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Abstract

Threaded interrupt handling is a common technique used in real-time operating systems since it increases system
responsiveness and reduces priority inversions. The PREEMPT_RT Linux kernel patch introduces aggressive threaded
interrupt handling into the Linux kernel. However, under PREEMPT_RT, interrupt handling threads must be assigned a
single fixed scheduling priority. This can become a significant limitation when an interrupt-generating device is shared
by threads of differing priorities. In this paper, we show that there is no good option for assigning a single fixed priority
to an interrupt handling thread in such cases. We then survey alternative approaches from academic literature and
commercial real-time operating systems to inspire new solutions in PREEMPT_RT.

1 Introduction

An interrupt is a hardware signal issued from a system
device to a system CPU. The name “interrupt” is apt be-
cause the receiving CPU must immediately suspend (in-
terrupt) its normal thread of execution to instead execute
a segment of code responsible for taking the appropri-
ate actions to process the interrupt. An interrupted thread
may only resume execution after the interrupt handler has
completed.

Interrupts require careful implementation and analy-
sis in real-time systems. In uniprocessor and partitioned
multiprocessor systems, an interrupt handler can be mod-
eled as the highest-priority real-time thread [4, 6], though
the unpredictable nature of interrupts in some applica-
tions may require conservative analysis. Such approaches
can be extended to multiprocessor systems where threads
may migrate between CPUs [1]. However, in such sys-
tems, the subtle difference between an interruption and
preemption creates an additional concern: an interrupted
thread cannot immediately migrate to another CPU since
the interrupt handler temporarily uses the interrupted
thread’s program stack. As a result, conservative anal-
ysis must also be used when accounting for interrupts in
these systems too. A real-time system, both in analysis
and in practice, benefits greatly by minimizing interrup-
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tion durations. Split interrupt handling is a common way
of achieving this, even in non-real-time systems.

Under general split interrupt handling, interrupt pro-
cessing is split into two parts: a top-half and a bottom-
half. The top-half is executed immediately when an
interrupt is received, interrupting the normally sched-
uled thread as described earlier. The top-half performs
the minimum amount of processing necessary to ensure
proper functioning of hardware; additional work to be
carried out in response to an interrupt is deferred to the
bottom-half. In most real-time systems, bottom-halves
are processed by dedicated threads of execution that are
scheduled with an appropriate priority. Split interrupt
handling minimizes the duration of interruption and de-
ferred work competes fairly with other threads for CPU
time. However, determining an “appropriate” scheduling
priority for the deferred work is non-trivial. The correct
choice depends upon how the interrupt-raising device is
used and the priority of threads using that device.

The prioritization of deferred work from interrupt
handlers in the real-time Linux kernel patch, PRE-
EMPT_RT, is straightforward: individual threads dedi-
cated to processing deferred work from interrupt handlers
are assigned a single fixed priority. Unfortunately, there
are limitations to this simple approach if an interrupt-
generating device is shared by client threads of differing
priorities. If an interrupt thread is given too low a pri-
ority, then high-priority device-using threads may be de-
layed from execution while waiting for their associated
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FIGURE 1: Fixed-priority assignment when an /O de-
vice is used by a single thread.

interrupts to be processed. If an interrupt thread is given
too high a priority, then the processing of interrupts as-
sociated with low-priority device-using threads delay the
execution of higher-priority threads, even those that may
not use a device.

We further explore these limitations and discuss al-
ternative approaches in this paper. In Sec. 2, we illus-
trate the limitations of fixed-priority interrupt handling
in PREEMPT_RT and demonstrate that they have a real
impact on system performance by presenting a study of
graphics processing units (GPUs) used to perform gen-
eral purpose computation, an increasingly common prac-
tice. In Sec. 3, we briefly survey approaches to real-time
interrupt handling that appear in academic literature and
several commercial real-time operating systems. We con-
clude in Sec. 4.

2 Limitations of Fixed-Priority Handlers

PREEMPT _RT is a fixed-priority real-time operating sys-
tem (RTOS) based upon POSIX standards. Under fixed-
priority scheduling, each thread of execution is assigned
a single fixed priority. In general, the system schedules
the highest-priority threads that are ready to run. As dis-
cussed in Sec. 1, PREEMPT_RT uses threaded split inter-
rupt handling. Though the organization of interrupt han-
dling threads changes with the continued development of
PREEMPT RT, one fundamental design feature that has
remained unchanged is that threaded interrupt handlers
are also assigned a single fixed priority.

There are scenarios where this priority assignment
method to interrupt handling threads is sufficient. Con-
sider a uniprocessor real-time system with three indepen-
dent threads, Ty, T, and Tp. Ty is assigned a high
priority of five (prio(Ty) = 5), Ths is assigned a middle
priority of three (prio(Th;) = 3), and T7, is assigned a
low priority of one (prio(Tr,) = 1). Suppose T, issues
a command to an I/O device and suspends from execution
until an interrupt from the device, indicating completion
of the operation, has been processed. T, cannot resume
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FIGURE 2: Ty may suffer an unbounded priority inver-
sion if prio(T7y) is too low.

execution until the bottom-half of the interrupt has com-
pleted. What priority should be assigned to the interrupt
handling thread, denoted 77, that will do this work? In or-
der to avoid causing interface with other threads, 77 may
have any priority greater than or equal to Ty, but less than
the priority of T. Specifically, the priority of 77 may be
three or four. (To avoid ambiguity in scheduling, interrupt
handling threads are commonly given a priority slightly
greater than their dependent threads. [7]) As depicted in
Fig. 1, with this priority assignment, the operations of
Ty have less impact on T (priority inversions due to
top-halves are unavoidable); T, and T only receive pro-
cessing time when 77 is not ready to run. Likewise, 77,
can in no way delay the execution of 7. Because of the
lack of interference, this system is also easy to analyze.
However, the situation changes when the I/O device is
shared by different threads of differing priorities.

Let us reconsider the prior scenario with one change:
suppose T’y and 17, share the I/O device simultaneously,
and T3 does not use the device at all. Does this affect
the priority assigned to 77? Indeed it does. If the priority
of T7 is less than T, then Ty can experience (poten-
tially unbounded) priority inversions. For example, this
may occur when Ty suspends from execution after issu-
ing a command to the I/O device and suspends to wait
for completion of the command. The interrupt indicat-
ing that the operation has completed may be received,
top-half executed, and bottom-half deferred to 77, but if
prio(Tr) < prio(Thr) and Thy is scheduled, then T can-
not execute and unblock T’y until T, gives up the proces-
sor. Thus, Ty indirectly suffers a priority inversion with
respect to Ts. Such a scenario is illustrated in Fig. 2.
Observe that the duration of this inversion is largely not
dependent upon the time it takes to execute the interrupt
bottom-half, but rather upon the potentially unbounded
duration between when 717 is ready to run and 7T relin-
quishes the processor. This dependency can break analy-
sis and real-time predictability may not be ensured.

The potential for unbounded priority inversion forces
an alternative priority assignment where 77 is assigned a
priority great enough to ensure 7’ cannot suffer this par-
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FIGURE 3: Ty may suffer a bounded priority inversion
when Tt processes a bottom-half for Tr..

T frequently experiences priority inversions.
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FIGURE 4: A pathological scenario for fixed-priority in-
terrupt handling.

ticular priority inversion. In general, the priority of 77
must be no less than the highest priority thread that may
depend upon T7. In our scenario, prio(T7) = 6 would
suffice. However, this assignment introduces a different
priority inversion scenario. What happens when 77 pro-
cesses a bottom-half for which 77, blocks, as depicted
in Fig. 3? Since 77 has the greatest priority, it is im-
mediately scheduled whenever it is ready to run, so the
bottom-half for 77, is immediately processed, resulting in
the preemption of any other threads, including 7. This
is another priority inversion from which any threads with
priorities less than 77, but greater than 77, may suffer.
The only advantage to using a greater priority for 77 is
that at least these inversions are of bounded duration—
one inversion only lasts as long as the execution time of
one bottom-half. However, the priority assignment that
we have been forced to use is susceptible to pathological
cases. Suppose that T rarely uses the I/O device and T7,
uses it very frequently, generating many interrupts. Or,
suppose there are many low-priority threads that use the
I/O device. In either case, T and T); may experience
many priority inversions, as illustrated in Fig. 4.

Empirical Study. The limitations to fixed-priority inter-
rupt handling can be shown to have an impact in prac-
tice. In prior work [3], with results partially replicated
here, we studied fixed-priority interrupt handling in PRE-

EMPT _RT and its relation to general purpose computa-
tion carried out on graphics processing units, a practice
called GPGPU.

GPGPU technology allows general C-like program
code for data parallel problems to be executed very ef-
ficiently, both in terms of speed and power, on graphics
hardware. However, unlike CPUs, GPUs are not indepen-
dently schedulable processors since they are interfaced to
the host system as an I/O device, even in on-chip architec-
tures. GPGPU has found applications in a wide array of
domains, including real-time systems. One such applica-
tion is in future automotive systems, where GPUs may be
used to process data-intensive sensor feeds and perform
compute-intensive computer vision algorithms [2].!

In order to study the effects of fixed-priority in-
terrupt handling on real-time GPU workloads, we exe-
cuted a workload of CPU-only and GPU-using tasks on a
dual-socket six-cores-per-socket Intel Xeon X5060 CPU
system running at 2.67GHz that is equipped with eight
NVIDIA GTX-470 GPUs. The platform has a NUMA ar-
chitecture of two NUMA nodes, each with six CPU cores
and four GPUs apiece.

The workload was scheduled using the clustered rate-
monotonic (RM) algorithm since it is easily supported
by fixed-priority schedulers. Counting semaphores were
used to protect access to GPUs in order to prevent the
closed source driver from using its own (non-real-time)
resource-arbitration algorithms. The workload consisted
of 50 periodic tasks. A periodic task is made up of a se-
quence of jobs that arrive at regular intervals. In this ex-
periment, each job had a deadline equal to this interval,
such that the job was to be completed before the arrival
of the next job of the task. Each task was scheduled as
a single thread. Of the 50 tasks, two were GPU-using
tasks that consume 2ms of CPU time and 1ms of GPU
time with a period of 19.9ms; 40 were CPU-only tasks
that consume 5ms of CPU time with a period of 20ms;
and finally, eight were additional GPU-using tasks that
consume 2ms of CPU time and 1ms of GPU time with a
period of 20.1ms. The tasks were evenly partitioned be-
tween the system’s NUMA nodes. Unique priorities were
assigned to each task according to task period.

!Interestingly, PREEMPT_RT is likely the only mainstream RTOS
in position to support these applications since high-performance GPU
drivers are currently limited to Windows, Mac, and Linux-based plat-
forms. Unfortunately, high-performance drivers are currently only de-
veloped by GPU manufactures and are closed source. These develop-
ers have yet to completely embrace PREEMPT_RT. For example, cur-
rent drivers from NVIDIA can only be installed without modification
in versions of PREEMPT_RT that are several years old. Minor modifi-
cations to the GPL glue-layer distributed with the closed source driver
are necessary in order to install these drivers in newer versions of PRE-
EMPT RT. Of course, this is an unsupported configuration. Neverthe-
less, PREEMPT_RT likely offers the best real-time performance among
possible platforms. It is also especially attractive since it can support
Android “infotainment” applications [9].



Low Prio. | High Prio.
Interrupts | Interrupts
Average % of Job Deadline Misses Per Task
CPU-Only Tasks 12.5% 12.5%
GPU-Using Tasks 10.1% 8.5%
Average Response Time as % of Period
CPU-Only Tasks || 22,474.5% | 24,061.0%
GPU-Using Tasks || 23,066.1% | 34,263.5%

TABLE 1: Average number of deadline misses per task
and average job response times (expressed as a percent-
age of period).

This workload and prioritization represents the
pathological case discussed earlier. Here, the highest
and lowest priority tasks share GPUs and the interrupt
handling tasks, which each have a single fixed prior-
ity. Unrelated CPU-only tasks are sandwiched between
these GPU-using tasks. If all tasks had equal priority,
then under RM scheduling, priorities could be reassigned
such that CPU-only tasks have priorities strictly greater
or strictly less than those of GPU-using tasks. However,
though task periods are close to being equal, it is not the
case here.

The workload was executed under several system
configurations, including (1) PREEMPT_RT, with GPU-
interrupt priorities set below that of any other real-time
task; and (2) PREEMPT_RT with GPU-interrupt prior-
ities greater than the greatest GPU-using task. PRE-
EMPT _RT was based upon the 2.6.33 Linux kernel, real-
time patch rt 30, which was the most recent kernel sup-
ported by PREEMPT_RT at the time of our evaluation.
This workload was executed 25 times for each system
configuration for a duration of 60 seconds each. Mea-
surements were recorded consistently on each platform.

Table 1 gives the average percentage of deadlines
missed, as well as average response times (as percent of
period), for CPU-only and GPU-using tasks under the
PREEMPT _RT scenarios. The percentage of deadlines
missed is useful for comparing schedulability. Response
time measurements express the timeliness of job comple-
tions (or severity of a deadline misses).

A deadline miss occurs if a job does not complete
within one period of its release time. We avoid penal-
izing the response time of a subsequent job following a
missed deadline by shifting the job’s release point to co-
incide with the tardy completion time of the prior job.
However, since these tests execute for a constant dura-
tion, frequently tardy tasks may not execute all their jobs
within the allotted time; any jobs that have not completed
(even those not yet released) by the end of a test are con-
sidered to have missed deadlines, though these jobs are
not included in response time measurements.

As it can be observed in Table 1, there are no good
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FIGURE 5: T} with a dynamic priority. Ty is only sched-
uled with a high priority when the device is in use by T'y.

options for selecting a fixed priority for interrupt tasks
shared by tasks of differing priorities. The high prior-
ity interrupt handlers (second column) causes all bottom-
half task execution to preempt CPU-only work, directly
increasing their response times with respect low prior-
ity interrupt handlers (first column). With high priority
interrupt handlers, GPU interrupt execution is often on
behalf of lower-priority GPU-using work, thus causing
CPU-only work to experience priority inversions. Prior-
ity inversions also occur if interrupt priority is too low,
resulting in the starvation of GPU-using work—deadline
misses were more common for GPU-using tasks when
low-priority interrupt handlers were used.

The Fundamental Issue and Desired Behavior. Fixed-
priority interrupt handling clearly has limitations, but
what is the fundamental issue causing this limitation?
The problem is that interrupt threads can be scheduled
with the wrong priority because interrupt threads are
scheduled with a priorities not dependent upon the actual
priority of pending work being processed. An interrupt
for a low priority thread may be scheduled at too high a
priority, or an interrupt for a high priority thread is sched-
uled at too low a priority. Both cases result in disruptive
priority inversions. Instead, the priority of the interrupt
thread should be dynamic.

Interrupt threads should be scheduled with a priority
at least as great as the highest-priority thread pending on
the interrupt-generating device—either waiting for access
to the device, or waiting for an interrupt from the device
to be processed. Let us return to our example introduced
at the beginning of this section with threads T, Ths, and
T7,. When Ty and T, share an I/O device, the interrupt
thread 77 is scheduled only with T';’s priority when the
timely execution of T is dependent upon the timely ex-
ecution of 77. This is illustrated in Fig. 5.

We wish to point out that our definition for proper
interrupt thread prioritization needs further refinement
on globally scheduled systems (those where threads may
migrate between CPUs); we explore this further in the



next section. We also realize that our definition does not
cover cases when I/O devices deliver externally triggered
messages, such as the network device in a real-time net-
work server. Literature suggests that it is best to use a
bandwidth-server to limit the total utilization these inter-
rupts can put on the system [5]. In fact, this has already
been explored using the SCHED_DEADLINE patch [8].
We will not consider this use-case further in this paper.

3 Alternative Approaches

A review of real-time literature and commercial RTOSs
reveals that others have developed approaches that avoid
the limitations of fixed-priority interrupt threads. We
briefly summarize notable approaches here.

At the heart of each approach is a mechanism for
the operating system to track threads pending on inter-
rupt processing. Each approach depends greatly upon the
architecture of the operating system and device drivers.

QNX Neutrino [10]. QNX Neutrino is a commercial
RTOS with a microkernel architecture. Device drivers
are implemented as threaded “servers.” Servers receive
and execute I/O requests from clients and also perform
bottom-half processing. Characteristic to microkernel de-
signs, clients and servers communicate through message
passing channels. Device drivers receive requests for I/O
operations as messages. In-bound messages are queued,
in priority order, in the event that they are sent faster than
they can be serviced by the device driver.

In order to avoid priority inversions, device drivers
inherit the priority of in-bound messages, which is at-
tached by the sender, when they are sent. If messages
are queued, then the device driver inherits the maximum
priority among queued, and currently processing, mes-
sages. In addition to priority, device drivers also inherit
the execution time budget of their clients (a mechanism
commonly referred to as “bandwidth inheritance”). This
allows for the throttling of I/O workloads on a per-client
basis.

Bottom-halves are delivered to the device driver for
handling as event messages. They are processed at the
priority inherited from I/O request messages. Note that
privileged threads in user-space may receive and process
bottom-half event messages directly for improved effi-
ciency without sacrificing real-time correctness.

Academic microkernels Credo [12], an L4 exten-
sion, and NOVA [11], a microhypervisor, have explored
similar techniques. [12] and [11] describe the algorithms
used to track priority and budget accounting as messages
are passed between threads. This includes interesting
cases that may occur when budgets have been exhausted
and work has not yet completed.
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FIGURE 6: (a) Priority inversions may occur when a
bottom-half is co-scheduled with the thread from which
it is inheriting priority. (b) Deferring execution of the
bottom-half until its owner relinquishes a CPU prevents
the priority inversion.

LynxOS [7] is another microkernel commercial
RTOS and it implements message passing methods sim-
ilar to Neutrino, though bandwidth inheritance does not
appear to be supported.

kimirqd [3]. klmirqd is an interrupt handling extension
to LITMUSRT, which is itself a real-time extension to
Linux. Before a user-task begins an I/O operation, it reg-
isters with the OS that it is about to begin using a device,
it unregisters when it has completed using the device.
Bound to each device is a unique real-time LITMUSET
kernel thread dedicated to processing bottom-halves from
that device. The thread has no scheduling priority when
it is idle.

During top-half processing, a registration table is in-
spected and the identity of the highest-priority thread reg-
istered to the interrupt-generating devices is attached to
resulting bottom-halves as the “owner” of the bottom-
half. The bottom-half is dispatched to the appropriate
kimirqd thread, which inherits the priority of the owner
of the bottom-half. Bottom-halves may be queued within
kimirgd if they are received faster than they are pro-
cessed; the highest priority queued bottom-half is inher-
ited in such cases. Unlike Neutrino, queues are FIFO or-
dered.

Unique to kimirqd is the prevention of priority in-
versions due to asynchronous I/O on globally scheduled
multiprocessors. Most real-time analysis techniques as-
sume single threaded workload models. As such, a thread
that has its priority inherited by another should never
be scheduled simultaneously with that inheriting thread.
Otherwise, two threads may be scheduled at the same
time under the same “identity” and the non-inheriting
thread analytically becomes multi-threaded, breaking an-
alytical assumptions. On a globally scheduled multipro-
cessor, this may trigger the preemption of another thread
that should be scheduled—the preempted thread suffers
a priority inversion. For example, in Fig. 6, inset (a), 11,



suffers from a priority inversion when it is preempted by
the bottom-half of T;. The inversion is due to the fact
that T is already scheduled on the other CPU. In (b),
the priority inversion is avoided by deferring the bottom-
half until T blocks for it to be processed. This scenario
is easily possible with asynchronous I/O since the device-
using thread may continue to execute while the I/O device
performs work. The solution implemented by klmirqd is
that the co-scheduling of a bottom-half and its owner is
prevented.

Process-Aware Interrupts [13]. Process-Aware Inter-
rupts (PAI) modifies interrupt handling for real-time tasks
in Linux. Its primary goal is to reduce overheads due to
threaded interrupt handling while still reducing the like-
lihood of priority inversions.

PAI also uses a registration-based approach like
kimirqd to determine the scheduling priorities of bottom-
halves. However, instead of dispatching the bottom-half
to a thread, one of two actions before the top-half returns
the CPU to the interrupted thread: (1) If the priority of the
bottom-half is greater than the interrupted thread, then the
bottom-half is immediately executed (i.e., the split inter-
rupt handler is merged). (2) Otherwise, execution is de-
ferred and the bottom-half is added to a priority queue. At
every context switch, the head of the bottom-half priority
queue is checked. If that bottom-half has a higher prior-
ity than the next thread selected to be scheduled, then the
context switch is aborted and the bottom-half is executed
instead. The CPU is rescheduled after the bottom-half
has completed.

We found that under worst-case conditions, PAI of-
fers no analytical benefits over non-split interrupt han-
dling [3]. However, we also determined that PAI offers
very good performance in practice since: (1) bottom-
halves are only scheduled when they are unlikely to cause
priority inversions; and (2) overheads due to threaded in-
terrupt handling are avoided.

4 Conclusion

In this paper we have demonstrated the limitations of
fixed-priority interrupt handling in PREEMPT_RT and
have briefly surveyed alternative approaches by others
that do not suffer from these limitations. Sweeping
changes to the device driver and interrupt handling layers
of PREEMPT_RT may not be possible due to the colos-
sal size of the existing Linux codebase, so any success-
ful alternatives will likely have to be made incrementally.
Nevertheless, we hope this paper serves to facilitate the
discussion of viable alternatives that may remedy current
limitations.
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