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Abstract

This paper describes a real-time extension to Linux

called LITMUSRT, which is being designed to support

real-time workloads on multiprocessor and multicore

platforms. The recent shift by chip makers to multi-

core designs, combined with building interest within the

open-source community in supporting real-time features

in Linux, makes this research quite timely. The devel-

opment of LITMUSRT was driven by a desire to bridge

the gap between those working on algorithmic issues

pertaining to multiprocessor real-time resource alloca-

tion and operating-systems researchers working to im-

prove real-time support within operating systems such

as Linux.

1 Introduction

In this paper, we report on the development of a real-

time extension of Linux called LITMUSRT (LInux

Testbed for MUltiprocessor Scheduling in Real-Time

systems) [9, 11, 28], which is being designed to sup-

port real-time workloads on multiprocessor platforms.

The development of LITMUSRT has been driven by

several trends. Foremost among these is the advent

of multicore platforms as an alternative to single-core

chip designs. Most (if not all) major chip manufac-

turers have embraced multicore technologies as a way

to continue performance improvements in their product

lines. Given this trend, multiprocessors will soon be-

come the “standard” computing platform in many set-

tings, including settings where real-time constraints are

required. Indeed, IBM’s multicore Cell processor was

originally designed for gaming systems, where timing

constraints naturally arise. In more general-purpose set-

tings, one envisioned use of multicore platforms is as

multi-purpose home appliances, with one machine serv-

ing many of the computing needs within a home [10].

These may include time-sensitive and computationally-

intensive computations such as HDTV-quality media

streaming, in addition to non-real-time processing.

Another relevant trend is the surge of interest in the

open-source community in real-time variants of Linux.
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In conjunction with this, a number of real-time exten-

sions of Linux have been proposed [22, 30]. In ad-

dition, features such as high-resolution timers, prior-

ity inheritance, and shortened non-preemptable sections,

which enhance real-time predictability, have been in-

corporated in the Linux kernel (in versions 2.6.16 to

2.6.22). Further improvements in supporting real-time

execution are likely, as there is now a sizable community

of researchers interested in implementing new real-time-

oriented features in Linux (as evidenced by the existence

of the workshop in which this paper appears).

Many of the real-time Linux variants under develop-

ment will be deployable on multicore and multiproces-

sor platforms. Unfortunately, most of these variants have

been produced without much regard to recent algorith-

mic advances in work on multiprocessor real-time re-

source allocation. For example, global scheduling poli-

cies (which schedule tasks from a single run queue) are

almost never implemented, despite the fact that such

policies are provably superior to partitioning approaches

in many ways (as we discuss later). This “mis-match”

between theory and practice cannot be blamed solely on

experimentalists. Indeed, in the last few years, scores

of papers have been written on multiprocessor real-time

scheduling algorithms (too many for us to include a ci-

tation list), yet working implementations do not exist for

many (if not most) of the algorithms that have been re-

cently proposed.

The development of LITMUSRT has been mostly

driven by a desire to bridge this gap between operating-

systems researchers and those working on algorithmic

issues. In addition, our research group is actively inves-

tigating real-time resource-allocation issues of relevance

to multicore platforms and we seek to use LITMUSRT as

a test platform in this work. LITMUSRT is an extension

of Linux (currently, version 2.6.20) that allows different

(multiprocessor) scheduling algorithms to be linked as

plug-in components. In addition, a new multiprocessor

real-time locking protocol of our own design has also

been implemented in LITMUSRT. Although the current

LITMUSRT version is very much a prototype, our ulti-

mate goal is to extend it in ways that result in a feature-

rich system that is capable of supporting complex real-

time applications on multicore platforms.

In prior work, our research group has used the cur-
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rent LITMUSRT system as a test platform [4, 9, 11, 28].

However, in these prior papers, we have not had suf-

ficient space to describe the current LITMUSRT imple-

mentation or the rationale behind its design in any detail.

Such is the objective of this paper. Towards this end, the

rest of this paper proceeds as follows. We begin with an

overview of relevant real-time systems concepts related

to scheduling and synchronization in Section 2. Next,

in Section 3, we describe our overall objectives in pro-

ducing LITMUSRT. Then, in Section 4, we explain in

some detail the various implementation choices that un-

derlie the current LITMUSRT design. We conclude the

paper and discuss our plans for improving the current

LITMUSRT implementation in Section 5.

2 Background

In this section, we provide background on real-time sys-

tems that is needed to understand our implementation.

2.1 Real-Time Systems Basics

For the most part, we focus in this paper on the prob-

lem of supporting a real-time workload on m proces-

sors that can be specified as a collection of sporadic

tasks, denoted T1, . . . , TN . (We note, however, that

LITMUSRT currently supports other task/job models as

well. We provide brief explanations of these models

later.) Each task in a sporadic system is invoked or re-

leased repeatedly; each such invocation is called a job

of the task. Each sporadic task Ti is specified by a

period, p(Ti), which denotes the minimum separation

between its successive job releases, and by an execu-

tion cost, which denotes the maximum execution time

of any of its jobs. The jth job (or invocation) of task

Ti is denoted T j
i . T j

i becomes available for execution at

its release time, r(T j
i ), and should complete execution

by its absolute deadline, r(T j
i ) + p(Ti); otherwise, it

is tardy. The spacing between job releases must satisfy

r(T j+1

i ) ≥ r(T j
i ) + p(Ti). If the stronger requirement

r(T j+1

i ) = r(T j
i ) + p(Ti) is always met, then the task

system is called periodic. Task periods and job release

times (even for sporadic tasks) are assumed to be inte-

gral with respect to the length of the system’s schedul-

ing quantum, but execution costs may be non-integral. A

task’s utilization or weight is given by the ratio of its ex-

ecution cost and period. A task’s utilization reflects the

processor share that it requires. Task utilizations are of

importance when checking schedulability, i.e., whether

timing constraints are met.

A hard real-time system is considered to be schedu-

lable iff it can be shown that no job deadline is ever

missed. A soft real-time system is considered (in this

paper) to be schedulable iff it can be shown that dead-

line tardiness is bounded, that is, some value B ex-

ists such at all jobs are guaranteed to complete by B
time units after their deadlines. Algorithms that are

used to check schedulability must be designed to ac-

count for overheads that arise in practice. Sources of

such overheads include context switching times, cache-

related overheads, etc. Such overheads are typically ac-

counted for by inflating per-job execution costs.

Real-time guarantees. In prior work on adding real-

time support within Linux, much attention has been di-

rected at increasing the predictability of certain compo-

nents of Linux in such a way that the impact of system

overheads (e.g., interrupt latency) is limited or bounded.

While reducing system latency is important and will ul-

timately improve the real-time guarantees that can be

made, they are not of themselves enough to support real-

time tasks—note that “real fast” is not the same as real-

time. (In fact, for many real-time workloads, additional

utility is not gained by improving response times be-

yond what is needed to ensure that all timing constraints

are met.) Real-time tasks need explicit support from the

scheduler so that guarantees related to their timing con-

straints can be made. The LITMUSRT project imple-

ments a variety of scheduling algorithms that allow us to

make such guarantees.

Overview of multiprocessor scheduling. Multipro-

cessor real-time scheduling algorithms can be divided

into two categories: those that partition the task set,

statically assigning tasks to processors, and global ap-

proaches that schedule tasks from a single run queue

and allow migration. Several multiprocessor schedul-

ing algorithms have been implemented in LITMUSRT.

Most of these are based on the uniprocessor earliest-

deadline-first (EDF) scheduling algorithm, in which

jobs with earlier deadlines have higher priority. These

include: partitioned EDF (P-EDF), and preemptive and

non-preemptive global EDF (G-EDF and G-NP-EDF).

(Two variants of P-EDF and G-EDF, called PSN-EDF

and GSN-EDF, respectively, have been implemented

as well. We briefly explain the need for these variants

later.) In addition, two variants of the global PD2 Pfair

algorithm [1] have been implemented.

In P-EDF, tasks are statically assigned to processors

and those on each processor are scheduled on an EDF

basis. In G-NP-EDF, tasks may migrate, but once a

job commences execution on a processor, it will run to

completion on that processor without preemption. Thus,

jobs may not migrate. Finally, G-EDF allows jobs to

be preempted and permits job migration with no restric-
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tions. No variant of EDF is optimal, i.e., deadline misses

can occur under each EDF variant in feasible systems

(i.e., systems with total utilization at most the number of

processors). It has been shown, however, that deadline

tardiness under G-NP-EDF and G-EDF is bounded in

such systems [14, 29].

In contrast to EDF-based algorithms, optimal

scheduling is possible with Pfair scheduling algo-

rithms [3, 27], i.e., deadline misses can be completely

avoided in any feasible system. In such algorithms, a

task T of weight T.wt is scheduled one quantum at a

time in a way that approximates an ideal allocation in

which it receives L · T.wt time over any interval of

length L over which it is continuously active (i.e., sub-

mitting jobs). This is accomplished by sub-dividing each

task into a sequence of quantum-length subtasks, each

of which must execute within a certain time window,

the end of which is its deadline. Subtasks are sched-

uled on an EDF basis, and tie-breaking rules are used

in case of a deadline tie. A task’s subtasks may exe-

cute on any processor, but not at the same time (i.e.,

tasks must execute sequentially). The most efficient

known optimal Pfair algorithm is PD2 [1, 27], which

uses two tie-breaking rules. Two variants of PD2 are

implemented in LITMUSRT: synchronized PD2 (which

we simply denote as PD2) and staggered PD2 (denoted

S-PD2) [19]. Under PD2, quantum boundaries on dif-

ferent processors always align. This alignment has the

potential of creating excessive bus contention at the start

of each quantum, if the tasks scheduled then initially ex-

perience many cache misses when accessing memory.

S-PD2 was proposed as a solution to this problem: un-

der it, quantum boundaries are “staggered” on different

processors so that they never align. We illustrate this

idea with an example below. While PD2 is capable of

ensuring that all subtask deadlines for any feasible sys-

tem are met, such deadlines can be missed under S-PD2

by up to one quantum. This amount, though, is still con-

siderably less than the amount by which deadlines can be

missed under G-EDF and G-NP-EDF [14, 29]. More-

over, misses of job deadlines can be avoided in S-PD2

by simply reducing a task’s period by one quantum. Un-

der both Pfair schemes, if a task is allocated a quantum

when it requires less execution time, the unused portion

of that quantum is “wasted.” In contrast, under the EDF

schemes considered above, such a task would relinquish

its assigned quantum “early,” allowing another task to be

scheduled.

To see some of the differences in these algorithms,

consider Fig. 1, which depicts various two-processor

schedules for a system of three tasks, X , Y , and Z, as

defined in the figure’s caption. There are several things

worth noting here. First, these three tasks cannot be

partitioned onto two processors, so this system is not

schedulable under P-EDF (so we do not depict a sched-

ule for this case). Second, under each of G-EDF, G-

NP-EDF, and S-PD2, a deadline is missed. Third, in

the G-NP-EDF schedule in inset (b), task Y ’s second

job cannot execute at time 3 since Z’s job must execute

non-preemptively (there is actually a deadline tie here).

Fourth, each task has the same window structure in in-

sets (c) and (d). For tasks Y and Z, this is easily ex-

plained: a task’s window structure is determined by its

weight and both of these tasks have a weight of 2/3. As

for task X , under each Pfair variant, windows are de-

fined by assuming that each task’s execution cost is an

integral number of quanta. Thus, we must round up X’s

cost to 2.0, giving it a weight of 2/3. Because of this,

some quanta allocated to task X are only half-used. Fi-

nally, note that in inset (d), quanta on Processor 1 always

begin at integral time instants, while on Processor 2, they

begin at the midpoint between two integral time instants.

Partitioning versus global scheduling. Global

scheduling algorithms are better able to utilize multi-

processor systems than partitioning approaches when

system overheads are negligible. For example, as noted

earlier, PD2 can schedule on m processors any sporadic

task system with total utilization at most m [1], and

G-EDF and G-NP-EDF can ensure bounded deadline

tardiness for any such task system, again, if total

utilization is at most m [15]. In contrast, there exist task

systems with total utilization of approximately m/2 that

no partitioning approach can correctly schedule, even if

bounded deadline tardiness is allowed [15].

While global scheduling algorithms may be theoret-

ically superior, they tend to have higher scheduling and

migration costs than partitioning schemes. As a result,

many researchers have been dismissive of global algo-

rithms from a practical standpoint. One of our main

goals in developing LITMUSRT has been to determine

whether this viewpoint is warranted. In particular, we

wanted to know how partitioning and global real-time

scheduling approaches compare when real overheads,

empirically determined, are considered.

In [11], we report on results obtained using

LITMUSRT on a four-processor testbed to compare

the five multiprocessor scheduling algorithms described

above. The tested algorithms were compared on the ba-

sis of both raw performance and schedulability (with

real overheads considered) assuming either hard- or soft-

real-time constraints. Raw performance was assessed

by measuring task completion times. Lower completion

times are desirable in settings where good average-case

performance is required in addition to worst-case pre-
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Proc. 1 Proc. 2 job/subtask release job/subtask deadline

staggered quantum allocationpartially−used quantum

X X

Y Y

Z Z

0 1 2 3 4 5 6

(c)

X

Y

Z

X

Y

Z

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

(d)(a) (b)
0 1 2 3 4 5 6 7

Figure 1: (a) G-EDF, (b) G-NP-EDF, (c) PD2, and (d) S-PD2 schedules of a two-processor system of three tasks: X , with an

execution cost of 1.5 and period of 3.0, Y with an execution cost of 2.0 and a period of 3.0, and Z with an execution cost of 4.0

and a period of 6.0.

dictability. We found that, for hard real-time systems,

P-EDF and PD2 are usually preferable, while for soft

real-time systems, G-EDF and G-NP-EDF are better.

In the hard real-time case, most partitioning and non-

Pfair global algorithms have rather similar schedulabil-

ity tests in the absence of overheads (a survey of such

tests can be found in [12]). As a result, partitioning ap-

proaches tend to be preferable because they have lower

run-time overheads [11]. In addition, the optimality of

PD2 tends to compensate for its higher runtime over-

heads. In contrast, in the soft real-time case, P-EDF

is subject to bin-packing limitations, to which G-EDF

and G-NP-EDF are immune. In addition, G-EDF and

G-NP-EDF benefit in comparison to PD2 because they

have lower runtime overheads.

2.2 Real-Time Synchronization

We now consider the issue of how to synchronize ac-

cesses to shared resources in multiprocessor real-time

systems. Of the available options for doing this, locking

mechanisms are clearly the most commonly used. In re-

cent work, members of our research group devised a new

multiprocessor real-time locking scheme called the flex-

ible multiprocessor locking protocol (FMLP) [5]. The

FMLP has been implemented in LITMUSRT, and an

empirical comparison of it to non-blocking approaches

has been conducted as well [9]. We discuss these re-

search efforts in some detail below, after first providing

needed background.

Resources and shared objects. When locks are used,

jobs issue requests for exclusive access to resources. If

a request is not satisfied immediately, then the issuing

job is blocked. Once satisfied, the issuing job holds the

resource until it completes its associated critical section

and releases the resource. A request R is contained (or

nested) within another request R′ if the requesting job

already holds R′ when it requests R. A request is outer-

most if it is contained within no other request.

In lock-based synchronization schemes, blocking, by

spinning or suspension, is inherent. Spin-based locking

algorithms are commonly called spin locks. Of greatest

interest here are FIFO spin locks known as queue locks,

wherein blocked tasks wait within a FIFO queue of spin-

ning tasks [24]. Such locking algorithms are designed

so that all spinning is local, i.e., via read-only spin loops

that (in the absence of preemption) give rise to only a

constant number of shared-memory accesses when used

in systems with coherent caches or distributed shared

memory. Spin locks can be used by tasks with little (or

no) interaction with the kernel. In contrast, suspension-

based blocking is used in OS-based synchronization pro-

tocols in which resources are acquired and released via

system calls.

The literature on lock-based synchronization is vast

and includes (for example) mechanisms that are hybrids

of pure spin-based and suspension-based mechanisms

(e.g., [20]). However, for our purposes, a locking mech-

anism must have analyzable blocking behavior so that

job blocking times can be accounted for when check-

ing schedulability. Thus, mechanisms derived in work

on non-real-time systems for which the required analy-

sis does not exist are of no interest to us.

Prior synchronization-related work. Rajkumar et

al. [25] were the first to propose locking protocols for

real-time multiprocessor systems. They presented two

multiprocessor variants of the priority-ceiling protocol

(PCP) [26] for systems where partitioned, static-priority

scheduling is used. In later work, several protocols were

presented for systems scheduled by P-EDF. The first

such protocol was presented by Chen and Tripathi [13],

but it is limited to periodic (not sporadic) task systems.

In later work, Lopez et al. [21] and Gai et al. [17] pre-

sented protocols that remove such limitations, at the ex-
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pense of imposing certain restrictions on critical sections

(such as, in [17], requiring all global critical sections to

be non-nested). A scheme for G-EDF that is also re-

stricted was presented by Devi et al. [16]. The FMLP,

mentioned earlier, does not restrict the kinds of criti-

cal sections that can be supported and can be used un-

der either G-EDF or P-EDF. In the FMLP, resources

are protected by either spin-based or suspension-based

locks. The FMLP is the only scheme known to us that

is capable of supporting arbitrary critical sections under

G-EDF. Furthermore, the schemes in [16, 17, 21] are

special cases of it.

The FMLP. We now provide an overview of the

FMLP. It is not our intent here to describe every detail

of this protocol—a full description of it can be found

in [5]. Instead of repeating that description here, we

instead have opted to explain how the design choices

underlying the FMLP were made. Such a description

should (hopefully) suffice when trying to understand the

description of our implementation of synchronization in

LITMUSRT, given later.

The FMLP is considered to be “flexible” for two rea-

sons: it can be used under either partitioned or global

scheduling, and it is agnostic regarding whether block-

ing is via spinning or suspension. Regarding the lat-

ter, resources are categorized as either “short” or “long.”

Short resources are accessed using queue locks and

long resources are accessed via a semaphore protocol.

Whether a resource should be considered short or long is

user-defined, but requests for long resources may not be

contained within requests for short resources. The terms

“short” and “long” arise because (intuitively) spinning

is appropriate only for short critical sections, since spin-

ning wastes processor time. However, the experimental

results presented in [9] call this view into question.

The remaining details underlying the design of the

FMLP were resolved with the express purpose of try-

ing to ease the task of calculating worst-case job block-

ing times. In this regard, simple mechanisms are much

more desirable than complex ones: with complex mech-

anisms, very conservative assumptions must be made

when determining blocking times, and as a result, es-

timated blocking times may grossly overestimate those

observed in practice. These estimates are very important

because they determine the impact of synchronization

when checking system schedulability.

With this in mind, the FMLP was designed by sys-

tematically considering a number of issues, and for each,

considering different design choices. In each case, the

choice that was adopted was that which resulted in better

blocking-time estimates. From these design decisions, a

number of underlying principles of the FMLP emerged,

as listed below.

• Discourage preemptions of resource-holding jobs.

When a resource-holding job is preempted, other

jobs waiting for the same resource may be substan-

tially delayed. Thus, in the FMLP, such preemp-

tions are discouraged. With one exception, this is

done by actually executing resource requests non-

preemptively. The exception is long resources un-

der G-EDF, for which priority inheritance is used

instead: a job that holds a resource inherits the pri-

ority of the highest-priority job it blocks. Priority

inheritance is not used under P-EDF because pri-

orities on different processors cannot be meaning-

fully compared (two jobs on different processors

with equal deadlines may have very different pri-

orities from a per-processor perspective: one may

have the highest priority on its processor, and the

other the lowest priority on its processor). Note

that, in the case of long resources under P-EDF,

a requesting job executes non-preemptively only if

it is not suspended. (Suspensions are not an issue

for short resources.) The group-locking mechanism

discussed below ensures that such a job suspends at

most once per outermost request.

• Prioritize lock requests on a FIFO basis. If lock re-

quests are ordered on an EDF basis, then it can be

difficult to bound blocking times. In particular, a

job’s blocking time would depend on future higher-

priority job arrivals; usually conservative assump-

tions are made regarding such arrivals, which can

result in high blocking-time estimates. The FMLP

instead prioritizes requests in FIFO order. With

FIFO ordering (and non-preemptive execution) on

m processors, a request can be blocked by at most

m− 1 preceding requests. In most systems, m will

be rather small, and hence this bound is quite close

to being tight.

• Use a (very) simple deadlock-avoidance mech-
anism. It can be difficult to accurately bound

blocking times when complex deadlock-avoidance

mechanisms are used (such as priority-ceiling-

related mechanisms [25]). In the FMLP, deadlock

is prevented by “grouping” resources and allowing

only one job to access resources in any given group

at any time. Two resources are in the same group

iff they are of the same type (short or long) and re-

quests for one may be nested within those of the

other. A group lock is associated with each re-

source group; before a job can access a resource,

it must first acquire its corresponding group lock.
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For short resources, group locks are acquired us-

ing queue locks, and for long resources, they are

acquired using a semaphore protocol. Note that,

in the case of nested resource requests, all blocking

incurred by a job occurs when it attempts to acquire

the corresponding group lock.

Under P-EDF, it is possible that all tasks that re-

quest long resources from a given group may be as-

signed to the same processor. Such long resources are

called local (others are called global). In dealing with lo-

cal resources under P-EDF, Baker’s uniprocessor stack

resource protocol (SRP) [2] is used in the FMLP in-

stead of the more complex mechanisms outlined above.

Lopez et al. [21] were the first to propose this optimiza-

tion. Note that, since there is no notion of locality under

G-EDF, this technique cannot be used under it. It is

worthwhile to note that under P-EDF the synchroniza-

tion protocol of Gai et al. [17] is equivalent to the FMLP

when all long resource requests are local, and that of

Lopez et al. [21] is equivalent to the FMLP when all

long resource requests are local and there are no short

resource requests.

Experimental evaluation. In recent work [9], we pre-

sented an empirical comparison of the long- and short-

resource variants of the FMLP and lock-free and wait-

free algorithms on our LITMUSRT testbed. Lock-free

and wait-free algorithms are user-level synchronization

alternatives to locking that can be used when the re-

source in question is a shared data object. In lock-

free and wait-free object implementations, object ac-

cesses may occur concurrently. In the lock-free case,

such accesses may “interfere” with each other, and ac-

cesses that experience interference must be retried. In

the wait-free case, object accesses are implemented in

a non-blocking way that ensures that each access com-

pletes in a bounded number of steps (statement execu-

tions). In the evaluation in [9], we first obtained system

and synchronization overheads by running benchmarks

on LITMUSRT. Using these overheads, we then con-

ducted two sets of schedulability experiments. In each,

both hard and soft real-time schedulability were consid-

ered.

In the first set of experiments, we considered only

locking mechanisms. Our goal was to determine when

(if ever) suspending is better than spinning. We consid-

ered a wide spectrum of lock nesting levels and critical-

section durations. In these experiments, suspension-

based locking never resulted in better schedulability than

spin-based locking. (On the other hand, more processor

time may be available to background jobs if suspension-

based locking is used.) In the second set of experi-

ments, we considered specifically the problem of imple-

menting shared data objects. Our main objective here

was to determine when (if ever) lock-free and wait-free

techniques are preferable to locking techniques. Our

study focused on three representative objects: read/write

buffers, queues, and binary heaps (listed in order of in-

creasing complexity). In this study, schedulability was

generally better with locking, but wait-free implemen-

tations tended to be comparable (even for more com-

plex objects for which wait-free implementations are of-

ten dismissed as impractical) and were even superior for

simple objects (buffers). On the other hand, lock-free

implementations were viable only for simple objects.

2.3 Real-Time Linux

As noted earlier, there has been much recent interest

in real-time variants of Linux. In fact, too many ap-

proaches have been developed for us to be able to ad-

equately discuss them all here. Further, there does not

even appear to be a strong consensus on what consti-

tutes a proper “real-time Linux.” In practice, real-time

products use various approaches ranging from using an

unmodified stock kernel, nested OS architectures, where

Linux is scheduled as the idle tasks of a real-time OS

(RTOS), to intricate processor-allocation schemes where

the underlying hardware is partitioned among real-time

and non-real-time applications, potentially even among

multiple OSs [22].

In this paper, by “real-time Linux,” we mean mod-

ified versions of the stock Linux kernel with improved

real-time capabilities that are the single top-level re-

source manager, not paravirtualized variants such as

RTLinux[30] or L4Linux[18], where real-time tasks are

not actually Linux tasks, nor other architectures where

actual real-time guarantees are not based on Linux it-

self. Stronger notions of “real-time” can be provided in

such systems, at the expense of a more restricted and less

familiar development environment.

Limitations of real-time Linux. To satisfy the strict

definition of hard real-time, all worst-case overheads

must be known in advance and accounted for. Unfor-

tunately, this is currently not possible in Linux, and it is

highly unlikely that it will ever be. This is due to the

many sources of unpredictability within Linux (such as

interrupt handlers and priority inversions within the ker-

nel), as well as the lack of determinism on the hardware

platforms on which Linux typically runs. The latter is es-

pecially a concern, regardless of the OS, on multiproces-

sor platforms. Indeed, research on timing analysis has

not matured to the point of being able to analyze com-

plex interactions between tasks due to atomic operations,
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bus locking, and bus and cache contention. Despite these

observations, there are now many advocates of using

Linux to support applications that require some notion

of real-time execution. As noted by McKenney [23],

I believe that Linux is ready to han-

dle applications requiring sub-millisecond

process-scheduling and interrupt latencies

with 99.99+ percent probabilities of success.

No, that does not cover every imaginable real-

time application, but it does cover a very large

and important subset.

3 LITMUSRT

In this section, we present an overview of LITMUSRT

and its design.

3.1 What is LITMUSRT?

LITMUSRT is an extension of Linux that supports

a variety of real-time multiprocessor scheduling poli-

cies. In its current state, it is most useful as a testbed

within which different scheduling policies can be imple-

mented and empirically evaluated—it is not yet a stable,

production-ready system. However, our ultimate goal

for LITMUSRT is to create a stable system that supports

complex real-time applications on multicore platforms.

LITMUSRT is designed in such a way that

adding support for additional scheduling policies

is straightforward—indeed, some of our currently-

supported scheduling policies were implemented and

tested in well under a week. Thus far, LITMUSRT has

been used by our group to conduct the two empirical

studies mentioned earlier in Section 2 [9, 11], and in

two other efforts that involved implementing scheduling

policies for workloads that cannot be specified using a

simple sporadic task model [4, 8]. Overall, LITMUSRT

has proven to be very useful in our work as a highly-

extensible real-time scheduling testbed, and we believe

that it may also be useful to other researchers.

LITMUSRT was implemented by modifying the

Linux 2.6.20 kernel configured to run on a symmetric

multiprocessor (SMP) architecture. Our particular de-

velopment platform is an SMP consisting of four 32-

bit Intel(R) Xeon(TM) processors running at 2.70 GHz,

with 8K instruction and data caches, and a unified 512K

L2 cache per processor, and 2 GB of main memory.

Why provide real-time support in Linux? We chose

to create our testbed by modifying Linux instead of an

existing RTOS for two reasons. First, Linux is free,

open-source software that is easy to obtain and mod-

ify, and is widely accepted by both developers and end

users. Second, the potential client base for LITMUSRT

as it evolves will include many real-time graphics and

multimedia applications developed within our own de-

partment. The developers of those applications actually

prefer Linux as a development platform.

Our objectives in designing LITMUSRT are in agree-

ment with the earlier-noted sentiments expressed by

McKenney. Thus, while we purposely limit atten-

tion to deploying scheduling and synchronization al-

gorithms for which formal analysis exists—such algo-

rithms should not be the weakest link from the stand-

point of timing correctness—we acknowledge that pro-

ducing system designs in any Linux-based system in

which real-time correctness is guaranteed with certainty

is not feasible. Related to this, we expect systems

to be provisioned in LITMUSRT using experimentally-

determined worst-case (average-case) values for execu-

tion costs and system overheads in the hard (soft) real-

time case, instead of using analytically-determined, ver-

ified values. This is, in fact, the approach we have

taken in our prior work. Thus, in LITMUSRT, the term

“hard real-time” should really be interpreted to mean

that deadlines are almost never missed, and “soft real-

time” to mean that deadline tardiness almost always re-

mains within some bound, even if individual tasks mis-

behave. These are stronger guarantees than provided by

most real-time Linux variants in commercial use today.

3.2 Challenges

We next describe the challenges we faced in creating

LITMUSRT.

Supporting the sporadic task model. One common

requirement for all of our scheduling policies is a need

to support the sporadic task model. In order to cor-

rectly support this model within LITMUSRT, job re-

leases need to occur at times when they can be handled

immediately. We implemented a tick-based scheduler

with the tick representing both a scheduling quantum

and the time between consecutive local timer interrupts.

We require jobs to be released only at quantum bound-

aries, so that they can be handled during local timer in-

terrupts. To achieve this, jobs need to have periods that

are an integral number of scheduling quanta; however,

since scheduling decisions can be made between quan-

tum boundaries when a job completes, execution costs

are allowed to be non-integral.

Aligned quanta. Some multiprocessor real-time

scheduling algorithms such as PD2 require synchro-
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nized quanta support, i.e., their correctness relies on the

assumption that different processors experience timer

interrupts at the same time. Other algorithms that do

not necessarily require such support may benefit from

the existence of a uniform time base across processors

so that job releases are observed by all processors at the

same time. (One exception to this rule is S-PD2, which

requires staggered quanta.) Standard Linux does not

provide aligned quanta—in fact, aligned quanta are not

desirable in a purely throughput-oriented system due to

bus-contention issues.

I/O support. Research on multiprocessor real-time

scheduling analysis has yet to produce effective ways for

accounting for disruptions caused by I/O. Nonetheless,

support for I/O is crucial for real implementations. This

is especially important in our case since the primary use

of our test platform is for research, where logging data

to stable storage is a necessity in many cases.

Deterministic synchronization. Spin-based locking

in LITMUSRT (as provided by the FMLP) is imple-

mented using queue locks. Unfortunately, to handle

most internal synchronization, the Linux kernel uses

non-FIFO spin locks. This adds a source of non-

determinism that could be substantial in some cases.

Currently, it does not appear feasible to replace all spin

locks inside the kernel with queue locks. Thus, we must

be aware of their potential impact on the real-time guar-

antees that can be made.

3.3 The Design of LITMUSRT

LITMUSRT has been implemented via changes to the

Linux kernel and the creation of user-space libraries.

Since LITMUSRT is concerned with real-time schedul-

ing, most kernel changes affect the scheduler and timer

interrupt code. The kernel modifications can be split

into roughly three components. The core infrastructure

consists of modifications to the Linux scheduler, as well

as support structures and services such as tracing and

sorted run queues that can be used by scheduler plu-

gins. The scheduler plugins encapsulate the available

real-time scheduling algorithms by providing functions

that implement the methods of the scheduler plugin in-

terface. Finally, a collection of system calls provides a

user-space API for real-time tasks to interact with the

kernel. In the following subsections, we describe each

component in turn.

Note that, in the discussion that follows, the term

real-time task means tasks that are scheduled by

LITMUSRT. Normal Linux tasks that run with a static

priority from the “POSIX real-time range” are not con-

sidered to be real-time tasks in LITMUSRT. Since they

do not follow the sporadic task model, they are consid-

ered to be just best-effort tasks with a high static priority.

3.4 Core Infrastructure

Unlike with conventional OS scheduling algorithms,

tasks are not always eligible to execute when scheduled

with real-time algorithms. For example, a sporadic task

that has completed a job may not be scheduled until its

next job release. To facilitate the releasing and queu-

ing of real-time tasks, LITMUSRT provides the abstrac-

tion of a real-time domain, which is implemented by the

abstract data structure rt domain t. rt domain t

consists of a ready queue and a release queue (as well as

one lock per queue). When a real-time domain is instan-

tiated, it is parametrized with an order function that is

used to sort tasks in the ready queue (the release queue

is ordered by ascending release time). Most schedul-

ing plugins in LITMUSRT use the EDF order function.

However, list sorting with various orders is used heav-

ily in the feedback-control EDF (FC-EDF) algorithm,

which is an adaptive scheduling algorithm briefly de-

scribed later that was recently added to LITMUSRT [4].

Wrapper functions are provided in the real-time domain

for operations such as queuing, dequeuing, and inspect-

ing designated queue elements. This removes the need

for list-handling in most scheduler plugins, thereby re-

ducing development effort (and also removing a com-

mon source of bugs).

To realize sorted (run) queues, LITMUSRT extends

the Linux list.hAPI with (parametrized) functions to

insert an element into a sorted list (list insert())

and to sort lists (list qsort()).

Scheduling quanta are defined to be the intervals be-

tween local timer interrupts. To realize aligned quanta,

LITMUSRT synchronizes timer interrupts during boot

across all processors. As explained in greater detail

later, this is done by having each processor disable its

local timer within the local timer interrupt handler, en-

ter a barrier, and restart its timer immediately afterward.

When all processors reach the barrier, they will be simul-

taneously released, resulting in all processors restarting

their timers at approximately the same time. Using this

method, we have been able to achieve aligned quanta

with an error of at most 10 µs on our test platform—in

some cases, error is as low as 1-2 µs. A slight alteration

of this method can be used to realize staggered quanta,

as required by S-PD2.

Since LITMUSRT is mainly intended as a research

platform, strong introspection support is required to

understand system behaviors. Thus, the core infras-
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tructure provides several tracing facilities. With the

O(1)-scheduler [6], printk() cannot be used while a

run-queue lock is held. This limitation exists because

printk() may invoke try to wake up(), which

will acquire run-queue locks to unblock the syslogd

process. Unfortunately, most of the scheduling code ex-

ecutes while holding a run-queue lock, which makes de-

bugging difficult. Accordingly, a macro infrastructure

called TRACE() is provided in LITMUSRT as an alter-

native to printk()-based debugging. The collected

debug messages are exported to user-space via a custom

character device driver. However, to avoid the recursive

locking issues that plague printk(), polling is em-

ployed.

To obtain detailed insight into the schedules created

by plugins, as well as to enable performance studies,1 a

framework called sched trace() is provided to ex-

port a per-processor stream of scheduling events to user-

space (also via a custom character device driver and re-

alized with polling).

Finally, to record fine-grained overhead measure-

ments, LITMUSRTalso contains a version of Feather-

Trace [7], a static, lightweight tracing facility developed

at UNC. While TRACE()- and sched trace()-

based logging can be disabled at compile time via con-

figuration options, Feather-Trace is unintrusive enough

to stay enabled at all times.

The core LITMUSRT infrastructure also includes an

implementation of the MCS queue lock [24]. Ideally, de-

terministic locking primitives should be used throughout

the kernel, but this is problematic, as discussed earlier.

As the heart of LITMUSRT, the core infrastructure is

also responsible for interfacing with the rest of Linux.

It initializes a real-time scheduler plugin (based on a

kernel command-line parameter) during system boot.

To pass control to the plugin, it hooks into the Linux

scheduler tick() and schedule() functions.

Overriding the Linux scheduler works as follows. Real-

time tasks are assigned the highest static Linux schedul-

ing priority upon creation. However, they are not kept

in the standard Linux run queues. Instead each plugin is

responsible for managing its own run queue. (Similarly,

time-slice management is also delegated to plugins for

real-time tasks.) When schedule() is invoked, con-

trol is passed to the current scheduler plugin. If it se-

lects a real-time task to be scheduled on the local pro-

cessor, then the task is inserted into the run queue and

the Linux scheduler is bypassed. When a real-time task

is preempted, it is removed again from the run queue,

1For example, we studied the impact of slack scheduling on

average- and worst-case response times of best-effort jobs under EDF-
HSB [8], which is an algorithm briefly described later that was de-

signed for systems with both real-time and non-real-time components.

thereby taking it out of the reach of the Linux scheduler.

LITMUSRT has two modes of operation, real-time

and non-real-time. When started, the system is ini-

tially in non-real-time mode. Real-time tasks are not

scheduled as long as the system is in non-real-time

mode. This feature allows complete task systems to

be set up before they are scheduled, thereby allow-

ing for the synchronous release of the first jobs of

all tasks. The core LITMUSRT timer tick function

(rt scheduler tick()) manages transitions to and

from real-time mode.

3.5 Scheduler Plugins

As mentioned before, real-time scheduling policies are

implemented as scheduler plugins. Such plugins are re-

alized similarly to other pluggable components in Linux

such as file systems. To create a scheduler plugin, func-

tions that realize the thirteen methods2 of the plugin in-

terface defined by the struct sched plugin t and de-

scribed below need to be implemented and registered by

passing a pointer to an instance of sched plugin t

to the LITMUSRTcore. Some of the methods are op-

tional and do not need to be implemented by a plugin.

From the plugins available, only one can be in use at

any time. The choice is made at boot time based on the

kernel command-line parameter rtsched. Switching

to a different plugin at run-time, while possible in the-

ory, is currently not implemented. The current version

of LITMUSRT contains the following scheduler plugins

(the first four corresponding algorithms were described

earlier):

1. P-EDF.

2. G-EDF.

3. G-NP-EDF.

4. PD2 (and S-PD2 when staggered quanta are en-

abled).

5. Partitioned EDF with synchronization support

(PSN-EDF): similar to P-EDF, except that jobs

cannot be preempted within critical sections, and

the SRP is used to handle long local resources (see

the earlier description of the FMLP).

6. Global EDF with synchronization support (GSN-

EDF): similar to G-EDF, except that jobs cannot

be preempted within critical sections, and priority-

inheritance is employed for long resources. To

bound the time that any job may be blocked due

2Sometimes also called “operations” or “callbacks.”
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to non-preemptive sections in other jobs, the m
highest-priority jobs on an m-processor system are

linked to processors so that newly-arriving, high-

priority jobs cannot preempt medium-priority jobs

multiple times due to non-preemptive sections in

low-priority jobs (see [5] for a detailed discussion

of linking).

7. EDF for heterogeneous task systems (EDF-HSB):

an EDF-based approach that uses P-EDF for hard-

real-time tasks, G-EDF for soft-real-time tasks,

and methods that minimize best-effort task re-

sponse times.

8. Feedback-Control EDF (FC-EDF): an “adaptive”

variant of G-EDF that uses feedback-control tech-

niques to dynamically adjust task weights.

The thirteen methods that encompass the current

scheduler-plugin interface are described below. As

LITMUSRT gains additional features, the number of

methods will grow. For example, the addition of syn-

chronization support introduced the last three methods

listed below. By providing reasonable default imple-

mentations, existing plugins do not have to be changed

when the interface is expanded.

1. When a new real-time task is added to the task

set, the scheduler plugin is queried with a call to

prepare task(). This allows the plugin to ex-

amine the task and perform scheduler-specific ini-

tialization. If the task does not meet requirements

imposed by the plugin, then it can veto the accep-

tance of the new task. This allows plugins to imple-

ment custom admission tests. However, plugins do

not currently implement such tests.

2. Scheduler plugins are notified of tasks that block

(for any reason) by calling task blocks().

This allows plugins to remove blocking tasks from

internal data structures. Most plugins do not need

to act on this event because in Linux only the sched-

uled task can block, and scheduled tasks are usually

not kept in the ready queue3 in LITMUSRT.

3. The common Linux wake-up function

try to wake up() invokes the plugin method

wake up task() if it determines that the task

in question is a real-time task. LITMUSRT makes

sure that this method is only called once per

blocking task, and only if task blocks()

was called previously, even if multiple calls to

3To be more accurate, there is one ready queue and one release

queue under global algorithms, and one of each such queue per pro-

cessor under partitioned algorithms.

try to wake up() are initiated. The mecha-

nism works correctly even if the wake-up occurs

before the task could block (e.g., if the wake up

occurs before the task in question could block

by calling schedule() with its state set to

TASK UNINTERRUPTIBLE, which may happen

when I/O operations complete very quickly).

4. When a real-time task exits, scheduler plugins are

notified with a call to tear down. To avoid mem-

ory leaks, a plugin should free any resources that it

allocated for the exiting task.

5. When the system transitions to or from real-time

mode, scheduler plugins are notified by a call to

mode change(). After being so notified, the

plugin should place all real-time tasks in state

TASK RUNNING in the release queue for immedi-

ate release.

6. Real-time scheduler plugins are notified of each

timer tick on each processor by a call to

scheduler tick(), regardless of whether a

real-time task is scheduled or not. This enables

scheduler plugins to release jobs and to preempt

any task (real-time or non-real-time) at quantum

boundaries.

7. The main scheduling function is schedule(). A

plugin should select which real-time task to execute

next. The Linux scheduler will only be consulted if

this method selects no task.

8. To prevent race conditions, global schedulers must

ensure that a task cannot be selected for execution

on one processor before a context switch involv-

ing that task has finished on a different processor,

otherwise stack corruption could occur. One way

to ensure this is to only re-insert a preempted task

into the ready queue after the context switch has

completed. For that reason, finish switch()

is called after every context switch that involved a

real-time task.

9. Individual jobs of a real-time task may complete

early. In that case, the task should be put back into

the release queue, where it must remain until its

next job release. To notify a scheduler of such a

condition, the method sleep next period()

is invoked.

10. Certain schedulers, such as EDF-HSB, have pa-

rameters that affect how tasks are scheduled. In

order to configure scheduler plugins through a uni-

fied interface, the method scheduler setup()
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was introduced. However, it is considered to be

deprecated and will be removed in a future release

because it duplicates functionality that is available

through the proc file system.

The remaining three methods pertain to the imple-

mentation of the FMLP. Supporting priority-inheritance

is optional for plugins, and currently only the plugins

implementing the FMLP (PSN-EDF and GSN-EDF)

implement this support.

11. When a task that was blocked on a long-resource

group lock is unblocked, it may have to inherit the

priority of a task that is located behind it in the

FIFO wait queue for that group lock. To check

for that condition, the long-resource code calls

inherit priority().

12. When a task releases a long-resource group lock, it

may have to relinquish an inherited priority. This is

done by calling return priority().

13. When a task blocks on a long-resource group lock,

it may have a higher priority than any other task

in the wait queue for that group lock (if any). In

that case, the priority of the lock-holder should be

raised. The long-resource code calls pi block()

when a task blocks on a group lock to account for

that situation.

3.6 System Call API

LITMUSRT introduces a number of new system calls to

Linux. While some of these system calls can be used

directly, most of them are intended to be used by liblit-

mus, a user-space library that provides higher-level ab-

stractions. The introduced system calls are organized

by purpose into five groups: managing real-time tasks,

querying state information, controlling job releases, sys-

tem setup, and synchronization.

Real-time task management. Three system calls

were introduced for real-time task management. Real-

time tasks are created in three steps. First, a new task

is created with the Linux clone(2) system call (the

flag CLONE REALTIME must be given). The child task

will be started in the state TASK STOPPED to give

the creator time to properly configure the new real-

time task. The parent task can then configure the child

with either the set rt task param() (for sporadic

tasks) or the set service levels() (for adaptive

tasks) system call. Once it is set up, the new task

is added to the real-time task set with the system call

prepare rt task(). Note that this API currently

prohibits real-time tasks from configuring themselves.

The reasons for this limitation are mostly historic, and

we plan to make real-time task creation more flexible in

a future release.

State information. Four system calls were added to

allow real-time tasks to query information about the

system and themselves. The currently-active scheduling

policy can be obtained with sched getpolicy().

Task-specific information can be obtained with

get rt task param(), which retrieves a sporadic

task’s parameters such as its worst-case execution time

and period, get cur service level(), which

only applies to adaptive tasks, and get job no(),

which returns the sequence number (starting at zero) for

the task’s current job.

Job control. There are two different system calls

to signal the completion of a job. The simple one,

sleep next period(), completes the current job

unconditionally and places the invoking task on the re-

lease queue. This allows for a straightforward real-

time task implementation. However, it has a sub-

tle, potentially-unwanted behavior when a job over-

runs its allocation. In that case, the kernel will have

already advanced to the next job by the time the

job completion is signaled from user-space. Since

sleep next period() works unconditionally, this

will effectively skip the job after an overrun (which

could be the desired behavior in some cases to control

overload). To account for this situation, a second system

call, wait for job no(), was added that allows the

job that should be released next to be specified. If that

job has already been released (e.g., due to an overrun of

the previous job), then the system call returns immedi-

ately. It also allows a real-time task to skip several jobs

by specifying a job release in the future.

System setup. Scheduler-specific settings can be

configured with the scheduler setup() sys-

tem call. Mode transitions are initiated with the

set rt mode() system call.

Synchronization. To support the FMLP, eleven sys-

tem calls have been introduced. Eight of these pro-

vide support for long resources: X sema init(),

for allocation, X sema free()), for de-allocation,

X down(), for acquisition, and X up(), for release,

where X is either pi (for non-SRP-controlled re-

sources4) or srp (for SRP-controlled resources in

4pi stands for “priority inheritance.” The pi system calls are also

used for non-SRP-controlled resources in P-EDF, even though prior-

ity inheritance is not used for such resources.
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P-EDF). Further, SRP-controlled resources also re-

quire real-time tasks to register their intent to ac-

cess SRP-controlled resources so that priority ceilings

can be correctly computed. This is done using the

reg task srp sem() system call.

To properly support spin-based resource access un-

der the FMLP, real-time tasks need to become non-

preemptive for short periods in user-space. We imple-

mented non-preemptive sections by letting each real-

time task register the address of a flag in user-space dur-

ing initialization. This is done using the system call

register np flag(). A task sets its flag prior to

entering a non-preemptive section. When a delayed pre-

emption is required because the task to preempt is ex-

ecuting non-preemptively (as indicated by its flag), the

kernel sets a second flag in user-space. When a task

leaves a non-preemptive section, it resets its flag and

checks the kernel’s flag. If it is set, then the task invokes

the system call exit np() to both reset the kernel flag

and call the scheduler. This technique requires only one

system call in the case of a delayed preemption, and zero

otherwise.

4 Implementation

Our implementation efforts in developing LITMUSRT

have focused on several key tasks: devising support

for different quanta alignments, incorporating multipro-

cessor scheduling algorithms into Linux using our plu-

gin interface, providing support for various synchroniza-

tion mechanisms, and developing user-space libraries

that provide an interface for a user wishing to use

LITMUSRT to schedule a real-time workload.

4.1 Supporting Scheduling Quanta

We first discuss our methods for supporting in Linux

aligned and staggered quanta. Aligned quanta provide a

consistent view of time that is convenient when all tasks

have periods that are some multiple of the quantum size.

However, in EDF-scheduling variants, scheduling de-

cisions (and hence quantum allocations) do not always

occur at timer interrupts, as is the case with PD2 and

S-PD2. For example, if a job J in an EDF scheme

completes between timer interrupts, then a new job J ′

may be scheduled. In our implementation, such a job J ′

can be preempted at the next timer interrupt, if a higher-

priority job is released at that time. In such a case, J ′

would have executed for less than a full quantum prior

to its preemption.

Before describing how we achieved different quanta

alignments, we first digress to provide a brief introduc-

tion to the local timer interrupt hardware on our test

platform and its operation in Linux. This overview is

based heavily on material from [6], and the architecture

of our Intel-based test platform. Kernel-related informa-

tion should be relevant through Linux version 2.6.20, the

version on which LITMUSRT was developed.

Introduction to local timers. In our hardware

configuration, each processor contains an Advanced

Programmable Interrupt Controller (APIC), which

is on the same chip as the processor itself. Each

APIC contains a local timer that generates local

timer interrupts on each processor, resulting in a

call to smp apic timer interrupt(), the lo-

cal timer interrupt handler. This handler then calls

smp local timer interrupt(), which calls

update process times(), which results in a

call to scheduler tick(), the function that is

responsible for making scheduling decisions during

this interrupt. Thus, these timer interrupts represent

the quantum boundaries for each processor in our

system. As each APIC is programmed to generate

interrupts at the same frequency on all processors, the

interval between timer interrupts is identical across all

processors. However, these interrupts do not necessarily

coincide. Creating such an alignment would require that

all local timers be started at the same time. In Linux,

this is not guaranteed, since the time at which each

processor starts its local timer is not predictable.

Selecting the quantum size. Given that we require

task periods to be multiples of the quantum size, the size

of our scheduling quantum should be reasonably small.

In our case, we chose the highest natively-supported

timer frequency, 1000 Hz, resulting in a quantum size

of 1 ms. Experimentation with higher timer frequen-

cies resulted in an unstable system, and require a more

in-depth study to determine the feasibility of their use.

Supporting quanta alignments. We supported

aligned and staggered quanta by aligning local timer

interrupts across processors as follows.

• After initializing local timers normally at system

boot, each processor waits for some number of

local timer interrupts to be generated before at-

tempting to align quanta. This allows various

parts of the system to initialize and stabilize prior

to quantum alignment. We conservatively wait

for thirty seconds before attempting to align in-

terrupts. We achieved this by adding a check

within the Linux local timer interrupt handler,

smp local timer interrupt(), that calls

our function synchronize quanta() when

enough interrupts have been generated.
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• Within our synchronize quanta() call,

the local timer for the calling processor

is disabled (by calling the Linux function

disable APIC timer()), and the calling

processor waits at a barrier. This barrier is im-

plemented through the use of a variable of type

atomic t, so that concurrent reads and incre-

ments are performed correctly. Each processor may

only pass through the barrier once all processors

have reached it. As a result, all processors will

pass through the barrier at the same time.

• If staggered quanta are desired, then each proces-

sor will delay for an additional amount of time im-

mediately after passing through the barrier, so that

quantum boundaries on different processors will be

evenly distributed over time. This time is equal

to the logical CPU identifier of the processor (the

result of calling smp processor id()) multi-

plied by the quantum size (1 ms) divided by the

number of processors. For example, with a 1-

ms quantum size and four processors, some pro-

cessor (ideally) reaches a quantum boundary every

250 µs.

• Finally, each processor restarts its local

APIC timer by calling the Linux func-

tions setup APIC LVTT() and enable

APIC timer().

Staggering delays were realized using a non-timer-based

kernel delay function called udelay(), which is im-

plemented using a software loop with microsecond gran-

ularity.

The result of this method is that timer interrupts are

either aligned or staggered, as required. A boot option

allows us to specify whether aligned or staggered quanta

should be provided. Note that we can get aligned quanta

even if quanta were substantially misaligned before us-

ing this method. Such a statement cannot be made about

standard Linux. Also, note that other (non-timer) inter-

rupts cannot interfere significantly with this method of

aligning or staggering quanta, since it relies on barri-

ers, and the network and most I/O devices are not yet

initialized. (It is worth noting that this approach was

devised after considering many that did not work, in-

cluding approaches that use a global timer interrupt dis-

tributed with interprocessor interrupts (IPIs), and vari-

ous proposed patches.)

Processor sleep states and interrupts. Some Intel

processors may enter sleep states where local timer in-

terrupts are not reliably generated by the local APIC

timers, if they are generated at all. In such cases,

the method described above would not be a reliable

way of providing aligned quanta. To generate local

timer interrupts more reliably in this case, Linux dis-

ables the local APIC timers for such processors and

instead broadcasts a global interrupt (generated by a

single external timer source) through the use of IPIs.

These interrupts then result in the appropriate calls of

the smp apic timer interrupt() interrupt han-

dler. While this fix generates interrupts more reliably,

it is problematic for our implementation of aligned/stag-

gered quanta, since the time at which IPI signals arrive at

each APIC is not much more predictable than the times

at which local timer interrupts are invoked at each pro-

cessor without our method. While the processors that

are part of our test platform do not contain the offending

sleep states, allowing us to avoid this issue, it highlights

an important point. That is, we will need to be able to

support aligned quanta in systems where local timers are

unreliable or non-existent. Such is likely to be the case

for many multicore platforms.

Future directions. In the near future, we plan to begin

the next major development cycle of LITMUSRT during

which LITMUSRT will be ported to two new architec-

tures (Intel and Sun multicore platforms) and the most

recent version of the Linux kernel. Starting with kernel

version 2.6.22, timer interrupts are no longer generated

at a static frequency, and the impact of this change will

be explored at this time. Additionally, depending on the

timer hardware provided with the Intel- and Sun-based

machines that we plan to acquire, certain details could

change and require substantial changes to the implemen-

tation described here.

4.2 Scheduler Plugin Implementation

We now discuss the details of how we support schedul-

ing algorithms within LITMUSRT by considering an

example, namely our plugin for G-EDF. Most of

the scheduling decisions in this plugin are made in

the tick handler function gedf scheduler tick()

and the scheduling function gedf schedule(), both

of which are considered in detail below. (These two

functions implement the scheduler tick() and

schedule() methods described earlier in Section 3.5

when discussing the plugin interface.) The G-EDF plu-

gin uses the sched trace() framework described

earlier to export the execution history to user space (if

enabled in the kernel configuration).

State information. The G-EDF scheduler uses

the real-time domain abstraction supplied by the

LITMUSRT core infrastructure, parametrized with
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the EDF order function. Since G-EDF is a global

scheduling algorithm, there is exactly one real-time

domain for the whole system that manages runnable

and to-be-released tasks. Further, G-EDF maintains

per-processor state that tracks whether a processor is

currently executing a real-time task, and if so, that

task’s current deadline. In addition, a per-processor

will schedule flag is maintained to indicate that

a processor is about to reschedule (i.e., it is about to

invoke the scheduler). This flag is used to avoid the

repeated sending of IPIs to initiate rescheduling across

processors in cases where a processor has concurrently

determined that rescheduling is necessary.

Preemption check. Each processor’s state informa-

tion is stored in a struct that includes the deadline of

its currently-running task (if there is no such task, the

deadline is taken to be infinite), and these structs are or-

ganized collectively in a linked list that is sorted in in-

creasing deadline order. This list, called the “processor

queue,” is used to quickly determine whether preemp-

tions are necessary on job releases. The preemption-

check function gedf check resched() (registered

as part of the real-time domain initialization), which

is called whenever a task has been added to the

ready queue, only needs to compare the deadline

(which may be infinite) stored for the last proces-

sor in the processor queue with that of the highest-

priority task in the ready queue (the first task in the

queue) to determine whether preemptions are neces-

sary. If preemptions are determined to be necessary, then

gedf check resched() sends IPIs to the appropri-

ate processors to cause rescheduling to occur.

Scheduler tick. When the function gedf

scheduler tick() is invoked on some proces-

sor, it updates the budget of the currently-running

real-time task (if there is one) on that processor. It also

checks the global real-time domain for new job releases.

Since the Linux scheduler tick routine is bypassed for

real-time tasks, the management of processor time bud-

gets is delegated to the scheduler plugins. In theG-EDF

plugin, the budget of a task is decreased each time it in-

curs a scheduler tick, which is similar to the stock Linux

scheduler (in version 2.6.20).5 When the budget of the

currently-running real-time task is exhausted, a preemp-

tion is initiated by returning FORCE RESCHED to the

LITMUSRT core tick handler. Further, the processor’s

will schedule flag is set, as is a flag in the task con-

trol block that indicates a job completion.

5Linux version 2.6.23 changes this behavior to timestamp-based

accounting with nanosecond resolution. We intend to update

LITMUSRT to use the same—much more accurate—approach in a

future release.

If the system is in real-time mode, then the real-time

domain is also checked for new job releases after acquir-

ing the release-queue lock. In the case that a job has to be

released, the ready-queue lock is also acquired and the

corresponding task is transferred from the release queue

to the ready queue. This triggers the preemption-check

function as discussed above. If a preemption is required

due to the job release, then the lowest-priority processor

is forced to reschedule.

Task selection. The function gedf schedule() is

invoked whenever a new real-time task needs to be se-

lected for execution. If it is invoked upon a job com-

pletion, then some ready task (if one exists) will be se-

lected to execute. However, in other cases, it is possi-

ble that a new task is not selected because the currently-

running tasks have higher priority than any other ready

task. To check for job completions (either determined by

the scheduler tick function or signaled by the completing

task using one of the job-control system calls described

in Section 3.6), the real-time flag field in the task control

block is consulted. If it is set to RT F SLEEP, then the

completing task is prepared for its next job release by

advancing its deadline and release fields appropriately.

If the system is currently in real-time mode, then the

currently-scheduled real-time job (if there is one) on the

processor where gedf schedule() is invoked is ex-

amined. If it is the highest-priority pending job, then no

change is required and gedf schedule() returns the

currently-scheduled task. Note that this scenario may

occur when a task experiences significant tardiness.

On the other hand, if a preemption is required, then

the highest-priority task is dequeued from the ready

queue and selected as the next task to be scheduled on

the local processor. To actually schedule the new task,

it is inserted into the Linux run queue. Correspondingly,

the prior task is removed from the Linux run queue. Fi-

nally, the position of the processor’s entry in the proces-

sor queue is updated to reflect the new deadline.

Note that, if a preemption occurs, then the pre-

empted task will not be requeued until the context

switch has been completed. The delayed reinsertion

into the real-time domain is performed in the function

gedf finish switch() (which is an implementa-

tion of the finish switch() method mentioned in

Section 3.5).

Other methods. G-EDF provides the gedf

prepare task() function to add newly-created

real-time tasks to the current task set. Upon ini-

tial arrival, a task’s Linux scheduling priority is set

to the maximum static priority, its state is set to

TASK RUNNING (recall from Section 3.6 that it was
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created in state TASK STOPPED), and its first job’s

release time and deadline are initialized. After initial-

ization, it is added to the release queue. G-EDF does

not have to handle blocking tasks since all blocking

is implemented using native Linux routines, which

ensure that any currently-executing real-time task has

been removed from the run queue by the time the

plugin’s method is invoked. Similarly, there is no

need to perform per-task tear-down operations since no

resources are allocated for individual tasks. TheG-EDF

mode-change handler reinitializes the per-processor

state and prepares new job releases of all real-time

tasks to occur synchronously ten milliseconds after

the mode change. The functionality needed to provide

proper support for the sleep next period()

system call is provided by the LITMUSRTcore function

edf sleep next period() since no scheduler-

specific behavior is required.

4.3 User-Space Libraries

As mentioned before, the system call API is not intended

to be used directly. Instead, real-time tasks should use

the two user-space libraries liblitmus (real-time task

creation and control) and libso (shared objects) that

abstract low-level kernel operations.

liblitmus, the task creation and control library,

provides wrappers around all system calls and also pro-

vides convenience functions that perform typical initial-

ization tasks such as locking a newly-created task’s vir-

tual memory into the system’s memory to avoid page

faults and registering the location of the task’s non-

preemptive section flag. Further, it also provides some

utilities intended to be used in shell scripts, most no-

tably rt launch, which can be used to start arbitrary

programs as real-time tasks.

The real-time shared object library, libso, uses the

synchronization services provided by LITMUSRT and

the Linux system call mmap(2) to provide the abstrac-

tion of FMLP-controlled shared objects as well as pro-

cess naming and in-object memory management. Short

resource group locks are implemented in libso by us-

ing the MCS queue lock algorithm [24] together with the

flag-based mechanism described earlier in Section 3.6 to

signal non-preemptive sections.

5 Conclusion

In this paper, we have presented an overview of

LITMUSRT, an extension to Linux that we have de-

veloped to support real-time workloads on multiproces-

sor systems, and we discussed its current implementa-

tion status. At the heart of LITMUSRT is a scheduler

plugin interface that allows new scheduling algorithms

to be added in a reasonably straightforward manner—

additional subsystems of importance include user-space

libraries that support the creation and execution of real-

time workloads, as well as real-time task synchroniza-

tion. Given current trends in processor design, and re-

cent interest in providing real-time support within Linux,

we believe that this work is timely and could provide a

foundation on which other researchers and developers

can create and empirically evaluate multiprocessor real-

time scheduling and synchronization approaches within

Linux.

Future work. A number of directions exist for extend-

ing LITMUSRT. First, we want quantum alignments

to be re-synchronized periodically, so that alignments

are corrected should they become out-of-sync. (On our

platform, in our experience, this is not a common oc-

currence, but it could be on other platforms.) Second,

we want to provide support for finer-grained locking in

global schedulers. Third, we want to reduce schedul-

ing overheads in global algorithms so that they are log-

arithmic or constant in the number of processors or log-

ical CPUs, instead of linear, as they are now. This

will become especially important as the number of log-

ical CPUs (cores or hardware threads) on a platform in-

creases. Fourth, there are several parts of the imple-

mentation that need to be debugged or made more ro-

bust to erroneous use. Fifth, we wish to use Feather-

Trace as a mechanism to improve the efficiency of the

sched trace() function that we provide to facili-

tate scheduler debugging and evaluation. Finally, we

are planning a large development cycle in which we will

port LITMUSRT to both the most recent kernel version,

and two multicore architectures: a quad-processor Intel

machine consisting of quad-core chips (16 total cores),

and the Sun UltraSPARC T2 (Niagara 2), which con-

sists of eight cores with eight hardware threads per core

(eight total cores, 64 total hardware threads). Our goal is

to evaluate both LITMUSRT and various scheduling ap-

proaches in environments with shared caches and higher

core counts. This development cycle will also consider

issues related to significant changes to the Linux sched-

uler, and achieving the quantum alignments desired in

a kernel with a substantially different timer interrupt in-

frastructure, on different timer hardware.
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