
Globally Scheduled Real-Time
Multiprocessor Systems with GPUs∗

Glenn A. Elliott and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

Graphics processing units, GPUs, are powerful pro-
cessors that can offer significant performance advantages
over traditional CPUs. The last decade has seen rapid
advancement in GPU computational power and general-
ity. Recent technologies make it possible to use GPUs
as co-processors to the CPU. The performance advan-
tages of GPUs can be great, often outperforming tradi-
tional CPUs by orders of magnitude. While the motiva-
tions for developing systems with GPUs are clear, little
research in the real-time systems field has been done to
integrate GPUs into real-time multiprocessor systems. We
present two real-time analysis methods, addressing real-
world platform constraints, for such an integration into a
soft real-time multiprocessor system and show that a GPU
can be exploited to achieve greater levels of total system
performance.

1 Introduction

The computer hardware industry experienced a rapid
growth in the graphics hardware market during this past
decade, with fierce competition driving feature develop-
ment and increased hardware performance. One impor-
tant advancement during this time was the programmable
graphics pipeline. Such pipelines allow program code,
which is executed on graphics hardware, to interpret and
render graphics data. Soon after its release, the gener-
ality of the programmable pipeline was quickly adapted
to solve non-graphics-related problems. However, in
early approaches, computations had to be transformed
into graphics-like problems that a graphics processing unit
(GPU) could understand. Recognizing the advantages of
general purpose computing on a GPU, language extensions
and runtime environments were released by major graphics
hardware vendors and software producers to allow general
purpose programs to be run on graphics hardware without
transformation to graphics-like problems.1

Today, GPUs can be used to efficiently handle data-
parallel compute-intensive problems and have been uti-
∗Work supported by AT&T and IBM Corps.; NSF grants CNS

0834270 and CNS 0834132; ARO grant W911NF-09-1-0535; and
AFOSR grant FA 9550-09-1-0549.

1Notable platforms include the Compute Unified Device Architecture
(CUDA) from Nvidia [5], Stream from AMD/ATI [2], OpenCL from Ap-
ple and the Khronos Group [7], and DirectCompute from Microsoft [6].

lized in applications such as cryptology [18], supercomput-
ing [3], finance [8], ray-tracing [10], medical imaging [24],
video processing [22], and many others.

There are strong motivations for utilizing GPUs in real-
time systems. Most importantly, their use can signifi-
cantly increase computational performance. A review of
published research shows that performance increases com-
monly range from 4x to 20x [4], though increases of up to
1000x are possible in some problem domains [9]. Tasks
accelerated by GPUs may execute at higher frequencies or
perform more computation per unit time, possibly improv-
ing system responsiveness or accuracy.

GPUs can also carry out computations at a fraction of
the power needed by traditional CPUs. This is an ideal
feature for embedded and cyber-physical systems. Further
power efficiency improvements can be expected as proces-
sor manufacturers move to integrate GPUs in on-chip de-
signs [1]. On-chip designs may also signify a fundamental
architectural shift in commodity processors. Like the shift
to multicore, it appears that the availability of a GPU may
soon be as common as multicore is today. This further
motivates us to investigate the use of GPUs in real-time
systems.

A GPU that is used for computation is an additional
processor that is interfaced to the host system as an I/O
device, even in on-chip architectures. An I/O-interfaced
accelerator co-processor, like a GPU or digital signal pro-
cessor, when used in a real-time system, is unlike a non-
accelerator I/O device. In work on real-time systems, the
use of non-accelerator devices, such as disks or network
interfaces, has been researched extensively [19], with is-
sues such as contention resolution and I/O response time
being the primary focus. While these are also concerns for
GPUs, the role of the device in the system is different. A
real-time system that reads a file from a disk or sends a
packet out on a network uses these devices to perform a
functional requirement of the system itself. Further, these
actions merely cause delays in execution on the CPU; the
operations themselves do not affect the actual amount of
CPU computation that must be performed. This is not the
case for a GPU co-processor as its use accelerates work
that could have been carried out by a CPU and does not
realize a new functional feature for the system. The per-
formance of a real-time system with a GPU co-processor is
dependent upon three inter-related design aspects: how tra-
ditional device issues (such as contention) are resolved; the

extent to which the GPU is utilized; and the gains in CPU
availability achieved by offloading work onto the GPU.

In this paper, we consider the use of GPUs in soft real-
time multiprocessor systems, where processing deadlines
may be missed but deadline tardiness must be bounded.
Our focus on soft real-time systems is partially motivated
by the prevalence of application domains where soft real-
time processing is adequate. Such a focus is further mo-
tivated by fundamental limitations that negatively impact
hard real-time system design on multiprocessors. In the
multiprocessor case, effective timing analysis tools to com-
pute worst-case execution times are lacking due to hard-
ware complexities such as shared caches. Also, in the hard
real-time case, the use of non-optimal scheduling algo-
rithms can result in significant utilization loss when check-
ing schedulability, while optimal algorithms have high run-
time overheads. In contrast, many global scheduling algo-
rithms are capable of ensuring bounded deadline tardiness
in soft real-time systems with no utilization loss and with
acceptable runtime overheads. One such algorithm is the
global earliest-deadline-first (G-EDF) algorithm [16].

As G-EDF can be applied to ensure bounded tardiness
with no utilization loss in systems without a GPU, we
consider it as a candidate scheduler for GPU-enabled sys-
tems. We note however, that existing G-EDF analysis has
its limitations. Specifically, most analysis is what we call
suspension-oblivious in that it treats any self-suspension
(be it blocking to obtain a lock or waiting time to com-
plete an I/O transaction) as execution time on a CPU. This
implies that the interval of time a task suspends from a
CPU to execute on a GPU must also be charged as execu-
tion on a CPU. Under these conditions, it appears that a
GPU may be useless if work cannot be offloaded from the
CPUs. However, a GPU is an accelerator co-processor; it
can perform more work per unit time than can be done by a
CPU. Therefore, there may still be benefits to using a GPU
even if CPU execution charges must mask suspensions. In
this paper, we determine the usefulness of a GPU in a soft
real-time multiprocessor system by answering the follow-
ing question: How much faster than a CPU must a GPU be
to overcome suspension-oblivious penalties and schedule
more work than a CPU-only system?

To date, little formal real-time analysis has been done
to integrate graphics hardware into real-time systems, and
this work, to our knowledge, is the first to investigate the
integration of a GPU into a soft real-time multiprocessor
environment. The contributions of this paper are as fol-
lows. We first profile common usage patterns for GPUs
and explore the constraints imposed by both the graphics
hardware architecture and the associated software drivers.
We then present a real-time task model that is used to an-
alyze the widely-available platform of a four-CPU, single-
GPU system. With this model in mind, we propose two
real-time analysis methods, which we call the Shared Re-
source Method and the Container Method, with the goal
of providing predictable system behavior while maximiz-
ing processing capabilities and addressing real-world plat-

Problem Type Average
Eigenvalue Computation

512x512 5.88ms
2048x2048 22.87ms
4096x4096 50.92ms

2D Convolution
512x512 1.61ms

2048x2048 58.17ms
4096x4096 141.64ms

2D Fluid Simulation
512x512 170µs

2048x2048 290µs
N-Body Simulation

1024 particles 210µs

Table 1: Observed GPU kernel execution times on a GTX-
285 Nvidia graphics card.

form constraints. We compare these methods through
schedulability experiments to determine when benefits are
realized from using a GPU. Additionally, we present an
implementation-oriented study that was conducted to con-
firm the necessity of real-time controls over a GPU in an
actual real-time operating system environment. The paper
concludes with a discussion of other avenues for possible
real-time analysis methods and considers other problems
presented by the integration of CPUs and GPUs.

2 Usage Patterns and Platform Constraints

It is worthwhile to first examine the usage patterns of
GPUs in general purpose applications as well as the con-
straints imposed by hardware and software architectures
before developing any real-time analysis approach. As
we shall see, these real-world characteristics cannot be ig-
nored in a holistic system point-of-view. We begin by ex-
amining GPU execution environments.

The execution time of a GPU program, called a ker-
nel, varies from application to application and can be rela-
tively long. To determine likely execution-time ranges, we
profiled sample programs from Nvidia’s CUDA SDK on
a GTX-285 Nvidia graphics card. We found that n-body
simulations run on the order of 10–100µs per iteration on
average while problems involving large matrix calculations
(multiplication, eigenvalues, etc.) can take 10–200ms on
average. Table 1 contains a summary of observed GPU
execution times for several basic operations.

The results in Table 1 indicate that relatively long GPU
access times are common. Additionally, the I/O-based
interface to a GPU co-processor introduces several addi-
tional unique constraints that need to be considered. First,
a GPU cannot access main memory directly, thus making
the memory between the host and GPU non-coherent be-
tween synchronization points. Memory is transferred over
the bus (PCIe) explicitly or through automated DMA to
explicitly-allocated blocks of main memory (in integrated

graphics solutions, the GPU uses a partitioned section of
main memory, but the architectural abstractions remain).
Second, kernel execution on a GPU is non-preemptive: ex-
ecution of the kernel must be run to completion before an-
other kernel may begin. Third, kernels may not execute
concurrently on a GPU even if many of the GPU’s parallel
sub-processors are unused.2 Finally, a GPU is not a system
programmable device in the sense that a general OS cannot
schedule or otherwise control a GPU. Instead, a driver in
the OS manages the GPU. This last constraint bears addi-
tional explanation.

At runtime, the host-side program sends data to the
GPU, invokes a GPU program, and then waits for results.
While this model looks much like a remote procedure call,
unlike a remote RPC-accessible system, the GPU is unable
to schedule its own workloads. Instead, the host-side driver
manages all data transfers to and from the device, triggers
kernel invocations, and handles the associated interrupts.
Furthermore, this driver is closed-source since the vendor
is unwilling to disclose proprietary information regarding
the internal operations of the GPU. Also, driver properties
may change from vendor to vendor, GPU to GPU, and even
from driver version to version. Since even soft real-time
systems require provable analysis, the uncertain behaviors
of the driver force integration solutions to treat it as a black
box.

Unknown driver behaviors are not merely speculative
but are a real concern. For example, we found that a re-
cent Nvidia CUDA driver may induce uncontrollable busy-
waiting when the GPU is under contention, despite all run-
time environment controls to the contrary.3 Further com-
plicating matters, the driver does not provide predictable
real-time synchronization, an issue that receives more at-
tention in Sec. 4.1. Serious behavioral deficiencies of the
driver in real-time environments are further investigated in
Sec. 6.

3 Task Model and Scheduling Algorithms

Real-time analysis offers several methods for describing
the workload of a real-time system. This paper analyzes
mixed task sets of CPU-only and GPU-using tasks with
the synchronous implicit-deadline periodic task model as
it adequately describes common workloads and has well-
understood analytical properties.

A synchronous implicit-deadline periodic task set, T ,
consists of as a set of recurrent tasks, Ti, some of which
may access a GPU. We let G(T) denote the set of GPU-
using tasks in T . Each task is described by three parame-
ters: its period, pi, which measures the separation between
task recurrences (known as jobs); its worst-case CPU ex-
ecution time, ei, which bounds the amount of CPU pro-
cessing time a job must receive before completing; and

2Nvidia’s new Fermi architecture allows limited simultaneous execu-
tion of kernels as long as these kernels are sourced from the same host-
side context/thread.

3See Appendix A for details in the extended online version of this
paper found at http://www.cs.unc.edu/~anderson/papers.html.

CPU
CPU:

Send

CPU:

Receive
CPUGPU

Request GPU Release GPU

Critical Section

Figure 1: Execution phases of a GPU-using job.

its worst-case GPU execution time, si, which bounds the
amount of GPU processing time required by one of its jobs.
This last parameter captures the interval of time between a
kernel invocation and the signaling of its completion to the
driver. Like worst-case CPU execution, this parameter is
unique to each task and is dominated by the GPU kernel
execution time plus lesser communication latencies. Pre-
liminary work [23] has been done to upper-bound GPU
kernel execution time, though empirical tests are sufficient
for many soft real-time systems. For tasks that do not use
the GPU, si = 0. The utilization of task Ti is given by
ui = ei/pi and the system utilization is given by U = ∑ui.

As stated, our goal is to maximize system utilization
while supporting soft real-time constraints. Unfortunately,
due to a GPU’s I/O-based interface, techniques for hetero-
geneous systems [11, 17, 12] do not immediately apply.
However, as noted earlier, previous work [16] has shown
that G-EDF can ensure bounded tardiness in ordinary mul-
tiprocessor systems (without a GPU) without system uti-
lization constraints (provided the system is not overuti-
lized). Thus, it is the primary scheduling algorithm con-
sidered in this paper.4 G-EDF is a global scheduler, mean-
ing that jobs share a single ready queue and can migrate
between processors. G-EDF prioritizes work by job dead-
line, scheduling jobs with the earliest deadlines first.

4 Analysis Methods

We consider two methods for analyzing mixed task sets
of CPU-only and GPU-using tasks on a multiprocessor
system with a single GPU: the Shared Resource Method
and the Container Method. Fundamental differences be-
tween these methods stem from how GPU execution time
is modeled and how potential graphics hardware driver be-
haviors are managed.

4.1 Shared Resource Method
It is natural to view a GPU as a computational resource

shared by the CPUs of a multiprocessor system. This is the
approach taken by the Shared Resource Method (SRM),
which treats the GPU as a globally-shared resource pro-
tected by a real-time semaphore.

The execution of a GPU-using job goes through several
phases. In the first phase, the job executes purely on the

4Some have recently speculated [20] that the earliest-deadline-zero-
laxity (EDZL) algorithm may be better suited to accounting for self-
suspensions, though actionable results have yet to be presented, so better
suspension accounting remains an open problem.

http://www.cs.unc.edu/~anderson/papers.html

CPU. In the next phase, the job sends data to the GPU for
use by the GPU kernel. Next, the job suspends from the
CPU when the kernel is invoked on a GPU. The GPU exe-
cutes the kernel using many parallel threads, but kernel ex-
ecution does not complete until after the last GPU-thread
has completed. Finally, the job resumes execution on the
CPU and receives kernel execution results when signaled
by the GPU. Optionally, the job may continue executing
on the CPU without using the GPU. Thus, a GPU-using
job has five execution phases as depicted in Fig. 1.

We can remove the GPU driver from resource-
arbitration decisions and create a suitable model for real-
time analysis through the use of a real-time semaphore pro-
tocol. Contention for a GPU may occur when a job at-
tempts to communicate with it. We resolve this contention
with a synchronization point between the first and second
phases to provide mutual exclusion through the end of the
fourth phase; this interval is called a critical section and
denoted for each task Ti by csi. This approach ensures that
the driver only services one job at a time, which elimi-
nates the need for knowing how the driver (which, again,
is closed-source) manages concurrent GPU requests.

We may consider several real-time multiprocessor lock-
ing protocols to protect the GPU critical section. Such a
protocol should have several properties. First, it must allow
blocked jobs to suspend since critical-section lengths may
be very long (recall Table 1). A spin lock would consume
far too much CPU time. Second, the protocol must support
priority inheritance so blocking times can be bounded. Fi-
nally, the protocol need not support critical-section nesting
or deadlock prevention since GPU-using tasks only access
one GPU. Both the “long” variant of the Flexible Multipro-
cessor Locking Protocol (FMLP-Long) [13] and the more
recent global O(m) Locking Protocol (OMLP) [14] fit these
requirements. Neither protocol is strictly better than the
other for all task sets since priority-inversion-based block-
ing (per lock access), denoted by bi, is O(n) under FMLP-

Long and O(m) under the OMLP, where n is the number
of tasks and m is the number of CPUs. Thus, we allow the
SRM to use whichever protocol yields a schedulable task
set.

The FMLP-Long uses a single FIFO job queue for each
semaphore, and GPU requests are serviced in a first-come
first-serve order. The job at the head of the FIFO queue
is the lock holder. A job, Ji, of task Ti ∈ G(T) may be
blocked by one job from the remaining GPU-using tasks.
Formally,

bi = ∑
G(T)\{Ti}

csk. (1)

The global OMLP uses two job queues for each
semaphore: FQ, a FIFO queue of length at most m; and
PQ, a priority queue (ordered by job priority). The lock
holder is at the head of FQ. Blocked jobs enqueue on FQ
if FQ is not full and on PQ, otherwise. Jobs are dequeued
from PQ onto FQ as jobs leave FQ. Any job acquiring an
OMLP lock may be blocked by at most 2(m− 1) lower-

T
1

T
2

T
3

T
4

T
5

T
6

T
7

5 10 15 20 25 300

Job Scheduled

Job Holds GPU Lock

GPU Execution

Job Suspended on FIFO

Figure 2: Schedule for the example task set under the SRM
on a four-processor single-GPU system.

priority jobs. Let A be the set of jobs generated by any
Tk ∈ G(T) \ {Ti} that may contend with Ji for the GPU.
Let Amax be the 2(m−1) jobs in A with the longest critical
sections. The blocking time for task Ti ∈ G(T) is given by
the formula

bi = ∑
Jk∈Amax

csk. (2)

Soft schedulability under the SRM is determined by the
following two conditions. First,

ei + si +bi ≤ pi (3)

is required by the tardiness analysis for G-EDF [16]. Sec-
ond, the condition

U = ∑(ei + si +bi)/pi ≤ m (4)

must hold. This is the soft G-EDF schedulability condi-
tion required by [16] to ensure bounded tardiness. Like
all suspension-oblivious tests, we must analytically treat
suspension due to both blocking and GPU execution as
execution on the CPU. Note that no schedulability test is
required for the GPU co-processor since a job’s mutually
exclusive GPU execution is masked by fictitious CPU exe-
cution. Still, the suspension-oblivious nature of this test is
a limiting characteristic as is seen in Sec. 5.

Example. Consider a mixed task set with two CPU-
only tasks with task parameters (pi = 30,ei = 5,si = 0)
and five GPU-using tasks with parameters (pi = 30,ei =
3,si = 2,csi = 4) to be scheduled on a four-CPU system
with a single GPU. The CPU-only tasks trivially satisfy
Ineqs. (3). The FMLP-Long is best suited for this task set
and the blocking term for every GPU-using task is ∑csk =
16 as computed by Eq. (1). Tasks in G(T) satisfy Ineq. (3)
since 3+2+16 = 21≤ 30. Ineq. (4) also holds since U =
2 · (5/30)+ 5 · ((3+ 2+ 16)/30) ≈ 3.83 ≤ 4. Therefore,
the task set is schedulable under the SRM.

A schedule for this task set is depicted in Fig. 2. T1
and T2 are the CPU-only tasks. Observe that the final job
completes at time t = 21, well before its deadline. The
computed system utilization of approximately 3.83 is quite

close to the upper bound of 4.0 used in Ineq. (4), which
suggests a heavily-utilized system. However, the schedule
in Fig. 2 shows that the suspension-oblivious analysis is
quite pessimistic (mostly due to blocking-term accounting)
given that the system is idle for much of the time. In fact,
only one CPU is utilized after t = 5. The performance of
the GPU must overcome these suspension-oblivious penal-
ties if it is to be a worthwhile addition to a real-time multi-
processor system.

4.2 Container Method
The SRM may be overly pessimistic from a schedula-

bility perspective due to heavy utilization penalties aris-
ing from the blocking terms introduced by the use of a
multiprocessor locking protocol. Methods that lessen such
penalties may offer tighter analysis. The Container Method
(CM) is one such approach.

In many cases, a single GPU will limit the total actual
CPU utilization (where suspension effects are ignored) of
tasks in G(T). For example, if all of the tasks in G(T)
perform most of their processing on the GPU, then the to-
tal actual CPU utilization of these tasks will be much less
than 1.0 when the GPU is fully utilized. In this case, if we
inflate each task’s CPU execution time by its GPU execu-
tion time, as we do for suspension-oblivious analysis, then
the actual GPU utilization and total suspension-oblivious
CPU utilization will both be close to 1.0. This fact inspires
the CM, which avoids heavy suspension-oblivious penal-
ties by removing contention for the GPU resource through
the isolation of G(T) to a single (logical) processor.

It was shown in [21] that bandwidth reservations, or con-
tainers, may be used to support soft real-time guarantees
in multiprocessor systems. In a container-based system, a
task set is organized into a hierarchical collection of con-
tainers. Each container may hold tasks or child containers.
A container C is assigned an execution bandwidth, w(C),
equal to the sum of the utilizations and bandwidths of its
child tasks and containers, respectively.

For our GPU-enabled multiprocessor system, we place
all CPU-only tasks in a root container, H, and all tasks of
G(T) in a child container G of H. As before, suspensions
are treated as execution time and contribute to task utiliza-
tions. A container decomposition of the example task set
given in Sec. 4.1 is shown in Fig. 3. Observe that the tasks
in G(T) are isolated in container G with a bandwidth of
5/6, the total suspension-oblivious utilization of the tasks
in G(T). Container G and the CPU-only tasks are con-
tained within H, which has a bandwidth of 7/6.

Containers provide temporal isolation by hierarchically
allocating execution time to contained tasks and contain-
ers. If each container schedules its contained tasks and
containers using a window-constrained scheduling algo-
rithm,5 such as the G-EDF, then bounded tardiness can be
ensured with no utilization loss [21]. The CM exploits both

5A window-constrained scheduling algorithm prioritizes a job by an
arbitrary time point contained within an interval window that also con-
tains the job’s release and deadline.

H, w(H)=7/6

T
1
(30,5,0)

T
2
(30,5,0)

T
3
(30,3,2)

T
4
(30,3,2)

T
5
(30,3,2)

T
6
(30,3,2)

T
7
(30,3,2)

G, w(G)=5/6

Figure 3: Container decomposition of an example mixed
task set.

this and the ability to apply different schedulers to subsets
of jobs.

We schedule the children of H with G-EDF and sched-
ule the children of G with uniprocessor FIFO, which is a
window-constrained algorithm that prioritizes jobs by re-
lease time. All GPU contention is avoided through the use
of the FIFO scheduler, which eliminates preemptions, as-
suming jobs do not self-suspend or self-suspensions are an-
alytically treated as CPU execution. This ensures that the
GPU is always available to the highest-priority GPU-using
job. Note, in implementation it is not necessary for G to
suspend or idly consume CPU resources while the GPU
is in use. Instead, G may schedule other contained jobs,
provided that the GPU critical sections are protected by a
simple release-ordered semaphore. This ensures that the
highest-priority job may be scheduled immediately, with-
out conflict, when it is ready to run. This work-conserving
approach would reduce observed tardiness, though this is
not captured by our analysis here.

Soft schedulability of a task set under the CM is deter-
mined by the following conditions. First,

w(G)≤ 1 (5)

is required to ensure that G is schedulable with bounded
tardiness on a uniprocessor. Second,

w(G)+ ∑
Ti /∈G(T)

ui ≤ m (6)

must also hold. This condition ensures that the root
container can be scheduled by G-EDF on m CPUs with
bounded tardiness.

Example. Consider the same mixed task set from
Sec. 4.1. Ineq. (5) is satisfied since the container band-
width is w(G) = 5 ·(5/30)≈ 0.83≤ 1. Ineq. (6) also holds
as U = 2 · (5/30)+ 5 · (5/30) ≈ 1.16 ≤ 4. Therefore, the
task set is schedulable under the CM. A schedule for this
task set is depicted in Fig. 4. T1 and T2 are the CPU-only
tasks. Note that the final job completes at time t = 25.

The SRM enforces more permissive constraints on the
GPU while the CM enforces more permissive constraints
on the CPUs. This trade-off is reflected in both the schedu-
lability tests and example schedules of these methods. Due

T
1

T
2

T
3

T
4

T
5

T
6

T
7

5 10 15 20 25 300

Job Scheduled GPU Execution

Figure 4: Schedule for the example task set under the CM
on a four-processor single-GPU system.

to the mutually exclusive ownership of the GPU, there may
exist only one job within its critical section ready to be
scheduled on any CPU at any given time. This implies that
system GPU utilization under the SRM can be bounded by
the formula

∑
Ti∈G(T)

csi/pi ≤ 1 (7)

for schedulable task sets. This measure includes CPU exe-
cution time within critical sections since entire critical sec-
tions must execute in sequence. Comparing the SRM’s and
the CM’s measures of GPU utilization for the previous ex-
ample, we find the SRM’s GPU utilization (Ineq. (7)) is
approximately 0.67 while the CM’s (Ineq. (5)) is approx-
imately 0.83; the SRM’s CPU constraint (Ineq. (4)) is ap-
proximately 3.83 while the CM’s (Ineq. (6)) is approxi-
mately 1.16. Such trade-offs are not merely limited to the
tightness of analytical bounds, but are actually reflected in
task set schedules, as can be observed in Figs. 2 and 4.
While the CM enforces more permissive CPU utilization
constraints, the GPU-using jobs complete later under the
CM. This corresponds directly to the CM’s higher measure
of GPU utilization.

5 Evaluation

We carried out SRM- and CM-related schedulability ex-
periments to answer the question raised at the beginning of
this paper: How much faster than a CPU must a GPU be
to overcome suspension-oblivious penalties and schedule
more work than a CPU-only system?

5.1 Experimental Setup
To better understand the schedulability of mixed task

sets, we randomly generated task sets using three task uti-
lization intervals, three period intervals, three GPU us-
age patterns, and ten GPU task percentages. Utilization
intervals determine the range of utilization for individual
tasks and were [0.01,0.1] (light), [0.1,0.4] (medium), and
[0.5,0.9] (heavy). Period intervals determine the range
of task periods for individual tasks and were [3ms,33ms],
[15ms,60ms], and [50ms,250ms]. The GPU usage pattern

determines how much of the execution time of each GPU-
using task is GPU execution time; 25%, 50%, and 75%
were used, in line with common CPU/GPU workload dis-
tributions.6 Finally, the GPU task percentage is the ratio of
GPU-using tasks to the total number of tasks; increments
of 10% were used to test GPU task percentages from 0% to
100%. A schedulability experiment scenario was defined
by any permutation of these four parameters, yielding a to-
tal of 270 scenarios.

We generated random task sets for each scenario in the
following manner. First, we selected a total system utiliza-
tion cap uniformly in the interval (0,4], capturing the pos-
sible system utilizations of a platform with four CPUs and
a single GPU when suspension-oblivious analysis is used.
We then generated tasks by making selections uniformly
from the utilization interval and period interval according
to the given scenario. We derived execution times from
these selections. We added these tasks to a task set until the
set’s total utilization exceeded the utilization cap, at which
point the last-generated task was discarded. Next, we se-
lected tasks for G(T) from the task set; we determined the
number of GPU-using tasks by the GPU task percentage of
the scenario. We then assigned the same GPU usage pat-
tern to each task in G(T) according to the scenario. Addi-
tionally, we assumed that time spent communicating with
the GPU increases with execution time and assessed a GPU
communication cost, ε , of 5% of task execution. Thus,
a GPU-using task Ti’s critical-section length is (x+ ε) · ei
where x denotes the GPU usage pattern. We made cursory
tests of CPU and GPU utilization to ensure that the CPUs
and GPU were not implicitly overutilized. Finally, we dis-
carded task sets with only one GPU-using task since this
case is uninteresting as the GPU does not require resource
arbitration. We tested a total of 1,000,000 task sets for each
scenario.

We also generated equivalent CPU-only task sets to help
answer the question of when a multiprocessor system can
benefit from a GPU co-processor. We transformed the
mixed task sets into CPU-only equivalents by modifying
the execution time of the tasks in G(T) with the formula
e′i = ei+c ·si−ε where c is a positive constant scaling fac-
tor denoting the GPU speed-up over the CPU. Each task set
was tested with c equal to two, four, eight, and 16. A trans-
formed CPU-only task set is schedulable (has bounded tar-
diness) if e′i ≤ pi for all tasks and U ′ ≤ m, where U ′ is the
system utilization of the modified task set.

We tested the SRM and the CM according to the schedu-
lability conditions already described in Sec. 4.

5.2 Results

A representative subset of graphs resulting from our
schedulability experiments is presented in this section to
show the schedulability properties of the SRM and the CM

6Common workload profiles were solicited from research groups at
UNC that frequently make use of CUDA. A poll was also informally
taken at the Nvidia CUDA online forums.

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[6
]

[5
]

[2
]

[4
]

[3
]

(a
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[5
]

[6
]

[2
]

[4
]

[3
]

(b
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[5
]

[4
]

[2
]

[3
]

[6
]

(c
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[5
]

[6
]

[2
]

[1
]

[4
]

[3
]

(d
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)
ta

sk
 s

e
t

u
ti

li
za

ti
o

n
 c

a
p

 (
p

ri
o

r
to

 in
!

a
ti

o
n

)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[2
]

[4
]

[3
]

[5
]

[6
]

(e
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[4
]

[6
]

[5
]

[1
]

[2
]

[3
]

(f
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[3
]

[4
]

[2
, 5

, 6
]

(g
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[3
]

[2
, 4

, 5
, 6

]

(h
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[3
]

[1
]

[2
, 4

, 5
, 6

]

(i
)

Fi
gu

re
5:

Pe
r-

ta
sk

ut
ili

za
tio

n
in

cr
ea

se
fr

om
to

p
to

bo
tto

m
.G

PU
ex

ec
ut

io
n

pe
rc

en
ta

ge
in

cr
ea

se
s

fr
om

le
ft

to
ri

gh
t.

and to demonstrate their advantages over pure CPU-only
systems.7 We are limited by page constraints from present-
ing results for all 270 scenarios, though additional graphs
are available in an extended version of the paper online.
The presented subset of scenarios was selected because
they best utilized both the GPU and the CPUs, illustrating
seen trends more broadly.

Schedulability results for task sets with a GPU task per-
centage ranging from 30% to 40% are shown in Fig. 5.
The graphs are organized to show trends as functions of
per-task utilization (down the columns) and GPU usage
pattern (across the rows). The rows correspond to light,
medium, and heavy per-task utilization intervals. Like-
wise, the columns correspond to GPU usage patterns of
25%, 50%, and 75%.

Observation 1. A GPU usually allows a four-CPU system
to schedule more work than CPU equivalents if the GPU is
four times faster than the CPU. Both the SRM and the CM
outperform the CPU equivalents when c ≥ 8 in all cases.
A speed-up of four is all that is necessary in many cases as
seen in insets (b), (c), (e), and (f) of Fig. 5. This suggests
that the practical use of a GPU in a four-CPU real-time
system is possible since speed-ups greater than eight are
common. Indeed, this answers (in the context of this ex-
perimental framework) our original question of how fast
a GPU must be to overcome penalties from suspension-
oblivious analysis.

Observation 2. The Container Method frequently offers
better schedulability than the Shared Resource Method.
The CM can often schedule task sets the SRM cannot as
illustrated by the large differences in the schedulability
curves seen in insets (a), (b), (c), (e), and (f) of Fig. 5.
In the SRM, each task in G(T) incurs an execution penalty
up to the length of six critical sections (recall that Eq. (2)
includes up to 2(m− 1) terms). If the constraint given by
Ineq. (3) is not violated, then there is still a good chance
that the constraint of Ineq. (4) will be, especially at higher
system utilizations. The CM clearly benefits from avoid-
ing the inclusion of blocking terms in its schedulability
analysis, despite the fact that its GPU utilization condition
(Ineq. (5)) includes more CPU execution time.

Observation 3. The Shared Resource Method improves as
per-task utilization increases. Observe how the schedula-
bility curve for the SRM improves from inset (a) to (d) to
(g) in Fig. 5. For example, roughly 50% of task sets are
schedulable at system utilizations 2.0, 3.0, and 3.5 in in-
sets (a), (d), and (g), respectively. The SRM benefits from
increased per-task utilization since it reduces the total num-
ber of tasks in a given task set and hence also reduces the
number of tasks in G(T). This improves schedulability
since fewer GPU-using tasks result in smaller cumulative
blocking-term penalties.

7Please note that some graphs appear to be missing data points at
lower and upper system utilization ranges. This is caused by the oc-
casional inability to generate task sets meeting particular scenario con-
straints.

Observation 4. The Container Method is largely unaf-
fected by either GPU utilization or per-task utilization.
The schedulability curves for the CM in Fig. 5 are all very
similar. This is due to two aspects of the CM. First, con-
tainer bandwidth is a function of the cumulative execution
time of each task in G(T), or ei + si. As si increases across
the rows of Fig. 5, ei decreases by an equal amount, so con-
tainer bandwidth remains constant. The CM is also resis-
tive to changes in per-task utilization as its schedulability,
unlike the SRM, is not dependent on the number of tasks in
G(T), but only on the total suspension-oblivious utilization
of G(T).

Observation 5. The Container Method cannot schedule
task sets with per-task utilizations greater than 0.5. The
CM cannot schedule any heavy task set due to its strict
container bandwidth constraints as seen in the insets (g),
(h), and (i) of Fig. 5. Recall that the condition given by
Ineq. (5) must be met for a task set to be schedulable under
the CM. A heavy task set is schedulable under the CM only
if G(T) contains two tasks with utilizations equal to 0.5.
However, the occurrence of this case is highly improbable
since utilizations are chosen at random.

Observation 6. The Container Method is best suited for
systems with medium or light per-task utilizations. While
schedulability may vary across the CM’s gradually sloping
curves, it frequently offers better schedulability than the
SRM (Obs. 2). Further, in medium and light cases where
the SRM offers better schedulability than the CM (Fig. 5
(inset (d))), the CM is still competitive.

6 Implementation

We implemented the SRM with the OMLP in LITMUSRT

(described in detail in [15]), a UNC-produced Linux-based
testbed for real-time schedulers. We did this to both eval-
uate the practical performance characteristics of our solu-
tion and, more importantly, to show that unguarded GPU
device driver access is not viable for a real-time system—
some real-time control is necessary.

We generated synthetic workloads in the same fashion
as in Sec. 5.1 and ran them on our test platform, an Intel
Core i7 quad-core system with a Nvidia GTX-295 graph-
ics card.8 The system CPUs operated at 2.67GHz with
an 8MB shared cache. The Nvidia 190.53 64-bit Linux
proprietary driver was used on the platform without mod-
ification. Nvidia’s CUDA 2.3 SDK provided the CUDA
runtime environment. In all tests, no display of any kind
was used. Thus, the GPU was used exclusively for CUDA
computations without interference from other applications.

We executed synthetic task sets with G-EDF scheduling
for a duration of 2.5 minutes under two scenarios: one with
the SRM and one without. We made measurements for
response time and tardiness. A total of 400 task sets were
tested under each scenario.

8The GTX-295 actually provides two independent GPUs on a single
card, though only one GPU was used in this work.

Avg. Resp. Time Avg. Tardiness
Category SRM Driver SRM Driver

Easy 25.00% 24.95% 0.02% 0.00%
Difficult 29.33% 34.89% 0.17% 4.64%
Unable 92.79% 134.50% 91.97% 133.50%

Table 2: Response time and tardiness statistics for the SRM
and unguarded driver. Smaller values are better.

A summary of our findings for medium-utilization task
sets is shown in Table 2. A large amount of data was
generated in these tests and cannot be presented in de-
tail due to page constraints, so only high-level statistics
are shown. We use the ratios response time/task period
and tardiness/task period to interpret our data as this al-
lows measurements involving task sets with different pe-
riod ranges to be compared.

The executed task sets are organized into easy-, diffi-
cult-, and unable-to-schedule categories. Easy-to-schedule
task sets are those that are deemed schedulable by the the-
oretical analysis of Sec. 4.1. Difficult-to-schedule task sets
are those for which theoretical analysis was unable to de-
termine schedulability, but the observed tardiness of any
job of task Ti never exceeded pi. While 2.5 minutes of
execution cannot prove schedulability, it indicates that the
task set may be schedulable. We make this assumption
here. Unable-to-schedule task sets are those that could
not be successfully scheduled (tardiness exceeded pi) by
the implementation—no unable-to-schedule task sets were
ever deemed schedulable by the theoretical analysis.

Observation 1. The Shared Resource Method offers real-
time guarantees with little or no observed cost. The SRM
allows GPU-using tasks to be scheduled with real-time
guarantees through the use of predictable locking mech-
anisms, though performance is slightly hindered for easy-
to-schedule task sets (as seen in Table 2, average response
time and average tardiness are slightly better for the driver
in this case). The marginally better performance of the un-
guarded driver for easy-to-schedule task sets comes at the
expense of significantly increased CPU utilization since
the driver reduces latency through busy-wait spinning. It
is likely that the CPUs could potentially handle additional
processing in such cases. Nevertheless, the driver’s spin-
ning and lack of priority inheritance becomes a liability
in task sets where resources are more taxed as seen in the
greater ratios of the difficult- and unable-to-schedule cate-
gories.

Observation 2. The Shared Resource Method is supe-
rior at controlling job tardiness. G-EDF scheduling dis-
tributes tardiness relatively equally across all tasks in both
the SRM and unguarded driver scenarios. However, tardi-
ness growth is much better controlled under the SRM as
can be observed in Fig. 6, which depicts the growth in tar-
diness for a task from an unable-to-schedule task set. This
control over tardiness is also exhibited in nine difficult-to-
schedule task sets the SRM was able to schedule (keeping

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20000 40000 60000 80000 100000 120000 140000

T
a

rd
in

e
s
s
 (

m
s
)

Time (ms)

Tardiness Growth

[1]

[2]

[1] SRM [2] Unprotected Driver

Figure 6: Growth of tardiness growth of a task from an
unable-to-schedule task set. The SRM exhibits superior
control over tardiness.

tardiness close to zero) that the unprotected driver could
not. A real-time mechanism such as the SRM is necessary
in a GPU-enabled real-time system that may occasionally
become overutilized.

7 Future Work

In future work, we intend to investigate how the SRM
may be improved to support the exploitation of asyn-
chronous memory transfers. Discrete graphics cards sup-
port the ability for graphics hardware to send and receive
data to one task while the GPU itself performs computa-
tions for another. This allows for the masking of com-
munication latencies in a pipelined manner. The current
treatment of critical sections precludes the use of such a
mechanism.

Another direction we may pursue is support for multi-
GPU platforms. Platforms with many GPUs (sometimes
heterogeneous) are already available at consumer prices.
It is feasible to design a system that could dynamically
choose to execute a particular task or job on one of multi-
ple CPUs or on a variety of GPUs. If a SRM-like approach
is taken, not only could the locks protecting GPUs become
k-exclusion locks,9 thus adding an extra dimension of com-
plexity, but execution times of tasks could vary depending
upon where it is scheduled if GPUs with varying capabili-
ties are used.

Finally, we plan to perform in-depth empirical analysis
to determine the gap between the theoretical schedulability
results presented in this paper and apparent schedulability
in a real system. Rigorous empirical tests should further
clarify when a GPU is beneficial in “real world” real-time
systems.

9k-exclusion locks protect a resource or resource pool, allowing up to
k simultaneous accesses.

8 Conclusion

Recent advances in graphics hardware are enabling the
acceleration of computations traditionally carried out on
CPUs. The use of such hardware in a real-time system may
allow workloads to be supported that are too computation-
ally intensive for CPU-only systems, while also benefit-
ing from reduced power consumption. Through the con-
sideration of current architectural constraints, this paper
has presented two methods for integrating GPUs into soft
real-time multiprocessor systems: the Shared Resource
Method, and the Container Method. Schedulability exper-
iments were presented that assess the schedulability char-
acteristics of each. Both solutions were able to schedule
greater computational workloads than pure CPU systems
in common cases. The Shared Resource Method was also
evaluated through implementation and exhibited superior
runtime characteristics in terms of schedulability and effi-
cient resource utilization in comparison to a similar system
that is oblivious to GPU hardware and device driver behav-
iors.

References

[1] AMD Fusion Family of APUs. Available from:
http://sites.amd.com/us/Documents/48423B_

fusion_whitepaper_WEB.pdf [cited September 28,
2010].

[2] ATI Stream Technology. Available from: http:

//www.amd.com/US/PRODUCTS/TECHNOLOGIES/

STREAM-TECHNOLOGY/Pages/stream-technology.

aspx [cited September 28, 2010].

[3] China’s new nebulae supercomputer is no. 2. Avail-
able from: http://www.top500.org/lists/2010/06/

press-release [cited September 28, 2010].

[4] CUDA community showcase. Available from:
http://www.nvidia.com/object/cuda_apps_flash_

new.html [cited September 28, 2010].

[5] CUDA Zone. Available from: http://www.nvidia.

com/object/cuda_home_new.html [cited September 28,
2010].

[6] Microsoft DirectX. Available from: http:

//www.microsoft.com/games/en-US/aboutGFW/

pages/directx.aspx [cited September 28, 2010].

[7] OpenCL. Available from: http://www.khronos.org/

opencl/ [cited September 28, 2010].

[8] Parallel computing with SciFinance. Available from:
http://www.scicomp.com/parallel_computing/

SciComp_NVIDIA_CUDA_OpenMP.pdf [cited September
28, 2010].

[9] G. Abhijeet and T. Ioane Muni. GPU based sparse grid tech-
nique for solving multidimensional options pricing PDEs.
In Proceedings of the 2nd Workshop on High Performance
Computational Finance, pages 1–9, November 2009.

[10] Timo Aila and Samuli Laine. Understanding the efficiency
of ray traversal on GPUs. In Proceedings of the Confer-
ence on High Performance Graphics, pages 145–149, Au-
gust 2009.

[11] S. Baruah. Scheduling periodic tasks on uniform proces-
sors. In Proceedings of the EuroMicro Conference on Real-
time Systems, pages 7–14, June 2000.

[12] S. Baruah. Feasibility analysis of preemptive real-time sys-
tems upon heterogeneous multiprocessor platforms. In Pro-
ceedings of the 25th IEEE Real-Time Systems Symposium,
pages 37–46, December 2004.

[13] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson.
A flexible real-time locking protocol for multiprocessors. In
Proceedings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applica-
tions, pages 47–57, August 2007.

[14] B. Brandenburg and J. Anderson. Optimality results for
multiprocessor real-time locking. In Proceedings of the 31st
IEEE Real-Time Systems Symposium, December 2010. To
appear.

[15] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leon-
tyev, and J. Anderson. LITMUSRT: A status report. In
Proceedings of the 9th Real-Time Linux Workshop, pages
107–123, November 2007.

[16] U. Devi and J. Anderson. Tardiness bounds under global
EDF scheduling on a multiprocessor. In Real-Time Systems,
volume 38, pages 133–189, February 2008.

[17] S. Funk, J. Goossens, and S. Baruah. On-line scheduling on
uniform multiprocessors. In Proceedings of the 22nd IEEE
Real-Time Systems Symposium, December 2001.

[18] O. Harrison and J. Waldron. Practical symmetric key cryp-
tography on modern graphics hardware. In Proceedings of
the 17th Conference on Security Symposium, pages 195–
209, July 2008.

[19] W. Kang, S. H. Son, J. A. Stankovic, and M. Amirijoo. I/O-
aware deadline miss ratio management in real-time embed-
ded databases. In Proceedings of the 28th IEEE Real-Time
Systems Symposium, pages 277–287, December 2007.

[20] K. Lakshmanan, S. Kato, and R. Rajkumar. Open prob-
lems in scheduling self-suspending tasks. In Proceedings
of the 1st International Real-Time Scheduling Open Prob-
lems Seminar, pages 12–13, July 2010.

[21] H. Leontyev and J. Anderson. A hierarchical multiproces-
sor bandwidth reservation scheme with timing guarantees.
Real-Time Systems, 43(1):60–92, September 2009.

[22] B. Pieters, C. F. Hollemeersch, P. Lambert, and R. Van
de Walle. Motion estimation for H.264/AVC on multiple
GPUs using Nvidia CUDA. In Applications of Digital Im-
age Processing XXII, volume 7443, page 74430X, Septem-
ber 2009.

[23] G. Raravi and B. Andersson. Calculating an upper bound on
the finishing time of a group of threads executing on a GPU:
A preliminary case study. In Work-in-progress session of
the 16th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 5–
8, August 2010.

[24] Y. Watanabe and T. Itagaki. Real-time display on Fourier
domain optical coherence tomography system using a
graphics processing unit. In Journal of Biomedical Optics,
volume 14, page 060506, December 2009.

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.top500.org/lists/2010/06/press-release
http://www.top500.org/lists/2010/06/press-release
http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.microsoft.com/games/en-US/aboutGFW/pages/directx.aspx
http://www.microsoft.com/games/en-US/aboutGFW/pages/directx.aspx
http://www.microsoft.com/games/en-US/aboutGFW/pages/directx.aspx
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.scicomp.com/parallel_computing/SciComp_NVIDIA_CUDA_OpenMP.pdf
http://www.scicomp.com/parallel_computing/SciComp_NVIDIA_CUDA_OpenMP.pdf

	Introduction
	Usage Patterns and Platform Constraints
	Task Model and Scheduling Algorithms
	Analysis Methods
	Shared Resource Method
	Container Method

	Evaluation
	Experimental Setup
	Results

	Implementation
	Future Work
	Conclusion

