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ABSTRACT

When hosting real-time applications on multicore platforms, inter-
ference from shared hardware resources can significantly increase
task execution times. Most proposed approaches for lessening in-
terference rely on mechanisms for providing hardware isolation to
tasks. However, one limitation of most prior work on such mech-
anisms is that only static task systems have been considered that
never change at runtime. In reality, safety-critical applications of-
ten transition among different functional modes, each defined by
a distinct set of running tasks. In a given mode, only tasks from
that mode execute, yet tasks from all modes consume memory
space, and this creates additional constraints affecting hardware-
isolation techniques. This paper shows how to address such con-
straints in the context of an existing real-time resource-allocation
framework called MC? (mixed-criticality on multicore). In MC2,
hardware-isolation techniques are employed in conjunction with
criticality-aware task-provisioning assumptions that enable hard-
ware resources to be utilized more efficiently.
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1 INTRODUCTION

There is great interest today in hosting computationally intensive
real-time workloads on multicore platforms. However, efforts to-
wards this end have been stymied by problems caused when tasks
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interfere with each other in accessing shared hardware components
such as caches and memory banks. Shared-hardware interference
can cause significant task execution-time increases. This is espe-
cially problematic for real-time workloads, which are typically
validated by analyzing worst-case scenarios. When worst-case ex-
ecution times increase proportionally to the amount of sharing
across cores, the benefit of additional cores can be nullified. This
dilemma has been dubbed the one-out-of-m problem [25] to reflect
the very real possibility of being able to allocate only “one core’s
worth” of capacity though m cores are present.

The one-out-of-m problem is one of the most serious unresolved
obstacles in work on real-time multicore resource allocation today.
Evidence of this can be seen in the recent CAST-32 position paper
from the U.S. Federal Aviation Administration (FAA) (8, 9]. This
position paper provides an in-depth discussion of the challenges
created by employing multicore platforms in avionics settings.

In addressing the one-out-of-m problem, two orthogonal ap-
proaches have been investigated. The predominate approach in-
volves predictably managing shared hardware resources so that
interference and task execution-time estimates are reduced [1-4, 10,
13-16, 18-22, 24, 25, 27, 28, 30, 32, 34, 37-41]. Alternatively, Vestal
(while working in the avionics industry) proposed employing mixed-
criticality (MC) analysis [36], under which execution-time estimates
for less-critical tasks are determined based on less-pessimistic as-
sumptions.! While these two approaches have been largely con-
sidered separately, both have been applied together in ongoing
work by our group on a real-time resource-allocation framework
called MC? (mixed-criticality on multicore) [10, 17, 24, 25, 30, 37].
In particular, MC? supports both MC provisioning techniques as
proposed by Vestal [36] and mechanisms for managing the shared
last-level cache (LLC) and DRAM memory.

From static to dynamic workloads. Prior work on shared-hardware
management has been almost entirely limited to static task systems
that never change at runtime. This is a key limitation. Indeed, many
safety-critical applications must support multiple functional modes,
each defined by a distinct set of running tasks. For example, in
an aircraft, different sets of running tasks may be required when
taking off, at cruise altitude, or when some emergency condition
occurs. Thus, for the one-out-of-m problem to be truly solved, it is
crucial that solutions exist that encompass multi-mode systems. In
this paper, we present such a solution in the context of MC2.

Allowing multiple modes to exist can greatly complicate shared-
hardware management. The key issue here is not exhausting overall
CPU capacity, because tasks from different modes do not run at the
same time. Rather, in the context of MCZ, DRAM allocations are
the main problem, as even inactive tasks consume memory. Note

Westal originally considered uniprocessor platforms, but MC analysis has also been
considered in the context of multicore platforms.
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that the DRAM region a task can access determines the region of
the LLC it accesses.? Thus, the problems of allocating DRAM space
and LLC space are intertwined and many complexities exist.

Contributions. MC? includes an offline DRAM/LLC allocation
component, and an online component that schedules tasks at run-
time. Our major contribution is to show how to modify both com-
ponents to support multi-mode systems while providing hardware
isolation. We also report on the results of experiments conducted us-
ing our modified MC? in which various shared-hardware allocation
options pertaining to such systems were explored.

In exploring such options, we focus on schedulability, which is
impacted in the considered context by many constraints pertaining
to mode requirements, hardware isolation, and DRAM capacity
limitations. In particular, MC?’s offline component allocates DRAM
and LLC regions to subsets of tasks in a criticality-cognizant way.
When modifying this component to support multi-mode systems,
different regions of DRAM and the LLC must be assigned to per-
mode subsets of tasks while ensuring that all tasks from all modes
are so assigned and each mode is schedulable.

With respect to these requirements, tasks that are shared across
multiple modes (as commonly occurs in practice) can cause ma-
jor difficulties because their presence creates dependencies among
modes. To further complicate matters, a shared task could poten-
tially be of different criticalities in different modes. For example,
a planning computation in an unmanned aerial vehicle may re-
quire a criticality-level upgrade during a mode switch initiated in
response to a detected threat, as planning becomes very critical
in that context. To our knowledge, such criticality changes (un-
der Vestal’s notion of criticality [36]) have not been considered in
prior work on mode changes.? A task that undergoes a criticality
change when switching between two modes may require different
hardware isolation guarantees in each mode.

When allocating DRAM to a task z; that is shared between two
modes, two basic options exist: either the two modes can be allo-
cated overlapping DRAM regions, with 7; allocated in the overlap, or
they can be allocated non-overlapping DRAM regions, which would
entail migrating 7;’s state between these regions when switching
between the two modes. Under either option, LLC allocations would
be correspondingly affected. In more complex situations, these op-
tions could actually be applied in disparate combinations, with
different techniques used for different tasks or modes. Along with
other details pertaining to how DRAM and LLC regions are actually
created, this yields a vast solution space to explore.

To sift through this solution space, we conducted a large-scale
schedulability study in which overheads that impact schedulabil-
ity were considered as measured on our multi-mode extension of
MC?’s runtime component. While schedulability is our major focus
herein, we also conducted case-study experiments to confirm that
mode-change latencies in our MC? extension are reasonable. To our
knowledge, this paper is the first work on supporting mode changes

2The LLC would typically be a set-associative cache with the mapping of a memory
location to a set determined by its physical address.

3Under current avionics certification procedures, such a task would always default to
its highest criticality level. However, as noted in the CAST-32 position paper [8, 9],
such procedures assume uniprocessor machines and must evolve to enable better
platform utilization on multicore platforms. Moreover, according to colleagues of ours
in the avionics industry, many practical use cases exist where criticality changes would
be desirable to support.
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Figure 1: Scheduling in MC? on a quad-core machine.

in a multicore context where hardware-isolation and MC-analysis
techniques (as proposed by Vestal [36]) are used.*

Organization. In the rest of this paper, we provide relevant back-
ground (Sec. 2), describe our modifications to MC? to support mode
changes (Sec. 3), discuss our schedulability experiments (Sec. 4) and
related work (Sec. 5), and conclude (Sec. 6). Due to space constraints,
some implementation details and experimental results are deferred
to appendices.

2 BACKGROUND

We begin by reviewing needed background material.

Task model. We consider real-time workloads specified via the
implicit-deadline periodic/sporadic task model (of which we assume
familiarity). We specifically consider a task system 7 = {1, ..., 7},
scheduled on m processors,” where task 7;’s period and worst-case
execution time (WCET) are denoted T; and C;, respectively. (We
generalize this model below when considering MC scheduling and
multi-mode systems.) The utilization of task z; is given by u; =
Ci/T; and the total system utilization by }}; u;. If a job of 7; has
a deadline at time d and completes execution at time ¢, then its
tardiness is max{0, ¢t — d}. Tardiness should always be zero for a
hard real-time (HRT) task, and should be bounded by a (reasonably
small) constant for a soft real-time (SRT) task.

Mixed-criticality scheduling. For systems with tasks of differing
criticalities, Vestal proposed using less-pessimistic execution-time
estimates when considering less-critical tasks [36]. Under his pro-
posal, if L criticality levels exist, then each task has a provisioned
execution time (PET) specified at each level, and L system variants
are analyzed: in the Level-¢ variant, the real-time requirements
of all Level-¢ tasks are verified with Level-¢£ PETs assumed for all
tasks (at any level). The degree of pessimism in determining PETs
is level-dependent: if Level ¢ is of higher criticality than Level ¢,
then Level-¢ PETs will generally exceed Level-£” PETs. For example,
in the systems considered by Vestal [36], observed WCETs were
used to determine lower-level PETs, and such times were inflated
to determine higher-level PETs.

Scheduling under MC?. Vestal’s work led to a significant body of
follow-up work on MC scheduling (see [7] for an excellent survey).
Within this body of work, MC? was the first MC scheduling frame-
work for multiprocessors [30]. MC? is implemented as a LITMUSRT
[29] plugin and supports four criticality levels, denoted A (high-
est) through D (lowest), as shown in Fig. 1. Higher-criticality tasks
are statically prioritized over lower-criticality ones. Level-A tasks

4As noted in Sec. 5, in prior work on MC analysis, a switch to degraded system
performance is often cast as a mode change, but this is very different from the functional
mode changes considered in this paper.

SWe use the terms “processor,” “core;” and “CPU” interchangeably.
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Figure 2: Quad-core ARM Cortex A9.

are periodic and partitioned and scheduled on each core using a
time-triggered table-driven cyclic executive.® Level-B tasks are also
periodic and partitioned but are scheduled using a rate-monotonic
(RM) scheduler on each core.® On each core, the Level-A and -B
tasks are required to have harmonic periods and commence execu-
tion at time 0. Level-C tasks are sporadic and scheduled via a global
earliest-deadline-first (GEDF) scheduler.® Level-A and -B tasks are
HRT, Level-C tasks are SRT, and Level-D tasks are non-real-time.
A major thesis underlying the design of MC? is that Levels A and
B should be mostly comprised of quite deterministic “fly-weight”
tasks with rather low utilizations; more computationally intensive
tasks would likely be assigned to Level C. This thesis arose from
discussions with colleagues in the avionics industry, who are inter-
ested in deploying complex decision-making capabilities at lower
criticality levels.

Hardware management under MC?. MC? provides a component
used offline (i.e., before runtime) to perform LLC and DRAM allo-
cations [25]. We briefly describe the techniques that underlie this
component here. (We are still assuming there is only a single task
set to schedule. We consider extensions to support multiple modes
later.) Our description is with respect to the machine shown in
Fig. 2, which is the hardware platform assumed throughout this
paper. This machine is a quad-core ARM Cortex A9 platform. Each
core on this machine is clocked at 800MHz and has separate 32KB
L1 instruction and data caches. The LLC is a shared, unified 1IMB
16-way set-associative L2 cache. The LLC write policy is write-back
with write-allocate. 1GB of off-chip DRAM is available, partitioned
into eight 128MB banks.

We assume herein that Level D is not present, as it has no impact
on the isolation guarantees or schedulability of tasks at higher levels
(and Level D is afforded no real-time guarantees). LLC management
is provided for the other levels by assigning rectangular areas of the
LLC to certain groups of tasks. This is done by using page coloring to
allocate certain subsequences of sets (i.e., rows) of the LLC to such a
task group, and hardware support in the form of per-CPU lockdown
registers to assign certain ways (i.e., columns) of the LLC to the
group. (See [25] for more details concerning these LLC allocation
mechanisms.) Also, by controlling the memory pages assigned to
each task, certain DRAM banks can be assigned for the exclusive
use of a specified group of tasks. The operating system (OS) can also
be constrained to access only certain LLC areas or DRAM banks.

Fig. 3 depicts the main allocation strategy for the LLC and DRAM
banks provided under MC? [25]. DRAM allocations are depicted at
the bottom of the figure, and LLC allocations at the top. As seen, the
Level-A and -B tasks on each CPU are assigned a dedicated DRAM

Other per-level schedulers optionally can be used. These options, and other con-
siderations, such as slack reallocation, schedulability conditions, and execution-time
budgeting are discussed in prior papers [17, 30, 37].

XX, XX,

16 Ways
CPUO
le—H—
4 Colors cPUO Level B
]
Level A
cP1
| cPU1 Levpl B
4C
O™ e Level C
Level A
& - LC (12)
ICPU 2
le— 0s
4 Colors cPU2 evel B
le—
Level A
PU3
le—»
4 Colors cPU3 Lifvel B
le—
Level A J
DRAM | DRAM | DRAM | DRAM | DRAM | DRAM | DRAM | DRAM
Bank 0 | Bank1 | Bank2 | Bank3 | Bank4 | Bank5 | Bank6 | Bank 7
Level C | Level C | LevelC| CPUO | CPUL1 | CPU2 | CPU3 | LevelC
& 0S & 0s & 0S A&B | A&B | A&B | A&B & 0S

Figure 3: LLC and DRAM bank allocation. Note that the Level-A and
-B LLC areas for each core can overlap. LLC boundaries indicated by
double lines are configurable parameters.

bank, and Level C and the OS share the remaining banks. Also, Level
C and the OS share a subsequence of the available LLC ways and
all LLC colors. (On the considered platform, each color corresponds
to 128 cache sets.) Level-C tasks (being SRT) are assumed to be
provisioned on an average-case basis. Accordingly, LLC sharing
with the OS should not be a major concern. The remaining LLC ways
are partitioned among Level-A and -B tasks on a per-CPU basis. That
is, the Level-A and -B tasks on a given core share a partition. Each of
these partitions is allocated one quarter of the available colors. This
scheme ensures that Level-A and -B tasks do not experience LLC
interference from tasks on other cores (spatial isolation). Also, Level-
A tasks (having higher priority) do not experience LLC interference
from Level-B tasks on the same core (temporal isolation).

For any task set, the actual number of ways allocated to each LLC
partition (i.e., the Level-C/OS partition and the per-core Level-A/B
partitions) is viewed as a variable, which is determined by solving
a mixed integer linear program (MILP) [25]. This MILP minimizes
the task set’s Level-C utilization while ensuring schedulability at all
criticality levels. It is invoked only after an assignment of Level-A
and -B tasks to cores has been obtained via bin-packing heuristics
(i.e., the MILP does not determine such an assignment). We will
consider this MILP in greater detail later in Sec. 3 as a precursor to
explaining how LLC and DRAM allocations can be determined for
multi-mode systems.

The MC? implementation just described does not provide man-
agement for L1 caches, translation lookaside buffers, memory con-
trollers, memory buses, or cache-related registers that can be a
source of contention [35]. However, we assume PETs are deter-
mined via measurement, so such resources are implicitly consid-
ered when PETs are determined. We adopt a measurement-based
approach because work on static timing analysis tools for multicore
machines has not matured to the point of being directly applicable.
Moreover, PETs are often determined via measurement in practice.

In recent work, we proposed extensions to MC? that permit tasks
to share memory pages to support producer/consumer buffers [10]
and to enable the usage of shared libraries [24]. Our mode-change
extensions can be applied alongside these other extensions, but we
do not consider that possibility here, for ease of exposition.”

"Delving into sharing would require providing further background and would compli-
cate our experimental framework. We lack space for either.
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Problem considered in this paper: supporting multiple modes. Our
objective in this paper is to adapt the hardware-isolation mecha-
nisms of MC? so that the schedulability of multiple functional
modes can be ensured. Each mode is defined by a set of peri-
odic/sporadic tasks, with each such task set defined exactly as
discussed at the beginning of Sec. 2. At any point in time, the
system is either executing in a distinct mode or undergoing a tran-
sition from one mode to another. These transitions are enacted by
a mode-change protocol.

Tasks from different modes do not execute at the same time
(except perhaps briefly when a mode change is underway). However,
memory pages for all tasks from all modes must be allocated in
DRAM, unless secondary storage devices such as a solid-state disks
are employed. While such devices are worthy of scrutiny, we do not
consider them in this paper because their usage can cause relatively
long mode-change latencies, which may be unacceptable in safety-
critical domains. As seen above, DRAM allocations impact LLC
allocations. Therefore, the main challenge we must address is to
determine how to allocate tasks from all modes in both DRAM and
the LLC so that schedulability is ensured for all modes. We address
this challenge in Sec. 3 below. While ensuring schedulability is our
paramount concern herein, schedulability alone is not the whole
story: it must also be possible to add a mode-change protocol to
MC?’s runtime scheduler that gives rise to reasonable mode-change
latencies. Fortunately, as discussed in online appendices [11], this
is relatively easy to do.

3 LLC/DRAM ALLOCATION PROBLEM

In this section, we give a more detailed overview of the MILP
techniques we use for LLC allocation, and present our extensions
to these techniques that enable multiple modes.

3.1 Prior MILP Techniques

The MILP from our prior work determines the LLC allocations
shown in Fig. 3, assuming DRAM bank assingments are fixed, as
shown at the bottom of the Fig. 3. A full description of our existing
MILP is too lengthy to reproduce here, but is covered in detail in a
prior publication [25]. Here, we instead opt to consider a simpler
allocation problem that is sufficient for explaining the main ideas.

A simple motivating example. Consider a single task with a 4-ms
period running on a uniprocessor platform with a 4-way LLC. For
this (very) simple task system, we explain how to construct a MILP
that determines the number of ways to allocate to the task so that
its resulting PET ensures system schedulability. The obvious choice
would be to simply allocate all ways to the lone task. However,
demonstrating the construction of a MILP for this example is still
useful for understanding the MILP techniques we build upon.

Fig. 4 visually depicts the MILP constraints for this problem. The
first set of constraints is determined based on PET measurement
data. The figure shows five PET data points, one for each possible
way allocation, with each point determined via measurement data.
By introducing lines between adjacent data points, and constraining
a solution to be above these lines, any PET value determined by
the MILP will be in accordance with measurement data.

We must also ensure that the system is schedulable. Here, with
a single task, schedulability can be ensured by specifying just one
constraint: the task’s PET cannot be greater than its period. This
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Figure 4: Illustration of MILP constraints.

constraint is depicted by the dashed line in Fig. 4. The potential
solution space, which is also depicted in the figure, is obtained by in-
tersecting the half-spaces defined by the specified linear constraints.
One could specify an objective function that would favor certain
solutions within this space, but given the very simple nature of
this motivating example, we will not bother to delve into objective
functions just yet.

In the example above, schedulability was ensured by requiring
the lone task’s utilization to be at most 1.0. In MC?2, schedulability
is similarly determined by checking a set of utilization-based con-
straints. Thus, the full MILP can be viewed as an extension of the
simple example above in which linear constraints must be speci-
fied for many tasks while accounting for several utilization-based
schedulability conditions. The full MILP also includes constraints
on LLC allocation variables that ensure that certain LLC areas do
not overlap. Furthermore, an objective function is added to mini-
mize Level-C system utilization, as this will likely reduce tardiness
at Level C.

The example also ignores overheads affecting schedulability
(e.g., scheduling costs, context-switching times, etc.). In the full
MILP, such overheads are factored into the linear constraints using
standard overhead-accounting techniques that involve inflating
PETs. Like PET data, these various overheads can be determined
via measurement. Specific overhead values are treated as constants.

MILP limitations. As described here, our prior MILP techniques
determine way allocations, as shown in Fig. 3. Similar techniques
can be applied in alternative allocation frameworks where LLC
areas are sized by deducing color allocations, with way allocations
being fixed. Unfortunately, if both ways and colors are treated
as variables, PETs become nonlinear functions, which cannot be
represented in a single MILP. This is because an LLC area’s size
is given by multiplying the number of ways allocated to it by the
number of colors allocated to it. To the best of our knowledge,
eliminating this nonlinear dependency requires fixing either way
or color allocations. While doing so may seem limiting, as discussed
in greater detail later, fixing one or the other yields schedulability
results comparable to those produced when mulitple MILPs are
solved to more fully explore all way/color combinations.

Handling DRAM capacity constraints. In most work on real-time
schedulability analysis, memory capacity is viewed as an uncon-
strained resource. In reality, however, memory capacity certainly is
limited. In recent work, we introduced DRAM-capacity constraints
to our MILP-based optimization framework that ensure that the
supply of pages within each DRAM bank is not over-allocated [24].
The introduction of these new constraints exposes a liability asso-
ciated with the allocation scheme illustrated in Fig. 3. In particular,
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each DRAM bank has 16 page colors available, but within each
Level-A/B bank, only four colors are used, as shown in Fig. 5. This
loss may be unacceptably high if multiple modes must remain in
DRAM.

3.2 Allocating Multi-Mode Systems

We now propose several approaches for extending our prior MILP-
based allocation scheme to account for the requirements of multi-
mode systems. Clearly, a myriad of approaches could be devised
for allocating LLC and DRAM space under MC? even without mul-
tiple modes being present. The introduction of modes creates even
more possibilities, so it is not possible to consider every possible
allocation approach. The approaches presented here are meant to
be representative of the kinds of techniques that could be applied
and were selected for inclusion because they expose interesting
resource-allocation issues and tradeoffs. As we shall see, tasks in-
cluded in multiple modes, which we call shared tasks, create certain
challenges. Thus, we initially assume such tasks are not present
and then later address the challenges they introduce.

Multi-mode systems without shared tasks. The existing MC?
framework could be used in a multi-mode system, but the tasks
comprising all modes would have to be viewed as a single task sys-
tem. Moreover, 75% of the available Level-A/B DRAM space would
be wasted, as seen in Fig. 5. Our intent in devising other schemes
is to reclaim this wasted space and use it to support tasks from dif-
ferent modes. We consider two schemes for doing this: color-based
allocation (CBA) and way-based allocation (WBA).

Under CBA, each mode is assigned a set of colors in each Level-
A/B DRAM bank such that these sets do not overlap. (The pages
for the Level-A/B tasks in that mode are allocated from these as-
signed colors.) This is done by simply partitioning the 16 colors
available across all banks into four disjoint groups, as shown in
Fig. 6(a). With color groups so defined, assigning colors to modes is
straightforward: denoting the color groups as Groups 0 through 3,
and the modes as Mode 0, Mode 1, and so on, Mode i is assigned the
Groups i, i + 1 mod, i + 2 mod, and i + 3 mod 4 on DRAM banks 3,
4,5, and 6, respectively. (Banks 3-6 are the Level-A/B DRAM banks,
as shown in Fig. 3.) CPU i is assigned Group i. This assignment
is illustrated for Mode 1 in Fig. 6(a) with a gray shading. While
this figure shows only four modes being assigned, we can keep
assigning modes in this fashion as long as sufficient DRAM capacity
is available. For example, if Modes 4 and 5 were added to Fig. 6(a),
then the latter would share the shaded DRAM regions with Mode 1.
Note that the four color groups need not have the same size. To
determine the number of colors per group, we first assign to each
group the minimum number of colors required to load all tasks
into their assigned banks and groups, and we then distribute any
remaining unallocated colors to groups as evenly as possible.

XX, XX,

After assigning DRAM in CBA, we still must allocate LLC areas.
After determining color assignments, LLC ways can be determined
by solving a MILP for each mode, as illustrated in insets (b) and (c)
of Fig. 6. As seen in these insets, these allocations may be different
for different modes. To better see the correspondence between the
LLC and DRAM allocations in Fig. 6, we have shaded the allocations
for Levels A and B of Mode 1 in inset (c) as we did in inset (a).

While CBA provides good performance for many tasks, prior
experiments have suggested that some tasks are more sensitive to
restrictions on ways than on colors [25]. This leads to WBA, the
other allocation scheme considered here. Under WBA each Level-
A/B LLC area consists of all colors and a designated number of
ways, as illustrated in insets (e) and (f) of Fig. 6. On our considered
platform in Fig. 3, the number of ways is greater than the number
of cores, which ensures that each core has at least one dedicated
way. This condition is necessary for applying WBA. Under WBA,
the allocated Level-A/B LLC areas are all disjoint from each other
and also from the Level-C/OS LLC area. Because each Level-A/B
LLC area consists of all 16 colors, each Level-A/B DRAM bank can
be fully utilized, as illustrated in Fig. 6(d). Each of these banks can
be used to allocate pages to tasks from all modes. Under WBA, a
MILP is solved per mode to determine LLC way allocations for that
mode. Like CBA LLC allocations, WBA LLC allocations may be
different for different modes, as seen in insets (e) and (f) of Fig. 6.

The main disadvantage of WBA compared to CBA is that, under
WBA, fewer ways are provided per LLC area. This reduction in
ways may be compensated for by an increase in colors, but as men-
tioned above, some tasks are more sensitive to restrictions on ways
and others to restrictions on colors. When considering multiple
modes, each comprised of many tasks with different characteristics,
it is difficult to say which scheme is best. To shed light on this issue,
our schedulability study in Sec. 4 compares WBA, CBA, and other
options. In this study, a general model of PETs based on measure-
ment data was employed that reflects PET sensitivities to way and
color allocations.

Multi-mode systems with shared tasks. So far, we have discussed
how to allocate DRAM and LLC areas for multi-mode systems
when no shared tasks are present. We now consider problems that
arise when such tasks exist. Shared tasks are problematic because
their presence implies that different modes must now share DRAM
allocations. Level-C tasks already share common LLC and DRAM
regions, so this is only a problem when tasks are shared at Levels
A or B. We present two techniques for handling shared tasks, each
of which can be applied together with either CBA or WBA. The
resulting cross product of techniques yields four allocation schemes
that we seek to compare.

The first shared-task allocation technique is to partition shared
tasks (PST). Under PST, all Level-A/B shared tasks are assigned to
CPU 0 and are allocated DRAM pages from the Level-A/B bank
associated with CPU 0. Non-shared Level-A/B tasks are assigned
to the other CPUs. Under CBA with PST, shared tasks are color-
partitioned from other tasks in the LLC, and under WBA with PST,
they are way-partitioned. For DRAM under CBA with PST, shared
tasks are allocated within Group 0 on the DRAM bank associated
with CPU 0. Non-shared tasks cycle through Groups 1 through 3
on the other three Level-A/B DRAM banks (i.e., those associated
with CPUs 1, 2, and 3), similarly to as explained earlier when not
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Figure 6: DRAM and LLC allocations under CBA (top row of figures) and WBA (bottom row of figures).

Level A/B Banks Level C/0S Banks

Ti State
Mode 0 Buffer

Figure 7: DRAM allocation for a task replicated across two modes.

considering shared tasks. Modifying the MILP for either CBA or
WBA to apply PST is straightforward.

The second technique is to replicate shared tasks (RST). Under
RST, each shared task is replicated for each mode in which it runs,
and each replica is treated as a non-shared task. This technique is
relatively straightforward to apply, but a complication arises if a
replicated task needs to preserve state information across its jobs.
Since this information must remain in memory, its presence cre-
ates data-sharing relationships across modes that can break MC?’s
hardware isolation guarantees. Fortunately, in our prior work on
supporting producer/consumer shared data buffers in MC? [10], we
proposed several approaches that can ease such problems. When
applying these approaches, relevant state information would have
to be determined on a per-task basis, with each shared task being
responsible for preserving its own state information. Such informa-
tion can be preserved by simply copying it to a shared buffer at the
end of each job.

Consider, for example, Fig. 7, which shows a Level-A/B task
7; that has been replicated between Modes 0 and 1, where each
replica is assigned to a different DRAM bank. If state information
must be retained across the jobs of 7;, then that information can

be stored in a buffer. Under the approach from [10] that is most
directly applicable to the situation here, the buffer would be al-
located in the Level-C/OS DRAM banks, as shown in Fig. 7, and
configured to bypass the LLC in order to not compromise LLC
isolation. Level C is not provided cross-core DRAM isolation, so ac-
cesses to the state buffer by jobs of 7; do not affect Level-C isolation
properties. However, accesses to the buffer by jobs of task 7; can
experience interference from Level-C tasks and the OS, which was
not possible before. Under RST, this source of interference must
be taken into account in the measurement process for determining
PETs for those shared tasks that must preserve state between jobs.

As a final comment, we note that PST and RST can both be
applied in the same system, with PST used for some shared tasks and
RST for others. However, to keep the experimental study in Sec. 4
at manageable level, we only consider systems that exclusively use
one or the other.

Supporting task criticality-level changes. As noted in Sec. 1, it
may be desirable to allow a task to change criticality across modes.
Such a task can be supported by creating replicas of it as needed at
different criticality levels and in different modes. RST provides the
necessary functionality to support such replicas.

4 EVALUATION

From a schedulability point of view, many tradeoffs exist among
the allocation methods described in the prior section. In order to
elucidate these tradeoffs, we conducted a large-scale schedulability
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Mult-Mode Task Management PST RST
NAIVE N/PST N/RST
CBA CBA/PST CBA/RST
WBA WBA/PST ~ WBA/RST

Table 1: Considered allocation variants.

study, the results of which are discussed in this section. In addition
to schedulability, mode-change latencies are a concern. We leave a
full exploration of techniques for lessening such latencies for future
work. However, for our schedulability results to be meaningful, it is
necessary to demonstrate the existence of a mode-change protocol
that gives rise to latencies that are reasonable. We present such a
protocol and provide experimental evidence of its reasonableness
in online appendices [11]. For the mode-change protocol presented
there, latencies tended to be on the order of 200ms or less. All code
used in our schedulability study and in evaluating our mode-change
protocol is available online.?

Schedulability study overview. We assessed the efficacy of the allo-
cation schemes presented in Sec. 3.2 by evaluating the schedulability
of randomly generated task systems under the MC? variants listed
in Tbl. 1, as well as the HRT uniprocessor earliest-deadline-first
scheduler, denoted U-EDF, with all banks allocated to all modes.’
The latter reflects current industry practice for eliminating shared-
hardware interference by simply disabling all but one core.

The CBA and WBA variants in Tbl. 1 use the associated allocation
methods described in Sec. 3.2. Under the NAIVE variants, if no
shared tasks exist, DRAM is allocated as in Fig. 5, assuming that all
tasks from all modes comprise one all-encompassing task system.
However, way allocations in the LLC are determined on a per-mode
basis as illustrated in Fig. 3 by solving a MILP for each mode (way
allocations may be different for different modes). Shared tasks can
be easily introduced under this allocation scheme by using the PST
and RST approaches discussed earlier in Sec. 3.2. In addition to the
MC? variants listed in Tbl. 1, we also consider the ALL variant,
which involves checking whether any of the variants in Tbl. 1
produces a schedulable allocation. ALL is interesting because it
shows the potential value of trying multiple allocation approaches.

We used the following limits on available DRAM on the Cortex
A9 platform when assessing schedulability. Each bank allocated
to Levels A and B has approximately 32,000 pages available for
task allocation and approximately 2,000 pages of each color. Ap-
proximately 73,000 pages are available to Level C after accounting
for LITMUSRT OS allocations. All tasks were assumed to statically
link to libraries and not dynamically allocate memory, so the only
DRAM consumption to consider beyond that required by the OS
was static task page allocation and shared state buffers.

Task-system generation. We extended an evaluation framework
used extensively by us in prior work [10, 12, 24-26] to randomly
generate task systems while accounting for DRAM consumption
and multiple modes. Under this framework, PETs are determined
at Level B (resp., Level C) based on measured worst-case (resp.,
average-case) execution-time data for benchmark tasks, as dis-
cussed in detail in prior work [25]. Like Fig. 4, these PETs are

8https://wikilitmus-rt.org/litmus/Publications
9Bank contention is not possible when only one core runs. Hence, it is safe to allocate
any bank to any task under U-EDF.

Category Choice Level A Level B Level C
1:Mode Few {2,3,4,5,6,7}
Count Many {8, 9, 10, 11, 12}
2: Criticality C-Light [29, 56) [29, 56) [10, 25)
Utilization C-Heavy [9, 33) [9, 33) [45, 78)
Percent All-Mod. [28, 39) [28, 39) [28, 39)
Short (3.6} (6,12} [3.33)
3:Period (ms) Medium {12, 24} {24, 48} [12, 100)
Long {48, 96} {96, 192} [50, 500)
4:Task Light [0.001,0.03)  [0.001,0.05)  [0.001,0.1)
Utilization Medium [0.02, 0.1) [0.05, 0.2) [0.1,0.4)
Heavy [0.1,0.3) [0.2, 0.4) [0.4, 0.6)
SPage Light [15,3) [15,3) {é ?3)007 25
Count Medium (3, 5) [3,5) [4, 9):0.75
in Hundreds [10, 30):0.25
Hay [ 5.7 [t 7opoas
6:Shared Light [0%, 20%) [0%, 20%) [0%, 20%)
Utilization Heavy [50%, 70%) [50%, 70%) [50%, 70%)
7:Criticality Change 20%
8:Max Light [0.01, 0.1) [0.01, 0.1) [0.01, 0.1)
Reload Time Heavy [0.25, 0.5) [0.25, 0.5) [0.25, 0.5)
9:State [0%, 10%)
10:Color Reduced [70%, 90%)

Sensitivity Regular 0%

Table 2: Task-set parameters and distributions. In Category 5, last
column, I:P denotes that interval I is selected with probability P.

a function of ways and colors. Level-A PETs are obtained by ap-
plying a 50% inflation factor to Level-B PETs. For replicated shared
tasks, these PETs are adjusted for state buffer usage, and this can
be done by applying buffer-accounting methods presented by us
previously [10].

To generate task and task-set parameters, ten distributions must
be selected from the categories listed in Tbl. 2. Using the selected
distributions, multi-mode task systems are then generated for each
considered allocation variant by following a step-wise process that
is explained in detail in our prior work [25] and refined here for
multi-mode systems. We provide below a high-level overview of
our refinements by considering each step in turn, assuming the
distributions highlighted in bold in Tbl. 2 have been selected.

Step 1: Determine the number of modes by using the distribution
selected in Category 1. The highlighted selection indicates that the
number of modes will be randomly selected from {8,9,. .., 12}.

Step 2: Select a nominal utilization from which per-mode utiliza-
tions are generated. The nominal utilization parameter is not re-
flected in Tbl. 2. It is systematically increased until no schedulable
task systems result. Each per-mode utilization is determined by ran-
domly choosing a value that is within 50% of the nominal utilization.
Thus, different modes may have different utilizations.

Step 3: Generate the first mode. Generally, this is done by generat-
ing a task set for the U-EDF variant and then modifying that task
set for the other considered allocation variants by adjusting PETs to
reflect differences in LLC-allocation and hardware-isolation choices.
Such modifications are driven by measurement data taken on the
Cortex A9 following an approach described in detail in our prior
work [25].1° The highlighted selection in Category 2 indicates that
the percentage of tasks at each criticality level will be in the range

ONote that generating one mode simply requires generating a single task set, so our
prior work can be directly applied here.
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[28,39)% (totaling to 100%). The highlighted selections in Cate-
gories 3-5 specify how per-task U-EDF parameters are determined.
For example, each Level-A task will have a period of either 12ms or
24ms, a U-EDF utilization in the range [0.1, 0.3), and require 300 to
499 pages in DRAM. After a task set has been fully defined for the
U-EDF variant, that task set is adjusted to create a variant for each
allocation scheme by adjusting PETs, as already mentioned.

Step 4: Generate all other modes. Subsequent modes are generated
following a similar process as outlined in Step 2, except that shared
tasks have to be determined. This is done using the distribution
selected in Category 6. The highlighted selection in this category
indicates that, at each criticality level, the number of tasks shared
between a newly generated mode and the prior mode is such that
these tasks have a combined U-EDF utilization of [50, 70)% of the
prior mode’s U-EDF utilization at that level. Ordinarily, any task
retained from the prior mode retains the same criticality level.
However, the distribution in Category 7 is applied to designate that
some shared tasks undergo a criticality change. In particular, of the
tasks that are shared with Level C of the new mode, 20% are taken
from Level B of the prior mode.!!

Step 5: Add to all modes special per-core Level-A mode-change-
handling tasks as used in the mode-change protocol mentioned
earlier, which is described in an online appendix [11]. Each such
task has a period equal to the shortest system-wide Level-A period,
and Level-A, -B, and -C PETs of 254s, 169us, and 83ps, respectively.
These PETs were determined from measured execution times for
an actual mode-change-handling task on the Cortex A9.

Step 6: Adjust generated PETs to account for implementation-
related overheads, shared-buffer copy times, and differences in PET
sensitivy to LLC-way and -color allocations. These adjustments are
affected by the distributions selected for Categories 8, 9, and 10.
For example, the highlighted distributions from Category 8 indi-
cate that the maximum LLC reload time under U-EDF for any task
after a preemption or migration is [1, 10)% of its U-EDF PET, that
from Category 9 indicates that [0, 10)% of each task’s pages must
be stored in a state buffer (if replicated), and that from Category 10
indicates that the variation of a task’s PETs with respect to allocated
LLC colors is reduced by [70, 90)% (indicating lesser sensitivity to
color allocations). The adjustments made in this step are based on
measurement data obtained on the Cortex A9.

Step 7: For each MC? variant, assign Level-A and -B tasks to cores
using the worst-fit decreasing heuristic discussed in [25], with
obvious modifications for the PST variants to ensure that all shared
tasks are assigned to Core 0. Under the RST variants, each replica
of a Level-A or -B shared task is treated as an independent task.

Step 8: Test the schedulability of the resulting multi-mode task
system under each evaluated allocation variant.

The distributions in Tbl. 2 were defined to enable the systematic
study of different factors impacting schedulability, such as MC
analysis, DRAM constraints, and mode relationships, and were
selected to strike a balance between having a manageable study
and covering a wide range of choices. Additionally, much of the

1t is likely in industry settings that tasks requiring Level-A certification will require
Level-A certification in all modes. As a result, we assume no task changes criticality
level to or from Level A.
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task-system generation process is based on actual measurement
data.

We denote each combination of distribution choices using a
tuple notation. For example, (Many, All-Mod., Medium, Heavy,
Medium, Heavy, Light, Reduced) denotes using the Many, All-Mod.,
Medium, etc., distribution choices for those categories in Tbl. 2
that have multiple options. We call such a combination a scenario.
We considered all possible such scenarios, and for each considered
nominal utilization in each scenario, we generated enough task
systems to estimate mean schedulability to within +0.05 with 95%
confidence with at least 100 and at most 300 task systems.

Schedulability results. In total, we evaluated the schedulability
of over 4 million randomly generated task systems, which took
roughly 190 CPU-days of computation.!? (Each MILP typically
required less than a second per to execute.) From this abundance
of data, we generated 1,296 schedulability plots, of which three
representative plots are shown in Fig. 8. The full set of plots is
available online [11].

Each schedulability plot corresponds to a single scenario. To un-
derstand how to interpret these plots, consider Fig. 8(a). In this plot,
the x-axis ranges over nominal utilization values. The circled point
indicates that 43% of the generated task systems with a nominal
U-EDF utilization of 3.0 were schedulable under the N/PST variant.
Note that, because the x-axis represents nominal utilizations under
the single-core HRT U-EDF variant, it is possible under MC? to
support systems with a nominal U-EDF utilization exceeding four,
as MC provisioning and hardware management decrease PETs [26].

To compare allocation schemes, we use several metrics. For each
scenario, each scheme has a schedulable utilization area (SUA),
which is the area (computed via the trapezoid rule) underneath
that scheme’s curve in the plot corresponding to the given scenario.
A higher SUA indicates generally better schedulability. The total
SUA of a scheme is the sum of its SUAs across all scenarios. The
% difference (a standard statistical measure) between two schemes
is the difference between their total SUAs divided by the average
of their total SUAs. For example, if schemes X and Y have total
SUAs of 3 and 1, respectively, then the % difference of X vs. Y is
(3 - 1)/(CH), or 100%.

We now state several observations that follow from the full set of
collected schedulability data. We illustrate these observations using
the plots in Fig. 8. Tbl. 3 provides a finer breakdown, indicating the
number of scenarios for which each scheme was best (by SUA) as a
function of some of the distribution choices from Tbl. 2.

Obs. 1. [ Naive vs. other ]| When comparing the PST variants, the
% difference of CBA and WBA was 33% and 31%, respectively, vs.
NAIVE. Respective % differences vs. NAIVE for the RST variants
were 25% and 26%.

All insets of Fig. 8 show moderate to significant schedulability
gains for the non-NAIVE variants over the NAIVE variants. These
gains underscore the importance of considering limited DRAM space
in multi-mode systems.

Obs. 2. [ PST vs. RST] % differences of PST vs. RST were 19%,
27%, and 25%, respectively, for the N, CBA, and WBA variants.

121 the future, we hope to rerun these experiments with additional categories added
to Tbl. 2. However, this was simply not feasible to do for this paper.
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Figure 8: Representative schedulability plots.

NAIVE CBA WBA NAIVE CBA WBA

Category Choice  EDF  “per”  psr  pgy RST  RST  RST

Mode Few 0 224 428 292 82 207 233
Count Many 6 116 474 417 19 114 164
Shared Light 6 42 375 298 86 264 319
Utilization Heavy 0 298 527 411 15 57 78
Page Light 0 201 314 202 77 140 142
Count in Medium 0 99 311 241 22 104 132
Hundreds Heavy 6 40 277 266 2 77 123
Max Light 6 130 345 318 71 265 335
Reload Time Heavy 0 210 557 391 30 56 62
Color Reduced 3 169 457 333 48 157 192
Sensitivity Regular 3 171 445 376 53 164 205

Table 3: Number of scenarios by category where each scheme had
the highest SUA. Two schemes were deemed to tie under a scenario
if they had SUAs within +2% of each other. The largest counts are in
bold.

In insets (a) and (c) of Fig. 8, most of the PST variants outperform

their RST counterparts (e.g., CBA/PST outperforms CBA/RST). The
RST variants are negatively affected by greater DRAM requirements
than the PST variants for replicated pages.
Obs. 3. [CBA vs. WBA] Schedulability under WBA/PST and
CBA/PST was comparable (a percent difference within +3%) in
scenarios with regular color sensitivity (refer to Category 10 in
Tbl. 2). Similar results were seen in reduced-color-sensitivity sce-
narios.

In comparing the scenarios in insets (a) and (c) of Fig. 8, we see
little difference in WBA/PST vs. CBA/PST, even though each of
these scenarios exhibits different sensitivities of PETs to available
colors. Schedulability under the two respective RST schemes is
also similar in these two insets. Despite disadvantages for WBA in
color-sensitivity, WBA and CBA schedulability were comparable.
Obs. 4. WBA/PST and CBA/PST performed the best, having re-
spective % differences vs. ALL of only -6.6% and -5.0%.

This observation is supported by Tbl. 3 and all insets of Fig. 8.

Given the nature of our study, these observations naturally hinge
on our experimental setup. However, we have taken care to ensure
that a wide range of system configurations was considered.

MILP-based optimization vs. other alternatives. Recall from
Sec. 3.1 that our MILP-based allocation techniques must fix either
color or way allocations. Other allocation strategies (e.g., genetic
algorithms) may be capable of exploring a larger solution space,
but it is doubtful such strategies could be applied at the scale of the
large study just described within a reasonable amount of time.

Still, we acknowledge that a single MILP is restricted to a subset
of the solution space, thus some loss in achievable schedulability
may result. To partially assess the extent of such loss, we conducted
an additional small-scale study, which is presented in an online
appendix [11]. In this study, we compared CBA/PST and WBA/PST,
which involve solving a single MILP per mode, to a more computa-
tionally intensive scheme that solves a series of MILPs per mode
to explore a larger solution space. Each MILP in the series opti-
mizes color allocations for a given fixed way allocation and way
allocations are systematically varied. This more-extensive scheme
exhibited only minor schedulability gains over the single-MILP
schemes, while requiring significantly higher runtime costs. We
conclude from this that focusing on single-MILP schemes in our
study was acceptable.

5 PRIOR RELATED WORK

This work follows a long line of research examining shared-resource
contention in real-time systems [27]. Prior efforts have focused on
issues such as cache partitioning [3, 18, 22, 38, 39], DRAM con-
trollers [4, 14, 19, 20, 28], and bus-access control [1, 2, 13, 15, 16, 32].
Other work has focused on reducing shared-resource interference
when per-core scratchpad memories are used [34], accurately pre-
dicting DRAM access delays [21], throttling lower-criticality tasks’
memory accesses [41], allocating memory [40], and enhancing tem-
poral isolation by managing shared pages [10, 23, 24]. In evaluating
one recently proposed cache-partitioning scheme, vCAT [39], a
dual-mode use case was considered. However, that use case was
quite simplistic: in addition to having only two modes, all tasks
were shared and no DRAM constraints were considered.

Real-time mode-change protocols are a well-studied topic, but
most of the classic work on this topic focuses on uniprocessors. A
survey of such work with a fairly comprehensive bibliography has
been produced by Real and Crespo [33]. In some work pertaining
to Vestal’s notion of MC schedulability analysis, a task exceeding a
PET can cause a criticality mode change in which lower-criticality
tasks may be dropped. Such mode changes are quite different from
functional mode changes as considered in this paper. Burns recently
published a survey paper in which the differences between these
two kinds of mode changes are discussed at length [6].

To our knowledge, we are the first to consider in detail complex-
ities that arise when attempting to support multiple modes while
ensuring hardware isolation under the notion of MC scheduling es-
poused by Vestal [36], which was proposed with the express intent
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of achieving better platform utilization. Several of the aforemen-
tioned papers do target MC systems [4, 13, 15, 16, 19, 20, 28, 31, 41],
but only peripherally touch on the issue of achieving better plat-
form utilization, if at all. Hardware isolation under Vestal’s notion
of MC scheduling has been considered in several prior MC2-related
papers by our group [10, 17, 24, 25, 30, 37], but these papers do
not consider multi-mode systems. A recent paper by other authors
also considers cache partitioning in MC systems [5], with a focus
on cache reallocation during a criticality mode change. However,
this work is entirely theoretical and does not cover many complex-
ities of cache management that arise in actual implementations,
including the tight coupling between cache coloring and DRAM
allocation.

6 CONCLUSION

In this paper, we have provided extensions to MC? for supporting
multiple functional modes. As we have seen, tasks shared across
multiple modes pose a particular challenge, because they cause
hardware-allocation decisions affecting different modes to become
intertwined. Our extended MC? framework not only supports such
tasks but also allows them to change their criticality levels.

When supporting mode changes in a framework like MC2, where
both hardware-isolation properties must be ensured and MC analy-
sis assumptions are employed, numerous resource-allocation trade-
offs exist. The various offline allocation approaches studied in this
paper were selected as reasonable candidate solutions that expose
interesting tradeoffs. We evaluated these tradeoffs via a large-scale
overhead-aware schedulability study. In this study, the WBA and
CBA schemes tended to provide significant schedulability gains
over the NAIVE schemes, and the WBA/PST and CBA/PST variants
faired the best overall.

The results of this paper open up many avenues for future work.
For example, a wider range of hardware-allocation options could
be explored than was possible to cover in the space available. Also,
several implementation options for supporting mode-change proto-
cols exist that warrant further attention. For example, suspending
incomplete jobs and using checkpoints are existing techniques that
can be applied to reduce latencies. Finally, we have assumed in
this paper that all modes fit within DRAM. This is a very desirable
property, but some systems may exist in practice in which DRAM
is insufficient and thus secondary storage devices such as solid-
state disks must be used. Understanding how to page tasks to and
from disks in a way that is reflective of criticality concerns is an
interesting topic that warrants further study.
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