 16x, can schedule task sets with

effective utilizations as great as 15.0 in comparison to the SRM at 7.0. Further, in cases where the

SRM offers better schedulability than the CM (Fig. 7(d)), the CM is still competitive.

Most Efficient Offloading of Work

Additional observations may be made when we closely compare the effect the GPU percentage

task share has on the SRM and the CM. Figs. 11, 12, and 13 make these comparisons for the

four-, eight-, and twelve-CPU systems, respectively. Inset (a) plots schedulability curves for the

SRM, and inset (b) for the CM, in each of these figures. We can easily observe the effect of GPU

percentage task share when all schedulability curves for all task shares are plotted together. For

example, Fig. 11(a) plots schedulability under the SRM for a speed-up of 16x with all tested GPU

percentage task shares for medium task sets with critical section lengths of 75% of execution. We

can observe in this figure that the GPU percentage task share with the greatest possible effective

system utilization is [30%, 40%] (though a GPU percentage task share of [20%, 30%] initially has

38

better performance) as this curve is farthest to the right, obtaining greater degrees of schedulable

effective system utilizations.

39

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [0, 10%]; Util [0.01, 0.1]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1]

[2] [3]

[4]

[5] [6] [7] [8]

(a) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [0, 10%]; Util [0.01, 0.1]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1]

[2]

[3]

[4]

[5] [6] [7] [8]

(b) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [0, 10%]; Util [0.01, 0.1]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5] [6] [7] [8]

(c) GPU Usage 75%

Figure 9: Twelve-CPU System: Light Task Sets, GPU Percentage Task Share 0+–10%

40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [0, 10%]; Util [0.1, 0.4]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5]

[6] [7] [8]

(d) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [0, 10%]; Util [0.1, 0.4]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1]

[2]

[3] [4]

[5]

[6] [7] [8]

(e) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [0, 10%]; Util [0.1, 0.4]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5]

[6] [7] [8]

(f) GPU Usage 75%

Figure 9: (continued) Twelve-CPU System: Medium Task Sets, GPU Percentage Task Share 0+–
10%

41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 25%; GPU Task Share [10%, 20%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5, 6, 7, 8]

(g) GPU Usage 25%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 50%; GPU Task Share [10%, 20%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5, 6, 7, 8]

(h) GPU Usage 50%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

Critical Section Exe 75%; GPU Task Share [10%, 20%]; Util [0.5, 0.9]; Period [15ms, 60ms]

[1] SRM, x2
[2] SRM, x4

[3] SRM, x8
[4] SRM, x16

[5] CM, x2
[6] CM, x4

[7] CM, x8
[8] CM, x16

[1] [2] [3] [4]

[5, 6, 7, 8]

(i) GPU Usage 75%

Figure 10: Supplemental, Twelve-CPU System: Heavy Task Sets, GPU Percentage Task Share
10–20%

42

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

GPU Exe 75%; Util [0.1,0.4]; Period [15,60ms]

[1] 0 - 10%
[2] 10 - 20%
[3] 20 - 30%
[4] 30 - 40%

[5] 40 - 50%
[6] 50 - 60%
[7] 60 - 70%
[8] 70 - 80%

[9] 80 - 90%
[10] 90 - 100%

left to right: [9, 10, 8, 7, 6, 2, 1, 5, 3, 4]

(a) SRM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

GPU Exe 75%; Util [0.1,0.4]; Period [15,60ms]

[1] 0 - 10%
[2] 10 - 20%
[3] 20 - 30%
[4] 30 - 40%

[5] 40 - 50%
[6] 50 - 60%
[7] 60 - 70%
[8] 70 - 80%

[9] 80 - 90%
[10] 90 - 100%

left to right: [10, 9, 8, 7, 5, 1] [4, 3, 2]

(b) CM

Figure 11: Four-CPU System: The effect of GPU percentage task share.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

GPU Exe 75%; Util [0.1,0.4]; Period [15,60ms]

[1] 0 - 10%
[2] 10 - 20%
[3] 20 - 30%
[4] 30 - 40%

[5] 40 - 50%
[6] 50 - 60%
[7] 60 - 70%
[8] 70 - 80%

[9] 80 - 90%
[10] 90 - 100%

left to right: [9, 10, 8, 7, 5, 4]

[3]

[1]

[2]

(a) SRM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

GPU Exe 75%; Util [0.1,0.4]; Period [15,60ms]

[1] 0 - 10%
[2] 10 - 20%
[3] 20 - 30%
[4] 30 - 40%

[5] 40 - 50%
[6] 50 - 60%
[7] 60 - 70%
[8] 70 - 80%

[9] 80 - 90%
[10] 90 - 100%

left to right: [10, 9, 8, 7, 5]

[4] [3] [2] [1]

(b) CM

Figure 12: Eight-CPU System: The effect of GPU percentage task share.

Observation 9. Schedulable effective system utilizations are maximized when GPU percentage

task share is roughly 1/m, yielding a balance between GPU-using and CPU-only tasks. It may be

observed in every inset of Figs. 11, 12, and 13 that the curve with greatest possible effective system

utilizations are usually for GPU percentage task share ranges that include 1/m. Indeed, it is for

this reason the subset of figures in Figs. 6, 8, and 9 were selected for presentation, where the lower

43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

GPU Exe 75%; Util [0.1,0.4]; Period [15,60ms]

[1] 0 - 10%
[2] 10 - 20%
[3] 20 - 30%
[4] 30 - 40%

[5] 40 - 50%
[6] 50 - 60%
[7] 60 - 70%
[8] 70 - 80%

[9] 80 - 90%
[10] 90 - 100%

left to right: [9, 10, 8, 7, 6, 5, 4]

[3] [2] [1]

(a) SRM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ra
ti
o

 o
f
s
c
h

e
d

u
la

b
le

 t
a

s
k
 s

e
ts

 (
s
o

ft
)

effective system utilization

GPU Exe 75%; Util [0.1,0.4]; Period [15,60ms]

[1] 0 - 10%
[2] 10 - 20%
[3] 20 - 30%
[4] 30 - 40%

[5] 40 - 50%
[6] 50 - 60%
[7] 60 - 70%
[8] 70 - 80%

[9] 80 - 90%
[10] 90 - 100%

left to right: [10, 9, 8, 7, 5]

[4] [3] [2] [1]

(b) CM

Figure 13: Twelve-CPU System: The effect of GPU percentage task share.

and upper interval bounds on GPU percentage task share include, or are very close to, the value

1/m. For example, consider the eight-CPU system where we find that 1/m = 1/8 = 12.5%. The

GPU percentage task share interval [10%, 20%] includes 12.5% and we see that it is this interval

in Fig. 12(a) that reaches the greatest level of schedulable effective system utilizations.

This behavior can be understood when we consider GPU utilization and suspension-oblivious

analysis. Due to our randomized task set generation methods, on average, GPU-using tasks of

a given percentage share also contribute an equal or greater share towards the total suspension-

oblivious system utilization when execution times are inflated by suspension times (note that this

is not effective system utilization). Recall from our discussion of the CM (Sec. 4.2) that the GPU

is fully utilized when the GPU-using tasks’ total suspension-oblivious system utilization is close

to 1.0, or one CPU. Thus, the GPU-using tasks maximize the GPU when the GPU percentage task

share is about 1/m, or the utilization share of one CPU. If GPU task percentage share is much

less than 1/m, then the GPU is likely not fully utilized and maximum processing capabilities are

not realized. If the GPU task percentage share is much greater than 1/m, then the GPU is likely

overutilized and thus the task set is unschedulable, or the GPU is fully utilized and the number

of CPU-only tasks must be significantly decreased (likely resulting in decreased CPU utilization

given fixed per-task utilization constraints) to maintain the high GPU task percentage share ratio.

44

This observation answers (in the context of this experimental framework) question Q2, regarding

how much work should be offloaded onto a GPU to make the most efficient use of both the system

CPUs and GPU.

Observation 10. The GPU may become a bottleneck. This observation may be obvious, but it is

important to keep in mind when developing a real-time system with a GPU co-processor. This is

because GPUs are rarely viewed as system bottlenecks due to their role as an accelerator. However,

the GPU can become overutilized like any other resource, leaving the CPUs relatively idle. This

can be thought of as a corollary of Obs. 9. This bottleneck effect is best observed in Fig. 13(b)

(twelve-CPU system) for the GPU percentage task share of 90–100% where the schedulability

ratio drops suddenly from 100% to 0% when effective system utilization is greater than 12.0.

This concludes our theoretical analysis of the SRM and the CM, but we have yet to determine if

these solutions are applicable to real systems. Are they truly necessary? What behaviors might we

encounter? We performed implementation-based experiments to help answer these questions.

6 Real-World Implementation

We implemented the SRM with the OMLP in LITMUSRT (described in detail in [18]), a UNC-

produced Linux-based testbed for real-time schedulers. We did this to both evaluate the practical

performance characteristics of our solution and, more importantly, to show that unguarded GPU

device driver access is not viable for a real-time system—some real-time control is necessary.

We generated synthetic workloads using the same techniques and task set parameters as in

Sec. 5.1 and ran them on our test platform, the same Intel Core i7 quad-core system described

in Sec. 2. The synthetic task sets were executed with G-EDF scheduling for a duration of 2.5

minutes under two scenarios: one with the SRM and one without. Each job executed dummy

busy-wait code to simulate computations for the task-specified durations of ei and si for the CPU

and GPU, respectively; jobs arrived periodically, as specified by pi. GPU-using jobs running under

the SRM scenario had to first acquire the OMLP lock (via a LITMUSRT system call) protecting the

45

Average Response Time Average Tardiness
Category SRM Driver SRM Driver

Easy 25.00% 24.95% 0.02% 0.00%
Difficult 29.33% 34.89% 0.17% 4.64%
Unable 92.79% 134.50% 91.97% 133.50%

Table 3: Response time and tardiness statistics for the SRM and unguarded driver. “Average Re-
sponse Time” refers to the average “response time/task period” ratio over all task sets. Ê“Average
Tardiness” refers to the average “tardiness/task period” ratio over all task sets. Smaller values are
better.

GPU before beginning use of the GPU. We made measurements for response time and tardiness.

A total of 400 task sets were tested under each scenario.

A summary of our findings for medium-utilization task sets is shown in Table 3. A large amount

of data was generated in these tests and cannot be presented in detail due to page constraints,

so only high-level statistics are shown. We use the ratios response time/task period and tardi-

ness/task period to interpret our data as this allows measurements involving task sets with different

period ranges to be compared.

The executed task sets are organized into easy-, difficult-, and unable-to-schedule categories.

Easy-to-schedule task sets are those that are deemed schedulable by the theoretical analysis of

Sec. 4.1. Difficult-to-schedule task sets are those for which theoretical analysis was unable to

determine schedulability, but the observed tardiness of any job of any task Ti never exceeded pi.

While 2.5 minutes of execution cannot prove schedulability, it indicates that the task set may be

schedulable. We make this assumption here. Unable-to-schedule task sets are those that could

not be successfully scheduled (tardiness exceeded pi during execution) by the implementation—

no unable-to-schedule task sets were ever deemed schedulable by the theoretical analysis. We are

interested in such cases since soft real-time systems may be provisioned assuming average-case

processing requirements. Such a system may at times become temporarily overutilized and we

desire reasonable performance under such circumstances.

46

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20000 40000 60000 80000 100000 120000 140000

T
a

rd
in

e
s
s
 (

m
s
)

Time (ms)

Tardiness Growth for Difficult-to-Schedule Task

[1] SRM [2] Unprotected Driver

[1]

[2]

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20000 40000 60000 80000 100000 120000 140000

T
a

rd
in

e
s
s
 (

m
s
)

Time (ms)

Tardiness Growth for Unable-To-Schedule Task

[1]

[2]

[1] SRM [2] Unprotected Driver

(b)

Figure 14: The SRM exhibits superior control over tardiness. (a) Difficult-to-Schedule task set:
The task set is only schedulable using the SRM. (b) Unable-to-schedule task set: Though also
unschedulable using the SRM, the rate of increasing tardiness is much reduced in comparison to
the unprotected driver.

Observation 11. The Shared Resource Method offers real-time guarantees with little or no ob-

served cost. The SRM allows GPU-using tasks to be scheduled with real-time guarantees through

the use of predictable locking mechanisms, though performance is slightly hindered for easy-to-

schedule task sets (as seen in Table 3, average response time and average tardiness are slightly

less [better] for the unprotected driver driver in this case). However, the marginally better perfor-

mance of the unguarded driver for easy-to-schedule task sets comes at the expense of significantly

increased CPU utilization since the driver reduces latency through busy-wait spinning as was ob-

served in Sec. 2. It is likely that the CPUs could potentially handle additional processing in such

cases. Nevertheless, the driver’s spinning and lack of priority inheritance becomes a liability in

task sets where resources are more taxed as seen in the greater ratios of the difficult- and unable-to-

schedule categories, where the SRM clearly shows better performance with lower average response

times and less tardiness.

Observation 12. The Shared Resource Method is superior at controlling job tardiness. G-EDF

scheduling distributes tardiness relatively equally across all tasks in both the SRM and unguarded

driver scenarios. However, tardiness growth is much better controlled under the SRM as can be

47

observed in both insets of Fig. 14. This figure depicts the observed tardiness over time for a task

from a difficult-to-schedule (inset (a)) and an unable-to-schedule (inset (b)) task set. The task set in

Fig. 14(a) was observed to be schedulable under the SRM, but observed to be unschedulable using

the unprotected driver. Here, the task under the SRM experiences no tardiness, while tardiness for

the task with the unprotected driver grows indefinitely. This control over tardiness is also exhibited

in the unable-to-schedule task sets, as shown Fig. 14(b). Though tardiness grows indefinitely under

both methods, the rate of growth is much reduced under the SRM. This behavior is desirable for

a soft real-time system that may occasionally become overutilized as it offers better performance

during periods of overutilization and will also recover more quickly once this temporary condition

is over since the system is less backlogged.

7 Future Work

In future work, we intend to investigate how the SRM may be improved to support the ex-

ploitation of asynchronous memory transfers. Discrete graphics cards may support the ability for

graphics hardware to send and receive data to one task while the GPU itself performs computations

for another. This allows for the masking of communication overheads in a pipelined manner. The

current treatment of critical sections precludes the use of such a mechanism.

Another direction we may pursue is support for multi-GPU platforms. Platforms with many

GPUs (sometimes heterogeneous) are already available at consumer prices. It is feasible to design

a system that could dynamically choose to execute a particular task or job on one of multiple CPUs

or on a variety of GPUs. If a SRM-like approach is taken, the locks protecting GPUs become k-

exclusion locks, 11 thus adding an extra dimension of complexity. Furthermore, the use of multiple

GPUs raises the issue of bus contention; in experimental tests, we have seen such contention more

than double the data transfer time between the CPU and GPU in some chipset architectures. Also,

execution times of tasks can vary if heterogeneous GPUs with differing capabilities are used.

11k-exclusion locks protect a resource or resource pool, allowing up to k simultaneous accesses.

48

We are also interested in the trade-offs between partitioned, clustered, and global scheduling for

systems with GPUs. In the case of partitioned and clustered scheduling, it is not entirely clear what

an optimal grouping for tasks using a GPU may be. Each scheduling method introduces its own

constraints with regards to schedulability analysis and locking protocols.

Finally, we plan to perform in-depth empirical analysis to determine the gap between the theo-

retical schedulability results presented in this paper and apparent schedulability in a real system.

Rigorous empirical tests should further clarify when a GPU is beneficial in “real world” real-time

systems. Such a study would also better quantify the effect of GPU interrupt handling.

8 Conclusion

Recent advances in graphics hardware are enabling the acceleration of computations tradition-

ally carried out on CPUs. The use of such hardware in a real-time system may allow workloads to

be supported that are too computationally intensive for CPU-only systems, while also benefiting

from reduced power consumption. Through the consideration of current architectural constraints,

this paper has presented two methods for integrating GPUs into soft real-time multiprocessor sys-

tems: the Shared Resource Method, and the Container Method. Schedulability experiments were

presented that assess the schedulability characteristics of each. In the context of the experimental

framework and analytical model, it was found that a GPU often need only offer a relatively mod-

est 4x speed-up over a single CPU to schedule greater computational workloads than pure CPU

systems in common cases. Additionally, it was also determined both CPU and GPU resources

are maximized when GPU-using tasks make up roughly 1/m percent, where m is the number

of system CPUs, of the tasks in a given task set. The Shared Resource Method was also evalu-

ated through implementation in a Linux-based operating system, exercising manufacturer device

drivers, and shown that it exhibited superior runtime characteristics in terms of schedulability and

efficient resource utilization in comparison to a similar system that is oblivious to GPU hardware

and device driver behaviors.

49

References

[1] AMD Fusion Family of APUs. Available from: http://sites.amd.com/us/

Documents/48423B_fusion_whitepaper_WEB.pdf.

[2] ATI Stream Technology. Available from: http://www.amd.com/US/PRODUCTS/

TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx.

[3] China’s new nebulae supercomputer is no. 2. Available from: http://www.top500.

org/lists/2010/06/press-release.

[4] CUDA community showcase. Available from: http://www.nvidia.com/object/

cuda_apps_flash_new.html.

[5] CUDA Zone. Available from: http://www.nvidia.com/object/cuda_home_

new.html [cited January 12, 2011].

[6] GeForce graphics processors. Available from: http://www.nvidia.com/object/

geforce_family.html.

[7] Intel details 2011 processor features, offers stunning visuals build-in. Avail-

able from: http://download.intel.com/newsroom/kits/idf/2010_fall/

pdfs/Day1_IDF_SNB_Factsheet.pdf.

[8] Intel microprocessor export compliance metrics. Available from: http://www.intel.

com/support/processors/xeon/sb/CS-020863.htm.

[9] Microsoft DirectX. Available from: http://www.gamesforwindows.com/en-US/

directx/.

[10] OpenCL. Available from: http://www.khronos.org/opencl/.

50

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.top500.org/lists/2010/06/press-release
http://www.top500.org/lists/2010/06/press-release
http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/geforce_family.html
http://www.nvidia.com/object/geforce_family.html
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://download.intel.com/newsroom/kits/idf/2010_fall/pdfs/Day1_IDF_SNB_Factsheet.pdf
http://www.intel.com/support/processors/xeon/sb/CS-020863.htm
http://www.intel.com/support/processors/xeon/sb/CS-020863.htm
http://www.gamesforwindows.com/en-US/directx/
http://www.gamesforwindows.com/en-US/directx/
http://www.khronos.org/opencl/

[11] Parallel computing with SciFinance. Available from: http://www.scicomp.com/

parallel_computing/SciComp_NVIDIA_CUDA_OpenMP.pdf.

[12] G. Abhijeet and T. Ioane Muni. GPU based sparse grid technique for solving multidimen-

sional options pricing PDEs. In Proceedings of the 2nd Workshop on High Performance

Computational Finance, pages 1–9, November 2009.

[13] Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on GPUs. In

Proceedings of the Conference on High Performance Graphics, pages 145–149, August 2009.

[14] S. Baruah. Scheduling periodic tasks on uniform processors. In Proceedings of the EuroMicro

Conference on Real-time Systems, pages 7–14, June 2000.

[15] S. Baruah. Feasibility analysis of preemptive real-time systems upon heterogeneous multi-

processor platforms. In Proceedings of the 25th IEEE Real-Time Systems Symposium, pages

37–46, December 2004.

[16] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking pro-

tocol for multiprocessors. In Proceedings of the 13th IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications, pages 47–57, August 2007.

[17] B. Brandenburg and J. Anderson. Optimality results for multiprocessor real-time locking. In

Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 49–60, December 2010.

[18] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. LITMUSRT: A testbed for

empirically comparing real-time multiprocessor schedulers. In Proceedings of the 27th IEEE

Real-Time Systems Symposium, pages 111–123, December 2006.

[19] S. Childs and D. Ingram. The Linux-SRT integrated multimedia operating system: Bring-

ing QoS to the desktop. In Proceedings of the 7th Real-Time Technology and Applications

Symposium, pages 135–, 2001.

51

http://www.scicomp.com/parallel_computing/SciComp_NVIDIA_CUDA_OpenMP.pdf
http://www.scicomp.com/parallel_computing/SciComp_NVIDIA_CUDA_OpenMP.pdf

[20] U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a multiprocessor.

In Real-Time Systems, volume 38, pages 133–189, February 2008.

[21] A. Dwarakinath. A fair-share scheduler for the graphics processing unit. Master’s thesis,

Stony Brook University, 2008.

[22] J. Erickson, U. Devi, and S. Baruah. Improved tardiness bounds for global EDF. In Proceed-

ings of the 22nd EuroMicro Conference on Real-Time Systems, pages 14–23, July 2010.

[23] S. Funk, J. Goossens, and S. Baruah. On-line scheduling on uniform multiprocessors. In

Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages 183–202, December

2001.

[24] P. Gai, L. Abeni, and G. Buttazzo. Multiprocessor DSP scheduling in system-on-a-chip

architectures. In Proceedings of the 14th EuroMicro Conference on Real-Time Systems, pages

231–238, 2002.

[25] O. Harrison and J. Waldron. Practical symmetric key cryptography on modern graphics hard-

ware. In Proceedings of the 17th Conference on Security Symposium, pages 195–209, July

2008.

[26] W. Kang, S. H. Son, J. A. Stankovic, and M. Amirijoo. I/O-aware deadline miss ratio manage-

ment in real-time embedded databases. In Proceedings of the 28th IEEE Real-Time Systems

Symposium, pages 277–287, December 2007.

[27] S. Kato and Y. Ishikawa. Gang EDF scheduling of parallel task systems. In Proceedings of

the 30th IEEE Real-Time Systems Symposium, pages 459–468, December 2009.

[28] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. Resource sharing in GPU-

accelerated windowing systems. In Proceedings of the 17th IEEE Real-Time and Embedded

Technology and Application Symposium, April 2011.

52

[29] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph: GPU scheduling for

real-time multi-tasking environments. In Proceedings of the USENIX Annual Technical Con-

ference, 2011.

[30] K. Lakshmanan, S. Kato, and R. Rajkumar. Open problems in scheduling self-suspending

tasks. In Proceedings of the 1st International Real-Time Scheduling Open Problems Seminar,

pages 12–13, July 2010.

[31] H. Leontyev and J. Anderson. A hierarchical multiprocessor bandwidth reservation scheme

with timing guarantees. Real-Time Systems, 43(1):60–92, September 2009.

[32] R. Pellizzoni G. Lipari. Holistic analysis of asynchronous real-time transactions with earliest

deadline scheduling. Journal of Computer and System Sciences, 73:186–206, March 2007.

[33] N. Manica, L. Abeni, and L. Palopoli. Qos support in the x11 window system. In Proceedings

of the 14th IEEE Real-Time and Embedded Technology and Applications Symposium, pages

103–112, 2008.

[34] P. Muyan-Ozcelik, V. Glavtchev, J. M. Ota, and J. D. Owens. Real-time speed-limit-sign

recognition an embedded system using a GPU. GPU Computing Gems, pages 473–496,

2011.

[35] C. Y. Ong, M. Weldon, S. Quiring, L. Maxwell, M. Hughes, C. Whelan, and M. Okoniewski.

Speed it up. Microwave Magazine, IEEE, 11(2):70–78, 2010.

[36] B. Pieters, C. F. Hollemeersch, P. Lambert, and R. Van de Walle. Motion estimation for

H.264/AVC on multiple GPUs using NVIDIA CUDA. In Applications of Digital Image

Processing XXII, volume 7443, page 74430X, September 2009.

[37] G. Raravi and B. Andersson. Calculating an upper bound on the finishing time of a group of

threads executing on a GPU: A preliminary case study. In Work-in-progress session of the

53

16th IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications, pages 5–8, August 2010.

[38] J. E. Sasinowski and J. K. Strosnider. ARTIFACT: a platform for evaluating real-time win-

dow system designs. In Proceedings of the 16th IEEE Real-Time Systems Symposium, pages

342–352, 1995.

[39] Y. Watanabe and T. Itagaki. Real-time display on Fourier domain optical coherence tomog-

raphy system using a graphics processing unit. In Journal of Biomedical Optics, volume 14,

page 060506, December 2009.

54

	Introduction
	Usage Patterns and Platform Constraints
	Task Model and Scheduling Algorithms
	Analysis Methods
	Shared Resource Method
	Container Method

	Evaluation of Theoretical Schedulability
	Experimental Setup
	Results

	Real-World Implementation
	Future Work
	Conclusion

