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Abstract

Based on lessons learned in developing and maintaining LITMUSRT, arguments in favor of an intensified collab-
oration between the academic and the open-source real-time communities are presented, and several ways in which
ongoing efforts in these two communities may benefit each other are outlined. Some (unfortunately) commonly-
encountered sources of friction and mutual misconceptions, which result from differing backgrounds and objectives
in these two communities, are exposed, with the goal of finding common ground. Further, a “wish list” is presented of
possible additions and changes to PREEMPT-RT that would enhance Linux’s viability as the “platform of choice” for
real-time-systems research. These improvements are substantiated by examining EDF-HSB, a candidate algorithm
for earliest-deadline-first (EDF) scheduling support in Linux that integrates hard and soft real-time guarantees as well
as best-effort scheduling with bandwidth reservations.

1 Introduction

Due to its openness and its applicability across a wide
range of hardware platforms, Linux has been popular
with researchers for many years [47]. In research on
real-time systems in particular, Linux has served as a
starting point for numerous projects [19, 21, 24, 33,
37, 44, 46, 48]. Given these strong ties to real-time-
systems research, one could reasonably expect Linux to
provide many real-time-related features that are based
on scheduling and synchronization algorithms that are
provably among the best approaches (from an analytical
standpoint). Sadly, this is not the case.

Linux’s central real-time features focus on low in-
terrupt latency, static priority scheduling, and basic pri-
ority inheritance [30, 41]; while undoubtedly important,
these features reflect the state of the art of over 20 years
ago. Moreover, recently-added, more advanced features,

such as hierarchical scheduling and bandwidth limiting,
are not rooted in analytically-sound foundations [6]. In
essence, there is a severe disconnect between academia
and Linux technologists—few (if any) of the advances
made in projects based on Linux have found their way
back to Linux itself.

This lack of communication and exchange of ideas
is very regrettable when in fact academics and Linux
developers increasingly need each other. With ever-
increasing hardware complexity, academic researchers
critically depend on a strong foundation—building a
fully-featured OS from scratch is prohibitively expen-
sive. Given Linux’s extensive multiprocessor support
(since version 2.6) and the widely-acknowledged, yet still
growing importance of multicore architectures, Linux
will likely remain the primary platform for applied sys-
tems research in the foreseeable future. At the same
time, multicore architectures pose complex multiproces-
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sor resource-allocation and optimization challenges for
which “trial-and-error” design yields only diminishing
returns. While slow-moving at times, academia can of-
fer insights and advice on fundamental algorithmic trade-
offs that are only rarely exposed on mailing lists.

Hence, we strongly believe that improved collabo-
ration between the Linux and academic real-time com-
munities would be mutually beneficial. As a first step
towards that goal, this paper comments on some of the
common barriers and misconceptions that have hindered
cooperation in the past, and examines real-time concepts
and interfaces that would benefit both researchers and
practitioners if implemented in Linux.

Defining “Real-Time Linux.” Many designs—often
quite different from one another—have been labeled
“real-time Linux” in the past.

Real-time Linux variants can generally be catego-
rized into two groups. In a native design, the Linux ker-
nel is the only kernel present and responsible for meeting
real-time requirements, and real-time tasks are regular
Linux processes. In contrast, in a para-virtualized design,
a specialized (hard) real-time-capable microkernel (or
hypervisor) is conceptually inserted between Linux and
the actual hardware. Such implementations follow a clas-
sical microkernel design [28] in which Linux takes over
the role of an OS server and is scheduled as a background,
non-real-time thread by the microkernel (e.g., [24, 48]).
Real-time tasks are specialized threads (i.e., not Linux
processes) that are directly dispatched by the microker-
nel.

Because of Linux’s beginnings as a traditional mono-
lithic kernel with (in the context of real-time-systems
design) excessively-long non-preemptive sections, early
Linux-based real-time systems were commonly based on
para-virtualization. There are two key advantages to such
a design. First, low interrupt latencies can be guaran-
teed to real-time tasks regardless of any deficiencies in
the Linux kernel. Second, only (relatively) small changes
to the Linux kernel are required, which means that in-
tegrating improvements made in newer Linux versions
is (relatively) easy. A good example for these bene-
fits is the L4Linux/Fiasco system [24], in which Linux
is para-virtualized on top of Fiasco, TU Dresden’s L4-
based microkernel: initially released in 1996 for Linux
1.3.94 [25], L4Linux is still reliably tracking the latest
Linux kernel versions in 2009.

Unfortunately, para-virtualized real-time Linux vari-
ants suffer from two significant drawbacks: (i) as men-
tioned above, real-time time tasks are not Linux processes
and (ii) there is only little benefit to mainline Linux. Re-
garding (i), to ensure predictably low interrupt latencies,
real-time tasks usually execute directly on top of the mi-

crokernel and cannot make use of Linux services (such as
device drivers, POSIX IPC, synchronization primitives,
filesystems, etc.). This limitation is fundamental since
para-virtualization does not improve Linux’s real-time
capabilities; rather, it enables real-time tasks to safely co-
exist with the Linux kernel. (One common way to enable
communication between real-time threads and Linux pro-
cesses in such systems is the use of non-blocking queues
and buffers [3, 4].) Compared to ordinary Linux-based
development, para-virtualized designs pose a greater en-
gineering challenge due to the unusual and more com-
plex system architecture and the restricted runtime envi-
ronment for real-time tasks.

Regarding (ii), para-virtualization fundamentally
takes the existing Linux kernel as a given; it is focused
on engineering a solution that circumvents Linux’s defi-
ciencies rather than solving them. As such, the capabili-
ties of the Linux kernel are not improved and only few
(if any) patches are conveyed back to mainline Linux.
As an example, consider RTLinux [48]: despite both its
use in industrial embedded systems and having been sup-
ported commercially for more than ten years, it has had
very little influence on mainline Linux. In some sense,
para-virtualization generates a “two-class society:” first-
class applications, i.e., those that are important enough to
warrant the effort of developing a custom para-virtualized
system, can rely on reliable real-time properties; how-
ever, second-class applications (everything else) cannot.
Note that the latter includes desktop applications such as
media playback.

To summarize, while para-virtualization may be the
only feasible (Linux-based) design for applications with
very stringent latency requirements (e.g., engine control
software), a native design is generally preferable for the
vast majority of applications if timing constraints can be
met: from the point of view of commercial users of real-
time Linux, such a design can result in significant time-
to-market and cost savings (due to a familiar development
environment, greater talent pool, code re-use, etc.), and
from the point of view of the Linux community, there
is an increased chance that improvements are contributed
back and that they can be integrated into mainline Linux.1

Hence, we believe that the goal of Linux-based real-
time research should be to improve native real-time Linux
so that it becomes a viable solution for the widest range
of applications possible. Consequently, we do not con-
sider para-virtualized designs in the rest of this paper,
and our proposals concerning “real-time Linux” should
mostly be understood in the context of the PREEMPT-
RT patch set [39].

1We acknowledge that microkernel designs can also be attractive for non-technical reasons, e.g., they allow circumvention of Linux’s licensing
requirements by placing proprietary code in a separate address space. Such concerns are beyond the scope of this paper.
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2 Sources of Friction

With their foundations firmly grounded in openness and
the free flow of ideas, the open source community and
academia have many more commonalities than differ-
ences. Nonetheless, certain issues have repeatedly caused
some degree of confusion and mutual misunderstanding.
The following list of topics is neither exhaustive nor can
it be “representative” of the points of view encountered in
such large and diverse communities. However, we hope
that future cooperation can be improved by pointing out
how differences in background and objectives have led
to misconceptions in previous interactions between these
two communities.2

Low latency vs. predictability. A recurring debate
is the topic of “real-time vs. real-fast” [34]: in practice,
real-time constraints are often phrased in terms of latency
requirements, whereas the academic definition of a real-
time system does not even mention latency.

Formally, real-time systems are distinguished from
other computing systems by having a dual notion of cor-
rectness: proper behavior depends not only on logical
correctness (“it does the right thing”), but also on tem-
poral correctness (“at the right time”). Note that, as with
all formal properties, both correctness criteria require rig-
orous proof. Hence, real-time research is the study of
systems with provable temporal properties: systems for
which we can predict runtime behavior with mathemati-
cal certainty (if all assumptions are met).

In practice, it seems that “real-time” is often equated
with an OS’s ability to transfer control to real-time tasks
as quickly as possible, maybe together with a bound on
worst-case latency. This is an over-simplification of the
notion of “real-time computing.” Obviously, latency cru-
cially impacts what kind of guarantees can be made, but
even a system with negligible observed latency is not
truly a real-time system if it is constructed from algo-
rithms that do not lend themselves to formal analysis;
such a system is merely “fast.”

Another frequently-encountered difference is that, in
practice, system design is often focused on supporting
one dedicated real-time task, whereas a proper real-time
system should support any number of such tasks (as long
as meeting their collective timing constraints is feasi-
ble3).

If operating system design is predominantly focused
on providing low latency to the highest-priority task (as
opposed to meeting a set of specified timing constraints
and enforcing budgets—see Sec. 3), then composing a

real-time system from multiple tasks becomes unneces-
sarily complicated, if not impossible (e.g., given possi-
ble starvation, should a real-time web service’s priority
be higher or lower than the network stack that it depends
on?). As a result, design patterns such as “select/poll-
based master loops” and “one real-time task per core”
are often favored even though designs that employ multi-
ple cooperating real-time tasks would be more desirable
in terms of reliability and achievable resource utilization
(i.e., more could be done with fewer processors).

Of course, we do not argue that real-time Linux
should not provide low worst-case latencies. However,
we do argue in favor of phrasing the discussion in terms
of deadline and jitter requirements of supported work-
loads instead of raw (and often, it seems, somewhat ar-
bitrary) latency numbers. Further, we believe that the
kernel should support a more expressive task model and
make scheduling decisions at runtime based on task con-
straints (as opposed to relying on a single static priority
value—see Sec. 3).

Proofs and verification. As mentioned above, claims
of real-time properties require an accompanying proof of
correctness. Of course, in practice, even proving logi-
cal correctness is done rarely at best. Ignoring the ques-
tion of whether it is beneficial to verify every program,
it is probably safe to assume that many embedded de-
velopment efforts are under sufficiently-pressing time-to-
market and cost constraints that formal verification would
likely be skipped even if tools for computer-aided cor-
rectness proofs were readily available. Worse, in reality,
we are, in all likelihood, decades away from being able to
formally verify software systems of Linux’s complexity.

Does this make real-time research “impractical”?
Does it mean that real-time-system design practices in
general, and Linux in particular, have little to gain from
current research? Certainly not!

Even though Linux itself is not formally verified,4 it
is built around concepts and algorithms that have been
thoroughly explored in research papers. Examples are
numerous: from data structures such as red-black trees
and heaps to TCP’s congestion-avoidance protocol, from
pattern-matching algorithms to concepts such as fairness,
from encryption to mandatory access control, Linux’s in-
ternals rely on building blocks for which desirable prop-
erties have been proven in the research literature. Why
should Linux’s real-time features be any different?

We argue not that every system has to be proven to
be correct (which, though desirable, is clearly impractical
at this point), but that every system should be composed

2The authors acknowledge that their point of view is naturally biased towards academia.
3Establishing the feasibility of timing constraints lies at the core of real-time analysis. A thorough discussion of feasibility is beyond the scope

of this paper; however, the interested reader is strongly encouraged to explore this important topic [31].
4Interestingly, growing interest in tools such as the Clang Static Analyzer [32], the Coverity Integrity Checker [20], and Sparse [42] seems to

indicate that there is significant demand for static program analysis techniques.
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from parts that can be and have been proven to be correct.
The implemented algorithms should never be the weakest
link.

Overheads. There has also been some controversy re-
garding the treatment of overheads in the academic liter-
ature. Specifically, concerns have been voiced that pub-
lished scheduling analysis is not applicable to real sys-
tems because overheads are routinely assumed to be neg-
ligible.

Assuming overheads to be negligible is indeed stan-
dard practice in real-time analysis and may appear to be
an oversimplification on first sight. However, this is not
the case. In work on real-time resource allocation, over-
heads are often ignored in the primary analysis, as this re-
duces notational clutter that can obscure the results. Once
such analysis has been obtained, overheads can be ac-
counted for by inflating task execution costs. Thus, what
we see here is actually a classic separation of concerns:
establish an algorithm’s essential properties first, and then
factor in overheads later.

Mode of operation. Last, but not least, there is a fun-
damental difference in how academia and the Linux com-
munity function.

The modus operandi of the Linux community is cap-
tured well by the widely-known mantra “release early, re-
lease often.” Developers are encouraged to provide early
versions of their work to the Linux kernel mailing list
(LKML) to solicit feedback and advice on what is often
still a rough and unfinished prototype, and participants
may engage in lively discussions before much developer
effort has been wasted on potentially futile approaches—
but also, sometimes, before the problem and possible so-
lutions are sufficiently well understood. Many projects
go through frequent and fast iterations, and the resulting
traffic on LKML can easily become overwhelming to ob-
servers.

In contrast, the academic culture is mostly focused
on work that is, to some degree, finished and polished.
The bar to publication can be high and the academic peer
reviewing process is an anonymous, mostly one-way con-
versation, and its progress is usually measured in weeks
and months, not hours or days. Traditionally, confer-
ences provide the main venue for discussion, and as such,
convergence on key research directions tends to happen
through in-person exchanges. In discussions, academics
tend to shy away from quick and categorical answers.

With such diverging cultural norms, mutual misun-
derstanding is all but guaranteed to occur. The inten-
sity of the Linux community’s interactions can appear
daunting and the brief messages exchanged during quick
back-and-forth discussions may come across as being ill-
prepared. Conversely, academics can appear to be slow
moving, doubtful, and hesitant, characteristics that, when

combined, are easily mistaken as disinterest. In the in-
terest of improved collaboration between these commu-
nities, it is best to be aware of these differences.

3 Extending Real-Time Linux

Having touched on some of the issues that can prevent
effective collaboration in the previous section, we next
discuss some design choices, algorithmic concepts, and
research directions that we believe could serve as starting
point for enhancing real-time Linux.

3.1 Design Space

First, we discuss how real-time Linux could be struc-
turally improved to both better support applied research
and adapt to specific use cases.

Support scheduler plugins. The topic of scheduler
plugins is a contentious issue and has provoked intense
discussions in the Linux community in the past. While
preferred by most scheduler developers (perhaps unsur-
prisingly), the concept has been rejected by other influen-
tial members of the Linux community. One frequently-
voiced criticism of scheduler plugins is that they would
likely lead to a proliferation of special-purpose plugins,
and that Linux as a whole would be better served if all in-
terested parties came together to build a “universal sched-
uler” that meets all requirements [35].

Unfortunately, such a scheduler is unlikely to exist.
Evidence for this viewpoint can be found in recent im-
plementation studies [17, 19] involving several widely-
studied multiprocessor real-time scheduling algorithms.
In these studies, none of the tested algorithms proved to
be the “best;” rather, each algorithm performed well for
some of the considered workloads, but not so well for
others.

As an analogy, consider filesystems: there exist
filesystems specialized for high-performance computing
(HPC) and filesystems for embedded flash storage. It is
widely acknowledged that there exist good reasons for the
development of specialized filesystem implementations,
and it is considered acceptable both to divide developer
effort among multiple filesystems and for administrators
to choose an appropriate filesystem for their workload. In
light of this, why should one expect the same scheduler
to be appropriate for both HPC and embedded real-time
systems?

Hence, we argue strongly in favor of introducing a
scheduler plugin interface in Linux. Not only would this
greatly simplify the prototyping and experimental evalu-
ation of new scheduling algorithms, it would also allow
embedded Linux variants to be tailored to their work-
loads.
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Note that, ideally, the default CFS/static-priority
scheduler should also be a plugin (so that it can be re-
placed), and that appropriate run queues should be pro-
vided and encapsulated by each plugin (as opposed to
passing pointers to a statically-allocated run queue to
plugin-provided callbacks). The rationale for encapsu-
lating the implementation of run queues is that there are
many different priority-queue implementations that are
worth exploring [15], and the current run-queue imple-
mentation is inherently limiting, as is discussed next.

Enable global scheduling. Research has shown that
there are fundamental differences between partitioned
(per-processor run queues) and global (shared run queue)
scheduling. In particular, global earliest-deadline first
(G-EDF) has been shown to have properties that are de-
sirable for certain classes of soft real-time systems [22].
Unfortunately, implementing global schedulers in Linux,
while feasible (see for example UNC’s LITMUSRT [45]),
is unnecessarily complicated because Linux’s run queues
are inherently partitioned. Since the run-queue locks also
serve to serialize updates to process state, the standard
run queues cannot simply be circumvented. As men-
tioned above, the run-queue implementation should be
considered part of a scheduling plugin’s internals and not
statically mandated for all schedulers.

Regarding the frequently voiced objections to G-
EDF’s viability in a “real” system, it should be noted that
xnu, the kernel underlying Apple’s multimedia-friendly
OS X, has been relying on G-EDF to support real-time
applications on multiprocessors for several years [5].

Support dynamic-priority scheduling. In recent
years, interesting variations of G-EDF that reduce av-
erage deadline tardiness, i.e, the amount of time by
which a deadline is missed, have been proposed [7, 26].
These variations fall into the class of dynamic-priority
algorithms because a job’s (see Sec. 3.2 below) prior-
ity may change at arbitrary times. Similarly, the only
optimal5 multiprocessor scheduling algorithm for which
(published) implementations exist [17, 19, 43] also be-
longs to the class of dynamic-priority algorithms (as all
optimal multiprocessor scheduling algorithms must).

Yet another class of algorithms of considerable re-
cent interest, so-called semi-partitioned schedulers [2],
includes several dynamic-priority variants. Under semi-
partitioned scheduling, each task is categorized as either
fixed (executing on one processor only) or migrating (ex-
ecuting on several processors). Such algorithms allow
for better system utilization than pure partitioning ap-
proaches, without the runtime overhead of allowing all
tasks to migrate.

So that the desirable properties of these algorithms
can be exploited, Linux’s future scheduler plugin inter-
face should be sufficiently flexible to support the imple-
mentation of algorithms in which processes may change
priority and migrate frequently (and at arbitrary points in
time).

Throw out POSIX. The real-time POSIX standard
is mostly outdated and does not apply particularly well
to multicore systems. Research plugins and scheduler
plugins targeting embedded systems with pre-determined
workloads should not be constrained by such legacy re-
quirements.

For example, consider one of the most-widely used
soft real-time applications: media playback and interac-
tive graphical user interfaces (such as in games). Cur-
rently, real-time priorities require superuser privileges,
hence it is not possible (nor, given static-priority schedul-
ing without budget enforcement, particularly advisable)
for non-privileged users to make such applications proper
real-time processes. Ideally, future desktop and window-
ing systems should be able to provide real-time capabil-
ities in a controlled fashion—this requires interfaces and
abstractions that were not envisioned by the POSIX stan-
dard; hence, scheduler plugins should not be artificially
restricted in such ways.

3.2 Task Model and Predictability

Instead of solely relying on static priorities, real-time
Linux should offer a more expressive API that explic-
itly allows the specification of timing constraints. While
there are many ways of specifying timing constraints, we
advocate that initial support should focus on the sporadic
task model since it is the most widely-studied such model
(in work on multiprocessor real-time scheduling).

In the sporadic task model, a task Ti = (pi, ei, di)
is characterized by three parameters: its minimum inter-
arrival time pi, also known as its period, its worst-case
execution cost ei, and its relative deadline di. The re-
curring activation of Ti is modeled as a sequence of job
releases T 1

i , T 2
i , . . ., subject to the following constraints:

job releases are separated by at least pi time units, each
job requires at most ei time units to complete execution,
and each job should complete within di time units after
its release. Note that a sporadic task is just a logical en-
tity that is not scheduled; instead, jobs are scheduled by
the OS.

It is not immediately clear how to best apply the spo-
radic task model in the context of a UNIX-like process
model.6 If jobs, and not sporadic tasks, are scheduled,
then how should sporadic tasks be mapped onto Linux

5See [22, 31] for a proper definition of “optimal.”
6To avoid confusion, in the subsequent paragraphs, we use “task” to denote a sporadic task, and “process” to denote Linux’s notion of an executing

program instance.
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processes? Further, discovering the actual worst-case ex-
ecution time of non-trivial code paths in Linux is effec-
tively impossible on contemporary processors given cur-
rent worst-case execution time analysis techniques. Is the
sporadic task model therefore “impractical”?

The sporadic task model should be seen as reserva-
tion mechanism in the context of a UNIX-like OS such as
Linux.7 In this interpretation, a sporadic task (associated
with a process) is simply an execution-time budget with a
minimum separation between replenishments and a guar-
antee that the budget can be consumed within a speci-
fied time window (as defined by the task’s relative dead-
line) after each replenishment. The real-time scheduler
should hence ensure that all budgets can be consumed
before their corresponding deadline, and that individual
processes do not consume more time than their speci-
fied budget. The real-time guarantee provided by such
a system is that, if a real-time application stays within its
allocated budget, then it will meet its application dead-
lines. Because budgets are enforced, this is even true if
some applications misbehave (e.g., enter an infinite loop),
a concept known as temporal isolation.

In the real-time literature, the mechanism described
above is sometimes referred to as a polling server, and
the concept of controlling the execution of one or more
processes by means of a budget accounting policy is gen-
erally called a server abstraction (this corresponds to
Linux’s “cgroup” abstraction).

Server-based approaches hold the promise of con-
trolling interference caused by (threaded) interrupt han-
dlers [8, 27]. Similarly, several server schemes have
been proposed in the literature to reserve bandwidth
for non-real-time processes (e.g., see [1, 9, 12, 37]).
Since scheduling analysis exists for most server schemes,
server-based interference control offers the ability to
compute budgets such that interrupts or background
workloads are processed quickly, but without unduly de-
laying real-time applications.

To summarize, server schemes offer analytically
sound ways of compartmentalizing a system at runtime;
we advocate that Linux’s cgroup support should be ex-
tended to enable the implementation of various server
schemes in scheduler plugins.

When realizing the sporadic task model as outlined
above (and some of the server schemes), it must be en-
sured that the implemented budget accounting meets the
assumptions of published scheduling analysis. This is es-
pecially true when dealing with suspensions, e.g., when
processes block on I/O operations or due to semaphore
contention. Accounting for suspension times accurately
is a notoriously hard and largely unsolved problem (see
[40] for details). Hence, most analysis currently requires
job suspension times to be included in the worst-case exe-

cution time (static-priority scheduling is a notable excep-
tion to this). Consequently, real-time processes should
consume budget even while they are suspended, other-
wise suspensions can cause scheduling anomalies.

A more expressive real-time API should also allow
policies to be specified for handling budget overruns and
underruns. For example, LinuxRK [37] supports a task
model in which real-time processes that overrun their
budget can compete for execution at non-real-time pri-
orities; the real-time budget is interpreted as a minimum
supply in this case. Similarly, the BACKSLASH algo-
rithm [29] allows tasks to “borrow” against future allo-
cations. Due to the pessimism typically involved in de-
riving budget requirements for real-time tasks, most real-
time applications, most of the time, will only partially
use their allocated budgets. Such budget underruns cre-
ate dynamic slack, which itself can be scheduled and used
to reduce the impact of overruns in other applications or
to improve the response time of non-real-time workloads
(for examples, see M-CASH [36] and Sec. 4 below).

3.3 A Prototype

To facilitate applied real-time scheduling research and
to evaluate the aforementioned concepts (and others)
on real hardware platforms, our group has developed
LITMUSRT, the LInux Testbed for MUltiprocessor
Scheduling in Real-Time Systems [16, 17, 19, 45]. In
this section, we briefly summarize some of the lessons
learned while building and maintaining LITMUSRT.

LITMUSRT predates CFS’s scheduler-class hierar-
chy and thus was originally designed to hook manually
into the Linux scheduler. We were delighted when the
CFS patches introduced the concept of proper schedul-
ing classes, as this promised to provide a much cleaner
method for LITMUSRT to interface with the core sched-
uler. However, the scheduler-class interface turned out to
be too restrictive to serve as the sole LITMUSRT inter-
face (in no small part due to Linux’s reliance on parti-
tioned run queues). Hence, LITMUSRT still hooks into
several scheduler routines (but to a lesser extent than be-
fore).

Migrations. To avoid races with code paths
trying to resume processes from a suspension
(try to wake up()), every runnable process in Linux
needs to be on one of the per-processor run queues at all
times. Since one of the primary features of LITMUSRT is
the support of global scheduling algorithms, the schedul-
ing path is complicated by the need to migrate processes
in schedule(). To ensure consistency, process mi-
grations require a processor to acquire both the local
and the remote run-queue locks. Because schedule()
already holds the local run-queue lock, and since run-

7Resource reservations have been studied extensively in the context of LinuxRK [37].
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queue locks must be acquired in order of increasing lock
address (to avoid deadlock), such migrations may require
first dropping and then re-acquiring the local run-queue
lock. Since process state may change in the brief window
in which the local run queue is unlocked, care must be
taken to check for conflicting updates after the migra-
tion completes. Migrations could be greatly simplified
if separate locks were used to protect process state and
run-queue integrity.

Task rejection. LITMUSRT allows scheduler plug-
ins to reject processes from becoming real-time tasks
(e.g, if the resulting task system would be infeasible),
which requires hooks in sched setscheduler().
Once Linux has a proper scheduler plugin API, changing
scheduling classes/plugins should also be modularized,
and the acceptance logic should be delegated to sched-
uler plugins.

Polling servers. Budget enforcement requires the
scheduler to split the run queue in two. The ready queue
contains processes that are runnable and eligible to ex-
ecute (i.e., the corresponding job is released and has a
non-zero budget), and the release queue contains pro-
cesses that are runnable but are awaiting the replenish-
ment of their budgets. In LITMUSRT, there are two im-
plementations of this. In event-driven schedulers (such as
G-EDF), job releases are triggered with high-resolution
timers, hence the ready queue only conceptually contains
tasks. In quantum-driven schedulers (such as PD2 [43]),
the release queue is realized as a circular array of bino-
mial heaps, so that released processes can be efficiently
merged into the ready queue at each quantum boundary.

Global scheduler state. LITMUSRT’s G-EDF imple-
mentation is based on the concept of task linking,8 un-
der which the assignment of tasks that should be sched-
uled (the “links”) is maintained separately from the set of
actually-scheduled, backing processes. Note that the set
of scheduled processes can trail the links.

This has several advantages. First, the implementa-
tion of the scheduling policy becomes independent from
hardware constraints: while a processor can only phys-
ically reschedule its local process (i.e., perform the ac-
tual context switch), any processor can re-link any task
to any processor. In our experience, this avoids several
potential races in the implementation of global policies
such as G-EDF. Second, the actual preemption/context-
switching logic simply becomes a matter of tracking
what process should be executing—this code can be
policy-independent and should be re-used between plug-
ins. Third, by investigating the links of other processors,

it is relatively easy to avoid superfluous migrations and
context switches. Fourth, link-based scheduling lends it-
self to real-time analysis—the system can be understood
as consisting of a scheduler that can reschedule any pro-
cessor at any time, and a scheduling latency that ac-
counts for any delay in actually enacting task-link up-
dates [10]. This nicely abstracts interprocessor interrupt
latency, non-preemptive sections, and all other OS delays
into a single latency value, which can be accounted for
by inflating execution costs (as discussed in Sec. 2).

Synchronization. Based on task-linking, LITMUSRT

includes support for userspace non-preemptable sections,
in which interrupts are enabled but task-link changes are
not enacted until the currently-scheduled process signals
that it has left its critical section. This mechanism can
be protected against abuse with a simple timeout mech-
anism. LITMUSRT also supports FMLP-based real-time
synchronization [10, 13, 14, 18].9

4 Case Study: EDF-HSB

In this section, we summarize EDF-HSB [12] as a case
study to highlight what we believe to be desirable prop-
erties for an integrated scheduling approach for mainline
Linux, and how those properties can be achieved.

Design goals. EDF-HSB was designed to support a
wide range of workloads. Real systems are likely to con-
sist of mixes of applications with differing timing con-
straints, e.g., a few applications that are highly sensitive
to jitter, several applications with moderate real-time re-
quirements, and some background processes (such as log-
ging, system maintenance, etc.).

Hence, EDF-HSB explicitly distinguishes between
three task categories: hard real-time (HRT), soft real-
time (SRT),10 and best-effort (BE) tasks. Note that this
task type information is used at runtime, and that one or
more of these categories may be absent in any given sys-
tem.

The design of EDF-HSB hinges on the assumption
that the HRT component requires only a small fraction
of the total system capacity, an assumption that we be-
lieve to be true for the vast majority of real systems (and
especially those that are being deployed using Linux).11

Conversely, the SRT component is presumed to (po-
tentially) require a large fraction of the system’s capac-
ity. Hence, EDF-HSB is carefully designed to avoid both
unnecessarily wasting utilization to accommodate HRT
tasks and placing a limitation on the maximum total uti-

8First described in the context of synchronization, see [10].
9A description of the synchronization support is beyond the scope of this paper—please refer to [14] for a discussion of the implementation.

10Using the bounded-tardiness definition of “soft real-time,” e.g., see [22].
11Our assumption has been confirmed repeatedly in discussions with industry colleagues.
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lization that can be reserved for SRT tasks (within hard-
ware limits). Note that this cannot be achieved in general
with any pure partitioning approach (such as Linux’s cur-
rent scheduler).

Finally, since the HRT and SRT reservations are
likely pessimistic due to “engineering margins” and vari-
ations in execution time requirements, EDF-HSB has
been designed to reclaim unused capacity and redistribute
it to “needy” tasks at runtime, i.e., EDF-HSB incorpo-
rates dynamic slack scheduling.

Slack scheduling is best explained with an exam-
ple. Suppose there are two SRT tasks, TS

1 = (30, 7, 30),
TS

2 = (50, 25, 50), and one BE task, TB
3 , in the ready

queue. By EDF, TS
1 is scheduled first. Now suppose that

TS
1 completes its execution after only three time units,

i.e., it leaves four time units of its per-job reserve unused.
Because real-time analysis of the system showed that all
timing constraints are met if TS

1 uses its full allocation,
the system can schedule any lower-priority work using
the unused part of TS

1 ’s allocation prior to TS
1 ’s deadline

without the risk of violating temporal correctness. In this
case, if TB

3 requires no more than four time units to com-
plete, then its response time has been lowered by 25 time
units, as is shown in Fig. 1.

0 3 28 32

TS
1 TS

2 TB
3

0 3 7 32

TS
1 TS

2TB
3

priority temporarily raised due to slack donation

BE response time improved

(a)

(b)

time

time

FIGURE 1: Benefits of slack scheduling.
(a) Without slack scheduling, TB

3 is delayed until
TS

2 completes. (b) With slack scheduling, TB
3 can

execute for up to four time units at TS
1 ’s priority

and hence complete before TS
2 is scheduled. This

reduces TB
3 ’s response time by 25 time units.

In general, slack scheduling is a powerful technique
that can significantly reduce the impact of budget over-
runs and drastically lower response times of background
processes.

Algorithm structure. The purpose of this description
is to serve as an overview; please see [12] for a full defi-
nition of the algorithm. The following paragraphs corre-
spond to Fig. 2, which illustrates EDF-HSB’s structure.

Under EDF-HSB, similar to Linux’s hierarchy of
scheduling classes, the components are statically prior-
itized: eligible HRT tasks have higher priority than SRT

tasks, and SRT tasks have higher priority than BE tasks.
However, unlike Linux, special HRT servers are em-
ployed to rate-limit the HRT component, polling servers
are used to isolate both HRT and SRT tasks, and BE
servers are used to reserve bandwidth for BE work at SRT
priority.

The HRT component is partitioned across processors
to enable the re-use of uniprocessor HRT schedulability
analysis. The SRT component is scheduled globally to
ensure that the system can be fully utilized. As presented
in [12], EDF-HSB also globally schedules the BE com-
ponent; however, this could be easily changed if so de-
sired.

EDF-HSB uses partitioned EDF together with
server-based rate-limiting rules (see [12] for details) to
schedule the HRT component. The SRT component is
scheduled using G-EDF, and the BE component is sched-
uled using some non-real-time scheduler (global FIFO
in [12], but integration with Linux’s CFS is also possi-
ble).

Slack scheduling is carried out by collecting records
of unused time in a global capacity queue, which is sorted
by the donating jobs’ deadlines. Capacities are scheduled
with SRT priority. When a capacity is selected to “run,”
it is consumed by a SRT or BE job, which is selected
by a heuristic and then scheduled. Such a job contin-
ues to consume the capacity until either the capacity is
exhausted or higher-priority jobs arrive. Note that un-
used capacities must be properly “expired,” as explained
in [12].

CPU 1 CPU 2 CPU 3

Soft Real-Time Class

SRT
1

SRT
2

SRT 
... SRT 

y

BE
Server BE

Server

BE
Server

Best-Effort Class
BE

BE BE
BE

BEBE BE BE

Hard Real-Time ClassHard Real-Time Class

HRT
1

HRT
2

HRT 
...

HRT
Server

HRT
Server 

HRT 
x

if HRT Server is idleif HRT Server is idle

slack

FIGURE 2: Illustration of EDF-HSB.

Properties. EDF-HSB has a number of desirable
properties. The frequency of HRT interference can be
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freely adjusted (the period of the rate-limiting HRT server
can be chosen independently of HRT deadlines; this al-
lows “performance tuning”), and no over-provisioning of
the HRT component is required (e.g., if the HRT tasks on
one processor cumulatively require 20% of the proces-
sor’s capacity, then the HRT server has a reserved utiliza-
tion of exactly 20%, and no more).

EDF-HSB also ensures that BE processes are not
starved because the SRT-level capacity reserves for BE
workloads (if non-zero) ensure progress even if all SRT
tasks are backlogged.

In [12], experiments are presented that demonstrate
the effectiveness of slack scheduling in improving sys-
tem responsiveness. In these experiments, slack schedul-
ing resulted in a reduction of measured worst-case re-
sponse times of BE tasks from over 300ms under G-
EDF to less than 75ms under EDF-HSB [12]. To put
these numbers into context, typing shell commands in
a G-EDF-scheduled system (under a test load) felt no-
tably sluggish, whereas (under the same load) the EDF-
HSB-scheduled system exhibited average response times
that, for humans, are indistinguishable from an idle sys-
tem [12]. This can make a major difference in real-world
scenarios. Consider, for example, an administrator who
wants to re-configure a host that is suffering from over-
load of its real-time web services: with slack scheduling,
the system remains responsive to background commands
as long as at least one HRT or SRT task generates slack.

The design of EDF-HSB makes it a viable choice
for mainline Linux even if scheduler plugins remain ex-
cluded because it is inherently able to support a wide
range of real-world workloads.

Open questions. Some extensions of EDF-HSB are
still the subject of ongoing work. For one, lock-based
synchronization across component boundaries remains a
largely unsolved problem. Further, the dynamic nature of
Linux workloads require server parameters to change at
runtime, a process known as re-weighting. A relatively
simple solution is to postpone parameter changes (and,
consequently, enacting task arrivals and departures) until
the beginning of the next period, but better results are at-
tainable [11]. In the context of EDF-HSB, re-weighting
schemes suitable for its hierarchical, server-based struc-
ture have yet to be developed. Note that task suspensions
do not necessarily trigger re-weighting; re-weighting is
only necessary on HRT/SRT task creation/destruction.

5 Conclusion

In this paper, we presented arguments in favor of greater
cooperation between the real-time Linux community and
academia, supported by concrete suggestions for im-
proved real-time support in Linux. Further, we pointed

out some common misconceptions that have lead to mis-
understandings in the past.

Improved cooperation hinges on the willingness of
both communities to approach each other. It is surely
unreasonable for the Linux community to expect large,
production-quality code contributions from academics.
Likewise, it is unreasonable for academics to expect the
Linux community to discover all relevant concepts and
papers by itself. Instead, as an achievable short-term
goal, participants should aim for more discussions and a
lively flow of problem descriptions and possible solutions
back and forth.

To that end, we suggest that (more) academics should
consider attending next year’s Real-Time Linux Work-
shop (RTLWS) [38], and (more) Linux developers should
consider attending next year’s International Workshop on
Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT) (to be held July 2010 in Brus-
sels, in conjunction with the EuroMicro Conference on
Real-Time Systems [23]).
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