
Supporting I/O and IPC via Fine-Grained OS Isolation for
Mixed-Criticality Real-Time Tasks∗

Namhoon Kim, Stephen Tang, Nathan O�erness, James H. Anderson,
F. Donelson Smith, and Donald E. Porter

Department of Computer Science, University of North Carolina at Chapel Hill
{namhoonk,sytang,o�ernes,anderson,smithfd,porter}@cs.unc.edu

ABSTRACT
E�orts towards hosting safety-critical, real-time applications on
multicore platforms have been stymied by a problem dubbed the
“one-out-of-m” problem: due to excessive analysis pessimism, the
overall capacity of an m-core platform can easily be reduced to
roughly just one core. �e predominant approach for addressing
this problem introduces hardware-isolation techniques that ame-
liorate contention experienced by tasks when accessing shared
hardware components, such as DRAM memory or caches. Unfor-
tunately, in work on such techniques, the operating system (OS),
which is a key source of potential interference, has been largely
ignored. Most real-time OSs do facilitate the use of a coarse-grained
partitioning strategy to separate the OS from user-level tasks. How-
ever, such a strategy by itself fails to address any data sharing
between the OS and tasks, such as when OS services are required
for interprocess communication (IPC) or I/O. �is paper presents
techniques for lessening the impacts of such sharing, speci�cally
in the context of MC2, a hardware-isolation framework designed
for mixed-criticality systems. Additionally, it presents the results
from micro-benchmark experiments and a large-scale schedulability
study conducted to evaluate the e�cacy of the proposed techniques
and to elucidate sharing vs. isolation tradeo�s involving the OS.
�is is the �rst paper to systematically consider such tradeo�s and
consequent impacts of OS-induced sharing on the one-out-of-m
problem.

CCS CONCEPTS
•Computer systems organization→Multicore architectures; Em-
bedded so�ware; Real-time system architecture; •So�ware and its
engineering→ Memory management; Embedded so�ware; Real-
time schedulability; Communications management;

KEYWORDS
real-time, mixed-criticality, hardware management, multi-core sys-
tems, I/O, interprocess communication

∗Work supported by NSF grants CNS 1409175, CPS 1446631, CNS 1563845, and CNS
1717589, ARO grant W911NF-17-1-0294, and funding from General Motors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
RTNS ’18, Chasseneuil-du-Poitou, France
© 2018 ACM. 978-1-4503-6463-8/18/10. . . $15.00
DOI: 10.1145/3273905.3273911

ACM Reference format:
Namhoon Kim, Stephen Tang, Nathan O�erness, James H. Anderson,
F. Donelson Smith, and Donald E. Porter. 2018. Supporting I/O and IPC via
Fine-Grained OS Isolation for Mixed-Criticality Real-Time Tasks. In Pro-
ceedings of 26th International Conference on Real-Time Networks and Systems,
Chasseneuil-du-Poitou, France, October 10–12, 2018 (RTNS ’18), 11 pages.
DOI: 10.1145/3273905.3273911

1 INTRODUCTION
�e desire to host real-time workloads on multicore platforms in
safety-critical application domains has been stymied by a problem
dubbed the “one-out-of-m” problem [12, 30]: when certifying the
real-time correctness of a system running on m cores, analysis
pessimism can be so excessive that the processing capacity of the
“additional” m − 1 cores is entirely negated. In e�ect, only “one
core’s worth” of capacity can be utilized even thoughm cores are
available. In domains such as avionics, this problem has led to the
common practice of simply disabling all but one core.

�e roots of the one-out-of-m problem are directly traceable to
interference due to contention for shared hardware components: as
noted in a recent FAA report [8], interference creates e�ects that are
di�cult to predict, and when this happens, analysis pessimism is the
inevitable result. Given these roots, the predominant approach for
addressing the one-out-of-m problem involves a�ording tasks some
degree of hardware isolation, with the ultimate goal of enabling
lower (and more predictable) task execution-time estimates [1–
4, 10, 11, 13, 15, 16, 18, 23–26, 28, 30–32, 42, 45, 48, 49, 51, 52].
Sharing breaks isolation. In practice, various sources of sharing
commonly exist that can break any isolation guarantees a�orded
to real-time tasks. Such sources include data-sharing among tasks
using user-level techniques, read-only sharing through the usage
of shared libraries, and the sharing of data between the operating
system (OS) and user-level tasks that occurs when tasks invoke OS
services for interprocess communication (IPC) or I/O. No solution
to the one-out-of-m problem can be considered complete unless all
sources of sharing that exist in a system are addressed.

In reality, it is generally not possible to address this issue by com-
pletely eliminating all interference caused by sharing (unless no
task communicates with any other entity!). �us, when sharing is
considered in the context of the one-out-of-m problem, the focus in-
evitably shi�s to the weaker goal of lessening its impact. Prior work
in this direction by our group has addressed user-level data shar-
ing [10] and the usage of shared libraries [10, 28] in the context of a
hardware-isolation framework targeting mixed-criticality systems
calledMC2 (mixed-criticality on multicore) [9–11, 17, 28, 30, 36, 48].
However, no work on the one-out-of-m problem has heretofore
been published that investigates techniques for lessening the im-
pact of OS-induced sharing by optimizing memory allocations. In

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France N. Kim et al.

this paper, we present the �rst ever such investigation, which was
also undertaken in the context of MC2.
Contributions. Our investigation required contributions on three
major fronts.

First, we extended MC2 to enable dynamic memory allocation.
Prior work on MC2 was constrained to making memory-allocation
choices at task creation time. �is strategy is insu�cient for OS
kernel features such as IPC and device I/O, which have complex
so�ware stacks that require allocating memory at runtime. While
fully static memory allocation may be required for highly critical
hard real-time (HRT) tasks, MC2 also supports less-critical so� real-
time (SRT) tasks that may require greater �exibility in so�ware
design. We enabled dynamic memory allocation in real-time tasks
by augmenting MC2’s kernel-level memory-allocation functions
with controls for requesting speci�c DRAM or last-level cache (LLC)
regions.

Second, we devised options that leverage these controls to allow
dynamic memory allocation to be dealt with in an o�ine MC2

component that determines DRAM and LLC allocations while op-
timizing schedulability. Prior to our modi�cations, this o�ine
component was incapable of determining where dynamic mem-
ory allocations should be placed or how tasks should access I/O
devices. Our modi�ed o�ine component continues to optimize
schedulability, but can also guide how these �ner-grained memory-
management controls are used at runtime.

�ird, we conducted extensive experiments to evaluate the im-
portance of optimizing data-sharing between devices, the OS, and
user-level tasks. �ese experiments evaluated our modi�ed version
of MC2 in comparison to the preexisting version, which did not
consider this type of data sharing. Our experiments included micro-
benchmarking e�orts and a large-scale overhead-aware schedu-
lability study involving randomly generated task systems. For
most of the considered categories of generated task systems, our
memory-optimization techniques tended to yield a schedulability
improvement of 11% to 14% compared to a naı̈ve allocation, with
larger improvements seen for more I/O-intensive categories.
Organization. In the rest of the paper, we provide needed back-
ground (Sec.2), describe how OS-induced sharing introduces inter-
ference (Sec.3) and how we can mitigate such interference (Sec.4),
describe our micro-benchmark experiments (Sec.5) and schedulabil-
ity study (Sec.6), and discuss related work and conclude (Secs.7–8).

2 BACKGROUND
We consider real-time workloads speci�ed via the implicit-deadline
periodic/sporadic task model and assume familiarity with this
model. We speci�cally consider a task system τ = {τ1, . . . ,τn },
scheduled on m processors,1 where task τi ’s period, worst-case
execution time (WCET), and utilization are given by Ti , Ci , and
ui = Ci/Ti , respectively. If a job of τi with a deadline at time d com-
pletes at time t , then its tardiness ismax{0, t − d}. Tardiness should
always be zero for a HRT task, and be bounded by a reasonably
small constant for a SRT task.
Mixed-criticality scheduling. For systems with tasks of di�ering
criticalities, Vestal proposed mixed-criticality (MC) schedulability

1We use the terms “processor,” “core,” and “CPU” interchangeably.

Figure 1: Scheduling inMC2 on a quad-core machine.

analysis, which uses less-pessimistic execution-time provisioning
for less-critical tasks [47]. Under his proposal, if L criticality levels
exist, then each task has a provisioned execution time (PET)2 speci-
�ed at each level and L system variants are analyzed. In the Level-`
variant, the real-time requirements of all Level-` tasks are veri�ed
with Level-` PETs assumed for all tasks (at any level). �e degree
of pessimism in determining PETs is level-dependent: if Level ` is
of higher criticality than Level `′, then Level-` PETs will generally
exceed Level-`′ PETs. For example, in the systems considered by
Vestal [47], observed WCETs were used to determine lower-level
PETs, and such times were in�ated to determine higher-level PETs.
MC2. Vestal’s work led to a signi�cant body of follow-up work,
surveyed in [7]. Within this body of work, MC2 was the �rst MC
scheduling framework for multiprocessors [36].

MC2 is implemented under LITMUSRT [34], an extension of
Linux, and supports four criticality levels, denoted A (highest)
through D (lowest), as illustrated in Fig. 1. Higher-criticality tasks
are statically prioritized over lower-criticality tasks. Level-A tasks
are partitioned and scheduled on each core using a time-triggered,
table-driven cyclic executive. Level-B tasks are also partitioned but
are scheduled using per-core rate-monotonic (RM) schedulers. MC2

requires the Level-A and -B tasks on each core to be periodic (with
implicit deadlines), have harmonic periods, and start execution
at time 0. Level-C tasks are sporadic and scheduled via a global
earliest-deadline-�rst (GEDF) scheduler. Level-A and -B tasks are
HRT tasks, Level-C tasks are SRT tasks, and Level-D tasks are non-
real-time, best-e�ort tasks. In this paper, we assume that Level D
is not present, as it is a�orded no real-time guarantees. As in
prior work on MC2 [30], we assume that Level-B and -C PETs are,
respectively, WCETs and average-case execution times, and that
Level-A PETs are obtained by in�ating Level-B PETs by 50%.
Hardware management in MC2. MC2 includes several mecha-
nisms for managing the LLC and DRAM banks [30]. We brie�y
describe how these mechanisms work on the NXP i.MX6 quad-core
ARM Cortex A9 evaluation board, which is the hardware plat-
form assumed throughout this paper. Each core on this machine is
clocked at 800MHz and has separate 32KB L1 instruction and data
caches, as illustrated in Fig. 2. �e LLC (the L2 cache) is a shared,
uni�ed 1MB 16-way set-associative cache. �e system has 1GB of
o�-chip DRAM memory, partitioned into eight 128MB banks. �e
system also has one SATA II interface.

MC2 supports LLC management using per-core lockdown regis-
ters to assign ways (columns) of the LLC to task groups [30]. It can
also allocate sets (rows) of the LLC to task groups for �ner partition-
ing, but we do not explore this option due to space constraints. MC2

2Under MC2 , “PET” is used instead of “WCET” because SRT tasks are not provisioned
on a worst-case basis.

Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-Criticality Real-Time Tasks RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

CPU 0 …L1-I
32KB

L1-D
32KB

CPU 3
L1-I

32KB
L1-D
32KB

L2
1MB

DRAM
Bank 0
128 MB

DRAM
Bank 7
128 MB

…

Figure 2: ARM Cortex A9.

��������

��	

��
���

�����

	����

��	

��
���

�����

	����

��	

��
���

�����

	����

��	

��
���

�����

	����

��	

��
���

�������

����

��	

��
���

�������

����

��	

��
���

�������

����

��	

��
���

�������

����

������

�����

�����

	����

�����

�����

	����

�����

�����

	����

�����

�

����

�����

�����

	����

	�����!

Figure 3: LLC and DRAM allocation.

can also mitigate DRAM interference due to row-bu�er con�icts [35]
by partitioning DRAM banks among task groups.

Fig. 3 depicts the LLC and DRAM allocation strategy used in
this paper [9]. �is strategy ensures strong isolation guarantees
for higher-criticality tasks, while allowing for fairly permissive
hardware sharing for lower-criticality tasks. DRAM allocations are
depicted at the bo�om of the �gure, and LLC allocations at the
top. Level C is allocated a subsequence of the available LLC ways;
this subsequence is used by the OS as well. Level-C tasks are SRT
and provisioned on an average-case basis. Under this assumption,
Level-C tasks’ LLC sharing with the OS should not be a major
concern. �e remaining LLC ways are partitioned among Level-A
and -B tasks on a per-CPU basis. DRAM is allocated similarly. �is
partitioning ensures that Level-A and -B tasks do not experience
LLC interference from tasks on other cores, i.e., spatial isolation.
Level-A tasks are also temporally isolated from Level-B tasks by
being a�orded higher priority (this ensures there is no temporally
interleaved access to shared cache lines). In considering MC2-
scheduled task systems, we assume all tasks �t in memory and do
not incur page faults.
O�line optimization component. �e number of LLC ways allo-
cated to the Level-C partition and to the per-core Level-A and -B
partitions are tunable parameters. �ese per-task-set parameters
can be determined o�ine using a linear program that optimizes
schedulability [11].
Unmanaged resources. �e MC2 implementation just described
does not provide management for L1 caches, translation lookaside
bu�ers (TLBs), memory controllers, memory buses, or cache-related
registers that can be contention sources [46]. However, we assume a
measurement-based approach to determining PETs, so such uncon-
trolled resources are implicitly considered when determining PETs
as we measure execution times under the presence of contention
for such uncontrolled resources. We adopt a measurement-based
approach because work on static timing analysis tools for multicore

machines has not matured to the point of being directly applicable.
Moreover, PETs are o�en determined via measurement in prac-
tice. We assume that su�cient measurements are taken to cover
the worst-case behavior of all tasks with respect to unmanaged
resources.3

3 THE OXYMORON OF “ISOLATED SHARING”
By necessity, any real-time operating system (RTOS) must balance
con�icting objectives. Judging from research papers, the primary
objective is ostensibly support for predictable timing. �e second
objective, however, is likely more important: an RTOS must carry
out useful work. Prior work on MC2 bridged the gap between these
two demands by enabling user-level data sharing between tasks,
but this did not go far enough for most real-world use cases. In
particular, a system can only be useful if it produces output, and
this fundamentally requires device I/O. Like IPC, device I/O is a
type of data sharing, and, like all forms of data sharing, can cause
interference. For example, when Level-A/B tasks use IPC or I/O
bu�ers in Level-C banks, they may su�er cache evictions from
Level-C activity. Previously, such interference has been considered
in the context of temporal isolation, which is orthogonal to our
approach. �is section discusses how data sharing, including IPC
and I/O, is at odds with the objective of hardware isolation.

3.1 Types of Data Sharing
As mentioned earlier, we extend the data-sharing capabilities of
MC2 in two key areas: IPC and device I/O.
OS-supported IPC. Previous work on MC2 speci�cally focused
on data sharing, but took a limited view of the solution: it only
supported user-level IPC using shared memory [28]. �is limitation
facilitates maximizing isolation, because it avoids the need for sys-
tem calls or dynamic memory allocations. Shared-memory bu�ers
can be allocated and isolated during task initialization, and can be
accessed without involving the OS.

However, shared-memory IPC is insu�cient in many cases. For
example, even simple message-passing systems require in-memory
synchronization primitives or wait-free data structures (as the au-
thors of [28] recommend). �ese shortcomings are addressed by
other IPC mechanisms such as message queues or pipes, but these
mechanisms break isolation because, in addition to sharing with
other tasks, they require sharing data with the OS kernel. Involv-
ing the OS kernel is particularly problematic because the OS is
fundamentally shared among all tasks.
Device I/O. Even if OS-supported IPC can be achieved without
compromising isolation, IPC is still only one of many ways in
which programs share data. A second major source of data sharing
is device I/O. Modern device I/O is largely centered around DMA
(direct memory access), where hardware peripherals can directly
read from or write to the same DRAM as the CPU. So, to support
device I/O, the �rst requirement is that a real-time system must
prevent unpredictable DRAM interference due to DMA. However,
device interaction does not end with raw data entering DRAM—it
must also be processed by user-level CPU tasks. �erefore, a second

3Timing analysis for multicore machines is out of scope for this paper. Our measure-
ment based approach is su�cient to inform realistic execution-time behavior under
di�erent resource-allocation policies, which are the focus of this work.

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France N. Kim et al.

requirement is that a real-time system must deliver I/O data to user-
level tasks (i.e., the OS must place I/O data into userspace memory
in order to be accessible to user-level tasks). �e second objective
is similar to OS-supported IPC because low-level interaction with
hardware is typically delegated to the OS kernel, even if I/O is
initiated by user-level tasks.
Summary: types of interference due to data sharing. �e prior
paragraphs established why data sharing can lead to hardware
interference without describing the speci�cs of how the interference
occurs. Fortunately, the types of interference we mitigate in our
modi�cations to MC2 can be simpli�ed into two categories:

• CPU-sourced interference. CPU-sourced interference
occurs when tasks su�er interference due to other CPU
tasks concurrently accessing a DRAM bank or cache region.
Unmanaged IPC and interactions with the OS cause this
type of interference.

• DMA-sourced interference. DMA-sourced interference
occurs when tasks su�er interference due to DMA I/O con-
currently accessing DRAM banks. Because DMA bypasses
the CPU entirely,4 DMA-sourced interference causes no
cache interference.

Our modi�cations to MC2’s DRAM and cache-aware memory-
management system reduce both of these sources of interference.
We note here that other kernel data structures such as task struc-
tures, page tables, and page caches are already isolated in Level-C
DRAM banks as we described in Sec. 2. We defer a further discus-
sion of our speci�c modi�cations until Sec. 4, and instead dedicate
the remainder of this section to examples of how these types of
interference arise in practice.

3.2 Memory Interference in Real So�ware
To understand some of the di�culties with data sharing, one can
observe the procedures for interacting with devices on a Linux-
based system. I/O for di�erent devices can di�er surprisingly in
terms of so�ware complexity and the potential sources of memory
interference. We illustrate this point using two devices: a secondary-
storage disk and a USB video camera.
Memory interference from zero-copy I/O. “Zero-copy” refers to
I/O that does not require copying data between separate memory
bu�ers. Fig. 4 depicts one possible type of zero-copy I/O in Linux:
reading from secondary storage.5 Generally, a program reads from
a disk by issuing a read system call and specifying a user-allocated
memory bu�er to receive the data. �is is shown at the top of Fig. 4.
�is prompts the kernel to determine the speci�c sector(s) of the
disk to read, and to issue a request to the disk via the appropriate
communication bus. �e data transfer is then actually handled
by the disk itself, which will use DMA to populate the user-space
bu�er. When the DMA transfer is complete, the disk will send
an interrupt to the kernel, which returns control to the user task.
Finally, the user task is free to operate on the received data.

�e zero-copy example from Fig. 4 illustrates two useful points.
First, it illustrates both DMA-sourced interference when the device
writes to the bu�er, and CPU-sourced interference when the task

4�is is the case on our test platform, but may not hold on modern high-end systems.
5�is actually is not the default disk-access behavior in Linux; zero-copy disk I/O
requires passing the optional O DIRECT �ag to the open system call.

User task: Read from disk

Kernel: Issue request to disk

Disk: DMA transfer

User task: Process data

DMA-sourced interference

CPU-sourced interference

Figure 4: Simpli�ed direct disk I/O data �ow.

User task: Request frame buffer

Kernel: Allocate frame buffer

User task: Request video frame

Kernel: Issue USB request

Camera: Send USB packets (DMA)

Kernel: Copy data from USB
packets to frame buffer

User task: Process video frame

DMA-sourced interference

CPU-sourced interference

CPU-sourced interference

Figure 5: Simpli�ed USB camera I/O data �ow.

accesses it. Second, being zero-copy, the example involves only a
single, user-allocated bu�er. �us, both sources of interference can
be managed by properly provisioning a single region of memory.
Memory interference from USB I/O. In contrast to the zero-copy
example, Fig. 5 illustrates the �ow of data when a user-level task
a�empts to read a frame from a USB camera on a Linux-based
system like MC2.6 Tasks using Linux’s standard Video for Linux
version 2 (v4l2) API must �rst request one or more bu�ers to hold
video frames, but this actual allocation is managed in kernel code.
Next, the user task may issue a request to read a new video frame,
which prompts the kernel to start receiving data from the camera.
Despite using DMA to transfer USB packets, each USB packet only
contains a small portion of the overall frame, which must be copied
to the frame bu�er. Finally, when the kernel �nishes copying an
entire frame, the user task is able to access the frame bu�er.

Fig. 5 demonstrates the counterintuitive fact that device complex-
ity is not necessarily related to di�culty in preventing interference.
In the zero-copy example, ensuring the isolation of a single user-
allocated bu�er is su�cient to prevent unpredictable CPU- and
DMA-sourced interference. However, the seemingly simpler USB
webcam driver uses intermediate bu�ers that can also be subject to
CPU- and DMA-sourced interference. An RTOS must instrument al-
location decisions by each device driver. Experiments presented in
Sec. 5 indicate that the decision as to where to place these dynamic
bu�ers introduces subtle tradeo�s.
Non-data-related sources of interference. While the discussion
above focuses on DRAM and cache interference due to data transfers,
both IPC and I/O also involve other sources of interference, includ-
ing interrupt overhead and interference due to instruction fetches.

6USB devices may not be common in HRT systems; we use a USB camera only as an
exemplar of devices where OS activity may cause memory interference.

Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-Criticality Real-Time Tasks RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

In practice, however, we found that these sources of interference
are small enough to account for by in�ating PETs. �ese overhead-
accounting techniques are presented in our prior work [30].

To further reduce the impact of interrupt interference, we redi-
rect all interrupts to a single CPU. To account for interrupt handling
time, we in�ate the PET of any tasks assigned to this CPU accord-
ingly.7 As for instruction memory, MC2 always places kernel code
into Level-C banks and cache partitions. �is means that Level-
A and -B tasks su�er small additional overheads when invoking
system calls, which will require instruction fetches from Level-C
partitions regardless of where IPC or I/O data bu�ers are located.
�is, unfortunately, is an unavoidable consequence of loading ker-
nel code into Level-C banks at boot time—and the MC2 kernel is
too large to �t into a Level-A/B bank.

4 IMPLEMENTATION INMC2

�e possibility for interference in both I/O and IPC stems from a
single di�culty: the need to isolateMC2’s kernel-managed memory
bu�ers. �is section discusses our modi�cations to MC2’s memory-
management system, and how we leveraged our modi�cations to
reduce or prevent CPU- and DMA-sourced interference. All of our
code, both for these modi�cations and for running the experiments
presented later, is open source.8

4.1 Modi�cations toMC2 Memory Allocation
As discussed in Sec. 2, MC2’s primary means of reducing shared-
hardware interference is cache partitioning and DRAM bank iso-
lation. Level-C tasks may share a dedicated region of the LLC or
certain DRAM banks, but Level-A and -B tasks are guaranteed to
be free from unpredictable interference whenever possible. Each
task is a Linux process, and must invoke a special system call a�er
initialization. �is system call prompts the MC2 kernel to migrate
the task’s memory to appropriate physical locations [30].

�is prior memory-remapping approach has two shortcomings.
First, it only occurs once per task, a�er initialization. Second, it
only migrates pages allocated in a task’s own address space. �ese
problems preclude isolating IPC and device I/O, which use dynami-
cally allocated kernel memory. We addressed both shortcomings
by modifying the kernel’s memory-allocation routines.
Isolating dynamic-memory allocations. Our modi�cations for
isolating dynamic-memory allocations required changes to the
buddy allocator, a key part of Linux’s memory subsystem. �e
buddy allocator maintains a list of free physical-memory pages.
When the kernel allocates memory, either on its own or on behalf of
a user-level task, the buddy allocator searches for an appropriately
sized free chunk of contiguous physical memory, or a collection of
non-contiguous pages if necessary. �ese pages are then removed
from the free list and can be mapped into virtual memory.

Our modi�cation to the buddy allocator consists of replacing
the single list of free pages with m + 1 independent lists. m of
these lists hold free pages for the Level-A and -B tasks on each of
the m CPUs. �e additional list holds free pages for Level-C tasks.
We extended Linux’s get free pages function, which invokes the

7�is requires knowledge of worst-case interrupt interarrival and execution times. We
assume that we operate in a “closed world,” with a priori knowledge of interrupt types
and maximum frequencies, as is typically assumed in real-time overhead accounting.
8Source code is available at h�ps://wiki.litmus-rt.org/litmus/Publications.

buddy allocator, to allow specifying which of the m + 1 lists to
allocate from; by default, we allocate from the Level-C list.

�e Linux kernel’s kmem cache allocator handles allocations
smaller than a single page by subdividing pages obtained from the
buddy allocator. �erefore, modi�cations to the buddy allocator
ultimately a�ect all dynamic memory allocations, of both large
and small bu�ers, and in both the kernel and userspace. We also
modi�ed the kmem cache allocation routines to use per-core pages
for small allocations on behalf of Level-A and -B tasks.
Safe default behavior. A major bene�t of the modi�cations out-
lined above is that Level-C tasks can dynamically allocate memory
without further kernel modi�cation. Level-C memory allocations,
issued by Level-C tasks or by the kernel on behalf of Level-C tasks, no
longer cause unpredictable interference in Level-A and -B tasks. Even
though our new allocator is capable of obtaining isolated pages for
Level-A and -B tasks, doing so requires explicitly modifying the
driver or kernel code where pages are allocated. �is is because if
high-criticality tasks use IPC or I/O bu�ers in Level-C banks, they
may still su�er cache evictions from Level-C activity. We address
such additional complications in Sec. 4.2.

4.2 Optimizing IPC-Related Interference
Even with the kernel modi�cations described in Sec. 4.1, optimized
usage of the newly introduced features requires additional input
from MC2’s o�ine optimization component. Usually, we want to
minimize interference experienced by Level-A and -B tasks, which
are HRT and are therefore most sensitive to additional overhead.
Ideally, Level-A and -B tasks should only experience interference in
the bounded amount of time when they access shared bu�ers. �e
prior work on shared-memory IPC in MC2 [28] considered this
problem in detail—at least for IPC via statically allocated shared
bu�ers. Here, we apply the same proposed techniques to reduce
interference in dynamically allocated memory. �e techniques are:

• Selective LLC Bypass (SBP): Allocate bu�ers from Level-
C banks, but make them uncacheable. Even if tasks con-
currently access these bu�ers, they will not cause other
content to be evicted from the LLC, avoiding cache inter-
ference.

• Concurrency Elimination (CE): If two communicating
tasks are Level-A or -B tasks, assign both to the same CPU,
and allocate the bu�ers from that CPU’s Level-A/B bank.
Two tasks on the same core cannot concurrently interfere
with each other.
• LLC Locking (CL): Lock a pre-allocated bu�er into the

LLC, so data can be shared without risking evictions or
row-bu�er con�icts. �is approach reduces LLC space for
other purposes, but eliminates both cache and DRAM bank
interference.

Even though only one of these approaches may be applied to
a single given bu�er, di�erent approaches can be in use for dif-
ferent bu�ers across the entire system. To this end, we modi�ed
MC2’s o�ine optimization component to choose the appropriate
mechanism for each pair of communicating tasks. We evaluate the
e�cacy of this optimization in Secs. 5-6.

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France N. Kim et al.

4.3 Optimizing I/O-Related Interference
Because DMA-sourced interference only a�ects DRAM banks and
not the LLC, we explore comparatively fewer management options
for I/O bu�ers. Even so, with the ability to allocate kernel DMA
bu�ers, we can handle DMA-sourced interference in two ways. �e
�rst, simpler, way is the default behavior described in Sec. 4.1: place
DMA bu�ers in Level-C banks. �e second way is to allocate DMA
bu�ers in a Level-A/B bank if the corresponding device is being
used by a Level-A or -B task.

�ese two approaches have di�erent implications regarding how
tasks are impacted by DMA-sourced interference. For example,
if DMA bu�ers are in Level-C banks, then Level-A or -B tasks
do not experience row-bu�er con�icts as part of DMA-sourced
interference. However, as discussed in Sec. 3, I/O data is useless
without being accessed, and such accesses can give rise to CPU-
sourced interference. �us, while placing I/O bu�ers in Level-C
banks reduces DMA-sourced interference in Level-A and -B tasks, it
will increase CPU-sourced interference when Level-A and -B tasks
access those bu�ers. Similar to the IPC-management options, we
incorporated these two I/O-management options into our o�ine
optimization component and evaluate their e�cacy in Secs. 5-6.

5 MICRO-BENCHMARK EXPERIMENTS
To assess the impacts of CPU- and DMA-sourced interference un-
der di�erent bu�er-allocation options, we experimented with var-
ious micro-benchmark programs. We used the results of these
experiments to inform the task-system generation process in the
schedulability study presented in Sec. 6. In these micro-benchmark
experiments, we investigated IPC impacts using Linux’s System V
message-queue implementation, and I/O impacts using a USB cam-
era and a solid-state disk (SSD). We conducted our experiments
assuming an ARM A9 using the allocation scheme in Fig. 3. Our
major �ndings in these experiments are discussed below.

5.1 Impact of IPC-Related Interference
Workloads. To evaluate the SBP, CE, and CL policies from Sec. 4.2,
we implemented a Sender task, which sends 100 �xed-sized mes-
sages, and a Receiver task, which receives 100 messages. We ran
these tasks at Level A concurrently with a background workload at
Level C, with message sizes ranging from 64 to 8,192 bytes. �e Re-
ceiver was set to start executing a�er the Sender completes, to guar-
antee immediate message availability. We designed the background
workload to stress the Level-C partition in the LLC and DRAM
banks. We measured execution times of load msg(), which allo-
cates a message bu�er and copies a message from a user bu�er, and
do msg fill(), which copies a message to a user bu�er and frees
the message bu�er. We collected 10,000 samples for each considered
message size for each of SBP, CE, and CL. Fig. 6 plots the measured
WCET data collected for load msg() and do msg fill().
Obs. 1. Sending and receiving execution times were the lowest
under CL and the highest under SBP.

Observed CL sending times were between 2.7% and 5.4% of SBP
sending times, and receiving times were 10.6% to 15.9% of SBP
receiving times. Likewise, CE sending times were between 9.2%
and 12.9%, and receiving times were between 29.2% and 40.5%, of
the respective SBP times. �ese results are in accordance with

SBP CE CL

 0

 100

 200

 300

 400

 500

 600

 64 128 256 512 1024 2048 4096 8192

E
x
e
c
u
ti
o
n
 T

im
e
s
 (

u
s
)

Message Sizes (bytes)

(a)

 0

 50

 100

 150

 200

 250

 300

 64 128 256 512 1024 2048 4096 8192

E
x
e
c
u
ti
o
n
 T

im
e
s
 (

u
s
)

Message Sizes (bytes)

(b)

Figure 6: Measured WCETs for load msg(). (a) load msg() and (b)
do msg fill().

Program Description

Matrix DIS Stressmark Suite program. Solve the equation Ax = b .
Synthetic Keep writing arbitrary data to a random memory address.
Framecopy Copy image data from the frame bu�er to user-space bu�er.
Yuv2gray Convert YUV forma�ed image to a grayscale image.

Table 1: Micro-benchmark programs.

results concerning user-level sharing reported in [10]. CL is the
best choice if the LLC is large enough to hold all message bu�ers.
However, CL e�ectively reduces the LLC size for other purposes.
Our new o�ine component for MC2 resolves this tradeo�.

5.2 Impact of I/O-Based CPU-Sourced
Interference

While IPC only causes CPU-sourced interference, I/O can cause both
CPU- and DMA-sourced interference. Of these, we �rst examine
CPU-sourced interference.
Workloads. We assessed CPU-sourced interference using the micro-
benchmarks in Tbl. 1. Matrix comes from the data intensive systems
(DIS) stressmark suite [39], which was designed to re�ect memory-
intensive workloads. Synthetic continuously iterates a main loop
that writes arbitrary data to randomly selected memory locations.
It was designed to stress the LLC, DRAM, and other unmanaged
resources. Framecopy and Yuv2gray are video-processing tasks. We
modi�ed the v4l2 driver, which supports many USB cameras in
Linux, to control where bu�ers are allocated for these tasks.9 Other
non-shared data such as the matrix arrays of Matrix and the array
used by Synthetic were statically allocated in accordance with our
allocation strategy described in Fig. 3.
Scenarios. To assess CPU-sourced interference, we considered
three scenarios:

9�is was done by adding an extra GFP(get free pages) �ag to the kmalloc interface.
We modifed the v4l2 driver to use this specialized kmalloc call.

Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-Criticality Real-Time Tasks RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

��
���������	
�

��

����
������
��
�

: ��������� ��

�
: ������ ��

�
: ���������

����� ����� ����� �����

������� � ��! "���#$��%�� ��! ������� � ��! ������� � ��!

������
&&��

��
� ����' ��

�

,
��

� ����'��

� ����' ��
� ����'

(a) Managed scenario
�����������		�

 �������������
�	�

��
���������	
�

��

����
������
��
�

: ��������� ��

�
: ������ ��

�
: ���������

����� ����� ����� �����

������� � ��!

��
� ����" ��

�

,
��

� ����"��

� ����" ��
� ����"

������
##��

$���%&��'�� ��! ������� � ��! ������� � ��!

(b) Unmanaged scenario

Figure 7: Micro-benchmark tasks and resource allocations.

• Idle: Each micro-benchmark was run alone, with no inter-
fering competing workload.

• Managed: �e tasks were executed with the DRAM allo-
cations shown in Fig. 7(a). (Each task’s criticality level
is denoted with a superscript in this �gure.) �e frame
bu�er was allocated in CPU 3’s Level-A/B bank. �is pre-
cludes task τA4 and τA5 from experiencing CPU-sourced
interference.

• Unmanaged: �e frame bu�er was instead allocated in a
Level-C bank, as shown in Fig. 7(b). �is causes τA4 , τA5 , and
τC2 to experience CPU-sourced interference. �is scenario
re�ects the prior MC2 implementation, which provides
no means for allocating bu�ers anywhere other than in
Level-C banks.

We collected 1,000 execution-time samples for each task in each
scenario. Fig. 8 presents normalized (relative to Idle) WCETs ob-
tained from this data for the copy and color-conversion functions
of Framecopy (τA4) and Yuv2gray (τA5), respectively, for di�erent
frame sizes. We limit measurements to these functions as only these
portions of tasks’ execution times experience interference due to
frame-bu�er accesses. Fig. 9 presents data showing the impact
on Matrix (τC2) of CPU-sourced interference caused by Yuv2gray
(τA5) as a function of the LLC region size allocated to Matrix (τC2).
�e average-case execution times for Level-C tasks are available
online [29].
Obs. 2. CPU-sourced interference in�ated the WCET of copying
by up to 81%, and of color conversion by up to 30%.

�is observation is supported by Fig. 8 and con�rms that DRAM
interference due to I/O bu�ers can be problematic. Note that the
gap between Idle and Managed is caused by interference from
unmanaged resources (see Sec. 2). Under Managed, two instances
of Synthetic (τA1 and τA3) contend for unmanaged resources, while
under Idle, no competing workload exists.
Obs. 3. CPU-sourced interference in�ated Matrix’s WCET by up
to 6%.

�is observation is supported by Fig. 9. As expected, the WCET
in�ation decreases as the number of LLC ways allocated to Matrix
increases. �e average case (which is of relevance to Level C but

 0

 0.5

 1

 1.5

 2

 2.5

Framecopy.160x120

Framecopy.320x240

Framecopy.640x480

Yuv2gray.160x120

Yuv2gray.320x240

Yuv2gray.640x480

N
o
rm

a
liz

e
d
 W

C
E

T

Idle Managed Unmanaged

Figure 8: Normalized WCETs of Framecopy and Yuv2gray.

8
 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 0 2 4 6 8 10 12 14 16M
a
tr

ix
 E

x
e
c
u
ti
o
n
 T

im
e
s
 (

m
s
)

Number of Ways

Idle Managed Unmanaged

Figure 9: Matrix WCETs as a function of allocated LLC space.

omi�ed due to lack of space) shows a similar trend. Note that
frame-bu�er accesses do not break LLC isolation because CPUs 1
and 3 use di�erent partitions in the LLC. �e in�ation seen here is
due to DRAM bank con�icts.

5.3 Impact of DMA-Sourced Interference
As discussed in Sec. 3, tasks can experience DMA-sourced interfer-
ence whenever an I/O device sends or reads data. We conducted the
following experiments to assess the impact of such interference.
Workloads. We used an SSD to generate DMA transactions at vary-
ing bandwidths. �is was done by con�guring a Load-Generator
task to repeatedly read 400KB of data from the SSD at a �xed inter-
val. Higher bandwidths were achieved by shrinking the duration
of this interval. We con�gured Load-Generator to access the SSD
using the O DIRECT �ag to enable DMA directly into user-allocated
memory. To observe the impact of DMA-sourced interference, we
measured the runtime of a variant of the Synthetic task considered
earlier that repeatedly writes 256KB of arbitrary data to randomly
selected memory locations.
Scenarios. We ran three instances of Load-Generator on separate
CPUs, and one instance of Synthetic on the remaining CPU, all at
Level A. We collected 1,000 execution-time samples for Synthetic
to determine how DMA-sourced interference a�ected it. �is task
system was evaluated under two scenarios:

• Level-A/B: All Load-Generator I/O bu�ers were allocated
in Synthetic’s Level-A/B bank. �is scenario represents the
Managed scenario in Sec. 5.2, where an I/O-performing
task does not experience CPU-sourced interference, but
other tasks on the same CPU could experience DMA-sourced
interference.10

10Note that the Load-Generator tasks were not actually executed on the same CPU as
Synthetic. Running them all on the same CPU makes obtaining accurate execution-
time measurements more di�cult. In the experiments considered here, we are mainly
interested in the DMA-sourced interference with which Synthetic must contend, and
not the CPUs from which that interference is induced.

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France N. Kim et al.

Level-A/B Level-C/OS

 150

 160

 170

 180

 190

 200

 210

 220

 0 20 40 60 80 100 120 140 160 180

E
x
e
c
u
ti
o
n
 T

im
e
s
 (

m
s
)

DMA Transfer Rates (MB/s)

WCET : Number of Ways = 1

(a) Number of LLC ways = 1

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0 20 40 60 80 100 120 140 160 180

E
x
e
c
u
ti
o
n
 T

im
e
s
 (

m
s
)

DMA Transfer Rates (MB/s)

WCET : Number of Ways = 11

(b) Number of LLC ways = 11

Figure 10: Synthetic WCETs under two allocation scenarios.

• Level-C/OS: All Load-Generator I/O bu�ers were allo-
cated in the Level-C banks. �is scenario represents the
Unmanaged scenario in Sec. 5.2, where an I/O-performing
task experiences CPU-sourced interference.

Fig. 10 presents WCET data obtained for Synthetic under these
two scenarios with a small (Fig. 10(a)) and large (Fig. 10(b)) LLC
region allocated to it.
Obs. 4. Synthetic’s WCET rose with increasing DMA bandwidth.

�is observation is supported by both insets of Fig. 10. Because
this slowdown happened under both scenarios, we can infer that it
is mainly due to memory-bus contention caused by DMA.
Obs. 5. Allocating an I/O bu�er in a Level-A/B bank can have a
negative impact on other Level-A/B tasks that access that bank.

Fig. 10(a) supports this observation. �e di�erence between the
two curves here is due to additional row-bu�er con�icts that occur
in the Level-A/B scenario. �ese con�icts become much less of an
issue if a task is allocated su�cient LLC space, as seen in Fig. 10(b).

�ese results expose an interesting tradeo�. If an I/O-performing
Level-A or -B task is allocated I/O bu�ers in its own Level-A/B bank,
then it does not experience CPU-sourced interference but the result-
ing DMA transfers can cause other tasks that access that bank to
experience additional row-bu�er con�icts as part of DMA-sourced
interference. �ese con�icts can be avoided by allocating I/O bu�ers
in the Level-C banks, but then tasks experience CPU-sourced inter-
ference when accessing the bu�ers. In either case, tasks executing
on any CPU can experience memory-bus contention as part of
DMA-sourced interference. To si� through this tradeo� and other
issues, we conducted a large-scale, overhead-aware schedulability
study, which we discuss next.

6 SCHEDULABILITY STUDY
Sec. 5 investigated the impact of our IPC and I/O management
approaches on individual tasks, but high-level tradeo�s require
investigating potential impacts on entire task systems. To assess
such tradeo�s, we conducted a large-scale, overhead-aware schedu-
lability study, which we discuss here.

6.1 Approach
We begin by describing the management schemes that we consid-
ered in this study.
Schemes. We considered �ve management schemes, which vary
depending on how bu�ers for IPC and I/O are handled. To facilitate
discussing these schemes, we denote them using the notation x |y,
where x (resp., y) indicates how IPC (resp., I/O) bu�ers are handled.
�e possibilities for x are:

• R (random): IPC bu�ers are randomly assigned to DRAM
banks with none of the optimizations in Sec. 4.2 applied;

• C (C banks used): all IPC bu�ers are allocated in Level-C
banks, again with no optimizations applied;

• O (optimized): IPC bu�ers are allocated using the optimiza-
tion techniques in Sec. 4.2.

�e possibilities for y are:
• R (random): I/O bu�ers are randomly assigned to banks;
• C (C banks used): all I/O bu�ers are allocated in Level-C

banks;
• C+A/B (all banks used): an I/O bu�er used by a Level-A/B

task is assigned to its Level-A/B bank, and those used by
Level-C tasks are assigned to Level-C banks.

�e �ve management schemes we considered are: R|R, C|C, O|C,
C|C+A/B, and O|C+A/B. We considered R|R to illustrate the ill
e�ects of paying no a�ention to OS bu�er-assignment issues. C|C
re�ects the choice of partitioning the OS from HRT tasks in a coarse-
grained way that prevents OS data structures from existing in a
Level-A/B bank (a similar partitioning is possible on most RTOSs
today). O|C, C|C+A/B, and O|C+A/B provide varying degrees of
�ne-grained partitioning in which certain OS data structures are
allowed to exist in a Level-A/B bank.

Note that the two choices of C and C+A/B for I/O give two ex-
tremes in a spectrum of choices: in the former, all Level-A/B I/O
bu�ers are allocated in Level-C banks, while in the la�er, they are
all allocated in a Level-A/B bank. It would have been interesting
to allow per-bu�er choices, i.e., allow some Level-A/B I/O bu�ers
to be allocated in Level-C banks and others in a Level-A/B bank.
However, while allowing such choices in the context of a single
task system is not problematic, doing so is quite impractical at the
scale of our schedulability study. Moreover, this change would have
greatly complicated explaining our results because it introduces
an additional dimension (namely, the fraction of Level-A/B I/O
bu�ers allocated in Level-C vs. Level-A/B banks). Due to space con-
straints, we have no choice but to avoid such complications. (Given
this choice, the “best” schedulability curves we present actually
lower bound the best that could be obtained from our allocation
framework if per-bu�er decisions were allowed.)
Modeling IPC and devices. �e intent of our study is not to delve
into complicated precedence-related schedulability issues but rather
to demonstrate the e�ects of DRAM and LLC allocation policies. To
avoid such complications, we assumed that tasks that communicate
via IPC share a common period, like in prior work on user-level IPC
in MC2 [10]. For similar reasons, we assumed that I/O-consuming
Level-A/B tasks simply poll for I/O data (polling is not necessary
for Level-C tasks because they are sporadic).

We considered the disk and camera mentioned in Sec. 3.2 as
exemplars of two categories of I/O devices. �e former only causes

Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-Criticality Real-Time Tasks RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

interference when data is pushed by the device or accessed by the
task, while the la�er involves intermediate steps that cause addi-
tional interference. We assumed that intermediate bu�ers (USB
packet bu�ers in the camera example) remain in Level-C banks
under C+A/B to prevent the OS from inducing CPU-sourced inter-
ference on Level-A/B tasks while data is copied between bu�ers.
Task-system generation. We generated task systems by incorpo-
rating I/O sources into a procedure used in previous MC2 work
and discussed extensively in prior papers [9–11, 28, 30]. Under this
procedure, the following stepwise process is used to generate a task
system, and each step is guided by measurement data, e.g., recorded
PETs, overheads pertaining to OS activities and I/O, cache reload
times, etc. (we elaborate on details relevant to this paper below).

(1) Choose distributions from the �rst four categories in Tbl. 2.11

For example, the Task Utilization choice highlighted in bold
indicates that tasks generated with that choice will have
Level-A tasks with utilizations ranging within [0.1, 0.2).
�e chosen distributions are used to generate a prelimi-
nary task system, which is modi�ed below to introduce IPC
and I/O.

(2) Select distributions from Category 5 in Tbl. 2. Sample these
distributions to determine the size of IPC bu�ers.

(3) Select a distribution (one for all criticality levels) from
Category 6. Sample this distribution to determine the level
of I/O bandwidth and assign bu�ers to tasks until this level
is met.

(4) Select distributions from Category 7. Sample these distri-
butions to determine the percentage of I/O tasks whose
bu�ers directly receive data via DMA (like the SSD). �e
remaining I/O tasks perform intermediate copies (like the
USB camera).

Note that the above procedure does not determine task execu-
tion costs. A task’s execution cost is derived from its period and
utilization and represents a bound on the time required for it to
complete a job in an idle system with the full LLC available and
no other competing work (including I/O). Execution costs under
other management options and assumptions are determined using
the idle-system cost and micro-benchmark data pertaining to way
allocations, I/O bu�er allocations, and I/O bandwidths (data like
that given in Figs. 9 and 10 is particularly relevant in our context).
Scenarios. We denote each combination of distribution choices
using a tuple notation. For example, (C-Light, Moderate, Heavy,
. . .) denotes using the C-Light, Moderate, Heavy, etc., distribution
choices in Tbl. 2. We call such a combination a scenario. We gener-
ated su�cient task systems to estimate mean schedulability within
±0.05 with 95% con�dence for each scenario and system utilization.
Overhead accounting. Any Level-A/B task that accesses a kernel
data structure stored in Level-C banks requires additional execution
time. �e increases were informed by Fig. 6 for IPC and Fig. 8 for
I/O bu�ers. For the la�er, we assumed that each I/O-performing

11Very brie�y (and informally), these categories specify: (1) the fraction of the overall
workload that exists at each criticality level, (2) task periods, (3) utilizations at each
criticality level, and (4) an LLC reload factor used to determine cache-related preemp-
tion delays. (2) and (3) are in�uenced by measurement data so that Level-A, -B, and
-C PETs re�ect observed in�ated worst-case, worst-case, and average-case execution
times, respectively. (4) is similarly impacted by measurement data. �ese details are
described in full in previously published papers [10, 11, 28, 30].

Category Choice Level A Level B Level C

1: Criticality C-Light [35, 45) [35, 45) [10, 30)
Utilization C-Heavy [10, 30) [10, 30) [50, 70)
Percent (%) All-Mod. [28, 39) [28, 39) [28, 39)

Short {12, 24} {24, 48} [12, 100)
2:Period (ms) Moderate {20, 40} {40, 80} [20, 100)

Long {48, 96} {96, 192} [50, 500)

3:Task Light [0.001, 0.03) [0.001, 0.05) [0.001, 0.1)
Utilization Medium [0.02, 0.1) [0.05, 0.2) [0.1, 0.4)

Heavy [0.1, 0.2) [0.2, 0.4) [0.4, 0.6)

4:Max �ick [1, 10) [1, 10) [1, 10)
Reload Time(%) Slow [25, 50) [25, 50) [25, 50)

5: IPC Small {128, 256} {128, 256} {128,256}
Size (bytes) Large {4096, 8192} {4096, 8192} {4096, 8192}

6: I/O Low [0,20]
Bandwidth (MB/s) Medium [40, 60]

High [180,200]

7:Direct Few [0, 30] [0, 30] [0, 30]
I/O Tasks(%) Many [70, 100] [70, 100] [70,100]

Table 2: Task-set parameters and distributions. [a, b) denotes a con-
tinuous interval that is closed on the le� and open on the right; {E }
denotes a discrete set of elements E .

task begins with a system call that copies I/O data from kernel-
managed bu�ers into local bu�ers. �is assumption standardizes
the interference to the duration of the copy rather than accounting
for all possible bu�er-access pa�erns. Additional CPU-sourced
interference also occurs in the R|R scheme, which allows I/O bu�ers
to be allocated in any Level-A/B bank.

We accounted for interrupts for all schemes by in�ating PETs
of Level-A/B tasks on CPU 0, where interrupts are handled. For
Level-C tasks, we used interrupt-accounting techniques from [6],
which are applicable under global scheduling.

6.2 Results
Our full study generated 648 schedulability plots, one per scenario,
taking over 38 days of CPU time to compute. Our full set of plots is
available online [29].

Fig. 11 shows three representative plots. �e horizontal axis
gives total system utilization.12 For each utilization, the vertical
axis gives the proportion of randomly generated task systems that
were schedulable under each considered scheme. For example, the
circled point in Fig. 11(c) indicates that 60% of the generated task
systems with a total utilization of 2.6 were schedulable under O|C.
Evaluation metric. We used the data in these plots to compute
per-scheme schedulable-utilization areas (SUAs) in order to compare
di�erent schemes. For a given scheme, SUA is simply the sum of
the areas under that scheme’s curves in all of our 648 plots. A
larger SUA implies that a larger fraction of the randomly generated
task systems was deemed schedulable, so we can compare any two
management schemes by calculating the ratio of their respective
SUAs.
Relative impact of various management schemes. We now
state several observations that follow from the full set of plots. We
illustrate these observations using the plots in Fig. 11.

12�e “utilization” referred to here is that initially obtained during task-set generation
without accounting for MC2’s hardware management, which improves execution
times. �us, it is possible for a task system to have a total utilization exceeding four
and be schedulable.

RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France N. Kim et al.

0 1 2 3 4 5 6 7 8 9
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

R|R
C|C
O|C
C|C+A/B
O|C+A/B

(a) (C-Light, Long, Light,�ick, Small, High,
Many)

0 1 2 3 4 5 6 7 8 9
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

R|R
C|C
O|C
C|C+A/B
O|C+A/B

(b) (C-Light, Long, Light,�ick, Large, High,
Many)

0 1 2 3 4 5 6 7 8 9
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y

R|R
C|C
O|C
C|C+A/B
O|C+A/B

(c) (C-Light, Short, Med., Slow, Large, High,
Many)

Figure 11: Representative schedulability plots.

Obs. 6. Coarse I/O and IPC partitioning is bene�cial.
�is observation is supported by the fact that the SUA of the

C|C scheme is 6% larger than that of R|R. �is can be observed
qualitatively in Fig. 11, where the R|R curve is always below that
for any other management scheme.

Obs. 7. IPC-bu�er optimizations outperform coarse partitioning.
�e SUA of O|C is 11% greater than that of C|C. �is behavior

can be observed by comparing the C|C and O|C curves in insets (a)
and (b) of Fig. 11. �e 11% improvement increases to 13% when only
Large (Tbl. 2, Category 5) message sizes are considered. As expected,
this indicates that the bene�t is proportional to the amount of data
shared with the OS.

Obs. 8. Reducing CPU-sourced I/O interference is more important
than reducing DMA-sourced interference.

�is observation addresses the tradeo� discussed in Sec. 4.3. �e
SUA of C|C+A/B is 3% be�er than that of C|C. �is means that CPU-
sourced interference from accessing I/O bu�ers in Level-C banks is
usually worse than the DMA-sourced interference from placing I/O
bu�ers in a Level-A/B bank. �e improvement increases to around
4% if we only consider High bandwidths (Tbl. 2, Category 6). Unlike
in IPC-bu�er optimization, reducing CPU-sourced interference in
I/O bu�ers leads to increased DMA-sourced interference, meaning
that the overall improvement of I/O-bu�er optimization is smaller.
However, it is still visible in the C|C+A/B and C|C curves of insets
(b) and (c) of Fig. 11.

Obs. 9. Used in conjunction, �ne-grained I/O and IPC management
outperform all other schemes.

�is observation is supported by Fig. 11, where O|C+A/B covers
the greatest area in all insets. �antitatively, the SUA of O|C+A/B
is 14% greater than that of C|C, which is even greater than the
di�erence between C|C and R|R. Overall, O|C+A/B exhibits a 21%
improvement over the SUA of R|R. From these observations, we
can conclude that our extensions to MC2 signi�cantly improve the
schedulability of systems requiring OS-supported IPC and device
I/O. In some cases, such as Fig. 11(c), the improvement encompasses
nearly an entire core’s worth of additional computing capacity. �is
is even more impressive given that tasks spend only a relatively
small proportion of their time accessing IPC and I/O bu�ers.

7 RELATEDWORK
�is work’s major contribution relates two signi�cant research
areas: managing DMA interference, and improving memory alloca-
tion to reduce cache and DRAM-bank interference.

Prior research on managing DMA interference includes WCET
analysis [20–22], implementing DMA schedulers using hardware
mediation [19, 40–42], mixed-criticality systems [37], and schedul-
ing legacy I/O operations [27]. However, these works focus primar-
ily on bus contention, and almost entirely address I/O interference
via improved temporal isolation. While this is useful, temporal
partitioning is orthogonal to our approach, which focuses instead
on reducing DRAM bank interference using spacial isolation.

Other research has focused on reducing DRAM-bank and cache
contention via memory-allocator improvements [33, 51]. Of these,
PALLOC [51], like MC2, uses page coloring to implement a bank-
aware memory allocator. (We did not consider page coloring in
MC2 in this work.) However, PALLOC only supports user-level
allocations, limiting its applicability to problems related to data
sharing with the OS and among user-level tasks.

More broadly, this paper falls within an overarching set of re-
search results pertaining to shared-hardware isolation [31]. Prior
e�orts have focused on issues such as cache partitioning [3, 5, 18,
26, 43, 49, 50], DRAM controllers [4, 14, 23, 24, 32, 38], and bus-
access control [1, 2, 13, 15, 16, 42]. Other work has focused on
reducing shared-resource interference when per-core scratchpad
memories are used [45], thro�ling lower-criticality tasks’ memory
accesses [52], and controlling bandwidth allocations [44].

8 CONCLUSION
We have presented techniques for mitigating OS-induced interfer-
ence in multicore real-time systems. Our focus on such techniques
distinguishes this paper from prior work on providing hardware
isolation, which has largely ignored the OS. We evaluated the e�ec-
tiveness of the considered techniques through micro-benchmark
experiments and a large-scale, overhead-aware schedulability study.
Our micro-benchmark experiments show that OS-related sharing
can increase individual PETs. Our schedulability study demon-
strates the importance of properly considering IPC- and I/O-related
allocation decisions from a schedulability point of view.

In the future, we plan to apply the work from this paper to
systems that must support multiple functional modes (as commonly
required in safety-critical systems). In multi-mode systems, the
aggregate memory footprint of all tasks may exceed total DRAM
capacity. �us, mode-change protocols may need to dynamically
transfer task pages to or from external storage. Such protocols
will require OS and I/O support for fast, persistent storage. We
are currently investigating the usage of SSDs to meet this need.
In other future work, we hope to consider alternative hardware
platforms that can help limit DMA interference.

Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-Criticality Real-Time Tasks RTNS ’18, October 10–12, 2018, Chasseneuil-du-Poitou, France

REFERENCES
[1] A. Alhammad and R. Pellizzoni. Trading Cores for Memory Bandwidth in Real-

Time Systems. In RTAS ’16.
[2] A Alhammad, S. Wasly, and R. Pellizzoni. Memory E�cient Global Scheduling

of Real-Time Tasks. In RTAS ’15.
[3] S. Altmeyer, R. Douma, W. Lunniss, and R. Davis. Evaluation of Cache Partition-

ing for Hard Real-Time Systems. In ECRTS ’14.
[4] N. Audsley. Memory Architecture for NoC-Based Real-Time Mixed Criticality

Systems. In WMC ’13.
[5] M. A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Mixed-Criticality

Scheduling with Dynamic Redistribution of Shared Cache. In ECRTS ’17.
[6] B. Brandenburg, H. Leontyev, and J. Anderson. 2011. An Overview of Interrupt

Accounting Techniques for Multiprocessor Real-Time Systems. J. of Sys. Arch.
57, 6 (2011), 638–654.

[7] A. Burns and R. Davis. 2014. Mixed Criticality Systems – A Review. Technical
Report. Department of Computer Science, University of York.

[8] Certi�cation Authorities So�ware Team (CAST). 2016. Position Paper CAST-32A:
Multi-Core Processors. (November 2016).

[9] M. Chisholm, N. Kim, S. Tang, N. O�erness, J. Anderson, F.D. Smith, and D.
Porter. Supporting Mode Changes while Providing Hardware Isolation in Mixed-
Criticality Multicore Systems. In RTNS ’17.

[10] M. Chisholm, N. Kim, B. Ward, N. O�erness, J. Anderson, and F.D. Smith. Rec-
onciling the Tension Between Hardware Isolation and Data Sharing in Mixed-
Criticality, Multicore Systems. In RTSS ’16.

[11] M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache Sharing and Isolation
Tradeo�s in Multicore Mixed-Criticality Systems. In RTSS ’15.

[12] J. Erickson, N. Kim, and J. Anderson. Recovering from Overload in Multicore
Mixed-Criticality Systems. In IPDPS ’15.

[13] G. Giannopoulou, N. Stoimenov, P. Huang, and L.�iele. Scheduling of Mixed-
Criticality Applications on Resource-Sharing Multicore Systems. In EMSOFT
’13.

[14] D. Guo and R. Pellizzoni. A Requests Bundling DRAM Controller for Mixed-
Criticality Systems. In RTAS ’17.

[15] M. Hassan and H. Patel. Criticality- and Requirement-Aware Bus Arbitration for
Multi-Core Mixed Criticality Systems. In RTAS ’16.

[16] M. Hassan, H. Patel, and R. Pellizzoni. A Framework for Scheduling DRAM
Memory Accesses for Multi-Core Mixed-Time Critical Systems. In RTAS ’15.

[17] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson. RTOS Support
for Multicore Mixed-Criticality Systems. In RTAS ’12.

[18] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A predictable Cache-
Aware Memory Allocator. In ECRTS ’11.

[19] T.-Y. Huang, C.-C. Chou, and P.-Y. Chen. Bounding the Execution Times of DMA
I/O Tasks on Hard-Real-Time Embedded Systems. In RTCSA ’03.

[20] T.-Y. Huang, C.-C. Chou, and P.-Y. Chen. 2006. Bounding DMA Interference on
Hard-Real-Time Embedded Systems. J. Inf. Sci. Eng. 22 (09 2006), 1229–1247.

[21] T.-Y. Huang, J. W.-S. Liu, and J.-Y. Chung. Allowing cycle-Stealing Direct Memory
Access I/O Concurrent with Hard-Real-Time Programs. In ICPADS ’96.

[22] T.-Y. Huang, J. W.-S. Liu, and D. Hull. A Method for Bounding the E�ect of DMA
I/O Interference on Program Execution Time. In RTSS ’96.

[23] J. Jalle, E. �inones, J. Abella, L. Fossati, M. Zulianello, and P. Cazorla. A Dual-
Criticality Memory Controller (DCmc) Proposal and Evaluation of a Space Case
Study. In RTSS ’14.

[24] H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A Predictable
and Command-Level Priority-Based DRAM Controller for Mixed-Criticality
Systems. In RTAS ’15.

[25] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding
Memory Interference Delay in COTS-Based Multi-Core Systems. In RTAS ’14.

[26] H. Kim, A. Kandhalu, and R. Rajkumar. A Coordinated Approach for Practical
OS-Level Cache Management in Multi-core Real-Time Systems. In ECRTS ’13.

[27] J. Kim, M. Yoon, R. Bradford, and L. Sha. Integrated Modular Avionics (IMA)
Partition Scheduling with Con�ict-Free I/O for Multicore Avionics Systems. In
COMPSAC ’14.

[28] N. Kim, M. Chisholm, N. O�erness, J. Anderson, and F.D. Smith. Allowing Shared
Libraries while Supporting Hardware Isolation in Multicore Real-Time Systems.
In RTAS ’17.

[29] N. Kim, S. Tang, N. O�erness, J. Anderson, F.D. Smith, and D. Porter.
2018. Supporting I/O and IPC via Fine-Grained OS Isolation for Mixed-
Criticality Real-Time Tasks. Full version of this paper, available at
h�p://jamesanderson.web.unc.edu/papers/. (2018).

[30] N. Kim, B. Ward, M. Chisholm, J. Anderson, and F.D. Smith. 2017. A�acking the
One-Out-Of-m Multicore Problem by Combining Hardware Management with
Mixed-Criticality Provisioning. Real-Time Sys. 53, 5 (2017), 709–759.

[31] O. Kotaba, J. Nowotsch, M. Paulitsch, S. Pe�ers, and H. �eiling. Multicore in
Real-Time Systems – Temporal Isolation Challenges Due to Shared Resources.
In WICERT ’13.

[32] Y. Krishnapillai, Z. Wu, and R. Pellizzoni. ROC: A Rank-Switching, Open-Row
DRAM Controller for Time-Predictable Systems. In ECRTS ’14.

[33] X. Liao, R. Guo, H. Jin, J. Yue, and G. Tan. 2017. Enhancing the Malloc System
with Pollution Awareness for Be�er Cache Performance. IEEE Trans. Parallel
Distrib. Syst. 28, 3 (March 2017), 731–745.

[34] LITMUSRT Project. 2018. (2018). h�p://www.litmus-rt.org/.
[35] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A So�ware Memory Partition

Approach for Eliminating Bank-Level Interference in Multicore Systems. In
ICPACT ’12.

[36] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos. Mixed Criticality
Real-Time Scheduling for Multicore Systems. In ICESS ’10.

[37] D. Münch, M. Paulitsch, and A. Herkersdorf. Temporal Separation for Hardware-
Based I/O Virtualization for Mixed-Criticality Embedded Real-Time Systems
Using PCIe SR-IOV. In ARCS ’14.

[38] S. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda. 2011.
Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning. In MICRO ’11.

[39] J. Musmanno. 2003. Data Intensive Systems (DIS) Benchmark Performance
Summary. (Aug. 2003).

[40] R. Pellizzoni, B. Bui, and M. Caccamo. Coscheduling of CPU and I/O Transactions
in COTS-Based Embedded Systems. In RTSS ’08.

[41] R. Pellizzoni and M. Caccamo. 2010. Impact of Peripheral-Processor Interference
on WCET Analysis of Real-Time Embedded Systems. IEEE Trans. Comput. 59
(March 2010), 400–415.

[42] R. Pellizzoni, A. Schranzhofer, J. Chen, M. Caccamo, and L. �iele. Worst Case
Delay Analysis for Memory Interference in Multicore Systems. In DATE ’10.

[43] Alberto Scolari, Davide Basilio Bartolini, and Marco Domenico Santambrogio.
2016. A So�ware Cache Partitioning System for Hash-Based Caches. ACM Trans.
Archit. Code Optim. 13, 4, Article 57 (Dec. 2016), 24 pages.

[44] G. Seetanadi, J. Cámara, L. Almeida, K. Årzén, and M. Maggio. Event-Driven
Bandwidth Allocation with Formal Guarantees for Camera Networks. In RTSS
’17.

[45] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. Phatak, R. Pellizzoni, and
M. Caccamo. A Real-Time Scratchpad-Centric OS for Multi-Core Embedded
Systems. In RTAS ’16.

[46] P. Valsan, H. Yun, and F. Farshchi. Taming Non-Blocking Caches to Improve
Isolation in Multicore Real-Time Systems. In RTAS ’16.

[47] S. Vestal. Preemptive Scheduling of Multi-Criticality Systems with Varying
Degrees of Execution Time Assurance. In RTSS ’07.

[48] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making Shared Caches More
Predictable on Multicore Platforms. In ECRTS ’13.

[49] M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. Analysis and Implementation of
Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation.
In RTAS ’16.

[50] M. Xu, L. T. X. Phan, H. Y. Choi, and I. Lee. vCAT: Dynamic Cache Management
using CAT Virtualization. In RTAS ’17.

[51] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM Bank-Aware
Memory Allocator for Performance Isolation on Multicoore Platforms. In RTAS
’14.

[52] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory Access Control
in Multiprocessor for Real-Time Systems with Mixed Criticality. In ECRTS ’12.

http://jamesanderson.web.unc.edu/papers/

	Abstract
	1 Introduction
	2 Background
	3 The Oxymoron of ``Isolated Sharing''
	3.1 Types of Data Sharing
	3.2 Memory Interference in Real Software

	4 Implementation in MC2
	4.1 Modifications to MC2 Memory Allocation
	4.2 Optimizing IPC-Related Interference
	4.3 Optimizing I/O-Related Interference

	5 Micro-Benchmark Experiments
	5.1 Impact of IPC-Related Interference
	5.2 Impact of I/O-Based CPU-Sourced Interference
	5.3 Impact of DMA-Sourced Interference

	6 Schedulability Study
	6.1 Approach
	6.2 Results

	7 Related Work
	8 Conclusion
	References

