
Analysis for Supporting Real-Time Computer Vision
Workloads using OpenVX on Multicore+GPU Platforms ∗

Kecheng Yang, Glenn A. Elliott, and James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill
{yangk,gelliott,anderson}@cs.unc.edu

ABSTRACT
In the automotive industry, there is currently great interest in

utilizing computer vision algorithms to support driver-assist and
autonomous-control features. OpenVX is an emerging standard
for supporting workloads in which such algorithms are applied.
OpenVX uses a graph-based software architecture designed to en-
able efficient computation on heterogeneous platforms that may
include CPUs, graphics processing units (GPUs), digital signal pro-
cessors (DSPs), and other accelerators. Unfortunately, in settings
where real-time constraints exist, the usage of OpenVX poses certain
challenges. In a recent paper, the authors presented a new imple-
mentation of OpenVX directed at platforms comprised of CPUs and
GPUs that leverages various analytical techniques to enable these
challenges to be addressed. In this paper, these analytical techniques
are presented and discussed in detail. These techniques enable end-
to-end frame processing times to be analytically bounded under
OpenVX while encouraging parallelism through pipelining. Addi-
tionally, they enable bounds on frame buffering requirements to be
determined.

1 Introduction
In the automotive industry today, vision-based sensing through

cameras is being used to support features such as automatic lane-
keeping, adaptive cruise control, etc. In the coming years, such fea-
tures are expected to evolve and become integrated with actuation
logic that supports partial or full autonomy. To enable cost-effect
deployments of such features, within an acceptable size, weight, and
power envelope, multiple vision-based processing streams must be
consolidated onto a single hardware platform that may include com-
ponents that accelerate certain computations. Such a consolidation
must be done in a way that enables real-time requirements to be
validated.

For computer vision algorithms, graphics processing units (GPUs)
are a particularly compelling accelerator to consider, as GPUs are

∗Work supported by NSF grants CNS 1115284, CNS 1218693,
CPS 1239135, CNS 1409175, and CPS 1446631, AFOSR grant
FA9550-14-1-0161, ARO grant W911NF-14-1-0499, and a grant
from General Motors.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
RTNS 2015, November 04-06, 2015, Lille, France
© 2015 ACM. ISBN 978-1-4503-3591-1/15/11 $15.00.
http://dx.doi.org/10.1145/2834848.2834863.

well suited for efficiently performing the matrix-oriented compu-
tations inherent in many computer vision applications. To ease the
development of such applications on heterogeneous platforms such
as those in which GPUs are employed, and to enable system-level
optimization [1], a standard computer vision API called OpenVX
has been created and ratified [2]. Unfortunately, several aspects
underlying the design of OpenVX make validating real-time require-
ments problematic, despite the fact that real-time applications are
an intended use case [3]. This is disconcerting, given that OpenVX
undoubtedly will be adopted as a standard in many settings where
such requirements exist.

Problems with OpenVX. The OpenVX API provides the program-
mer with a set of basic operations, or primitives, commonly used
in computer vision algorithms.1 A computer vision algorithm is
constructed by instantiating primitives as nodes and linking node
outputs to node inputs to create a computer vision processing graph.

OpenVX has a simple execution model. From Sec. 2.8.5 of the
OpenVX standard [2]:

“[A constructed graph] may be scheduled multiple
times but only executes sequentially with respect to
itself.” Moreover: “[Simultaneously executed graphs]
do not have a defined behavior and may execute in par-
allel or in series based on the behavior of the vendor’s
implementation.”

This model simplifies the API and implementation of OpenVX and
allows it to perform well on platforms with a wide range of ca-
pabilities, ranging from simple ASICs to complex multicore+GPU
platforms comprised of multiple CPUs and one or more GPUs. How-
ever, this model imposes three significant implications on real-time
scheduling. First, the specification has no notion of a repeating (i.e.,
periodic or sporadic2) task, and lacks any framework for real-time
analysis. With respect to analysis, a key issue is the allowance of
“back-edges” that can create cycles in a graph. Second, the spec-
ification does not define a threading model for graph execution.
Finally, it requires a graph to execute end-to-end before it may be
re-executed. This significantly hinders the ability to exploit paral-
lelism by “pipelining” portions of a graph’s structure to improve
performance.

In a recent paper, we described a new OpenVX implementation
devised by us that addresses all of these problems [4]. This new
implementation extends an OpenVX implementation by NVIDIA
called VisionWorks [5] and is directed at multicore+GPU platforms.
Our extended version of VisionWorks is structured in a way that
enables previously proposed analytical techniques to be adapted to

1In OpenVX, these basic operations are called “kernels.”
2We assume familiarity with the sporadic and periodic task models.

Convert To
Grayscale

Soft
Casecade
Classifier

Display
Convert to

YUV

Raw video
at 30Hz

Figure 1: Dataflow graph of a simple pedestrian detector application.

bound end-to-end frame processing times and overall frame buffer-
ing requirements, both within an execution model that encourages
parallelism through pipelining.

Contributions. From an implementation point of view, our ex-
tended version of VisionWorks is rather complex—in total, we
added approximately 34K lines of code to VisionWorks. As a result,
the presentation in our prior paper [4] is primarily directed at imple-
mentation details and a case study—needed analytical results are
only briefly sketched. The main contribution of the current paper
is to present these results in much greater detail. Specifically, we
present an overview of the prior analytical results being leveraged,
and explain in detail how these results can be applied to derive
response-time bounds and buffer bounds. Because the two papers
are linked—this one focusing on analytical issues and the prior
one [4] focusing on implementation details—there is necessarily
some overlap in presentation.3

Organization. The remainder of this paper is organized as follows.
We begin by describing more carefully how OpenVX graphs are
defined (Sec. 2), the real-time-related challenges pertaining to such
graphs (Sec. 3), and the prior work we leverage to address these
challenges (Sec. 4). We then explain how to apply this prior work in
our setting to obtain bounds on end-to-end processing times (Sec. 5)
and overall buffer-space requirements (Sec. 6). Following this, we
conclude (Sec. 7).

2 OpenVX
Computer vision algorithms are commonly expressed using

dataflow graphs. An example is given in Fig. 1, which depicts a
simple pedestrian detection application that could be used in an
automotive application. In this example, a video camera feeds the
source of the graph with video frames at 30Hz (or 30FPS). The first
node converts raw camera data into the common YUV color image
format. The second node extracts the “Y” component of each pixel
from the YUV image, producing a grayscale image. (Computer
vision algorithms often operate only on grayscale images.) The third
node performs pedestrian detection computations and produces a
list of the locations of detected pedestrians. In this case, the node
uses a common “soft cascade classifier” [6] to detect pedestrians.
Finally, the last node displays an overlay of detected pedestrians
over the original color image. To support this pedestrian detection
application in a real-time setting, we require a task model and im-
plementation that will allow us to exploit the parallelism inherently
expressed by the graph, while still supporting real-time analysis and
predictable execution.

OpenVX is a newly ratified standard API for developing computer
vision applications for heterogeneous computing platforms. The API
provides the programmer with a set of basic operations, or primitives,
commonly used in computer vision algorithms.1 The programmer
may supplement the standard set of OpenVX primitives with their
own or with those provided by third-party libraries. Each primitive
has a well-defined set of inputs and outputs. The implementation of a
primitive is defined by the particular implementation of the OpenVX

3The greatest overlap occurs within Secs. 1–3.

standard being used. Thus, a given primitive may use a GPU in one
OpenVX implementation and a specialized DSP (e.g., CongniVue’s
G2-APEX or Renesas’ IMP-X4) or mere CPUs in another. OpenVX
also defines a set of data objects. Types of data objects include
simple data structures such as scalars, arrays, matrices, and images.
There are also higher-level data objects common to computer vision
algorithms—these include histograms, image pyramids, and lookup
tables.4 The programmer constructs a computer vision algorithm by
instantiating primitives as nodes and data objects as parameters. The
programmer binds parameters to node inputs and outputs. Since each
node may use a mix of the processing elements of a heterogeneous
platform, a single graph may execute across CPUs, GPUs, DSPs,
etc.

Node dependencies (i.e., edges) are not explicitly declared. Rather,
the structure of a graph is derived from how parameters are bound
to nodes. We demonstrate this with an example. Fig. 2(a) gives
the relevant code fragments for creating an OpenVX graph for
pedestrian detection. The data objects imageRaw and detected
represent the input and output of the graph, respectively. The data
objects imageIYUV and imageGray store an image in color and
grayscale formats, respectively. At line 12, the code creates a
color-conversion node, convertToIYUV. The function that cre-
ates this node, vxColorConvertNode(), takes imageRaw and
imageIYUV as input and output parameters, respectively. Whenever
the node represented by convertToIYUV is executed, the contents
of imageRaw is processed by the color-conversion primitive, and the
resulting image is stored in convertToIYUV. Similarly, the node
convertToGray converts the color image into a grayscale image.
The grayscale image is processed by a user-provided node created
by the function mySoftCascadeNode(), which writes a list of de-
tected pedestrians to detected.5 Fig. 2(b) depicts the bindings of
parameters to nodes. Fig. 2(c) depicts the derived structure of this
graph.

Our implementation of OpenVX, described in [4], is directed
at multicore+GPU platforms and extends an OpenVX imple-
mentation by NVIDIA called VisionWorks. Specifically, a GPU-
management framework developed previously by our group called
GPUSync [7, 8, 9] is used along with an additional middleware
layer. GPUSync treats GPUs as resources that may be acquired
and released by tasks by invoking multiprocessor real-time locking
protocols. A fairly comprehensive overview of this implementation
is given in [4]; further details can be found in the second author’s
Ph.D. dissertation [9].

3 Ensuring Conformance to an Analyzable
Task Model

The timing constraints of interest to us pertain to end-to-end graph
processing times, i.e., the duration of time from when an input frame
is consumed by a source node to when any corresponding output

4An image pyramid stores multiple copies of the same image. Each
copy has a different resolution or scale.

5The OpenVX standard does not currently specify a primitive for
object detection, so the user must provide one or use one from a
third party.

1 vx_image imageRaw ; // graph input : an image
2 vx_array detected ; // graph output : a list of detected pedestrians
3 . . .
4 // instantiate a graph
5 vx_graph pedDetector = vxCreateGraph (. . .);
6 . . .
7 // instantiate additional parameters
8 vx_image imageIYUV = vxCreateVirtualImage (pedDetector , . . .);
9 vx_image imageGray = vxCreateVirtualImage (pedDetector , . . .);

10 . . .
11 // instantiate primitives as nodes
12 vx_node convertToIYUV = vxColorConvertNode (pedDetector , imageRaw , imageIYUV);
13 vx_node convertToGray = vxChannelExtractNode (pedDetector , imageIYUV , VX_CHANNEL_Y , imageGray);
14 vx_node detectPeds = mySoftCascadeNode (pedDetector , imageGray , detected , . . .);
15 . . .
16 vxProcessGraph (pedDetector); // execute the graph end -to -end

(a) OpenVX code for constructing a graph.

convertToIYUV
(vxColorConvertNode)

convertToGray
(vxChannelExtractNode)

detectPeds
(mySoftCascadeNode)

imageRaw imageIYUV imageGray detected

(b) Bindings of data object parameters to nodes.

convertToIYUV
(vxColorConvertNode)

convertToGray
(vxChannelExtractNode)

detectPeds
(mySoftCascadeNode)

(c) Derived graph structure.

Figure 2: Construction of a graph in OpenVX for pedestrian detection.

is generated by a sink node. In particular, we require that such
processing times are provably bounded. As we explain in detail
later, such bounds can be obtained by adapting prior results of
Elliott et al. [8], which are in turn based on even earlier results
of Liu and Anderson [10], with synchronization-related blocking
due to the usage of GPUSync accounted for using blocking bounds
from [9]. However, to apply these results, no cycles may exist in
any processing graph. Also, each node of a graph should be viewed
as an individual schedulable entity, rather than the entire graph,
to enable parallelism due to pipelining effects. Unfortunately, the
VisionWorks framework that we modified fails to satisfy any of
these requirements, hence the need for our modifications.

Graph dependencies and pipelining. Recall from Sec. 2 that
OpenVX does not pass data through graph edges. Rather, node
input and output is passed through singular instances of data objects.
Although graph pipelining is naturally supported if nodes rather
than entire graphs are schedulable entities, a new hazard arises: a
producer node may overwrite the contents of a data object before
the old contents have been read or written by a consumer node!
Such consumers may not even be a direct successor of the producer.
For instance, we can conceive of a graph where an image data object
is passed through a chain of nodes, each node applying a filter to the
image. The node at the head of this chain cannot execute again until
after the image has been handled by the node at the tail. In short, the
graph cannot be pipelined.

This pipelining issue can be resolved by replicating data objects,
as illustrated in Fig. 3. However, replication alone is not a sufficient
solution unless safe replication bounds can be determined that are
sufficient to ensure that no data object is prematurely overwritten

A

A

V
i

3

V
i

2

V
i

1

same data
object

(a) VisionWorks graph, Vi.

A

A

V
i

3

V
i

2

V
i

1

A
A

A
A

(b) Vi with replicated data objects.

Figure 3: Replicating data objects to enable pipelining.

before being consumed. Later, in Sec. 6, we explain how to obtain
such bounds.

Back-edges. Computer vision algorithms that operate on video
streams often feed data derived from prior frames back into the
computations performed on future frames. For example, an object
tracking algorithm must recall information about objects of prior
frames if the algorithm is to describe the motions of those objects
in the current frame. OpenVX defines a special data object called a
“delay,” which is used to buffer node output for use by subsequent
node invocations. A delay is essentially a ring buffer used to contain
other data objects (e.g., prior image frames). The oldest data object
is overwritten when a new data object enters the buffer. The number

Convert To

Grayscale

Compute

Image

Pyramid

Compute

Optical

Flow

Read

Frame

Harris

Feature

Tracker

Compute

Homography

Duplicate

Color

Image

Smooth

Homography

Warp

Perspective

Display

Stabilized

Image

Homography

Filter

Forward Edge Delay Edge

Figure 4: Dependency graph of video stabilization application.

1

1

11

1

2 3

4

Figure 5: Precedence constraints within a DAG τ1.

of data objects stored in a ring buffer (or the “size” of the delay)
is tied to how “far into the past” the vision algorithm must go. For
example, consider a node that operates on frame i and requires
access to copies of the last two prior frames. In this case, the size of
the delay would be two.

The consumer node of data buffered by a delay may appear any-
where within a graph. It may be an ancestor or descendant of the
producer node—it may even be the producer itself. A back-edge is
created when the consumer node of a delay is not a descendant of
the producer node in the graph derived from non-delay data objects.
For example, in Fig. 4, which is taken from the case study presented
in [4], the delay edges sourced from the “Harris Feature Tracker”
node are back-edges; the other delay edges are not. As seen in Fig. 4,
back-edges ostensibly result in cycles. This is problematic because
the prior end-to-end response-time analysis we leverage applies only
to acyclic graphs. In Sec. 5, we explain how to break such cycles.

As the discussion above suggests, the analytical results we desire
extrapolate heavily from prior work on graph-based task systems.
Before delving into the details of how we addressed the problems
noted above, we first review this prior work.

4 The Sporadic DAG Model
There is a growing body of work on real-time analysis meth-

ods for systems specified using graph-based formalisms and other
formalisms that expose parallelism (e.g., see [11, 12, 13, 14, 15,
16, 17, 18] and the references cited therein). Our formal analysis
here is obtained by considering the implicit-deadline sporadic DAG
task model, which has been the subject of prior research by our
group [19]. The following description of this model is largely taken
from [19] with minor modifications to suite our needs here.

Task model. We consider a system comprised of a set τ =
{τ1,τ2, . . . ,τn} of n DAGs. Each DAG is a set τi = {τ1

i ,τ
2
i , . . . ,τ

zi
i }

of zi tasks, with producer/consumer relationships. Each task τv
i

releases a (potentially infinite) series of jobs Jv
i,1,J

v
i,2, An un-

finished job Jv
i, j is ready if it has been released and if Jv

i, j−1 (if
j ≥ 2) has completed execution. An example DAG τ1 is depicted
in Fig. 5. As seen in this example, tasks (nodes) may be connected
by edges. Each edge is directed from a producer task that produces
data to a consumer task that consumes that data. A particular task
τv

i ’s producers are those on edges for which τv
i is the consumer,

and its consumers are those on edges for which τv
i is the producer.

Each job must wait to begin execution until one job from each of its
producers has completed, so that its necessary input data is available.
For example, in Fig. 5, for any j, J4

1, j needs input data from each of
J2

1, j and J3
1, j, so it must wait until those jobs complete.

To simplify analysis, we assume that each DAG τi has exactly one
source task τ1

i , which only has outgoing edges, and one sink task τ
zi
i ,

which has only incoming edges. Multi-source/multi-sink DAGs may
be supported with the addition of singular “virtual” sources and sinks
that connect multiple sources and sinks, respectively. Each DAG
has a common period parameter Ti for all of its tasks—we explain
how this parameter is interpreted when discussing scheduling below.
Each task τv

i also has a parameter Cv
i , which denotes the worst-case

execution time (WCET) for any of its jobs. We assume that τ is
scheduled on an identical multiprocessor. For now, we also assume
that all tasks are independent. Later, we explain how to deal with
dependencies created when tasks share GPUs.

Scheduling. The results of this paper can be applied to any system
of DAGs where tasks are scheduled via any window-constrained
global scheduler [20]; however, for ease of exposition, we specifi-
cally focus on the most widely studied such scheduler, the global
earliest-deadline-first (G-EDF) scheduler. Under G-EDF, ready
jobs are prioritized for scheduling on an earliest-deadline-first basis,
any job may execute on any processor, and jobs may be preempted
or may migrate among processors, except when executing within
a non-preemptive section (e.g., when accessing a GPU). On large
platforms, global algorithms such as this can be applied within clus-
ters of processors, so our results can be adapted for applicability on
such platforms as well.

As in [19], we assume that tasks corresponding to source nodes re-
lease jobs sporadically; that is, job releases of the task τ1

i must occur
at least Ti time units apart. As noted above, a task corresponding to
a non-source node releases its jobs as the data they require becomes
available. As seen in the example schedule in Fig. 6, this can cause
consecutive jobs of the same non-source task to be released fewer
than Ti time units apart. However, the deadlines corresponding to
those jobs must still be defined to be at least Ti time units apart, as the
figure shows for the the task τ2

1 . In particular, note that jobs J2
1,1 and

J2
1,2 are released only 7 time units apart, which is less than T1 = 8,

Job Release Job Deadline

τ1 Time
0

Job Completion

= T1

J1,1

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.)

τ1

τ1
1

2

5 10 15 20

1
J1,2
1

J1,1
2

J1,2
2

< T1

Figure 6: Partial schedule of the DAG in Fig. 5 assuming a period T1 of 8 time units.

yet their deadlines are defined to be 8 time units apart. The technique
used here for defining deadlines is called deadline postponement
and dates back to early work on rate-based scheduling [21].

The sporadic DAG systems considered here are special cases of
DAG-based systems that can be specified using the more general
processing graph method (PGM) [22], the real-time scheduling of
which has been studied in the context of both uniprocessors [23]
and multiprocessors [10]. In PGM, the movement of data through a
DAG is abstracted by considering the transmission of tokens from
producer to consumer tasks. The rules that govern how tokens are
produced and consumed are quite general, and as a result, the manner
in which non-source tasks release jobs becomes more complicated.
This level of generality is not needed in the application domains that
are the subject of this paper.

End-to-end latency bounds. Define the utilization of the task τv
i to

be Uv
i =Cv

i /Ti, and the total system utilization to be Usum = ∑i,v Uv
i .

Assume that the considered hardware platform has m processors.
Then, as long as Uv

i ≤ 1 holds for each i and v, and Usum ≤ m holds,
it can be shown that any task in any DAG has bounded deadline
tardiness. In the context of the more general PGM model, this result
was first established by Liu and Anderson [10] by leveraging prior
work on tardiness bounds under G-EDF by Devi and Anderson [24].
In the context of the simpler sporadic DAG model, Elliott et al. [19]
used these earlier results to establish per-task end-to-end latency
bounds. Specifically, let τ ′ denote the set of independent implicit-
deadline sporadic tasks corresponding to the sporadic DAG task
system τ , i.e., each task τ ′vi in τ ′ has the same period and WCET
as the corresponding task τv

i in τ . Then, the deadline tardiness of
any task τ ′vi in τ ′ is guaranteed to be at most ∆v

i time units, where
∆v

i is defined according to an expression given in Theorem 1 in [24].
Based on this, Elliott et al. [19] established an end-to-end latency
bound Lv

i for each task τv
i in the original sporadic DAG task system

τ . Lv
i upper bounds the difference f v

i, j−a1
i, j, where a1

i, j denotes the
release time (or activation time) of the jth job of the DAG τi’s source
task τ1

i , and f v
i, j denotes the finish time (or completion time) of the

jth job of the task τv
i in τi. Such bounds are given by the following

theorem.

THEOREM 1 (THEOREM 1 IN [19]). If Θ is the set of all
tasks along the worst-case path6 from τ1

i to τv
i , including both

6That is, the path that maximizes the given sum

τ1
i and τv

i , then any job Jv
i, j completes within

Lv
i = ∑

τw
i ∈Θ

(Ti +∆
w
i)

time units after time a1
i, j.

It is important to note that the existence of this bound relies crucially
on the fact that all task graphs are acyclic. As mentioned earlier,
this is not necessarily true of task graphs defined via the OpenVX
specification.

Dealing with blocking times due to GPU accesses. The latency
bounds mentioned above entail no CPU capacity loss because the
only preconditions for their existence are that Usum ≤ m holds and
Uv

i ≤ 1 holds for each i and v. However, when accounting for delays
that jobs may experience as they wait to access GPUs, CPU capacity
loss will generally occur. Under GPUSync [7, 8, 9], such delays are
accounted for through suspension-oblivious analysis [25] wherein
priority-inversion-related blocking times due to the usage of locking
protocols are analytically modeled as CPU computation time. This
causes an artificial inflation of per-task WCETs, and correspond-
ingly inflated task utilizations. Such inflations can cause a loss of
some fraction of the underlying hardware platform’s available CPU
capacity. However, any such loss is usually more than offset by the
significant acceleration afforded by the usage of GPUs [9]. Because
the effects of GPUs are dealt with by inflating WCETs, we can
henceforth ignore them and assume we are working with WCETs
that have already been properly inflated.

Buffer bounds. As mentioned in Sec. 3, pipelined execution can
be enabled under OpenVX by replicating data objects, but this
requires safe replication bounds. Such bounds can be obtained by
extrapolating from prior work by Goddard and Jeffay on bounding
the size of token buffers in PGM graphs [26]. However, because
we are working with simpler sporadic DAGs here, it is possible to
obtain tighter results by proving new bounds from first principles.
Additionally, we must concern ourselves with the possibility that the
same data object may be accessed by different tasks at different times
(e.g., the ith video frame might be accessed by the ith invocations of
several tasks without being copied between accesses).

Leveraging these results. To summarize, to leverage prior work
on end-to-end latency bounds, we must find a way of eliminating
the apparent cycles caused by delay edges in OpenVX graphs. To
be able to enable pipelined execution in OpenVX graphs, we must

determine safe bounds for replicating data objects. These issues are
considered in the following two sections.

5 Dealing with Delay Edges
In order to leverage the prior results just discussed, we introduce

the concept of a dependency graph. Given a set of OpenVX graphs,
the ith dependency graph, Gi, is associated with the ith OpenVX
graph. The vth node in Gi is viewed as a sequential task τv

i , as in
the sporadic DAG task model. Dependencies among tasks in Gi are
as implied by the corresponding OpenVX graph. Specifically, Gi
has the same forward and delay edges as the ith OpenVX graph. A
forward edge from the vth node to the wth node, v→ w, indicates
that job Jw

i, j cannot commence execution until job Jv
i, j completes;

a delay edge from the vth node to the wth node, v 99K w, indicates
that job Jw

i, j cannot commence execution until jobs prior to Jv
i, j

have completed. To be more precise about the back-trace history
associated with the delay edge v 99K w, we introduce two per-edge
parameters h and k, where h≥ k, to specify the precise back-trace
history implied by the delay edge v 99K w: Jw

i, j may need the results
of the jobs Jv

i, j−h, . . . ,J
v
i, j−k, but does not need the results of jobs

outside of this range. Note that, in most existing computer vision
algorithms, k = 1 for every delay edge. (Although h and k are per-
edge parameters, we have avoided using superscripts or subscripts
to indicate the intended edge, for simplicity.)

We define a dependency graph to be well-formed if and only if
it contains no cycles or delay edges. A set of well-formed depen-
dency graphs corresponds naturally to a sporadic DAG task system,
assuming (as we do here) that each graph’s source node is invoked
periodically (and hence sporadically) according to some given video
frame rate. However, the set of dependency graphs arising from a
given OpenVX-specified application may not be well-formed. Our
goal in this section is to show how to transform such a set of graphs
to a corresponding set where each graph is well-formed. We show
this by considering the concept of a refinement. The dependency
graph G′i is a refinement of the dependency graph Gi if both have the
same nodes and G′i is at least as restrictive as Gi, i.e., all dependency
restrictions in Gi are implied by G′i or can be guaranteed under
G-EDF scheduling. For now, we ignore the issue of replicating data
objects to prevent overwriting (equivalently, each data object can be
assumed for now to be infinitely replicated to prevent overwriting);
that issue is addressed in Sec. 6.
Rules for constructing well-formed refinements. In the rest of
this section, we consider three rules that can be repeatedly applied as
needed to a dependency graph Gi to obtain a well-formed refinement
of it. Each such rule application eliminates one or more delay edges
in Gi. Once all delay edges have been eliminated, no cycles can exist.
After all three rules have been stated and explained, we illustrate
them with an example at the end of this section. (The reader may
wish to consult the example as each rule is introduced.) The first
rule handles delay edges that do not actually cause cycles.

Delay-Edge Strengthening Rule: If the delay edge
v 99K w is not part of any cycle, then replace it by a
forward edge v→ w.

Note that applying this rule always yields a valid refinement. To
see why, observe that the original delay edge v 99K w indicates
that the job Jw

l, j cannot commence execution until after the jobs
Jv

l, j−h, . . . ,J
v
l, j−k have completed, while the forward edge v→ w

indicates that Jw
l, j cannot commence execution until after Jv

l, j has
completed. Because tasks are sequential, the latter clearly implies
the former.

The remaining two rules can be applied to eliminate cycles. The
first of these eliminates delay edges that are not actually necessary.

Delay-Edge Dropping Rule: If, under G-EDF
scheduling, job Jv

i, j−k is guaranteed (via response-time
analysis) to be complete by the release time of job Jv

i, j
for all j, then the delay edge v 99K w can be removed.

Intuitively, this rule can be applied if k is “large enough” to ensure
that the back-trace history required by Jv

i, j is sufficiently “far in the
past” that the precedence constraint implied by the delay edge is
satisfied by G-EDF scheduling anyway. The following theorem can
be applied to determine if k is “large enough.”

THEOREM 2. If, for each delay edge v 99K w in a dependency
graph, k satisfies

k ≥
⌈

Lv
i

Ti

⌉
, (1)

then the Delay-Edge Dropping Rule can be applied to eliminate
all such edges. Specifically, for each such edge, the job Jv

i, j−k is
guaranteed to be complete by time aw

i, j, where (generalizing our
earlier notation) aw

i, j denotes the release time of the job Jw
i, j.

Proof. We prove this theorem by contradiction. Assume that (1)
holds and consider the corresponding graph where all delay edges
have been eliminated. This graph is acyclic, and hence Theorem 1
can be applied. Assume that Jv

i, j−k has not completed by aw
i, j. Be-

cause the jth job release of the task τw
i cannot precede the jth job

release of the source task τ1
i , a1

i, j ≤ aw
i, j. From our assumption, this

implies that Jv
i, j−k has not completed by time a1

i, j, i.e., f v
i, j−k > a1

i, j.
By Theorem 1, Jv

i, j−k is guaranteed to complete within Lv
i time units

after time a1
i, j−k, i.e., f v

i, j−k ≤ a1
i, j−k +Lv

i . Therefore,

a1
i, j−a1

i, j−k < Lv
i . (2)

Because the source task τ1
i is invoked sporadically with a minimum

release separation of Ti, we have

a1
i, j−a1

i, j−k ≥ k ·Ti. (3)

By (2) and (3),

k <
Lv

i
Ti
≤
⌈

Lv
i

Ti

⌉
, (4)

which contradicts (1).
Theorem 2 gives the system designer the option of adjusting the

k parameter of any delay edge to be “large enough” so that that
edge can be effectively eliminated. However, in practical terms, this
means that the computer vision algorithm is being altered to rely
on back-trace history that is “older.” This could result in a loss of
accuracy in some vision algorithms. Therefore, we need a rule that
provides an option for breaking cycles that does not involve such
algorithmic alterations. Our final rule provides such an option.

Super-Node Creation Rule: Combine several nodes
from the same graph that have dependencies with re-
spect to each other due to delay edges into a single
“super-node” that is executed as an ordinary task.7 Each
edge (forward or delay) from a node outside of the

7Referring back to our definition of a “refinement,” we note that the
orginally nodes actually still do exist; the notion of a super-node is
an abstraction.

super-node to a node within the super-node becomes an
incoming edge of the super-node. Similarly, each edge
(forward or delay) from a node within the super-node to
a node outside of the super-node becomes an outgoing
edge of the super-node. The jth job of the super-node
is executed sequentially by executing the jth jobs of
all tasks within the super-node in an order allowed by
forward edges. The WCET of the super-node is the sum
of the WCETs of the contained tasks. (Recall that all
tasks within the same graph have the same period.) The
super-node’s utilization must be at most one.

The application of this rule will result in a valid refinement, be-
cause any precedence constraints among tasks within a super-node
implied by delay edges among them will be implicitly satisfied due
to the enforced serial execution order. Such an enforced serialization
order reduces parallelism, which may seem like a heavy-handed
technique for eliminating delay edges. However, for the common
case in computer vision algorithms where k = 1 for such an edge,
the following theorem shows that an implicit serialization order
often exists anyway.

THEOREM 3. Suppose there is a forward-edge path from the
wth node to the vth node and v 99K w is a delay edge that therefore
causes a cycle. Assuming k = 1 for this edge, no jobs of any two
tasks in this cycle can execute in parallel.

Proof. Let Jp
i, j and Jq

i,l be two arbitrary jobs of two tasks τ
p
i and τ

q
i

in the mentioned cycle. Jobs of the same task clearly execute in
sequence, so assume that p 6= q holds. We consider two cases.

Case 1: j = l. In this case, Jp
i, j and Jq

i,l are in the same invocation
of the OpenVX graph, e.g., handling the same video frame. By
definition, p and q are two nodes in a forward-edge path from the
wth node to the vth node. Thus, Jp

i, j and Jq
i,l (j = l) cannot execute in

parallel.

Case 2: j 6= l. In this case, with out loss of generality, let us assume
j < l. Let J ≺ J′ denote that job J must complete execution before
job J′ commences execution, and let � denote the reflexive closure
of ≺. Because p and q are two nodes along a forward-edge path
from the wth node to the vth node, by the precedence constraints
implied by forward edges,

Jp
i, j � Jv

i, j, (5)

and

Jw
i,l � Jq

i,l . (6)

Because there is a forward-edge path from w to v,

Jw
i,s ≺ Jv

i,s for all s. (7)

Because v 99K w is a delay edge with k = 1,

Jv
i,s ≺ Jw

i,s+1 for all s. (8)

By (7) and (8),

Jw
i,s ≺ Jw

i,s+1 for all s. (9)

Because j < l and both j and l are integers, j + 1 ≤ l. Hence,
by (8) and (9),

Jv
i, j ≺ Jw

i, j+1 � Jw
i,l . (10)

By (5), (6), and (10),

Jp
i, j ≺ Jq

i,l .

Thus, Jp
i, j and Jq

i,l do not execute in parallel.

For any dependency graph, it is possible to repeatedly apply
the above rules and eliminate all delay edges and cycles, result-
ing in a final graph that is well-formed, provided applications of
the Super-Node Creation Rule do not create a super-node with
utilization exceeding one (according to Theorem 3, if this occurs,
over-utilization may likely have been inherent in the original graph
anyway). However, whenever the Super-Node Creation Rule is ap-
plied, parallelism is sacrificed. Thus, its use should be avoided if
possible. We conclude this section by illustrating these rules with
an example.

Example. Consider again the graph in Fig. 4. As a first step, we
apply the Delay-Edge Strengthening Rule to each delay edge that
does not cause a cycle, i.e., all delay edges except the one from the
node “Harris Feature Tracker” to the node “Compute Optical Flow.”
We can then eliminate any potential cycles by applying the Delay-
Edge Dropping Rule to this last remaining delay edge, yielding the
well-formed graph shown in Fig. 7. Note, however, that applying this
rule could involve potentially altering the computer vision algorithm
to use a value of k that satisfies (1) for the dropped delay edge. If this
is not feasible, then we could alternatively apply the Super-Node
Creation Rule to combine the two nodes connected via this delay
edge into a single super-node, provided the utilization of this super-
node is at most one, and obtain the well-formed refinement shown
in Fig. 8. For either well-formed graph, Theorem 1 could be applied
to determine latency bounds.

6 Replica and Buffer Bounds
The analysis in the prior section focused on maintaining required

precedence constraints when eliminating cycles when individual
graph nodes, rather than entire graphs, are viewed as schedulable
entities, i.e., as tasks. However, as noted in Sec. 2, graph edges
are not explicitly declared in OpenVX but are inferred from how
data objects are bound to nodes as parameters. Furthermore, as
noted in Sec. 3, when individual nodes are viewed as schedulable
entities, there is a danger that the data objects associated with a
given edge may be overwritten. As noted there, this problem can
be addressed by replicating such objects. However, for such an
approach to be feasible, safe replication bounds are needed. In this
section, we present such bounds. We assume that the transformations
discussed in the prior section have already been applied, but we still
require information exposed by the original untransformed graph.
We consider ordinary data objects and those associated with delays
in separate subsections.

6.1 Data Object Replicas
In discussing data object replication, we assume that no data

object is accessed by multiple OpenVX graphs (or equivalently,
the set of such graphs would have to be treated as one graph here).
Therefore, we assume that we are working with a fixed graph and
avoid introducing identifiers to indicate which graph where possible.

To avoid overwriting with respect to forward edges in the trans-
formed graph, we can replicate each data object N times, indexing
the replicas from 0 to N− 1, and storing them in per-data-object
buffers with N entries each. We require the jth invocation (i.e.,
job) of any task in the graph under consideration to access the
(j mod N)th replica. (Note that we are replicating every data object
accessed within the graph to the same degree; different per-object
replica bounds can be obtained with finer-grained analysis.)

With data objects replicated like this, we merely need to guarantee
that when the (j+N)th job of any task is executing, no job prior
to the (j+1)st of any task can access any data object, i.e., the jth

Convert To

Grayscale

Compute

Image

Pyramid

Compute

Optical

Flow

Read

Frame

Harris

Feature

Tracker

Compute

Homography

Duplicate

Color

Image

Smooth

Homography

Warp

Perspective

Display

Stabilized

Image

Homography

Filter

Figure 7: Well-formed dependency graph corresponding to Fig. 4, where the Delay-Edge Dropping Rule has been applied.

Convert To

Grayscale

Compute

Image

Pyramid

Compute

Optical Flow +

Harris Feature

Tracker

Read

Frame

Compute

Homography

Duplicate

Color

Image

Smooth

Homography

Warp

Perspective

Display

Stabilized

Image

Homography

Filter

Figure 8: Well-formed dependency graph corresponding to Fig. 4, where the Super-Node Creation Rule has been applied.

and prior jobs of any task have already completed execution. The
following theorem provides a minimum value of N for which this
property can be guaranteed. That is, assuming that we are working
with the ith graph, if we set N =

⌊
Lzi

i /Ti
⌋
+1, then no overwriting

will occur with respect to that graph. Recall from Sec. 4 that f p
i,l

denotes the finish time (or completion time) of Jp
i,l (i.e., the lth job

of the task τ
p
i in τi).

THEOREM 4. With respect to the ith graph, if N satisfies the
following condition,

N ≥
⌊

Lzi
i

Ti

⌋
+1, (11)

then Jv
i, j+N will not execute at or before f p

i,l for all p and for all
l ≤ j.

Proof. We prove this theorem by contradiction. Suppose that (11)
holds and at time t, where t ≤ f p

i,l , Jv
i, j+N is executing. Then, because

the zth
i node is the sink node, f p

i,l ≤ f zi
i,l . Therefore,

t ≤ f zi
i,l . (12)

By Theorem 1,

f zi
i,l −a1

i,l ≤ Lzi
i . (13)

Furthermore, Jv
i, j+N cannot execute until at or after the (j+N)th

invocation of the source node (task τ1
i), i.e., time a1

i, j+N . Therefore,

t ≥ a1
i, j+N . (14)

By (12), (13), and (14),

Lzi
i ≥ a1

i, j+N −a1
i,l . (15)

Because the source node (task τ1
i) releases jobs sporadically and

l ≤ j,

a1
i, j+N −a1

i,l ≥ (N + j− l) ·Ti ≥ N ·Ti. (16)

By (15) and (16),

N ≤
Lzi

i
Ti

<

⌊
Lzi

i
Ti

⌋
+1, (17)

which contradicts (11).

6.2 Ring Buffers for Delay Edges
As mentioned in Sec. 2, each delay edge in OpenVX is actually

defined by special data object called a “delay,” which is used to
buffer node output for use by subsequent node invocations. A delay
is essentially a ring buffer used to contain other data objects, where
the oldest data object is overwritten when a new data object is
produced. Therefore, if the ring buffer size is not large enough, data
objects that are being used may be prematurely overwritten. Thus,
we also require safe bounds on ring buffer sizes, so that no such
overwriting will occur.

Although in Sec. 5 we analytically transformed each original
dependency graph Gi to a well-formed refinement, in the context
of considering ring buffer sizes, we still need to consider Gi, which
directly represents the original OpenVX graph, wherein the needed
delay data objects are fully exposed. We consider a delay edge
v 99K w in Gi. The following theorem provides a sufficiently safe
buffer size for each delay edge.

THEOREM 5. For any delay edge v 99K w in Gi, a ring buffer
size of N +h is sufficient, where N =

⌊
Lzi

i /Ti
⌋
+1.

Proof. We consider an arbitrary job of τv
i , Jv

i, j. By Theorem 4, Jv
i, j

will not execute at or before f w
i,l for all l ≤ j−N. That is, when Jv

i, j
is executing, Jw

i, j−N and all prior jobs of τw
i have already completed.

Therefore, only Jw
i, j−N+1 or later jobs of τw

i may execute afterwards.
Those jobs may require the result of some prior jobs of node v but
no earlier than job Jv

i, j−N+1−h (recall the definition of h given earlier
in Sec. 5). So, when Jv

i, j is writing data into the ring buffer, we
only need to keep the result of Jv

i, j−N+1−h and later jobs in this ring
buffer. Thus, a ring buffer size of N +h is sufficient.

τ𝑖
𝑤 τ𝑖

𝑣

The execution of depends
on the completion of .

𝐽𝑖,𝑗
𝑣

𝐽𝑖,𝑗
𝑤

The execution of may need data
from the results of ,…, .

𝐽𝑖,𝑗
𝑤

𝐽𝑖,𝑗−ℎ
𝑣 𝐽𝑖,𝑗−𝑘

𝑣

The forward-edge path
from w to v.

The delay edge v⤏w ,
which is a back edge.

Figure 9: Illustration for the ring buffer bound for a delay edge q that is a
back-edge (i.e., causes a cycle).

The following theorem provides a significantly tighter buffer size
bound in a common special case.

THEOREM 6. If v 99K w causes a cycle in Gi and is the only
delay edge in that cycle, then a ring buffer size of h is sufficient.

Proof. If v 99K w is the only delay edge in a cycle, then there is
a forward-edge path from the wthnode to the vth node, as shown
in Fig. 9. Suppose that the most recently ready job of τv

i is Jv
i, j.

Due to the forward-edge path, Jv
i, j being ready implies that Jw

i, j has
already completed, which means only Jw

i, j+1 or later jobs of τw
i could

execute next and need delay buffer data. Therefore, the earliest delay
buffer data that will be needed in the future is that from Jv

i, j+1−h.
(By the definition of h given earlier in Sec. 5, Jw

i, j+1 may require the
result of some prior jobs of node v but no earlier than job Jv

i, j+1−h.)
Moreover, since Jv

i, j , by definition, is the most recently ready job of
τv

i , no job of τv
i later than Jv

i, j is ready, let alone is executing. Thus,
a buffer size of h is sufficient.

7 Conclusion
The need to support real-time graph-based computer vision appli-

cations in embedded domains such as in the automotive industry is
of growing importance. Moreover, to reap size, weight, and power
advantages, there is growing interest in using GPUs in supporting
such applications. Given that OpenVX is a ratified standard, it is
likely to see widespread use for this purpose in the future. The case
for adopting OpenVX is further strengthened by NVIDIA’s dom-
inance in the GPU sector and their implicit backing of OpenVX
through the development of VisionWorks.

When real-time correctness is a concern, the use of OpenVX
creates several challenges. In a prior paper [4], we presented a
new OpenVX implementation, based on a variant of VisionWorks,
that addresses these challenges. That paper specifically focused on
implementation details and a case study, with needed analytical
results that justify the implementation only briefly sketched. In fact,
a complete explanation of these analytical results was deferred to a
separate paper—namely, this one.

These analytical results can be factored into two main contribu-
tions. First, we presented transformations that can be applied to
OpenVX-derived graphs to eliminate delay edges and cycles so that
prior work on end-to-end latency bounds can be applied. These
transformations involve treating individual graph nodes as schedu-
lable entities. This can create data hazards that can be avoided by
replicating data objects, but safe replications bounds are needed
for such an approach to be feasible. As a second contribution, we
showed how to derive such bounds. Together with [4], the results
of this paper provide a solid foundation for supporting OpenVX

graphs on multicore+GPU platforms in a way that encourages paral-
lelism through piplelining while allowing real-time guarantees to be
validated.

References
[1] E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and F. Brill,

“Addressing system-level optimization with OpenVX graphs,” in Proc.
of the IEEE Conf. on Computer Vision and Pattern Recognition Work-
shops, 2014, pp. 658–663.

[2] Khronos Group, The OpenVX™ Specification, October 2014, version
1.0, Revision r28647.

[3] Kkronos Group, “OpenVX homepage,” https://www.khronos.org/
openvx/, 2015.

[4] G. Elliott, K. Yang, and J. Anderson, “Supporting real-time computer
vision workloads using OpenVX on multicore+GPU platforms,” in
Proc. of the IEEE Real-Time Sys. Symp., 2015, to appear.

[5] F. Brill and E. Albuz, “NVIDIA VisionWorks toolkit,” 2014, presented
at the 2014 GPU Technology Conf.

[6] L. Bourdev and J. Brandt, “Robust object detection via soft cascade,” in
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition,
vol. 2, 2005, pp. 236–243.

[7] G. Elliott, B. Ward, and J. Anderson, “GPUSync: A framework for
real-time GPU management,” in Proc. of the 34th IEEE Int’l Real-Time
Sys. Symp., 2013, pp. 33–44.

[8] G. Elliott and J. Anderson, “Exploring the multitude of real-time multi-
GPU configurations,” in Proc. of the IEEE Real-Time Sys. Symp., 2014,
pp. 260–271.

[9] G. Elliott, “Scheduling of GPUs, with applications in advanced auto-
motive systems,” Ph.D. dissertation, The University of North Car-
olina at Chapel Hill, 2015 (see especially Chapter 5, available at
http://www.cs.unc.edu/~anderson/papers.html).

[10] C. Liu and J. Anderson, “Supporting soft real-time DAG-based systems
on multiprocessors with no utilization loss,” in Proc. of the IEEE Real-
Time Sys. Symp., 2010, pp. 3–13.

[11] S. Baruah, “Improved multiprocessor global schedulability analysis
of sporadic DAG task systems,” in Proc. of the Euromicro Conf. on
Real-Time Sys., 2014, pp. 97–105.

[12] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Fea-
sibility analysis in the sporadic DAG task model,” in Proc. of the
Euromicro Conf. on Real-Time Sys., 2013, pp. 225–233.

[13] S. Collette, L. Cucu, and J. Goossens, “Integrating job parallelism in
real-time scheduling theory,” Information Processing Letters, vol. 106,
no. 5, pp. 180–187, 2008.

[14] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in RTSS, 2010, pp. 259–268.

[15] J. Li, K. Agrawal, C. Lu, and C. Gill, “Analysis of global EDF for
parallel tasks,” in Proc. of the Euromicro Conf. on Real-Time Sys.,
2013, pp. 3–13.

[16] J. Li, A. Saifullah, K. Agrawal, C. Gill, and C. Lu, “Analysis of feder-
ated and global scheduling for parallel real-time tasks,” in Proc. of the
Euromicro Conf. on Real-Time Sys., 2014, pp. 85–96.

[17] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in Proc. of the IEEE
Real-Time Sys. Symp., 2011, pp. 217–226.

[18] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time task
model,” in Proc. of the IEEE Real-Time Technology and Applications
Symp., 2011, pp. 71–80.

https://www.khronos.org/openvx/
https://www.khronos.org/openvx/
http://www.cs.unc.edu/~anderson/papers.html

[19] G. Elliott, N. Kim, C. Liu, and J. Anderson, “Minimizing response
times of automotive dataflows on multicore,” in Proc. of the IEEE Int’l
Conf. on Embedded and Real-Time Computing Sys. and Applications,
2014, pp. 1–10.

[20] H. Leontyev and J. Anderson, “Generalized tardiness bounds for global
multiprocessor scheduling,” in Proc. of the IEEE Real-Time Sys. Symp.,
2007, pp. 413–422.

[21] K. Jeffay and S. Goddard, “A theory of rate-based execution,” in Proc.
of the IEEE Real-Time Sys. Symp., 1999, pp. 304–314.

[22] “Processing graph method specification,” Prepared by the Naval Re-
search Laboratory for use by the Navy Standard Signal Processing
Program Office (PMS-412), 1987.

[23] S. Goddard, “On the management of latency in the synthesis of real-
time signal processing systems from processing graphs,” Ph.D. disser-
tation, University of North Carolina at Chapel Hill, 1998.

[24] U. Devi and J. Anderson, “Tardiness bounds under global EDF schedul-
ing on a multiprocessor,” in Proc. of the IEEE Real-Time Sys. Symp.,
2006, pp. 330–341.

[25] B. Brandenburg and J. Anderson, “Optimality results for multipro-
cessor real-time locking,” in Proc. of the IEEE Real-Time Sys. Symp.,
2010, pp. 49–60.

[26] S. Goddard and K. Jeffay, “Managing memory requirements in the
synthesis of real-time systems from processing graphs,” in Proc. of the
IEEE Real-Time Technology and Applications Symp., 1998, pp. 59–70.

	Introduction
	OpenVX
	Ensuring Conformance to an Analyzable Task Model
	The Sporadic DAG Model
	Dealing with Delay Edges
	Replica and Buffer Bounds
	Data Object Replicas
	Ring Buffers for Delay Edges

	Conclusion

