
On the Defectiveness of SCHED_DEADLINE w.r.t. Tardiness and
Affinities, and a Partial Fix

Stephen Tang

James H. Anderson

{sytang,anderson}@cs.unc.edu

University of North Carolina at Chapel Hill

Chapel Hill, USA

Luca Abeni

luca.abeni@santannapisa.it

Scuola Superiore Sant’Anna

Pisa, Italy

ABSTRACT
SCHED_DEADLINE (DL for short) is an Earliest-Deadline-First

(EDF) scheduler included in the Linux kernel. A question motivated

by DL is how EDF should be implemented in the presence of CPU

affinities to maintain optimal bounded tardiness guarantees. Recent

works have shown that under arbitrary affinities, DL does not main-

tain such guarantees. Such works have also shown that repairing

DL to maintain these guarantees would likely require an impractical

overhaul of the existing code. In this work, we show that for the

special case where affinities are semi-partitioned, DL can be modi-

fied to maintain tardiness guarantees with minor changes. We also

draw attention to the fact that admission control is already broken

in several respects in the existing DL implementation.

CCS CONCEPTS
• Computer systems organization→ Real-time systems.

KEYWORDS
real-time, affinities

ACM Reference Format:
Stephen Tang, James H. Anderson, and Luca Abeni. 2021. On the Defec-

tiveness of SCHED_DEADLINE w.r.t. Tardiness and Affinities, and a Partial

Fix. In 29th International Conference on Real-Time Networks and Systems
(RTNS’2021), April 7–9, 2021, NANTES, France. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3453417.3453440

1 INTRODUCTION
SCHED_DEADLINE (DL for short) is an Earliest-Deadline-First (EDF)
implementation included in the mainline Linux kernel since version

3.14. Its inclusion has been significant because it has lowered the

barrier to entry for real-time EDF scheduling and it has inspired

many publications [4, 8, 9, 11, 13, 15, 16].

Admission control. One feature of DL is its admission-control

(AC) system. AC prevents the system from being over-utilized by

tasks managed by DL. If the total CPU bandwidth required by DL
tasks is near some threshold, then AC will reject any requests to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

RTNS’2021, April 7–9, 2021, NANTES, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9001-9/21/04. . . $15.00

https://doi.org/10.1145/3453417.3453440

create new DL tasks until existing DL tasks reduce their bandwidth

consumption. Note that preventing over-utilization is only a neces-

sary condition for guaranteeing that tasks meet deadlines.

Instead of guaranteeing that deadlines will be met, AC satisfies

two goals [3]. The first goal is to provide performance guarantees.

Specifically, AC guarantees to each DL task that its long-run con-

sumption of CPU bandwidth remains within a bounded margin

of error from a requested rate. The second goal is to avoid the

starvation of lower-priority non-DL workloads. Specifically, AC

guarantees that some user-specified amount of CPU bandwidth

will remain for the execution of non-DL workloads. This goal of

AC has been an important aspect of Linux real-time scheduling for

years, and predates the merging of DL into the kernel.

The theoretical basis of AC is that global EDF scheduling of

sporadic real-time tasks on identical multiprocessors guarantees

bounded tardiness to jobs if the system is not over-utilized [6]. The

DL documentation [2] cites [6]. Bounded tardiness ensures AC’s

first goal as it implies that any execution of a job occurs in a finite

window around its release and deadline, meaning a task’s rate of

execution stays consistent with its bandwidth. Bounded tardiness

also prevents any set of DL tasks from having an unbounded number

of tardy jobs which, if allowed to execute uninterrupted, could

starve non-DL workloads for an unbounded amount of time. Thus,

bounded tardiness also supports AC’s second goal.

Affinities. Specifying tasks’ affinities, subsets of the CPUs on

which given tasks are permitted to execute, is useful for maintaining

cache locality, as tasks whose execution times depend heavily on

whether they are cache hot or cold at a certain cache level may ben-

efit from having their affinities restricted to CPUs that share cache

at said level. Affinities can also be useful in reducing scheduling-

decision overheads, as a CPU need only consider tasks with affinity

for that CPU when deciding what to execute.

Unfortunately, the tardiness result in [6] heavily relies on the

fact that scheduling is global, and does not hold when tasks have

affinities. Thus, with the exception of clustered scheduling (in which

each cluster resembles its own global subsystem), the setting of

affinities is forbidden in DL unless AC is explicitly disabled.

It was shown in [15] that with arbitrary affinities, under-utilized

systems (whose definition becomes more complex under arbitrary

affinities) may have unbounded tardiness under DL. Though an EDF

variant called SAPA-EDF presented in [5] was proven in [16] to

guarantee bounded tardiness with arbitrary affinities for identical

CPUs, this variant was not implemented by the DL maintainers

due to the complexity of the required modifications to both the

scheduler and AC (as the meaning of over-utilization is changed).

https://doi.org/10.1145/3453417.3453440
https://doi.org/10.1145/3453417.3453440

RTNS’2021, April 7–9, 2021, NANTES, France Tang, Anderson, and Abeni

This variant would likely have also required higher overheads and

increased task migrations in practice.

While [15] showed that the current DL implementation cannot

support arbitrary affinities, that work suggested that this may not

be the case for special cases of affinities. In this paper, we consider

the special case of semi-partitioned (SP) systems, wherein each task

has affinity for either one CPU (the task is partitioned) or for all
CPUs in its cluster (the task is migrating). While not as flexible as

arbitrary affinities, SP affinities still reduce overheads by limiting

the number of migrating tasks and can still be used to maintain

cache locality for partitioned tasks.

In practice. AC does not guarantee bounded tardiness under DL,
even under an idealized abstraction of the scheduler. This is be-

cause affinities are far from the only way that DL differs from the

system model considered in [6], from which the soundness of AC

originates. In particular, DL has grown to consider dynamic voltage

and frequency scaling (DVFS) and asymmetric CPU capacities, both

of which break the assumption of identical CPUs in [6]. Besides

these changes in the considered platform model, tasks can also be

much more dynamic under DL than in [6].

Unlike affinities, AC need not be disabled when using such fea-

tures. This calls into question the role of AC, as there is no theo-

retical basis for its goals without tardiness guarantees. Instead of

by analysis, these features have often been validated empirically

by demonstrating that deadline-miss frequencies are acceptable.

As we demonstrate herein, empirical validation is insufficient for

showing that AC is not broken.

Contributions.We present a DL variant that supports AC for SP

systems. This contribution is divided into three parts.

First, we list features supported by DL that were not considered

in the analysis in [6]. For a subset of these features, we show that

usage of these features in the existing DL implementation can cause

unbounded tardiness with AC. For the remaining features, though

usagemay not cause unbounded tardiness with AC, we demonstrate

that usage can lead to other undesirable effects, detailed later.

Second, we show that the existing DL implementation is broken

under SP affinities in the sense that unbounded tardiness may result

in under-utilized systems. We present a patch that modifies DL’s
migration logic and AC such that tardiness is bounded for all such

systems. This patch is intended for Linux 5.4.69, as 5.4 was the most

recent LTS release at time of writing; we generally refer to this

version as the current implementation unless specified otherwise,

though the details discussed in this work do not seem to have

changed with recent releases. This patch was designed to be as

minimally invasive as possible such that the development of existing

features would not be hindered by including this patch.

Third, we provide a high-level overview of our proof of sound-

ness for our modified AC under an abstraction of our patched DL
(due to space constraints, the full proof is deferred to App. A, avail-

able online [14]). Our proof is based on existing proof techniques

from [16]. Our proof modifies these techniques because SAPA-EDF
satisfies an invariant that our patched DL does not. Our patched

scheduler maintains a weaker invariant that we show is sufficient

for bounded tardiness under SP scheduling. Our patched DL com-

promises between schedulers proposed in theory, which migrate

tasks aggressively, and DL, which is unable to make guarantees.

Organization. The rest of this paper is organized as follows. After
covering needed background in Sec. 2, we present and categorize the

list of DL features not considered by [6] in Sec. 3. We demonstrate

the non-optimality of DL under SP affinities and present our patch

in Sec. 4. We provide an overview of the proof of correctness of

this patch under an idealized abstraction of our patched DL in Sec. 5

(again, the formal proof is deferred to an appendix). We evaluate

the overheads of our patch relative to the original implementation

in Sec. 6. We conclude in Sec. 7.

2 BACKGROUND
We start by presenting our system model, mostly derived from [15]

with some modifications to consider dynamic task systems. We

then discuss how DL fits this system model.

2.1 Task Model
We consider a system of N implicit-deadline sporadic tasks τ =
{τ1,τ2, . . . ,τN } running onM unit-speed CPUsπ = {π1,π2, . . . ,πM }.
We assume basic familiarity with the sporadic task model. We de-

note the jth job released by task τi as τi, j , where j ≥ 1. Job τi, j
must be completed before job τi, j+1 is allowed to execute. We let

Ci denote the worst-case execution time (WCET) of τi over all its
jobs. We let Ti denote the period of task τi . The utilization ui of
task τi is given by Ci/Ti . We denote the release time, deadline, and

completion time of job τi, j by ri, j , di, j , and fi, j , respectively, where
di, j = ri, j +Ti (implicit deadlines).

At time t , a job τi, j is either unreleased (t < ri, j), pending (ri, j ≤
t < fi, j), or complete (t ≥ fi, j). If a task τi has pending jobs at t ,
then its ready job at t is its earliest-released pending job at t .

For a job τi, j , its response time is given by fi, j − ri, j , and its tardi-
ness bymax{0, fi, j −di, j }. The tardiness of task τi is the supremum

of the tardiness of its jobs. If the tardiness of all tasks in τ is bounded
under a given scheduler, then τ is soft real-time (SRT)-schedulable
under that scheduler. τ is SRT-feasible if it is SRT-schedulable under
some scheduler. A scheduler is SRT-optimal if any SRT-feasible task

system is SRT-schedulable under it. Analogous terms apply to hard

real-time (HRT) systems, in which no tasks can be tardy. Feasible
without a prefix denotes both SRT- and HRT-feasible.

At any time, a task is either active or inactive.1 A task is initially

inactive, and must become active in order to release jobs. Each task

becomes active at most once, and after becoming inactive, remains

so indefinitely (this is for simplicity of notation, as a task becoming

active a second time is equivalent to an unrelated task becoming

active). At time t , the set of active tasks is denoted τ (t) ⊆ τ , and the
set of CPUs they may execute upon is denoted π (t) ⊆ π . The set
of tasks partitioned onto CPU πj is denoted τ (t ,πj) ⊆ τ (t). These
functions are defined such that any changes that occur at time

instant t are reflected in τ (t), π (t), and τ (t ,πj).

2.2 From Threads to Tasks
Linux threads may not adhere to the sporadic task model. Thus, any

Linux thread under DL is encapsulated in a Constant Bandwidth

Server (CBS). A CBS is conceptually similar to a sporadic task,

with a maximum budget Q , period T , and bandwidth Q/T that are

1
Note that “active” and “inactive” in this work are distinct from their definitions in

DL’s documentation and code.

On the Defectiveness of SCHED_DEADLINE w.r.t. Tardiness and Affinities, and a Partial Fix RTNS’2021, April 7–9, 2021, NANTES, France

Figure 1: CBS State Diagram

analogous to a task’s WCET, period, and utilization, respectively. A

CBS’s current budget and deadline are denoted q and d , respectively.
In this subsection, we discuss how the CBS mimics and differs from

the sporadic task model. Note that while we apply a notion of jobs

to the CBS such that per-job tardiness is well-defined, the actual

implementation does not make jobs explicit.

Fig. 1 describes the state transitions of a CBS.
2
While a CBS

encapsulates a DL thread, it is either eligible, throttled, or idle. The
replenish(t) function in Fig. 1 denotes that q ← Q and d ← t +
T . sched_yield denotes that the encapsulated thread called the

sched_yield system call, which is used in DL to indicate that the
current job has completed without exhausting its budget.

At the time t when a thread first enters DL, its encapsulating
CBS begins in the eligible state at time t . Its deadline is then set to

d ← t +T and its budget to q ← Q . This corresponds to the release

of the first job. A CBS is eligible to be scheduled while and only

while in the eligible state. It is scheduled alongside other servers

with priority d . While the CBS is eligible, its budget q decreases at

unit rate when it is scheduled and is unchanged otherwise.

For now, assume that at any time t when a CBS wakes, t ≥ d .
This precludes the dotted transition from the idle to eligible state.

With this assumption, a CBS behaves identically to a sporadic task,

with transitions into (resp., out of) the eligible state corresponding

to job releases (resp., completions). Jobs are separated periodically

when the CBS is throttled (the CBS is replenished at the deadline d
and we assume implicit deadlines), while sporadic separations are

implemented by suspending (the CBS is replenished at the time of

waking, t , and we assume t ≥ d).
If at the time t a CBS wakes and t < d , then the CBS deviates

from the sporadic task model considered in [6] and [16]. If t < d and

q/(d − t) ≤ Q/T , the CBS returns to the eligible state while keeping
the prior job’s budget and deadline (note the dotted transition does

not replenish). This is analogous to a job self-suspending, which

was not considered in [6] and [16]. If t < d and q/(d − t) > Q/T ,
then the CBS is replenished at t . Because we have assumed implicit

deadlines and t < d , this means the separation between consecutive

jobs of the CBS was less than T , which is also forbidden by the

sporadic task model. The impacts of these differences between CBSs

and sporadic tasks on tardiness is discussed in more detail in Sec. 3.

For reasons discussed in Sec. 3, we assume that t ≥ d whenever

a CBS wakes, thereby removing the dissimilarities between CBSs

and sporadic tasks. Because they have identical semantics under

2
The behavior of a CBS differs slightly if deadlines are not implicit.

this assumption, we refer to CBSs and their encapsulated threads

as tasks unless specified otherwise.

2.3 CPUSets and AC
A task’s WCET, period, and relative deadline are provided as argu-

ments when it first enters DL from another scheduling class via the

sched_setattr system call.

DL schedules tasks using clustered EDF, wherein each task as-

signed to a cluster is only permitted to migrate between CPUs

within said cluster. Both global and partitioned EDF are special

cases of clustered EDF. In Linux, clusters are created and managed

via the cpuset subsystem under the cgroup virtual file system (a

cpuset is Linux’s notion of a cluster
3
). Tasks and CPUs are added

to and removed from a cpuset dynamically with the cpuset sub-

system. τ (t) and π (t) in Sec. 2.1 are abstractions for the set of DL
tasks and CPUs assigned to a cpuset by the cpuset subsystem.

AC prevents the starvation of non-DL workloads and guaran-

tees bounded tardiness to DL tasks within a cpuset. Generally, AC

maintains the invariant that for any cpuset,

∀t :
∑

τi ∈τ (t)

ui ≤
sched_rt_runtime_us

sched_rt_period_us
|π (t)|, (1)

where sched_rt_runtime_us and sched_rt_period_us4 are set
with the proc virtual file system and have default values of 950000

and 1000000, respectively. sched_rt_runtime_us should always

be set to be less than sched_rt_period_us. If so, (1) guarantees
non-DL workloads in the cpuset are given time to execute because

the system is not over-utilized [6], though this guarantee may be

invalid for reasons discussed in Sec. 3.

AC must verify that (1) is maintained on changes to τ (t) (tasks
entering DL), changes to π (t) (changes to the CPUs in the cpuset),

and changes to sched_rt_period_us or sched_rt_runtime_us.
Requests for changes fail if doing so would violate (1) for any

cpuset. These changes occur immediately otherwise.

The summation in (1) must be decreased when a thread leaves

DL. Though the thread may leave immediately upon request, its

server must remain until an event called its 0-lag time passes. This

implementation detail exists to support HRT guarantees. As we are

concerned with SRT, we do not consider this rule in our model.

2.4 Fine-Grained Affinities
In Linux, the sched_setaffinity system call is an auxiliarymethod

to the cpuset subsystem of setting affinities. sched_setaffinity
defers to the cpuset subsystem in that calls that contain CPUs

outside of a task’s cpuset will ignore said CPUs. Additionally, when

π (t) is modified, all tasks in the cpuset gain affinity for all CPUs in

π (t). This overwrites any changes made with sched_setaffinity,
even if the modified set of CPUs is a superset of the original.

The usage of sched_setaffinity is not permitted for DL tasks

unless AC is disabled by writing -1 to sched_rt_runtime_us. AC
must be disabled as bounded tardiness to tasks is not guaranteed

under arbitrary affinities.

3
Though the cpuset subsystem actually organizes cpusets hierarchically, DL requires

that cpusets with DL tasks to be exclusive from each other, which we also assume.

4
These file names derive from SCHED_RT, whose accounting code DL intertwines with.

We assume no RT tasks to focus on DL.

RTNS’2021, April 7–9, 2021, NANTES, France Tang, Anderson, and Abeni

Figure 2: Unbounded tardiness due to dynamic tasks. (Leg-
end is reused throughout paper.)

(a) Request pattern with unbounded tardiness.

(b) Corresponding trace.

3 PROBLEMATIC FEATURES
Since being merged into the kernel, the list of features supported

by DL has far outgrown the simplistic system model in [6]. Unfor-

tunately, many of these features have been implemented in ways

that break the bounded tardiness properties AC is supposed to

guarantee, necessitating that we omit them from the system model

assumed in our SP DL patch. When practicable, we present schedul-

ing traces of real DL tasks produced by trace-cmd and visualized

with kernelshark to validate claims about the scheduler’s behavior.

The scripts that create these traces are available online [14].

3.1 Features that Break Bounded Tardiness
Dynamic tasks. Technically, a task’s WCET, period, and relative

deadline are dynamic and can be changed with the sched_setattr
system call. DL will immediately enact any change in parameters

requested with sched_setattr so long as the task’s resulting uti-

lization does not violate (1). While the task’s static parameters and

bandwidth are changed immediately, the task’s current remain-

ing budget and deadline are unchanged. This can be exploited as

follows to result in unbounded tardiness.

▷ Ex. 1. (Corresponds with Fig. 2.) We assume the tasks in this

example never suspend. Consider a cpuset containing one CPU π1
and begins with no tasks. At time t = 0, task τ1 requests to enter

DL with (C1,T1) = (94, 100). This task is accepted because doing so

will not violate (1). τ1 releases its first job at time 0 with C1,1 = 94

and d1,1 = 100, before immediately requesting C1 be changed to 1.

C1,1 and d1,1 remain as 94 and 100 after this change. At time t = 10,

task τ2 requests to enter with (C2,T2) = (94, 100). This request is
accepted by AC because τ1 reduced its utilization. τ2 releases its
first job with C2,1 = 94 and d2,1 = 110. After this point, both tasks

release jobs periodically.

However, prior to when τ1 returns from the throttled state (see

Fig. 1), τ2 changes C2 to 1 and τ1 changes C1 to 94. When the next

job of τ1 becomes ready at t = 100, this job’s budget and deadline

are determined entirely by τ1’s parameters at the instant it becomes

ready. Thus, the budget of the next job is set to 94. Likewise, prior

to when τ2 is replenished at t = 188 (recall from Fig. 1 that a tardy

task is replenished once its prior job completes), τ1 sets C1 to 1

such that τ2 can set C2 to 94. As the total utilization of the system

technically never exceeds 0.95, all requests are accepted by AC.

If τ1 and τ2 continue taking turns with havingC = 94, then every

released job in this system has parameters as if both tasks always

had utilizations of 0.94. Because the CPU only has a capacity of 1.0,

the system is over-utilized and results in unbounded tardiness even

though (1) is never violated. ◁

Defect 1. Dynamic tasks can break AC.

Mitigation 1. We reject requests to modify DL tasks’ parameters.
Any change in parameters after server creation must be implemented
by leaving DL and reentering with a fresh server.

DVFS. The goal of DVFS is to reduce power consumption by scal-

ing down CPU frequency. DVFS affects DL because DL must ensure

that frequencies remain high enough that some level of real-time

performance guarantee is maintained for tasks. DL must also ac-

count for reduced CPU frequency when depleting tasks’ budgets.

This is managed in DL with the GRUB-PA system.

We refer to [13] for a full description of GRUB-PA, which is out

of the scope of this work. At a high level, at all times, GRUB-PA

tracks the total bandwidth of DL tasks on each CPU’s runqueue in

a variable denoted Uact(t). If Uact(t) < 1, then the frequency of the

corresponding CPU is scaled byUact(t) of its maximum frequency

and the budget of any task executing on said CPU is depleted at

rate Uact(t) (tasks’ WCETs are assumed to be provisioned based

on CPUs running at maximum frequency). Otherwise, the CPU

runs with its maximum frequency and the budget of any executing

task is depleted at the standard unit rate. This can be exploited as

follows to result in unbounded tardiness.

▷ Ex. 2. Consider a cpuset with two CPUs and three tasks with

(C,T) = (63, 100). This system is accepted by AC because the total

utilization is 1.89 which is less than 95% (recall the default values

in (1)) of the capacity of 2 CPUs. However, because any task can

be on at most one CPU’s runqueue at any time, there is always

a CPU with Uact ≤ 0.63. Because CPU frequencies are scaled by

Uact and the other CPU is unable to scale frequency beyond its

maximum, the actual capacity delivered by the CPUs to DL tasks

is at most 1.63 < 1.89, the total utilization. Because the system is

over-utilized, at least one task experiences unbounded tardiness. ◁

Defect 2. DVFS causes unbounded tardiness in DL with AC.

Mitigation 2. We require that DVFS be disabled for AC.

GRUB-PA is the latest entry in a long line of GRUB variants

implemented in DL. The code for M-GRUB, the GRUB variant used

before GRUB-PA, actually still remains in the current DL implemen-

tation and can be triggered with the SCHED_FLAG_RECLAIM flag,

though we have not considered it in this work because it is incom-

patible with the more recent GRUB-PA and DVFS. Nevertheless, it

has also not been proven that M-GRUB does not violate bounded

tardiness under AC, though we conjecture that this is the case.

Asymmetric capacities. Support for asymmetric CPU capacities,

in which different CPUs complete work at different rates, was added

On the Defectiveness of SCHED_DEADLINE w.r.t. Tardiness and Affinities, and a Partial Fix RTNS’2021, April 7–9, 2021, NANTES, France

to DL in Linux 5.9. The fastest CPU in the system is assigned a capac-

ity
5
of 1.0 and all other CPUs are assigned capacities relative to the

fastest CPU. Let cap(πi) denote the capacity of CPU πi . AC was also

modified in 5.9 such that the r.h.s. of (1) considers

∑
πi ∈π (t) cap(πi)

instead of |π (t)|.
In the real-time literature, a large body of work considers plat-

forms with asymmetric-capacity CPUs. In these works, such plat-

forms are often called uniform multiprocessors. One such work

is [18], which presents an SRT-optimal EDF variant for uniform

multiprocessors. DL’s capacity-aware version of (1) admits a su-

perset of the systems accepted by the feasibility condition in [18],

proving that AC permits systems with unbounded tardiness.

Defect 3. Asymmetric capacities can cause AC to admit task
systems with unbounded tardiness.

Mitigation 3. We assume CPUs are identical.

3.2 Features that Negatively Affect Tardiness
For the following features, we conjecture that their usage does not

break bounded tardiness under AC. Nevertheless, though these

features may not technically break AC, they can have undesirable

effects on tardiness. We chose to omit these features from our

system model due to such negative effects and difficulties with the

complexities caused by considering them in proofs.

Inter-cpuset migration. A dynamic behavior of DL not consid-

ered in [6] is the migration of a task from one cpuset to another.

Such a migration will be accepted by AC so long as doing so will

not violate (1) for the target cpuset. When the migration occurs, the

task’s utilization is immediately subtracted from its original cpuset

and added to that of its target. The server may keep its prior budget

and deadline after the migration. As far as we are aware, it is not

proven whether or not such migrations can result in unbounded

tardiness, though we conjecture that it does not.

Even if such migrations between cpusets do not result in tar-

diness becoming unbounded, such migrations can cause higher

tardiness than possible when tasks’ cpusets are static.

▷ Ex. 3. (Corresponds with Fig. 3.) Consider two cpusets, one with

a single CPU π1 and a task τ5 with (C5,T5) = (2, 10) and another

with three CPUs π2, π3, and π4 and four tasks τ1, τ2, τ3, and τ4 all
with (C,T) = (70, 100).

At time t = 92, τ4 requests to migrate to the cpuset containing π1
and τ5. This is accepted by AC as τ4 and τ5’s combined utilization

is less than 0.95. However, τ4 keeps its current deadline and budget

when it migrates, thereby causing τ5 to become tardy when it

otherwise would not have been. ◁

Obs. 1. Inter-cpuset migration can cause higher tardiness than

expected under DL.

CBS suspensions. As discussed in Sec. 2.2, a CBS may not adhere

to the sporadic task model considered in [6] by suspending and re-

suming before a job’s deadline, resulting in either a self-suspending

job or a separation between CBS job releases being less than a

period. It is not obvious that this does not break bounded tardi-

ness under AC, as arbitrary self-suspensions are known to cause

capacity loss [12].

5
The actual value assigned is 1024. We discuss relative to 1.0 for simplicity.

Figure 3: Migration between cpusets.

(a) Request pattern that causes additional tardiness.

(b) Corresponding trace.

Figure 4: Suspensions inflate periods.

(a) Release pattern with self-suspending jobs.

(b) Corresponding trace.

This is not the only nuance caused by CBS and suspensions. Sus-

pending, even for infinitesimally short durations, can cause a server

to execute at a rate less than its bandwidth, as shown in the follow-

ing example. This kind of behavior can be especially problematic

when the encapsulated workload of the server is a real-time task

whose WCET and period are the same as the server’s maximum

budget and period. According to the DL documentation [2], the

server and task should have the same deadline in this case.

▷Ex. 4. (Correspondswith Fig. 4.) Consider a cpuset with twoCPUs
π1 and π2 and three servers τ1, τ2, and τ3 all with (C,T) = (63, 100).
However, the encapsulated real-time task of τ3 must suspend briefly

RTNS’2021, April 7–9, 2021, NANTES, France Tang, Anderson, and Abeni

at the end of every job, perhaps to do some I/O. Meanwhile, τ1 and
τ2 only suspend between jobs when none are available to execute.

All servers release jobs at t = 0, with τ1 and τ2 winning the

deadline tie. This causes τ3 to complete its job after its deadline,

after which it suspends for a small time interval. However, when

it returns from the idle state, its deadline is updated based on the

time of waking instead of its previous deadline (recall Fig. 1). This

causes the release pattern of τ3 to become non-periodic, even if

the encapsulated workload is periodic. For example, repeating the

release pattern in Fig. 4a causes τ3 to execute for 63 time units

around every 120 time units, even though its underlying workload

requires its execution every 100 time units. ◁

Obs. 2. An encapsulated real-time task whose jobs’ may self-

suspend can be starved under DL, even in a CBS with bandwidth

equal to the task’s utilization.

The task’s deadline falls behind the server’s deadline because

the server “cheats” by interpreting any suspension after its own

deadline to be a suspension between jobs (meaning that the en-

capsulated task has no jobs available), when in actuality the task

is self-suspending within a job. At a high level, this is why self-

suspensions result in capacity loss for sporadic tasks, while we

conjecture they do not under CBS.

As far as we are aware, how to determine DL server parameters

for encapsulating self-suspending real-time tasks such that server

and task deadlines will stay synchronized has not been addressed.

4 ADDING SP SCHEDULING TO DL
We describe our proposed patch in four subsections, each address-

ing a distinct aspect of the implementation: bypassing the throttled

state, pushing to the latest CPU, AC, and dynamic affinities. We be-

gin each subsection by demonstrating how each aspect causes prob-

lems in SP systems. Next, we summarize how this behavior arises

from the current implementation. Last, we explain how our patch

modifies the implementation. Our patch is available online [14].

4.1 Bypassing the Throttled State
Problem. In DL, a task that completes a job by exhausting its bud-

get or calling sched_yield after its deadline will remain eligible,

bypassing the throttled state (as in Fig. 1). If so, this task continues

executing its next job on the same CPU if it is not preempted by

a different task with an earlier deadline. This is desirable under

clustered scheduling because a task that continues to execute on

the same CPU retains its cache hotness. This behavior can cause

unbounded tardiness when partitioned tasks exist.

▷ Ex. 5. (Ex. 4 of [15]
6
; corresponds with Fig. 5.) Consider a cpuset

with CPUs π1, π2, and π3 with tasks τ1, τ2, τ3, τ4, and τ5. Let (C1,T1)
= (C5,T5) = (2, 6), (C2,T2) = (C4,T4) = (2, 2), and (C3,T3) = (1, 6).
τ1, τ3, and τ5 are partitioned on π1, π2, and π3, respectively, while
τ2 and τ4 are migrating.

τ2 and τ4 release jobs periodically. Initially, τ2 and τ4 execute on
π1 and π3, respectively. At t = 6, fixed tasks τ1 and τ5 preempt τ2

6
Ex. 4 of [15] actually does not consider a SP system, as τ2 and τ4 were not allowed
to migrate to π3 and π1 , respectively in [15]. Observe when considering Ex. 5 that

the same schedule occurs even when such migrations are allowed given specific

tie-breaking assumptions.

Figure 5: (Fig. 2(b) of [15]) Unbounded tardiness under DL. (P
for partitioned and M for migrating.)

and τ4, respectively. The only other processor available to both τ2
and τ4 is π2 (τ2 cannot preempt τ5 on π3 and τ4 cannot preempt τ1
on π1), which they cannot both use. We assume the tiebreak here

favors τ2 and it is scheduled, while τ4 does not execute until t = 8

when it resumes execution on π3. τ2 is also forced to migrate off

of π2 by fixed task τ3 at t = 12. This repeats at t = 18, except here

τ4 is scheduled over τ2 because it is tardy by 2.0 time units due to

not being scheduled over [6, 8]. As a result, τ2 also becomes tardy

by 2.0 time units by t = 20. This pattern can repeat indefinitely,

and with each occurrence, the maximum tardiness experienced by

either τ2 or τ4 increases by 2.0. ◁

Implementation. Explaining why tasks migrate as in Ex. 5 and

giving context to this and later subsections requires an explanation

of DL’s migration code. Because a task can only run on a given

CPU while on said CPU’s dl_rq (the DL-specific runqueue data

structure), tasks must be exchanged between dl_rq’s to migrate.

The operations for exchanging tasks between dl_rq is called pull
(from all other CPUs to the pulling CPU) and push (from the push-

ing CPU to a target CPU). Pulls are used to emulate a per-cluster

runqueue during scheduling decisions. Prior to any scheduling de-

cision, a CPU pulls the unscheduled task with earliest deadline and

affinity for said CPU from each other CPU’s dl_rq. This allows the
scheduling CPU to select the task with earliest deadline from any

dl_rq in the cpuset as if they were stored in a single runqueue.

Pushes occur when a task is preempted or becomes eligible. In a

push, the pushing CPU sends the unscheduled migrating task with

earliest deadline on its dl_rq to the dl_rq of a target CPU.

Let the deadline of a CPU be the deadline of the eligible task with

earliest deadline on its dl_rq. The target CPU of a push is either

a CPU with no DL tasks on its dl_rq (called a free CPU) or, if the

cpuset has no free CPUs, the CPU with the latest deadline among

the other CPUs in the cpuset. Note that the latest CPU may be the

pushing CPU, in which case the task stays on the same dl_rq.
A task that exhausts its budget or calls sched_yield is dequeued

from its CPU’s dl_rq. What occurs next depends on whether this

task bypasses the throttled state (its deadline has passed) or enters

it (its deadline is in the future).

A task that bypasses the throttled state is immediately enqueued

back onto its CPU’s dl_rq with replenished budget and updated

deadline. If another task on this CPU’s dl_rq now has an early

enough deadline to preempt the replenished task, it does so. Other-

wise, the replenished task continues executing on the same CPU.

On the Defectiveness of SCHED_DEADLINE w.r.t. Tardiness and Affinities, and a Partial Fix RTNS’2021, April 7–9, 2021, NANTES, France

Figure 6: Differences in throttling behavior.

(a) Tasks do not bypass throttled state in our patch.

(b) Task bypasses throttle in original implementation.

Recall that tasks bypassing the throttled state and continuing to

execute on the same CPUs resulted in unbounded tardiness in Ex. 5.

For example, at its job boundaries at times 2 and 4 in Fig. 5, τ2 does
not migrate to free CPU π2 even though its current CPU π1 has a
partitioned task τ1 with a ready job. τ2 does not migrate at these

job boundaries because it bypasses the throttled state.

On the other hand, a task that enters the throttled state is un-

scheduled from the CPU that runs it. When this task returns from

the throttled state to the eligible state (in function dl_task_timer,
an hrtimer callback), it is enqueued back onto this CPU’s dl_rq
with a replenished budget and updated deadline. Because the re-

plenished task became eligible, this CPU attempts to push a thread.

Patch. Ex. 5 would not have unbounded tardiness if successive jobs
of tasks τ2 and τ4 would migrate when a free CPU or CPU with later

deadline is available, thereby allowing partitioned tasks to execute.

For example, if τ2 had migrated to free CPU π2 at time 2 instead of

6 in Fig. 5, then the first job of τ1 would have been able to execute

on π1 over the interval [2, 4]. This would have freed π1 over [6, 8],
allowing migrating task τ4 to execute and preventing its tardiness.

Recall that successive jobs of tardy tasks do not migrate because

they bypass the throttled state, skipping the push that occurs when

a task returns from the throttled state.

Our patch addresses this by removing the branch in which a

task bypasses the throttled state. This causes successive jobs of

tardy tasks that would have otherwise continued to execute on

the same CPU to be pushed from that CPU due to the tardy task

becoming eligible from the throttled state. For example, at time

2 in Fig. 5, τ2 completes its job. Under our patch, τ2 would be

throttled and immediately unthrottled because its next job already

ready at time 2 (instead of not being throttled at all, as in the

original implementation). Due to being unthrottled, τ2 would be

pushed from π1 to free CPU π2. This is the schedule described in

the previous paragraph that reduces tardiness.

Note that callback function dl_task_timer will not push a

scheduled task, as it is not safe to migrate an executing task. This is

problematic because throttled tasks may still be scheduled because

rescheduling is not instantaneous. To guarantee that a tardy task is

pushed, dl_task_timermust wait for the tardy task to be unsched-

uled. Unfortunately, it does not help to wait within dl_task_timer

Figure 7: Pushes can cause priority inversions.

(a) Release pattern that causes priority inversion.

(b) Corresponding trace.

for the relevant CPU to reschedule, as both dl_task_timer and

the rescheduling code both must acquire this CPU’s rq lock (the

rq struct contains generic runqueue fields as well as scheduler-

specific data structures such as the dl_rq). In our patch, when

dl_task_timer executes and observes that the task to be pushed

is still scheduled, the callback releases the rq lock and retries in the

future, giving the relevant CPU the chance to reschedule. This is

done with hr_timer_forward_now.
To validate that our patch forces tasks to be pushed, consider

the traces in Fig. 6. In Fig. 6a, the topmost task attempts to migrate

whenever it completes a job (the vertical lines in the trace). Mean-

while, in Fig. 6b, this same task does not migrate unless preempted.

4.2 Pushing to the Latest CPU
Problem. The target CPU of a push is the CPU with latest deadline.

In DL, the deadline of the pushing CPU may be from the task being

pushed. This can result in priority inversions under SP scheduling.

▷ Ex. 6. (Corresponds with Fig. 7.) Consider a cpuset with two

CPUs π1 and π2 and three tasks τ1, τ2, and τ3 with (C1,T1) = (10, 70),
(C2,T2) = (10, 50), and (C3,T3) = (5, 10). τ1 and τ2 are partitioned
on π1 and π2, respectively, while τ3 is migrating. τ3 releases its first
job at t = 0 and executes on CPU π1 until t = 5, at which point τ3
is throttled. At time t = 7, both τ1 and τ2 release their first jobs and
begin executing. At time t = 10, τ3 returns from the throttled state

(recall Fig. 1). This results in τ3 being placed back onto π1’s dl_rq
(as π1 was τ3’s last CPU) and π1 attempting to push τ3.

Because, at the instant τ3 is pushed, π1 executes τ1 with deadline

77 and π2 executes τ2 with deadline 57, τ3 should remain on π1
and preempt τ1, whose deadline is later than that of τ2. The actual
behavior exhibited by DL is that π1 will push τ3 to π2, preempting

τ2. This is confirmed in Fig. 7b. ◁

Implementation. The search for the target CPU is facilitated by

a per-cpuset cpudl struct. A cpudl keeps a bitmask of the free

CPUs in the cpuset and organizes the other CPUs into a max heap

by deadline. This bitmask and heap are updated with functions

inc_dl_deadline and dec_dl_deadline, which are called when-

ever a task is enqueued or dequeued off a CPU’s dl_rq, respectively.

RTNS’2021, April 7–9, 2021, NANTES, France Tang, Anderson, and Abeni

In order to be pushed to a target CPU, a task must be on the

pushing CPU’s dl_rq. Because this task was enqueued onto this

dl_rq, the cpudl heap considers the pushed task’s deadline when

evaluating the pushing CPU’s deadline. This may cause the cpudl to
identify another CPU as a push target, even if the other tasks on the

pushing CPU’s dl_rq all have later deadlines than this target CPU.

This is not a problem under clustered scheduling because a task

that is wrongfully preempted on the target CPU can compensate

by migrating to the pushing CPU, but this is not an option for

partitioned tasks such as in Ex. 6.

After a target CPU is identified with cpudl, the rq lock of

the target CPU is acquired with function double_lock_balance
(push_dl_task, the function that implements pushes in DL, is al-
ready holding the rq lock of the pushing CPU). The pushed task is

then dequeued from the pushing CPU’s dl_rq and enqueued onto

that of the target CPU. Finally, both CPU’s rq locks are released.

Patch. The cpudl would not mistakenly target the wrong CPU in

a push if it did not consider the deadline of the task being pushed.

Our patch accomplishes this by dequeuing any task in the process

of being pushed before the cpudl is accessed to determine the

target CPU (in function find_later_rq). Dequeueing ahead of

accessing the cpudl ensures that dec_dl_deadline is called prior

to identifying a target CPU, preventing the pushing CPU from being

represented by the pushed task’s deadline in the cpudl.
Pushes may fail due to race conditions that seem fundamental

in DL, as rq locks may be released in double_lock_balance in

order to acquire them in order (to prevent deadlock). Care must be

taken so that an inconsistent state is not exposed to concurrently

executing kernel code during a push while no rq lock is held. For

this reason, we immediately enqueue a pushed task back onto

the pushing CPU’s dl_rq once find_later_rq (the function that

checks the cpudl) returns. This enqueue is redundant if a target
CPU is successfully identified and the push does not fail due to race

conditions, as the task must then be dequeued once again to be

enqueued onto the target CPU’s dl_rq.

4.3 AC
Problem. The existing AC does not prevent a user from overload-

ing a given CPU in a cpuset by partitioning tasks with combined

utilization exceeding 1.0 onto that CPU.

Implementation. As discussed in Sec. 2.3, the existing AC main-

tains (1) for all cpusets. Each cpuset in DL is represented by a

root_domain struct (e.g., the cpudl is a field of the root_domain).
Each root_domain contains a pointer to a dl_bw struct that stores

the total utilization of all DL tasks assigned to the corresponding

cpuset (i.e., the summation in (1)) in its total_bw field. AC rejects

any requests that falsify (1). Such requests may include adding

tasks to τ (t), changing the CPUs in π (t), or modifying either of

sched_rt_runtime_us or sched_rt_period_us.
Unfortunately, there is no common helper function used to check

(1) for all of these events. For adding tasks to τ (t), (1) is checked
in function __dl_overflow (this is also where (1) is checked when

task parameters are changed or a task from another cpuset is

added to this cpuset, but we assume these events do not occur

for the reasons discussed in Sec. 3). For changing the CPUs in π (t),
(1) is checked in function dl_cpuset_cpumask_can_shrink. For

Figure 8: Dynamic affinities can starve tasks.

(a) Release pattern with dynamic affinities.

(b) Corresponding trace.

modifying sched_rt_runtime_us or sched_rt_period_us, (1) is
checked in function sched_dl_global_validate.

Adding a task to τ (t) using sched_setattr will fail if the server
to add does not have affinity for every CPU in π (t). This is checked
by comparing field span in the root_domain (bitmask of CPUs

in the cpuset) and field cpus_ptr in the task’s task_struct (bit-

mask of CPUs the task has affinity for) in helper function __sched_
setscheduler. This check is skipped when AC is disabled.

Patch. Partitioned tasks are created by giving a task affinity for a

single CPU in its cpuset prior to entering DL (as discussed in the

next subsection, DL tasks are not allowed to change their affinities).

We modify __sched_setscheduler so that sched_setattr will

not fail if a task has affinity for a single CPU.

Besides the condition in (1), we modify AC to also maintain,

∀t : ∀πj ∈ π (t) :
∑

τi ∈τ (t,πj)

ui ≤
sched_rt_runtime_us

sched_rt_period_us
. (2)

This is done by adding checks for (2) where __dl_overflow
is called and in sched_dl_global_validate, which can cause (2)

to be violated by adding a new task to τ (t ,πj) or modifying its

r.h.s. Similar to how the l.h.s. of (1) is tracked in total_bw stored
in the root_domain, the l.h.s. of (2) is tracked in a new variable

partitioned_bw stored in each πj ’s dl_rq.
(2) is not checked in dl_cpuset_cpumask_can_shrink, which

is called when π (t) changes. This is because the expected behav-

ior under Linux when the CPUs in a cpuset are changed is that

any affinity changes made with sched_setaffinity are lost. Thus,
all partitioned DL tasks in the cpuset will become migrating, mak-

ing (2) irrelevant. Because all partitioned tasks become migrating,

partitioned_bw must be set to 0 for any CPUs in the prior π (t).

4.4 Dynamic Fine-Grained Affinities
Problem. We neglected to mention any checks made for (2) when

sched_setaffinity is used to change a partitioned task’s CPU, nor
did we mention how we modified sched_setaffinity to accept

such requests. As it turns out, allowing DL tasks to dynamically

change their affinity can actually starve such tasks.

On the Defectiveness of SCHED_DEADLINE w.r.t. Tardiness and Affinities, and a Partial Fix RTNS’2021, April 7–9, 2021, NANTES, France

▷ Ex. 7. This example corresponds with Fig. 8. Consider a SP sys-

tem on a cpuset with two CPUs π1 and π2 and two tasks τ1 (ini-
tially partitioned on π1) and τ2 migrating with (C1,T1) = (1, 2) and
(C2,T2) = (1, 1). Both tasks release jobs at time t = 0.

τ2, whose deadline is earlier than τ1’s deadline, executes on π1
until preempted by τ1 at t = 2. τ2 migrates to π2 once preempted.

However, τ1 requests to change its affinity from being partitioned

on π1 to π2. Similar to how a task’s deadline is updated based on

the current time when returning from the idle state after said task’s

original deadline (recall Fig. 1), τ1’s deadline is updated from 2 to 4

when it migrates at t = 2. Thus, τ1 does not have an early enough

deadline to preempt τ2, and so it continues to be unscheduled.

Repeating this pattern of dynamic affinity requests can prevent

τ1 from executing indefinitely, as in Fig. 8a (the reason that the

workload corresponding to τ1 in Fig. 8b executes briefly every two

time units is because the request to change affinity does not occur

instantaneously at the moment of preemption). ◁

Implementation. When AC is enabled, sched_setaffinity per-

forms the same check between the cpuset’s CPUs and the requested

affinity as __sched_setscheduler. Thus, effectively sched_
setaffinity did nothing for DL tasks, as such tasks needed to

already have affinity for all the cpuset’s CPUs to enter DL. When

AC is disabled, this check is bypassed and the task is given the

requested affinity. If the task no longer has affinity for the CPU

whose rq the task is currently on, it is immediately moved to the

rq of a CPU in it has affinity for. If the task is tardy during this

migration, it is immediately replenished based on the current time t .
This sets the task’s deadline d ← t +T , lowering the task’s priority.

Patch. We forbid DL tasks from changing their affinities. We do

this by modifying sched_setaffinity to automatically reject any

requests for DL tasks. If a user desires to change the affinity of a

DL task, the task must first leave DL, change its affinity as a non-DL
workload, and reenter DL with a new server. This new server’s

deadline will be set based on its time of creation. This ultimately

has the same effect as the original implementation, but forcing

tasks to leave DL emphasizes to the user that real-time performance

guarantees may be invalid under changes to affinity.

Rejecting all requests to sched_setaffinity may be heavy

handed, but it is non-trivial to determine what restrictions are

necessary to both prevent race conditions and account for such

requests in proofs of bounded tardiness.

Altogether, our patch is fairly minor, modifying roughly 200 LOC

(for context, the main DL file is roughly 3000 LOC).

5 SOUNDNESS ARGUMENT FOR AC
Recall from Sec. 1 that EDF variant SAPA-EDF was proven to be

SRT-optimal in [16], but was not implemented in DL due to its in-

creased migrations and scheduler complexities. Our DL variant is
a compromise between SAPA-EDF and the existing DL implemen-

tation for SP systems. The soundness of our modified AC derives

from the behaviors of SAPA-EDF that our patched DL emulates. We

begin with an overview of these behaviors.

SAPA-EDF is SRT-optimal because it prevents affinity-related
priority inversions (ARPI). Under SP systems, an ARPI occurs when

an unscheduled partitioned task is unable to preempt a migrating

task on the partitioned task’s CPU; meanwhile, some other CPU

in the same cpuset is free or executes a task with later deadline

than the partitioned task. This is a priority inversion because a

higher-priority task is left unscheduled in favor of a lower-priority

task or free CPU. SAPA-EDF prevents such situations by forcing

migrating tasks to migrate to later CPUs whenever ARPIs would

have otherwise occurred. While SAPA-EDF prevents ARPIs, our

patched DL guarantees that they are transient.

▷ Ex. 8. Consider a time instant such that an ARPI exists between

partitioned task τ1, migrating task τ2 executing on τ1’s CPU, and
task τ3 with later deadline than τ1.

Under our patched DL, this priority inversion lasts for at most the

execution time of τ2’s job. When τ2’s job completes, τ2 will always
be throttled (recall from Sec. 4 that all tasks that complete jobs

are throttled in our patch), and will migrate to τ3’s CPU when it

becomes eligible and is pushed (recall that we’ve modified pushes to

always target the CPU that executes the task with latest deadline).

Note that it is impossible for τ2 to be preempted before its job

completes for the duration of the ARPI, as any migrating task will

preempt τ3 before τ2 under our patched DL because τ3 has a later
deadline. If a partitioned task preempts τ2, then the ARPI ends by

definition (recall from the above paragraphs that for an ARPI, it is

required that an executing task be scheduled on τ1’s CPU). ◁

Because these ARPIs are transient (i.e., bounded), any resulting

increase in tardiness relative to SAPA-EDF is also bounded. As tardi-
ness is bounded under SAPA-EDF for any feasible system (because

SAPA-EDF is SRT-optimal [16]) and because our AC conditions ((1)

and (2)) guarantee that the system is feasible [17], it follows that

tardiness is bounded under our patched DL and AC. As a reminder,

the formal version of this proof is available online [14].

6 EVALUATION
In this section, we evaluate the performance of our patched DL
variant against the original implementation.

6.1 Experimental Setup
Our experiments and the execution traces presented prior to this

section were conducted on a 16 CPU Intel Xeon Silver 4110 mul-

tiprocessor. Measured workloads were restricted to a cluster com-

posed of eight CPUs, as these compose a single socket and NUMA

node, and clusters should reflect the hardware topology in practice.

Periodic workloads were generated for these experiments using

taskgen [7, 10] and rt-app [1]. SP task systems were created by

applying worst-fit packing to the task sets generated by taskgen

and determining any unpacked tasks to be migrating.

We are interested in how our modifications to DL’s migration

code described in Sec. 4 affect overheads. Changes to overheads are

due to forcing tardy tasks to enter the throttled state, thereby requir-

ing that such tasks wait for an hrtimer callback (dl_task_timer)
to complete before becoming eligible again, and due to the added

dequeue and enqueue operations required for every push. For mea-

suring the additional latency caused by this hrtimer callback, we
inserted ftrace event tracepoints into our patched kernel that are

triggered whenever a tardy task is forced into the throttled state

and when dl_task_timer returns said task to a runqueue. To mea-

sure the duration of pushes, we also inserted tracepoints around

push_dl_task. To get a more holistic view of how these changes to

RTNS’2021, April 7–9, 2021, NANTES, France Tang, Anderson, and Abeni

Figure 9: Forced Throttle Duration

(a) 16 Tasks (b) 40 Tasks

migration code affect performance, we also measured the tardiness

tasks experience scaled by their periods.

Taskgen is configured such that each generated task set has a

total utilization of 7.52. This is slightly below 95% of eight CPUs’

worth of capacity to guarantee that AC will not reject tasks due

to potential rounding in taskgen in our patched kernel (AC must

be disabled for SP scheduling in the original). We focus on heavily

utilized systems as we are primarily interested in SRT and lightly

utilized systems produce less, if any, tardiness. We considered task

systems composed of 16 and 40 tasks to consider systems with both

heavy and light per-task utilizations. Ten different task systems

were measured for each number of tasks. Timestamps for each task

system were collected over an interval of ten minutes on both the

original and our patched kernel.

Latency of forced throttles.Note that we do not compare against

the original DL implementation when considering forced task throt-

tling because this overhead is unique to our variant. The distribution

of sampled durations during which our patched DL forced a task to

be throttled when it would not have in the original implementa-

tion is presented in Fig. 9. The average latency caused by a forced

throttle was 44 us for systems with 16 tasks and 34 us for sys-

tems with 40 tasks. The multimodal distribution of throttle times in

Fig. 9a is likely due to our usage of hr_timer_forward_now with
the dl_task_timer callback to ensure that tasks forced into the

throttle state are unscheduled before dl_task_timer attempts to

push a task. The time difference between peaks roughly correlates

with the time interval the hrtimer is forwarded by in our patched

DL. As each usage of hr_timer_forward_now requires the task to

wait an additional timer interval, each peak in this histogram likely

corresponds with a different number of calls to this function.

These latencies may not be acceptable for servers whose work-

loads require sub ms response times. However, if the size of these

latencies is being caused by waiting for the hrtimer as we sus-

pect, an alternative method for forcing tasks that complete jobs to

migrate that avoids using the hrtimer may be more practical. As

stated earlier in Sec. 1, one of the goals of this work was to make

as few adjustments to the existing implementation as possible. In

future work, we will loosen this restriction.

Duration of pushes. The distribution of sampled push durations

for both DL and our patched variant is presented in Fig. 10. These

distributions are multimodal because push_dl_task contains a

retry loop in case the state of the system changes while rq locks are
dropped in double_lock_balance. The effect of the added enqueue

Figure 10: Push Durations (40 Tasks)

(a) Original (b) Patched

Figure 11: Tardiness (40 Tasks)

(a) Original (b) Patched

and dequeue operations on push overheads is minor, entailing a

change of about 1 us to the average duration of a push.

Tardiness. The distribution of samples of tasks’ tardiness levels is

presented in Fig. 11. Average tardiness is negligibly lower under

our patched variant compared to the original implementation.

Altogether, the changes made by our patch do not seem to in-

crease overheads by a substantial amount. The most concerning

overhead is the latency caused by forwarding the dl_task_timer
callback function, and even this overhead occurs relatively infre-

quently. This can be observed by comparing the y-axes of Fig. 9

and 10. The number of pushes performed by the system vastly

outnumbers the count of forced throttles.

7 CONCLUSION
We have presented a patch to DL to support semi-partitioned affini-

ties with theoretically sound AC. In looking to prove the sound-

ness of our modified AC, we have highlighted several instances of

AC being broken in the existing DL implementation. We believe

this has been caused by implementation decisions being driven

by heuristics and empirical validation over theoretical analysis.

While heuristic-driven development certainly outperforms being

oblivious to features such as DVFS or asymmetric capacities, we

have demonstrated that intuition is unreliable when it comes to

guaranteeing bounded tardiness under AC.

In future work, we would like to consider supporting AC for

some of the features we omitted from our model in Sec. 3. We

believe that similarly to how our patch compromises between the

current DL implementation and SAPA-EDF, a similar compromise

can be made between DL and the EDF variants proposed in the

theory for asymmetric CPUs.

On the Defectiveness of SCHED_DEADLINE w.r.t. Tardiness and Affinities, and a Partial Fix RTNS’2021, April 7–9, 2021, NANTES, France

ACKNOWLEDGMENTS
Work was supported by NSF grants CNS 1563845, CNS 1717589,

CPS 1837337, CPS 2038855, and CPS 2038960, ARO grant W911NF-

20-1-0237, and ONR grant N00014-20-1-2698.

REFERENCES
[1] 2009. rt-app. https://github.com/scheduler-tools/rt-app. Online; accessed 23 Oct

2020.

[2] 2018. Deadline Task Scheduling. https://github.com/torvalds/linux/blob/master/

Documentation/scheduler/sched-deadline.rst. Online; accessed 03 June 2020.

[3] 2019. SCHED_DEADLINE on heterogeneous multicores. https://lwn.net/Articles/

793495/. Online; accessed 15 Oct 2020.

[4] L. Abeni, G. Lipari, A. Parri, and Y. Sun. 2016. Multicore CPU reclaiming: parallel

or sequential? 1877–1884. https://doi.org/10.1145/2851613.2851743

[5] F. Cerqueira, A. Gujarati, and B. B. Brandenburg. 2014. Linux’s Processor Affinity

API, Refined: Shifting Real-Time Tasks Towards Higher Schedulability. In 2014
IEEE Real-Time Systems Symposium. 249–259. https://doi.org/10.1109/RTSS.2014.

29

[6] U. M. C. Devi and J. H. Anderson. 2005. Tardiness bounds under global EDF

scheduling on a multiprocessor. In 26th IEEE International Real-Time Systems
Symposium (RTSS’05). 12 pp.–341.

[7] P. Emberson, R. Stafford, and R.I. Davis. 2010. Techniques For The Synthesis Of

Multiprocessor Tasksets. WATERS’10 (01 2010).
[8] A. Gujarati, F. Cerqueira, and B. B. Brandenburg. 2013. Outstanding Paper Award:

Schedulability Analysis of the Linux Push and Pull Scheduler with Arbitrary

Processor Affinities. In 2013 25th Euromicro Conference on Real-Time Systems.
69–79.

[9] A. Gujarati, F. Cerqueira, and B. B. Brandenburg. 2014. Multiprocessor real-time

scheduling with arbitrary processor affinities: from practice to theory. Real-Time

Systems 51 (2014), 440–483.
[10] J. Lelli. 2014. taskgen. https://github.com/jlelli/taskgen. Online; accessed 23 Oct

2020.

[11] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli. 2016. Deadline Scheduling in the

Linux Kernel. Softw. Pract. Exper. 46, 6 (June 2016), 821–839. https://doi.org/10.

1002/spe.2335

[12] C. Liu and J. H. Anderson. 2012. An O(m) Analysis Technique for Supporting

Real-Time Self-Suspending Task Systems. In 2012 IEEE 33rd Real-Time Systems
Symposium. 373–382. https://doi.org/10.1109/RTSS.2012.87

[13] C. Scordino, L. Abeni, and J. Lelli. 2018. Energy-Aware Real-Time Scheduling in

the Linux Kernel. In Proceedings of the 33rd Annual ACM Symposium on Applied
Computing (Pau, France) (SAC ’18). Association for Computing Machinery, New

York, NY, USA, 601–608. https://doi.org/10.1145/3167132.3167198

[14] S. Tang and J. H. Anderson. 2020. On the Defectiveness of SCHED_DEADLINE

w.r.t. Tardiness and Affinities, and a Partial Fix. Full version of this paper, available

at http://jamesanderson.web.unc.edu/papers/.

[15] S. Tang and J. H. Anderson. 2020. Towards Practical Multiprocessor EDF with

Affinities. In 41st IEEE Real-Time Systems Symposium.

[16] S. Tang, S. Voronov, and J. H. Anderson. 2019. GEDF Tardiness: Open Problems

Involving Uniform Multiprocessors and Affinity Masks Resolved. In 31st Eu-
romicro Conference on Real-Time Systems (ECRTS 2019) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 133), Sophie Quinton (Ed.). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 13:1–13:21.

https://doi.org/10.4230/LIPIcs.ECRTS.2019.13

[17] S. Voronov and J. H. Anderson. 2018. An Optimal Semi-Partitioned Scheduler

Assuming Arbitrary Affinity Masks. In 2018 IEEE Real-Time Systems Symposium
(RTSS). 408–420.

[18] K. Yang and J. Anderson. 2017. On the Soft Real-Time Optimality of Global EDF

on Uniform Multiprocessors. In 2017 IEEE Real-Time Systems Symposium (RTSS).
319–330. https://doi.org/10.1109/RTSS.2017.00037

https://github.com/scheduler-tools/rt-app
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst
https://lwn.net/Articles/793495/
https://lwn.net/Articles/793495/
https://doi.org/10.1145/2851613.2851743
https://doi.org/10.1109/RTSS.2014.29
https://doi.org/10.1109/RTSS.2014.29
https://github.com/jlelli/taskgen
https://doi.org/10.1002/spe.2335
https://doi.org/10.1002/spe.2335
https://doi.org/10.1109/RTSS.2012.87
https://doi.org/10.1145/3167132.3167198
http://jamesanderson.web.unc.edu/papers/
https://doi.org/10.4230/LIPIcs.ECRTS.2019.13
https://doi.org/10.1109/RTSS.2017.00037

	Abstract
	1 Introduction
	2 Background
	2.1 Task Model
	2.2 From Threads to Tasks
	2.3 CPUSets and AC
	2.4 Fine-Grained Affinities

	3 Problematic Features
	3.1 Features that Break Bounded Tardiness
	3.2 Features that Negatively Affect Tardiness

	4 Adding SP Scheduling to DL
	4.1 Bypassing the Throttled State
	4.2 Pushing to the Latest CPU
	4.3 AC
	4.4 Dynamic Fine-Grained Affinities

	5 Soundness Argument for AC
	6 Evaluation
	6.1 Experimental Setup

	7 Conclusion
	Acknowledgments
	References

