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Abstract

Fixed-priority multiprocessor schedulers are often preferable to dynamic-priority ones
because they entail less overhead, are easier to implement, and enable certain tasks to
be favored over others. Under global fixed-priority (G-FP) scheduling, as applied to the
standard sporadic task model, response times for low-priority tasks may be unbounded,
even if the total task system utilization is low. In this paper, it is shown that this negative
result can be circumvented if different jobs of the same task are allowed to execute in
parallel. In particular, a response-time bound is presented for task systems that allow
intra-task parallelism. This bound merely requires that the total utilization does not
exceed the overall processing capacity—individual task utilizations need not be further
restricted. This result implies that G-FP is optimal for scheduling soft real-time tasks
that require bounded tardiness, if intra-task parallelism is allowed.

1 Introduction
Since the multicore revolution, the focus of real-time scheduling research has shifted from
uniprocessors to multiprocessors. In work on this topic, the global earliest-deadline-first (G-
EDF) and global fixed-priority (G-FP) schedulers have both been widely studied (e.g., [3, 5–7,
9, 19]). Although neither is optimal for scheduling hard real-time (HRT) systems where every
deadline must be met, both preemptive and non-preemptive G-EDF are optimal for scheduling
soft real-time (SRT) sporadic task systems that only require bounds on deadline tardiness [12].
That is, under each of these schedulers, deadlines can be missed by only a bounded amount of
time for any feasible task system. Feasible in this context means that the underlying platform
is not over-utilized, and no task over-utilizes a single processor [11].

Unfortunately, this SRT-optimality result does not extend to G-FP, as feasible task systems
exist for which tardiness under it can increase without bound; this was shown previously for
preemptive G-FP [11] and is shown herein for non-preemptive G-FP. This non-optimality result
is regrettable because, in comparison to G-EDF, G-FP entails less overhead, is easer to imple-
ment, and enables certain tasks to be favored over others. Given this negative result, if certain
tasks need to be prioritized over others, an obvious alternative would be to use a partitioning
scheme instead. However, such schemes are also not optimal and can cause system capacity
loss due to bin-packing-related issues.

∗Work supported by NSF grants CNS 1409175, CPS 1446631, CNS 1563845, and CNS 1717589, ARO grant
W911NF-17-1-0294, and funding from General Motors.
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In this paper, we consider a different option: employing a relaxed variant of the standard
sporadic task model in which successive jobs of the same task may execute in parallel. We are
motivated to consider this relaxed model because of the nature of the counterexamples used to
show the non-optimality of G-FP. In devising such counterexamples, the goal is to ensure that
a certain low-priority task is unable to make use of processors made available to it in parallel,
thereby causing its response times to grow without bound.

This relaxed task model has in fact been considered previously in work directed at using
G-EDF in HRT [4] and SRT systems [14, 29]. The latter work showed that allowing intra-
task parallelism enables much lower tardiness bounds to be derived. Following [29], we call
this relaxed model the npc-sporadic (“no precedence constraints”) task model. Under the npc-
sporadic task model, G-EDF precludes response times from growing unboundedly, even if a
task’s execution time exceeds its period. All that is required is that the entire platform is not
over-utilized—this is the only condition needed for SRT feasibility under this model.

This paper expands upon work directed at the npc-sporadic task model by considering
the behavior of G-FP under this model. We show that, like G-EDF, G-FP ensures bounded
response times for any feasible npc-sporadic task system. We elaborate on this result below,
after first taking a closer look at the npc-sporadic model.

Applying the npc-sporadic task model. For the npc-sporadic task model to be applicable,
successive jobs of the same task must be able to execute independently. Additionally, it must
be acceptable for such jobs to produce output out of order; this tends to be a lesser concern
that can be dealt with via buffering (recall that our focus here is applications that can tolerate
some tardiness).

Prior papers directed at G-EDF under the npc-sporadic task model mention several exam-
ple applications that meet these requirements [14, 29]. A particularly compelling use case is
computer-vision (or radar) object detection [29]. In contrast to object tracking, object detection
may be performed on each frame of video independently. In recent work pertaining to real-time
computer vision [31], this use case was considered in detail. In that work, it was shown that
allowing intra-task parallelism enables dramatically improved response-time bounds for object
detection.

Contributions. We consider the scheduling of npc-sporadic task systems on an identical
multiprocessor platform under preemptive G-FP. We derive a response-time bound that shows
that preemptive G-FP guarantees bounded response times (and hence tardiness) for any feasible
npc-sporadic task system; that is, preemptive G-FP is SRT-optimal. We also show that our
derived response-time bound is asymptotically tight.

This bound tends to grow as the core count and the number of higher-priority tasks increase.
Thus, lower tardiness can be guaranteed by partitioning tasks among clusters of cores and
scheduling globally only within a cluster. Using a clustered approach lessens tardiness at the
expense of impinging on schedulability due to bin-packing-related issues. To elucidate this
tradeoff, we conducted an experimental schedulability study in which different cluster sizes
were considered on a 16-core platform. We found that using clusters of size four typically
enabled relative tardiness bounds that were 60% of those under global scheduling with hardly
any impact on schedulability. (A task’s relative tardiness is given by its tardiness divided by
its period.) In our experiments, we also compared relative tardiness bounds obtained from our
analysis vs. observed average relative tardiness. We found that bounds for task sets with high
total utilization tended to be four to ten times larger than observed relative tardiness.

Per-task tardiness bounds depend on the prioritization of the task system; a lower tardiness
bound can be achieved with an appropriate choice of prioritization function. We evaluated
several strategies for the priority ordering with respect to tardiness. We found that three of

2



these strategies significantly outperform the others, and considered these in more detail. In our
evaluation, the correct choice of prioritization function ensured up to five times lower average
tardiness

We present our tardiness analysis by initially focusing on the preemptive G-FP scheduler.
However, as discussed later, this analysis can be adjusted to apply to non-preemptive G-FP, as
well as to a further generalization of G-FP that employs preemption thresholds, and, in fact,
to any work-conserving global scheduler. Thus, non-preemptive G-FP is SRT-optimal as well
with respect to npc-sporadic task systems.

The results of this paper establish a rare context under which fixed-priority real-time
scheduling is optimal in some sense. To our knowledge, the only other context where such
a result has been shown is the uniprocessor scheduling of synchronous implicit-deadline peri-
odic tasks with harmonic periods.

This work extends a paper [27] previously published in the Proceedings of the 26th In-
ternational Conference on Real-Time Networks and Systems (RTNS 2018). In addition to the
slightly modified original material, the extended version considers non-preemptive fixed-priority
scheduling, generalized fixed-priority scheduling (G-FP with preemption thresholds), and task
system prioritizations. It also includes an expanded experimental evaluation.

Paper organization. In the rest of the paper, we provide needed background (Sec. 2), prove
some preliminary lemmas (Sec. 3), derive the response-time bound that is our main contribution
(Sec. 4), establish its tightness (Sec. 5), consider task system prioritizations (Sec. 6), extend
our results for the non-preemptive case (Sec. 7), as well as G-FP with preemption thresholds
(Sec. 8) and any work-conserving scheduler (Sec. 9), present our experimental results (Sec. 10),
and conclude (Sec. 11).

2 System Model
Task model. We consider the SRT scheduling of a system τ of n implicit-deadline npc-
sporadic tasks, τ1, . . . , τn, on platform π with m identical unit-speed processors, π1, . . . , πm.
The npc-sporadic task model considered in this paper differs from the standard sporadic task
model by relaxing intra-task precedence constraints: any two jobs, ready for execution, may be
scheduled at the same time, even if they are produced by the same task. We use the following
notation (we assume familiarity with terms commonly used in work on real-time scheduling):
Ci > 0 denotes the worst-case execution time of task τi, Ti denotes its period, and ui = Ci/Ti
denotes its utilization; Ji,j denotes the jth job released by τi, where j ≥ 1, and Ci,j denotes
Ji,j’s actual execution time, which may be less than Ci. If a job is released at time tr, has a
deadline a time td, and completes at time tc, then its response time is tc − tr and its tardiness
is max(0, tc − td). We also assume that time is continuous. We denote the overall system

utilization by U =
n∑
i=1

ui, the total utilization of tasks τ1, ..., τ` by U` =
∑̀
i=1

ui, and the total

utilization of all tasks in a specified set α by Uα =
∑
τi∈α

ui.

Task constraints. Our objective is to derive a response-time bound for a task τk by focusing
on a job of interest Jk,d. Note that if τk’s response times are bounded, then its tardiness is
bounded as well. If U exceeds the platform capacity of m, then at least one task will clearly
have unbounded response times if all tasks release jobs as soon as possible and every job
executes for its worst-case execution time. Therefore, we assume U ≤ m. However, unlike
the traditional sporadic task model, we do not require ui ≤ 1, which is necessary for bounded
response times under that model but not under the npc-sporadic task model. Under the latter
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model, a scheduler that can ensure bounded tardiness for any task system for which U ≤ m
holds is SRT-optimal.

Scheduler. The main focus of this paper is preemptive G-FP (Secs. 4–6), but we will also
consider its non-preemptive variant (Sec. 7) as well as a family of variants defined by preemption
thresholds (Sec. 8). Furthermore, we will show that our results can be extended to any work-
conserving scheduler (Sec. 9). To reduce redundancy, we begin by providing definitions (this
section) and base lemmas (Sec. 3) for a broad class of schedulers. Scheduler-specific lemmas
and theorems are presented in later sections. In this paper, we consider only schedulers that
satisfy the following three assumptions:

SH1: The scheduler is global and work-conserving.

SH2: Ready jobs of the same npc-sporadic task are prioritized against each other on a FIFO
basis.

SH3: A job can be scheduled only a finite number of times within any finite time interval.

Assumption SH1 means that every job can be scheduled on every processor, and no processor
can be idle, if there is a non-completed job. Assumption SH2 is implicit in the conventional
sporadic task model (which precludes a job from starting until the previous job of the same task
completes). Assumption SH3 reflects the practical reality that an “implementable” scheduler
cannot preempt a job infinitely often. Informally speaking, Assumptions SH1 and SH2 ensure
that every job will eventually be completed because the system is not over-utilized.

Sporadic vs. npc-sporadic task models. Although the potential for conventional spo-
radic tasks to have unbounded response times under preemptive G-FP has been shown pre-
viously [11], we provide examples illustrating this behavior below for both preemptive and
non-preemptive G-FP to highlight various differences between the npc-sporadic and sporadic
task models.

Example 1 (preemptive G-FP). Consider a task system with m + 1 periodic tasks, each with
a worst-case execution time of 1 + ε and a period of 2 time units. Under the conventional
sporadic model, the response time of the lowest-priority task is unbounded because an allocation
of only 1− ε time units is available every 2 time units, while the task requires 1 + ε time units,
as illustrated in Fig. 1a for m = 3. The total utilization of this system is (1 + ε)(m+ 1)/2,
which approaches (m + 1)/2 (roughly half-utilizing the platform) as ε → 0. In contrast, under
the npc-sporadic model, applying Theorem 1 in Sec. 4 to the task system in Fig. 1a yields a
response-time bound for the lowest-priority task of 3.5 for small ε (its exact response time is
3 + 3ε). A schedule for this case is shown in Fig. 1b.

Example 2 (non-preemptive G-FP). Consider a task system with three periodic tasks, to be
scheduled on two processors, with (C1, T1) = (2, 3), (C2, T2) = (2, 3), and (C3, T3) = (1, 2).
Despite the non-preemptivity of the scheduler, each job of τ3 (the lowest-priority task) completes
in one time unit, as illustrated in Fig. 1c, and thus never non-preemptively blocks any jobs
from τ1 and τ2. The time available to τ3 on each processor coincides, so under the conventional
sporadic model, its response time must increase without bound, as illustrated. In contrast, under
the npc-sporadic model, where intra-task parallelism is allowed, its response time is bounded, as
implied by Fig. 1d.
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(a) Ex. 1, sporadic tasks, and preemptive G-FP.
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(b) Ex. 1, npc-sporadic tasks, and preemptive G-FP.
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(c) Ex. 2, sporadic tasks, and non-preemptive G-FP.
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(d) Ex. 2, npc-sporadic tasks, and non-preemptive G-FP.

Figure 1: Schedules for the task systems in Exs. 1 and 2.
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Definitions. In considering the problem of deriving response-time bounds, we make use of
some additional terms and notation, which we introduce next.

Definition 1. We let ri,j and Ri,j denote the release and response times, respectively, of job
Ji,j. For conciseness, we sometimes use r and R in reference to the job of interest instead of
rk,d and Rk,d when there is no ambiguity.

Definition 2. At time t, job Ji,j is ready if t ≥ ri,j and it has not completed yet. If t < ri,j,
then Ji,j is unreleased.

As in [13], we use the concept of lag, which we define by considering an “ideal” platform π′

consisting of n processors, π′1, . . . , π′n, with speeds u1, . . . , un, respectively. A processor’s speed
corresponds to the job execution rate on it. Note that such a speed might differ from 1.0. In
the ideal schedule, each task τi only executes jobs on processor π′i with speed ui. Under the
npc-sporadic task model with implicit deadlines, every job executes in the ideal schedule from
its release until its completion without interference from other jobs or tasks (different tasks run
on different processors). Note that if Ci,j < Ci holds, then Ji,j completes in the ideal schedule
before its deadline, whereas, if Ci,j = Ci holds, then it completes exactly at its deadline. Thus,
at most one job from every task is scheduled at any time in the ideal schedule.

Definition 3. We denote as I the ideal schedule of the task set τ on π′ as described above.
Note that I is a hypothetical schedule that is used only for proofs (it does not exist in reality
because it may require processors that differ from those in the given platform, but I is well
defined). Also, we denote as S the canonical schedule produced by the considered scheduler
on the actual platform π with m unit-speed processors; a canonical schedule is a schedule that
satisfies several scheduler-specific assumptions and is defined for every scheduler later. These
assumptions can be specified later because we do not use any of them within Secs. 2 and 3.

Definition 4. For a given schedule H (either I or S) at a given time instant t, we define
function sched(H, t, Ji,j) such that sched(H, t, Ji,j) = s if Ji,j is scheduled on some processor of
speed s, and sched(H, t, Ji,j) = 0 if Ji,j is not scheduled on any processor.

We also define A(H, t1, t2, Ji,j), the overall processor capacity allocated to job Ji,j in H
within the interval [t1, t2), as follows,

A(H, t1, t2, Ji,j) =

∫ t2

t1

sched(H, t, Ji,j)dt.

Because sched(H, ·, Ji,j) is a piecewise constant function, A(H, 0, ·, Ji,j) is continuous (by As-
sumption SH3, the value of sched(H, ·, Ji,j) changes its values a finite number of times within
[0, t]). To aid in expressing other needed formulas, we also define

A(H, t1, t2, τi) =
∑
j

A(H, t1, t2, Ji,j), and

A(H, t1, t2, τ) =
∑
τi∈τ

A(H, t1, t2, τi).

Definition 5. The lag for job Ji,j is defined as lag(Ji,j, t) = A(I, 0, t, Ji,j)−A(S, 0, t, Ji,j).

Example 3 (functions sched,A, lag). Consider a job J1,1 in a schedule S with other jobs, where
C1,1 = 3, T1 = D1 = 4, and u1 = 0.75. Inset (a) of Fig. 2 shows how this job is scheduled in some
actual schedule. Inset (b) shows the corresponding values of sched(I, t, J1,1) and sched(S, t, J1,1).
Inset (c) depicts lag(t, J1,1) as a function of time.

Definition 6. The lag for task τi is defined as Lag(τi, t) =
∑

j lag(Ji,j, t), which is equivalent
to A(I, 0, t, τi)−A(S, 0, t, τi).
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Figure 2: Ex. 3 reference picture.

As in Def. 4, the Lag of τi can be equivalently defined as

Lag(τi, t) =

∫ t

0

(∑
j

sched(I, t, Ji,j)−
∑
j

sched(S, t, Ji,j)

)
dt.

Definition 7. We define the total lag of the entire task system as

LAG(t) =
∑

i Lag(τi, t) =
∑

i

∑
j lag(Ji,j, t), which is equivalent to A(I, 0, t, τ) − A(S, 0, t, τ).

We also define LAG(α, t) =
∑

τi∈α Lag(τi, t) (the total lag of the tasks in α). Thus, LAG(t) is
an abbreviation of LAG(τ, t).

Note that we use function names lag for the lag of a job, Lag for the lag of a task, and LAG
for the total lag of a set of tasks.

3 Preliminary Bounds on lag, Lag, and LAG Functions
In this section, we present a number of lemmas pertaining to the lag-based functions at the
job, task, and system level. In Sec. 3.1, we derive a few properties of the job lag function and
a lower bound on the task Lag function. In Sec. 3.2, we derive an upper bound on the total
system LAG function. Note that these lemmas are proven assuming only Assumptions SH1-
SH3. Therefore, we are free to use them later in the context of any scheduler that satisfies
Assumptions SH1-SH3.

Proof overview. To emphasize the importance of the lemmas proved in this section, we
present here an overview of the response-time bound computation for preemptive G-FP. For-
tunately, the same approach can be used for all considered G-FP variants with minor modifi-
cations.

The main idea behind the npc-sporadic task model is that a task can occupy multiple
available processors if it has multiple ready jobs. If Jk,d’s response time is high enough, then
there are at least m non-completed jobs (the job of interest and the following jobs of τk).
Thus, until the completion of Jk,d, no processors are idle. Although this approach works for
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preemptive G-FP (Sec. 4), we modify it later to handle more complicated schedulers (Sec. 7
and 8).

We exploit this proof idea in three major steps. Firstly, we estimate the total system LAG
at times r and r + R in Lemmas 7 and 8 assuming α = τ . Because the job of interest is
uncompleted within the interval [r, r+R), either R is small or m cores are busy within most of
the interval. In both cases, the LAG increase over the interval is relatively small, which implies
an upper bound for LAG(r + R). Secondly, we compute a lower bound on Jk,d’s Lag at time
r + R in Lemma 9; this Lag value depends on R. Finally, we obtain an upper bound on R in
Theorem 1 with LAG(r +R) =

∑
i Lag(τi, r +R) using Lemma 4 to bound the Lag of all tasks

other than τk.

3.1 Task Lag Lower Bound

The general property of Lag for a single task that we establish in this subsection is formulated
in Lemma 4. To prove this lemma, we first prove several lemmas concerning job lag.

Lemma 1. For any time t before the release of job Ji,j or after its completion in both schedules
I and S, lag(Ji,j, t) = 0.

Proof. If Ji,j is unreleased, then by Def. 4, A(I, 0, t, Ji,j) and A(S, 0, t, Ji,j) are both 0. If Ji,j
has completed in both schedules I and S, then by Def. 4, A(I, 0, t, Ji,j) = A(S, 0, t, Ji,j) = Ci,j.
In both cases, by Def. 5, lag(Ji,j, t) = 0.

Lemma 2. If t ≥ ri,j + Ti, then lag(Ji,j, t) ≥ 0.

Proof. If t ≥ ri,j + Ti, then A(I, 0, t, Ji,j) = Ci,j, because Ji,j completes in I by the end of its
period. Also, A(S, 0, t, Ji,j) ≤ Ci,j for every time instant. By Def. 5, the lemma follows.

The next lemma provides bounds on a single job’s lag.

Lemma 3. min(0, (ui − 1)Ci) ≤ lag(Ji,j, t) ≤ Ci.

Proof. According to Def. 5,

lag(Ji,j, t) = A(I, 0, t, Ji,j)−A(S, 0, t, Ji,j)
≤ A(I, 0, t, Ji,j)
≤ {by Def. 4}
Ci,j

≤ Ci,

proving the stated upper bound. In the rest of the proof, we focus on proving the stated lower
bound. Let f = Ci,j/Ci. Note that f · Ti = (Ci,jTi)/Ci = Ci,j/ui, which is the exact amount
of time that is needed for Ji,j’s completion in the ideal schedule I. To simplify the proof, we
split the time line into three intervals: “before Ji,j’s release” : [0, ri,j); “Ji,j is scheduled in I”:
[ri,j, ri,j + f · Ti); and “Ji,j has completed in I” : [ri,j + f · Ti,∞). We consider each interval
separately.

Case 1: t ∈ [0, ri,j). By Lemma 1, lag(Ji,j, t) = 0.

Case 2: t ∈ [ri,j, ri,j + f · Ti). For any such t, we define t′ = t− ri,j. By definition, t′ ∈
[0, f ·Ti). Since Ji,j is released at time ri,j and is continuously scheduled in I (by Def. 3) during
[ri,j, ri,j + f · Ti) on a processor with speed ui, A(I, 0, t, Ji,j) = uit

′.
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In completing the reasoning for this case, we first dispense with the possibility that ui ≥ 1
holds. Because job Ji,j is not scheduled in S before ri,j,

A(S, 0, t, Ji,j) = A(S, ri,j, t, Ji,j) ≤ t− ri,j = t′.

Thus, if ui ≥ 1 holds, we have

A(I, 0, t, Ji,j) = uit
′ ≥ t′ ≥ A(S, 0, t, Ji,j),

which implies that lag(Ji,j) ≥ 0 holds. In the rest of the proof for Case 2, we consider the
remaining possibility: ui < 1.

Let ρ denote the allocation time for Ji,j in S during the subinterval [ri,j, t) = [ri,j, ri,j + t′).
Then ρ ≤ t′ and ρ ≤ Ci (the maximum execution time for any job of τi). Thus, we have

lag(Ji,j, t) = lag(Ji,j, ri,j + t′)

= A(I, 0, ri,j + t′, Ji,j)−A(S, 0, ri,j + t′, Ji,j)

= uit
′ − ρ

= (ui − 1)ρ+ (t′ − ρ)ui

≥ {t′ ≥ ρ}
(ui − 1)ρ

≥ {ui − 1 < 0 and ρ ≤ Ci}
(ui − 1)Ci.

Case 3: t ∈ [ri + f · Ti,∞). By Def. 3 and the definition of f , Ji,j is completed at time instant
ri + f · Ti in I, and A(I, 0, t, Ji,j) = Ci,j. With A(S, 0, t, Ji,j) ≤ Ci,j (the maximal allocation
for Ji,j in S), we have lag(Ji,j, t) = A(I, 0, t, Ji,j)−A(S, 0, t, Ji,j) ≥ Ci,j − Ci,j = 0.

By Cases 1-3, lag(Ji,j, t) ≥ min(0, (ui − 1)Ci).

Corollary 1. lag(Ji,j, t) < 0 implies t ∈ [ri,j, ri,j + Ti).

Proof. In Cases 1 and 3 in the proof of Lemma 3 above, we proved that lag(Ji,j, t) ≥ 0 holds.
Thus, if lag(Ji,j, t) < 0 holds, then t∈ [ri,j, ri,j + f · Ti) (the interval considered in Case 2) with
f = Ci,j/Ci. Because f ≤ 1, [ri,j, ri,j + f · Ti) ⊆ [ri,j, ri,j + Ti).

Our lower bound on job lag can be extended to task Lag.

Lemma 4. min(0, (ui − 1)Ci) ≤ Lag(τi, t).

Proof. By Corollary 1, lag(Ji,j, t) < 0 may hold only if Ji,j is scheduled for execution in I
at time instant t ∈ [ri,j, ri,j + Ti). By Def. 3, at most one job per task may be scheduled in I
at any time instant. Therefore, in

∑
j lag(Ji,j, t), at most one summand might be less than 0,

because the intervals [ri,j, ri,j +Ti) do not overlap for different choices of j due to the definition
of an npc-sporadic task. That is, if lag(τi,h, t) < 0 holds, then for any j 6= h, lag(Ji,j, t) ≥ 0.
Thus, by Lemma 3

Lag(τi, t) =
∑
j

lag(Ji,j, t) ≥ lag(τi,h, t) ≥ min(0, (ui − 1)Ci).
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3.2 System LAG Upper Bounds

In Sec. 3.1, we established results about job and task lags. We are now ready to bound the
overall system LAG. To do so, we need to analyze precisely how processors schedule different
tasks.

We begin by proving that all functions considered in ours proofs are continuous. This
property is used in establishing LAG upper bounds.

Lemma 5. lag(Ji,j, t) and Lag(τi, t) are continuous functions of t. Also, ∀α ⊆ τ , LAG(α, t) is
a continuous function of t.

Proof. Both A(I, 0, t, Ji,j) and A(S, 0, t, Ji,j) are continuous by definition. Thus, by Def. 5,
lag(Ji,j, t) is continuous because

lag(Ji,j, t) = A(I, 0, t, Ji,j)−A(S, 0, t, Ji,j).

Let h be the number of jobs, released by τi at or before t. Then ri,h ≤ t < ri,h+1. By
Lemma 1, lag(Ji,j, t) = 0 for all j > h. Thus,

Lag(τi, t) =
∑
j

lag(Ji,j, t) =
∑
j≤h

lag(Ji,j, t).

Lag(τi, t) is continuous because it is a sum of a finite number of continuous functions. Similarly,
LAG(α, t) is continuous because

LAG(α, t) =
∑
τi∈α

Lag(τi, t).

The following lemma is used to bound the execution rate of a given task set in the ideal
schedule I.

Lemma 6. For any time interval [t1, t2) and any task set α,

A(I, t1, t2, τi) ≤ ui(t2 − t1), and

A(I, t1, t2, α) ≤ Uα(t2 − t1).

Proof. At every time instant in the ideal schedule I, there is at most one job from task τi
scheduled (see Def. 3). The speed of the processor that schedules τi is ui, while the length of
the considered interval is (t2 − t1). Thus,

A(I, t1, t2, τi) =
∑
j

A(I, t1, t2, Ji,j) ≤ ui(t2 − t1), and (1)

A (I, t1, t2, α) =
∑
τi∈α

(A(I, t1, t2, τi))

≤ {by (1)}∑
τi∈α

ui(t2 − t1)

=

(∑
τi∈α

ui

)
(t2 − t1)

= Uα(t2 − t1).

Definition 8. We call a processor busy at time instant t if there exists a job scheduled for
execution on this processor at time t. Otherwise, the processor is idle.

Our upper bound on the LAG of the set of tasks is given by the following lemma.

10



Lemma 7. Consider a set of tasks α such that at any time instant in [0, t′), for some time
instant t′, only jobs from tasks in α are scheduled. Then for any t ∈ [0, t′], LAG(α, t) ≤
(dUαe − 1)Cmax, where Cmax = max

τi∈α
Ci.

Proof. To prove this lemma, we split the interval [0, t′) into a set of maximal continuous
intervals such that the number of busy processors in S during each interval does not change.
More formally, these intervals satisfy the following assumptions (for an interval I):

I1: The number of busy processors in S during I does not change.

I2: I cannot be extended without violating I1.

Since any finite time interval I contains a finite number of scheduling events by Assump-
tion SH3, I contains a finite number of the intervals from the set just defined.

We now prove the lemma by contradiction: let Ib be the first time interval from the set
defined above such that

∃t2 ∈ Ib : LAG(α, t2) > (dUαe − 1)Cmax. (2)

Let t1 be the beginning of Ib, which implies t1 ≤ t2. To set up deriving a contradiction later,
we next show that (3) below holds.

LAG(α, t1) ≤ (dUαe − 1)Cmax. (3)

If t1 = 0, then LAG(α, 0) = 0, so (3) holds since Uα > 0. On the other hand, if t1 6= 0, then
there exists a preceding interval Ia such that the end of Ia is t1, and, by the definition of Ib,

∀t ∈ Ia : LAG(α, t) ≤ (dUαe − 1)Cmax.

By Lemma 5, LAG(α, t) is a continuous function, so

LAG(α, t1) = lim
t→t−1

LAG(α, t) = lim
t∈Ia,t→t−1

LAG(α, t) ≤ (dUαe − 1)Cmax,

i.e., (3) holds. Thus, we have

LAG(α, t1) ≤ (dUαe − 1)Cmax < LAG(α, t2), (4)

and the number of busy processors during [t1, t2) in the actual schedule S does not change. Let
bp denote this number. The overall allocation given to τ in S with exactly bp busy processors
during the interval [t1, t2) is

A(S, t1, t2, τ) = bp · (t2 − t1). (5)

Combining Lemma 6 and (5), we can bound the change of LAG over [t1, t2):

LAG(α, t2)− LAG(α, t1)

= A(I, 0, t2, τ)−A(S, 0, t2, τ)− (A(I, 0, t1, τ)−A(S, 0, t1, τ))

= A(I, t1, t2, τ)−A(S, t1, t2, τ)

≤ {by Lemma 6 and (5)}
Uα(t2 − t1)− bp · (t2 − t1)

= (Uα − bp)(t2 − t1).

Thus, by (4), (Uα− bp)(t2− t1) > 0. By the definition of t1 and t2, t1 ≤ t2, so Uα− bp > 0.
Thus,

bp ≤ dUαe − 1. (6)

11



Since Uα ≤ m, we therefore have bp < m. Thus, there is at least one non-busy processor.
By Assumption SH1, the scheduler is work-conserving, so all ready jobs are scheduled, and bp
is the number of uncompleted jobs of tasks in α at time t−2 . We can now derive a bound for
LAG(α, t−2 ):

LAG(α, t−2 ) =
∑
i

Lag(τi, t
−
2 )

≤ {by Def. 7 and Lemma 1}∑
Ji,j is uncompleted in I or S at t−2

lag(Ji,j, t
−
2 )

≤
∑

Ji,j is uncompleted in S at t−2

lag(Ji,j, t
−
2 ) +

∑
Ji,j is uncompleted in I but not in S at t−2

lag(Ji,j, t
−
2 )

≤ {if Ji,j is uncompleted in I but not in S then lag(Ji,j, t
−
2 ) ≤ 0}∑

Ji,j is uncompleted in S at t−2

lag(Ji,j, t
−
2 )

≤ {by Lemma 3}∑
Ji,j is uncompleted in S at t−2

Ci

≤ {bp is the number of uncompleted jobs in S and Cmax ≥ Ci}
bp · Cmax

≤ {by (6)}
(dUαe − 1) · Cmax. (7)

By Lemma 5, LAG(α, t2) = LAG(α, t−2 ), so (7) contradicts (2). This contradiction finishes the
proof.

Note that the previous lemma bounds the total system LAG at any time instant. However,
if Jk,d has a large response time, we know that other jobs exclusively occupied all processors.
Thus, we can use this information to provide a tighter bound for LAG at the specific time
instant. We use the following definitions to encapsulate information relevant to the scheduling
of Jk,d.

Definition 9. Let J = {Jk,d, Jk,d+1, Jk,d+2, ...}. J contains the job of interest Jk,d and all
jobs from τk following the job of interest.

Definition 10. Let W denote the overall processor allocation to jobs from J in S in the
interval [r, r +R). More formally,

W = A(S, r, r +R,J ).

To establish our new bound on LAG, we exploit the following property of a work-conserving
scheduler (Assumption SH1): if Jk,d is ready and not scheduled at time t, then all processors
are busy from t until Jk,d is scheduled in S after t.

Lemma 8. Consider a set of tasks α such that at any time instant in [r, r + R) either Jk,d is
scheduled or m jobs from tasks in α are scheduled, and τk ∈ α. Then,

LAG(α, r +R) ≤ LAG(α, r) +mCk + (Uα −m)R−W.

12



Allocation intervals
for jobs from J

Allocation intervals
for all other jobs
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π3

π4
time

Z M Z M Z M

Figure 3: Example partitioning of [r, r +R) into intervals (Lemma 8 reference).

Proof. To prove this lemma, we split the interval [r, r + R) into a set of maximal continuous
intervals such that the number of jobs from J scheduled in S during each interval does not
change. More formally, these intervals satisfy the following assumptions (for an interval I):

I1: The number of scheduled jobs from J in S during I does not change.

I2: I cannot be extended without violating I1.

By Assumption SH3, we have a finite number of such intervals (since they are defined by a
finite number of scheduling events within [r, r + R)). Let us define the set of interval starting
points as {t0 = r, t1, ..., th−1}, with an additional th = r + R. Also, let Ie denote the interval
[te, te+1) for 0 ≤ e ≤ h− 1.

Let Z be the set of all intervals for which no jobs from J are scheduled in S. Let M be
the set of all intervals for which at least one job from J is scheduled in S. It is clear that any
interval from Z is disjoint from all intervals inM, while the union of all intervals from Z ∪M
is [r, r +R) by the definition of α. An example of such intervals is given in Fig. 3.

By the definition of Z, no jobs from J are scheduled for any Ie ∈ Z. Because there is a
ready job Jk,d that is not scheduled, there are m scheduled jobs for any time instant of Ie. By
the definition of α, all m jobs are from tasks in α. Thus,

∀Ie ∈ Z : A(S, te, te+1, α) = m(te+1 − te). (8)

Let ||Z|| (resp., ||M||) denote the overall length of all intervals from set Z (resp.,M).
For any Ie ∈ M and any t ∈ Ie, at least one job from J is scheduled. Since, by Assump-

tion SH2, jobs from the same task τk are prioritized against each other on a FIFO basis, and
Jk,d is the first one in J , Jk,d should be scheduled at t (and, possibly, some other jobs from J ;
note that earlier jobs of τk are not included in J , which is used to defineM). Thus,

||M|| ≤ Ck, and
||Z|| = |[r, r +R)| − ||M|| ≥ R− Ck. (9)

Moreover, if any job from J is scheduled at time instant t, then t ∈ Ie for some Ie ∈ M.
Thus, all processor allocations accounted for in W may happen only during intervals fromM.
Therefore, ∑

Ie∈M

A(S, te, te+1,J ) = W. (10)
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We now can estimate the change in LAG over [t0, th):

LAG(th)− LAG(t0)

=
h−1∑
e=0

(LAG(te+1)− LAG(te))

= {by the definitions of Z andM}∑
Ie∈Z

(LAG(te+1)− LAG(te)) +
∑
Ie∈M

(LAG(te+1)− LAG(te))

= {by Def. 5}∑
Ie∈Z

(A(I, te, te+1, α)−A(S, te, te+1, α)) +
∑
Ie∈M

(A(I, te, te+1, α)−A(S, te, te+1, α))

= {by rearranging and (8)}∑
Ie∈Z∪M

A(I, te, te+1, α)−
∑
Ie∈Z

m(te+1 − te)−
∑
Ie∈M

A(S, te, te+1, α)

≤ {by (10) and the definitions of Z andM}∑
Ie∈Z∪M

A(I, te, te+1, α)−m||Z|| −W

≤ {by Lemma 6}
||Z ∪M||Uα −m||Z|| −W

≤ {by (9) and ||Z ∪M|| = |[r, r +R)|}
RUα −m(R− Ck)−W

= mCk + (Uα −m)R−W. (11)

By rearranging (11) with th = r +R, and t0 = r, we obtain a bound for LAG(α, r +R):

LAG(α, r +R) ≤ LAG(α, r) +mCk + (Uα −m)R−W.

Using Def. 10, we can compute the exact value of Lag(τk, r+R) by an alternative approach
compared to that used to prove Lemma 4. Note that no job from J is ready during [0, r).
Thus, A(S, 0, r,J ) = 0, and

W = A(S, r, r +R,J )

= A(S, 0, r,J ) +A(S, r, r +R,J )

= A(S, 0, r +R,J ). (12)

Lemma 9. If Jk,d has an execution time of Ck, then

Lag(τk, r +R) ≥ min(Ck, ukR)−W. (13)

Moreover, if all jobs in J have execution time equal to Ck and are released periodically with
period Tk, then

Lag(τk, r +R) = ukR−W. (14)

Proof. The task τk has a worst-case execution time of Ck, so all jobs Jk,d−1, Jk,d−2, ..., Jk,1 have
execution times not higher than Ck. By Assumption SH2, these jobs are prioritized over Jk,d
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and completed in S at or before r + R. By Def. 3, these jobs are completed in I at or before
r. Thus, by Lemma 1, ∀j < d : lag(Jk,j, r +R) = 0.

Lag(τk, r +R) =
∞∑
j=1

lag(Jk,j, r +R)

=
d−1∑
j=1

lag(Jk,j, r +R) +
∞∑
j=d

lag(Jk,j, r +R)

= {∀j < d : lag(Jk,j, r +R) = 0}
∞∑
j=d

lag(Jk,j, r +R)

=
∞∑
j=d

(A(I, 0, r +R, Jk,j)−A(S, 0, r +R, Jk,j))

=

(
∞∑
j=d

A(I, 0, r +R, Jk,j)

)
−A(S, 0, r +R,J )

= {by (12)}
∞∑
j=d

A(I, 0, r +R, Jk,j)−W (15)

Note that A(I, 0, r+R, Jk,j) ≥ 0 for any Jk,j because we cannot allocate a negative amount
of execution time to a job. Thus, by (15),

Lag(τk, r +R) ≥ A(I, 0, r +R, Jk,d). (16)

We can compute A(I, 0, r +R, Jk,d) by considering two cases: R < Tk and R ≥ Tk. If R < Tk,
then Jk,d is executed for R time units in I within [r, r+R). Otherwise Jk,d is executed in I for
Tk time units. Thus,

A(I, r, r +R, Jk,d) =A(I, 0, r +R, Jk,d)− A(I, 0, r, Jk,d)
={Jk,d is released at r}
A(I, 0, r +R, Jk,d)

= min(ukTk, ukR)

= min(Ck, ukR).

Using (16), we get Lag(τk, r +R) ≥ min(Ck, ukR), which finishes the proof of the first part
of the lemma.

We now move to the second part of the lemma. Fig. 4 shows the release pattern of jobs
from τk (which covers jobs from J ). By the lemma statement, task τk becomes periodic with
execution time Ck starting with Jk,d. Thus, exactly one job from τk is scheduled for execution
in I at any time instant in [r, r +R). Thus,

∞∑
j=d

A(I, r, r +R, Jk,j) = ukR. (17)

By (15) and (17), we have

Lag(τk, r +R) = ukR−W.
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r r + Tk r + 2Tk r + 3Tk r +R

J

time

Jk,d release Jk,d completion in S

τk becomes npc-periodicnpc-sporadic part of τk

TkTk≥ Tk

Figure 4: The release pattern of jobs of τk needed for the second part of Lemma 9 (eq. (14)).

4 Preemptive G-FP
In this section, we focus on establishing the SRT-optimality of the preemptive G-FP scheduler.
Thus, all references to G-FP without qualification within this section should be taken to mean
preemptive G-FP. Note that the G-FP scheduler satisfies Assumptions SH1-SH3. Thus, all
lemmas from Sec. 3 hold for this scheduler.

In this section, we assume that tasks are indexed by priority, with higher-priority tasks
having lower indices. For simplicity, we assume unique task priorities. Recall that we focus
our attention on the job of interest Jk,d with release time r and response time R. Note that
the obtained bound (Theorem 1) does not depend on the job’s number d, so the same bound
applies for any job of τk, and therefore the bound can be used as a response-time bound of the
task τk.

Proof setup. Our proof focuses on schedules that have certain properties (properties A1-A3),
which are defied by leveraging the following definition.

Definition 11. For a task system τ , an instantiation ρτ defines an actual release and execution
time for every job. A single sporadic task system has infinitely many instantiations. Note that
for any instantiation ρτ , G-FP produces a single schedule.

Consider any instantiation ρτ of a task system τ . Consider a task system Γ(τ, k) =
{τ1, ..., τk} such that all tasks in Γ(τ, k) have the same parameters as in τ . Consider a in-
stantiation ρΓ(τ,k) such that

• All jobs from tasks τ1, ..., τk−1 in ρΓ(τ,k) have the same release and execution times as in
ρτ .

• Jobs Jk,1, Jk,1, ..., Jk,d−1 in ρΓ(τ,k) have the same release and execution times as in ρτ .

• Jobs in J = {Jk,d, Jk,d+1, ...} are released periodically in ρΓ(τ,k), starting from time r, with
period Tk, and the execution time of each of these jobs in ρΓ(τ,k) is Ck.

Lemma 10. The response time of Jk,d in a schedule produced by preemptive G-FP from ρΓ(τ,k)

for the task system Γ(τ, k) is not less than the response time of Jk,d in a schedule produced by
the same scheduler from ρτ for the task system τ .

Proof. Note that under preemptive G-FP, jobs from tasks with priorities lower than τk’s
priority do not affect Jk,d’s schedule. Thus, discarding all tasks with a priority lower than τk
does not affect Jk,d. Jobs from J \{Jk,d} have a priority lower than Jk,d due to Assumption SH2.
Thus, any change in their release pattern and execution times does not affect the schedule of
Jk,d (in any instantiation). Therefore, if Jk,d is scheduled in the schedule produced from ρτ by
preemptive G-FP at time instant t, then Jk,d is also scheduled in the schedule produced from
ρΓ(τ,k) by preemptive G-FP at time instant t (because Jk,d’s execution time in ρΓ(τ,k) is not less
than its execution time in ρτ ).
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Define a schedule produced from ρΓ(τ,k) under preemptive G-FP as the canonical schedule
S. Let I denote the ideal schedule for task system Γ(τ, k) and its instantiation ρτ . Then, S
has the following properties.

A1: Task τk has the lowest priority among all tasks.

A2: Following Jk,d−1, every new job (including Jk,d) from task τk has execution time equal to
Ck.

A3: Following Jk,d, every new job from task τk is released exactly Tk time units later than the
previous job of τk (i.e., τk “becomes periodic” after Jk,d).

Fig. 4 shows the release pattern of jobs of τk. Note that none of our reasoning requires modifying
the initial schedule, and we work only with schedules obtained from ρΓ(τ,k). Lemma 10 shows
that any response-time bound derived with respect to the canonical schedule S for the task
system Γ(τ, k) is valid for ρτ . We now can formalize our problem: find a bound for Jk,d’s
response time in S under A1-A3.

We start the first part of the proof by computing Lag(τk, r + R). Note that Property A3
ensures that task τk becomes npc-periodic starting with Jk,d as in Fig. 4, while Property A2
ensures that all jobs in J have an execution time of Ck. Thus, by (14),

Lag(τk, r +R) = ukR−W. (18)

Now we move to the second part of the proof: the estimation of LAG(r +R).

Lemma 11. LAG(r +R) ≤ (dUke − 1)Cmax +mCk + (Uk −m)R−W.

Proof. By Property A1, there are only k tasks in S. Their total utilization is Uk, so, by
Lemma 7, LAG(r) ≤ (dUke−1)Cmax. Also note that if Jk,d is not scheduled at some t ∈ [r, r+R),
then there are m other ready jobs in the system. Thus, applying Lemma 8 with α = {τ1, ..., τk}
we get LAG(r +R) ≤ (dUke − 1)Cmax +mCk + (Uk −m)R−W.

Finally, we use (18) and Lemma 11 to bound the response time of Jk,d.

Theorem 1. For any job of the npc-sporadic task τk, its response time under preemptive G-FP
is bounded by

R ≤ 1

m− Uk−1

(
(dUke − 1)Cmax +mCk +

k−1∑
i=1

max(0, (1− ui)Ci)

)
,

where Cmax = max
i≤k

Ci.

Proof. Consider the following:
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ukR−W
= {by (18)}

Lag(τk, r +R)

= LAG(r +R)−
k−1∑
i=1

Lag(τi, r +R)

≤ {by Lemma 4}

LAG(r +R) +
k−1∑
i=1

max(0, (1− ui)Ci)

≤ {by Lemma 11}

(dUke − 1)Cmax +mCk + (Uk −m)R−W +
k−1∑
i=1

max(0, (1− ui)Ci). (19)

Canceling W from the both sides of (19), we get

R(uk +m− Uk) ≤ (dUke − 1)Cmax +mCk +
k−1∑
i=1

max(0, (1− ui)Ci).

Rearranging the last expression and rewriting uk − Uk as −Uk−1 completes the proof.

Corollary 2. For the npc-sporadic task τk, its tardiness under preemptive G-FP is bounded by

max


(dUke − 1)Cmax +mCk +

k−1∑
i=1

max(0, (1− ui)Ci)

m− Uk−1

− Tk, 0

 .

Proof. If Jk,j has the response time Rk,j, then its tardiness is max(0, Rk,j − Tk). Notice that
the response-time bound from Theorem 1 does not depend on j, i.e., it applies to any job of
τk.

5 Asymptotic Tightness
In this section we show that bound from Theorem 1 is asymptotically tight.

Theorem 2. For every m ≥ 2 there exists an npc-sporadic task system such that the response
time of the first job of the lowest-priority task is arbitrarily close to the bound from Theorem 1.

Proof. For fixed T and m, consider the npc-sporadic task system consisting of m high-priority
tasks with execution time mT and period 4emT , plus one low-priority task with execution time
(1 −m/2e)T and period T , where e > m is an arbitrary number. Let k = m + 1, assume all
jobs from every task τi have the same execution time Ci, and assume that all tasks release jobs
periodically starting at time 0.

The response time for Jm+1,1 (the first job of the lowest priority task) is mT + T −mT/2e,
because for any t ∈ [0,mT ) all processors are occupied by higher-priority tasks. Subsequent
jobs of τm+1 have the same response time because the schedule repeats every 4emT time units.
This is illustrated for the first two jobs per task in Fig. 5.
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Allocation intervals
for the task τm+1

Allocation intervals
for tasks τ1, ..., τm

0 mT 4emT (4e+ 1)mT

π1

π2...
πm

(
mT + T − mT

2e

) time

Figure 5: Schedule of the first two jobs for each task.

The overall utilization of this task set is

U = Um+1 = m · 1

4e
+ 1− m

2e
= 1− m

4e
< 1.

By construction, we have

dUm+1e = 1, (20)

m− Um = m

(
1− 1

4e

)
, (21)

Cmax = mT, (22)
m∑
i=1

max(0, (1− ui)Ci) =

(
1− 1

4e

)
m2T. (23)

With all these computed values, the bound from Theorem 1 is:

1

m− Um

(dUm+1e − 1)Cmax +mCm+1 +
m∑
i=1

max(0, (1− ui)Ci)


{by (20), (21), (22), and (23)}

=
1

m

(
1− 1

4e

) (0 +m
(

1− m

2e

)
T +

(
1− 1

4e

)
m2T

)

=
T(

1− 1

4e

) (1− m

2e
+m− m

4e

)

=
4e(m+ 1)− 3m

4e− 1
T

=
(4e− 1)(m+ 1)− 2m+ 1

4e− 1
T

= (m+ 1)T +
1− 2m

4e− 1
T.

The difference between this bound and the real response time for τm+1 is(
1− 2m

4e− 1
T +

m

2e
T

)
→ 0 as e→∞, with fixed m and T .

Thus, the bound from Theorem 1 is asymptotically tight.
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6 Prioritizing Tasks
In the above sections, we considered npc-sporadic task sets with predefined priorities. In this
section, we consider the problem of choosing task priorities for such task sets. Note that, by
Theorem 1, the prioritization of tasks does not affect SRT schedulability because any task
set that does not over-utilize the system is schedulable; in contrast, schedulability is the main
evaluation metric in the HRT case. However, the prioritization of tasks can affect the guaranteed
tardiness bounds. In this section, we propose a polynomial priority-assignment algorithm.

The existing literature pertaining to task prioritizations under preemptive G-FP scheduling
considers only ordinary sporadic task sets. Audsley [2] proposed an optimal prioritization algo-
rithm for a uniprocessor (in an HRT sense: every deadline must be met). Audsley’s algorithm
relies on a given schedulability test and can be adapted for the multiprocessor case. Note that
Audsley’s algorithm calls the schedulability test, which has non-polynomial time complexity.
Moreover, the problem of obtaining an optimal priority assignment for an HRT multiprocessor
system is known to be NP-hard. Davis and Burns [10] developed schedulability-test properties
that ensure that Audsley’s algorithm is optimal with respect to a given test (i.e., it requires an
optimal schedulability test to produce an optimal prioritization; there are no known optimal
polynomial tests). Given these results pertaining to HRT tasks, we expect that any optimal
prioritization algorithm in the SRT casee would likely be non-polynomial. Thus, we provide a
non-optimal polynomial priority-assignment algorithm.

We no longer keep the assumption made in Sec. 4 that tasks are indexed with decreasing
priority. Instead, we define priorities via a function. We assume that task priorities are repre-
sented by unique integers in [1, n], where 1 and n represent the highest and lowest priorities,
respectively.

Definition 12. For a given task τi, we denote its priority as p(i) and the set of tasks with
higher priority as hp(i). Note that hp(i) contains p(i)− 1 tasks, so p(i) = |hp(i)|+ 1. Function
p(·) is called the prioritization function.

In addition to the previous definition, we also need to alter the definition of Uk, because it
assumes tasks are indexed by priority.

Definition 13. We let Uk denote the total utilization of the k tasks with highest priorities.

Uk =
∑
p(i)≤k

ui.

By construction, U0 = 0.
With Defs. 12 and 13 we can rewrite the tardiness bound of Corollary 2 (assuming the upper

bound to be positive) using the prioritization function p(·):

1

m− Up(k)−1

(
dUp(k)e − 1)

(
max

τi∈hp(k)
Ci

)
+mCk +

∑
τi∈hp(k)

max(0, (1− ui)Ci)
)
− Tk. (24)

Lemma 12. Under preemptive G-FP scheduling, if a task τl swaps its priority with the task τh
that has the next higher priority than τl (i.e., p(h) = p(l) − 1), then the tardiness of τl is still
bounded by (24).

Proof. Under preemptive G-FP scheduling, only higher-priority tasks may have impacts on τl’s
execution. Therefore, the scheduling of τl after the priority swap is identical to a special case of
the scheduling of τl before the priority swap where every job of τh happens to have zero actual
execution time. Since the tardiness of τl is bounded by (24) in any case before the priority
swap, the lemma follows.
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Figure 6: An example of single task priority change.

/* computes τi’s tardiness assuming the lowest priority in the given τ */
1 Function Tardiness(m, τi, τ ′, Uτ ′, Gτ ′)
2 Gτ ′\τi ← Gτ ′ −max(0, (1− ui)Ci);
3 Uτ ′\τi ← Uτ ′ − ui;
4 Cmax ← max

τs∈τ ′\τi
Cs;

5 return
(dUτ ′e − 1)Cmax +mCi +Gτ ′\τi

m− Uτ ′\τi
;

6 end
7 Function ComputePrioritization(τ)

// for complexity reasons rem_tasks stored as an array sorted by WCET
8 rem_tasks← τ ;
9 U ←

∑
i ui;

10 G←
∑

imax(0, (1− ui)Ci);
11 for j = n...1 do
12 τk ← argmin

τi

Tardiness(m, τi, rem_tasks, U,G);

13 p(k) = j;
14 U ← U − uk;
15 G← G−max(0, (1− uk)Ck;
16 rem_tasks← rem_tasks \ τk;
17 end
18 end

Algorithm 1: minimization of maximal tardiness.

Lemma 13. If the priority of a single task τk increases while the relative order of the priorities
of all other tasks remains unchanged, then the tardiness bound for τk after the priority change
is at most the bound for τk before the change.

Proof. Fig. 6 illustrates the priority change. Increasing the priority of τk without changing the
relative order of priorities of all other tasks can be done by repeatedly swapping the priority of
τk and the task that has the next higher priority than τk. By applying Lemma 12, the lemma
follows.

Consider the well-known priority-assignment algorithm by Audsley [2]. Informally speak-
ing, Audsley’s algorithm establishes priorities from lowest to highest by assigning the lowest
unassigned priority to the task with the lowest tardiness bound (which is always zero for a
schedulable HRT task set). We propose using to use the same assignment scheme for the SRT
case, as shown in Alg. 1. Lemma 13 gives us the intuition that non-assigned tasks’ bounds do
not increase after several other tasks are assigned the lowest priorities. Lemma 14 shows that
Alg. 1’s time complexity is relatively small.

Lemma 14. Alg. 1 can be implemented with O(n2) time complexity.
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Proof. Firstly, we consider the function Tardiness. Lines 2, 3, and 5 require only constant time.
Assume that tasks of τ ′ are stored in a sorted array by WCET. Hence, max

τs∈τ ′\τi
Cs is stored in

the last element of τ ′ if it is not τi and in the last but one otherwise. The last statement
ensures that line 4 is completed in constant time. Thus, the Tardiness function has O(1) time
complexity.

Secondly, consider the function ComputePrioritization. Consider a single iteration of the for
loop. Line 12 calls the O(1) function Tardiness j ≤ n times, ensuring O(n) time complexity.
Lines 13-15 are completed in O(1) time. At line 16 Alg. 1 removes a single task from the
sorted array. Because we want to keep rem_tasks sorted (to ensure O(1) complexity for the
Tardiness function), this takes O(n) time in the worst case. Thus, a single iteration of the
for loop requires O(n) time. Because the total number of iterations is O(n), the total time
complexity of Alg. 1 is O(n2).

In Sec. 10.2, we evaluate the efficacy of Alg. 1 in comparison with various prioritization
heuristics.

7 Non-Preemptive G-FP
In this section, we adapt the proof strategy we described in the beginning of Sec. 3 and used
to prove Theorem 1 for preemptive G-FP. This strategy has three major steps: provide a lower
bound for a single task’s Lag (Lemma 4), establish an upper bound on LAGk(r+R) (Lemmas 17
and 18), and compute Lag(τk, r +R) (Lemma 9). To complete the proof, we use the definition
of LAGk to provide a bound for the response time R of the job of interest Jk,d. Recall that
LAGk(t) = LAG({τ1, ..., τk}, t) =

∑k
i=1 Lag(τk, t).

Note that the non-preemptive G-FP scheduler satisfies Assumptions SH1-SH3. Thus, all
lemmas from Sec. 3 hold for this scheduler.

Consider any instantiation ρτ of a task system τ . Consider an instantiation ρ′τ such that

• All jobs from tasks τ\{τk} in ρ′τ have the same release and execution times as in ρτ .

• Jobs Jk,1, Jk,1, ..., Jk,d−1 in ρ′τ have the same release and execution times as in ρτ .

• Jobs in J = {Jk,d, Jk,d+1, ...} are released periodically in ρ′τ , starting from time r, with
period Tk, and the execution time of each of these jobs in ρ′τ is Ck.

Lemma 15. The response time of Jk,d in a schedule produced by non-preemptive G-FP from
ρ′τ is not less than the response time of Jk,d in a schedule produced by the same scheduler from
ρτ .

Proof. Jobs from J \{Jk,d} have a priority lower that Jk,d due to Assumption SH2. Thus,
any change in their release pattern and execution times does not affect the schedule of Jk,d (in
any instantiation) because once Jk,d is scheduled, it cannot be preempted. Therefore, if Jk,d
is scheduled in the schedule produced from ρτ by non-preemptive G-FP at time instant t, Jk,d
is also scheduled in the schedule produced from ρ′τ by non-preemptive G-FP at time instant t
(because Jk,d’s execution time in ρ′τ is not less than its execution time in ρτ ).

Define a schedule produced from ρ′τ under non-preemptive G-FP as the canonical schedule
S. Define the ideal schedule I for the task system τ and its instantiation ρτ . Then, S has the
following properties (Properties A2 and A3 are defined identically as in Sec. 4)

A2: Following Jk,d−1, every new job (including Jk,d) from task τk has execution time equal to
Ck.
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A3: Following Jk,d, every new job from task τk is released exactly Tk time units later than the
previous job of τk (i.e., τk “becomes periodic” after Jk,d).

Fig. 4 shows the release pattern of jobs of τk. Note that none of our reasoning requires modifying
the initial schedule, and we work only with schedules obtained from ρ′τ . Lemma 15 shows that
any response-time bound derived in the canonical schedule S from ρ′τ is valid for the schedule
obtained from ρτ . We now can formalize our problem: find a bound for Jk,d’s response time in
S under A2-A3.

Note that if a job starts executing on some processor, then no higher-priority job can occupy
this processor. Thus, the schedule of lower-priority jobs directly affects higher-priority ones.
This implies that we are not able to discard the tasks with priority lower than the task of
interest τk in the general case (and obtain Property A1 for S in addition to A2 and A3).

To simplify the following reasoning, we denote HP = {τ1, ..., τk} and LP =
{τk+1, τk+2, ..., τn}. We say that a job is LP (resp., HP) if it was generated by a task in
LP (resp., HP).

Definition 14. Let us denote Cmax = max
i≤k

Ci and B = max
i>k

Ci. Cmax provides an execution

time bound for any job of a task in HP , while B is a bound on the maximal blocking time for
such a job (an execution time bound for any job of a task in LP).

Note that the first step of the proof overview given in the beginning of this section is already
completed with Lemma 4. Thus, we move to the second step, bounding LAGk(r+R). We begin
by establishing two upper bounds in LAGk(t) in Lemmas 16 and 17.

Lemma 16. LAGk(t) ≤ qCmax, where q is the number of non-completed HP jobs in S at time
t.

Proof.

LAGk(t) =
∑
τi∈HP

Lag(Ji,j, t)

≤ {jobs completed in S have non-positive Lag}∑
Ji,j is a ready HP job in S

Lag(Ji,j, t)

≤ {by Lemma 3}∑
Ji,j is a ready HP job in S

Ci

≤ {by the defintion of Cmax and q}
qCmax

Lemma 17. [modified Lemma 7] LAGk(t) ≤ (Uk + 1) max(B,Cmax).

Proof. Let F = (Uk + 1) max(B,Cmax). For any time instant t1, define t−1 (resp., t+1 ) to be
t1 − ε (resp., t1 + ε) for some arbitrarily small ε > 0 such that the set of scheduled jobs does
not change within [t−1 , t1) (resp., [t1, t

+
1 )). t−1 and t+1 exist for any time instant for any scheduler

satisfying Assumption H3. Fig. 7 illustrates these and other important time instants referenced
in this proof.

We prove the lemma by contradiction by assuming that LAGk(t) > F holds for some t. Let
t1 be the first time instant such that LAGk(t1) = F and LAGk(t

+
1 ) > F . Such an instant t1

exists because LAGk(0) = 0, F > 0, and LAGk(t) is a continuous function by Lemma 5.
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Figure 7: Lemma 17 proof reference.

Claim 1: there is at least one LP job scheduled at t−1 .

Proof. Denote the number of scheduled HP jobs at t1 as q (by the definition of
t+1 these jobs are scheduled within [t1, t

+
1 )). If there are no scheduled LP jobs at

t1, then either all ready HP jobs are scheduled at t1 or q = m. In the first case,
F = LAGk(t1) ≤ qCmax by Lemma 16. Then, F = (Uk + 1) max(B,Cmax) ≤ qCmax,
so Uk + 1 ≤ q. In the second case, q = m, so Uk ≤ q because Uk ≤ U ≤ m.

Thus, LAGk(t
+
1 ) = LAGk(t1) + (Uk − q)(t+1 − t1), and, because Uk ≤ q, LAGk(t

+
1 ) ≤

LAGk(t1) = F (which contradicts the definition of t1).

So at least one LP job Ji,j is scheduled at t1. If the first time instant Ji,j is scheduled
is t1, then all ready HP jobs are scheduled at t1, and, by the same reasoning as
above, Uk ≤ q and LAGk(t

+
1 ) ≤ F (which contradicts the definition of t1). Thus, Ji,j

is scheduled within [t−1 , t1].

We say that a job becomes scheduled at t if t is the first time instant it is executed. Consider
all time instants within [0, t1) such that either an LP job becomes scheduled or a processor
becomes idle. Denote the last such time instant as t0. If no such t0 exists then only HP jobs
are scheduled within [0, t1). In this case, by Lemma 7 with task set α = HP = {τ1, ..., τk},
LAGk(t1) ≤ (dUke− 1)Cmax. Because (dUke− 1)Cmax < (Uk + 1) max(B,Cmax), this contradicts
the definition of t1. We therefore conclude that t0 does exist.

Note that all ready HP jobs are scheduled at t0.

Claim 2: t1 − t0 ≤ B.

Proof. By Claim 1, there is at least one LP job scheduled at t−1 . It becomes sched-
uled at or before t0 by the definition of t0. Its execution time is bounded by B.

Let p denote the number of incomplete HP jobs at t0 (all of them are scheduled at t0 by
its definition). Due to the definition of t0, we can determine the number of processors that are
used by HP jobs within [t0, t1).

Claim 3: there are at least p processors that are busy executing HP jobs for any
t ∈ [t0, t1).
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Proof. At t0 there are p such processors by the definition of p. If there is a t′ > t0
that contradicts the claim, then either an LP job is scheduled at t′, or some processor
becomes idle. This contradicts the definition of t0.

By Claim 3, A(S, t0, t1,HP) ≥ p(t1− t0). By Lemma 6, A(I, t0, t1,HP) ≤ Uk(t1− t0). Thus,

LAGk(t1)− LAGk(t0) = A(I, t0, t1,HP)−A(S, t0, t1,HP) ≤ (Uk − p)(t1 − t0).

Rearranging the last expression we get

LAGk(t1) ≤ LAGk(t0) + (Uk − p)(t1 − t0). (25)

Claim 4: p ≤ Uk.

Proof. By the definition of t1, LAGk(t0) ≤ F = LAGk(t1). Then, by (25), (Uk −
p)(t1 − t0) ≥ 0. Because t1 − t0 > 0, p ≤ Uk.

By the definition of t0, all ready HP jobs are scheduled at t0. Thus, by Lemma 16,
LAGk(t0) ≤ pCmax. By (25), this implies

F = LAGk(t1) ≤ LAGk(t0) + (Uk − p)(t1 − t0) ≤ pCmax + (Uk − p)(t1 − t0),

which by the definition of F implies

(Uk + 1) max(B,Cmax) ≤ pCmax + (Uk − p)(t1 − t0). (26)

Using Claim 2 from (26) we get

(Uk + 1) max(B,Cmax) ≤ pCmax + (Uk − p)B
≤ {0 ≤ p, Cmax ≤ max(B,Cmax)}
pmax(B,Cmax) + (Uk − p)B

≤ {p ≤ Uk by Claim 4, B ≤ max(B,Cmax))}
pmax(B,Cmax) + (Uk − p) max(B,Cmax)

= Uk max(B,Cmax),

which leads to contradiction.

Now we are able to adapt Lemma 8 for non-preemptive G-FP. Recall from Def. 10 that W
is the overall processor allocation to jobs from J = {Jk,d, Jk,d+1, Jk,d+2, ...} in S in the interval
[r, r +R).

Lemma 18. [modified Lemma 8] If R ≥ Ck +B then

LAGk(r +R) ≤ LAGk(r) +m(Ck +B) + (Uk −m)R−W.

Proof. Let t0 be the last completion time of an LP job scheduled at r (t0 = r if no LP
jobs are scheduled at r). Then t0 ≤ r + B by the definition of B. Let t1 = r + R − Ck.
Then t0 ≤ r + B ≤ t1 because R ≥ Ck + B. Recall that HP = {τ1, ..., τk}, and, by Def. 7,
LAGk(t) = A(I, 0, t,HP) − A(S, 0, t,HP). An example schedule over time interval [r, r + R)
under non-preemptive G-FP can be found in Fig. 8.

Note that if Jk,d is scheduled, then it cannot be preempted. Thus, Jk,d is scheduled within
[t1, r+R) because the execution time of Jk,d is Ck by Property A2. Also note that no jobs from
J can be scheduled before t1 by Assumption SH2.

25



Allocation intervals
for jobs from J

Allocation intervals
for blocking jobs

Allocation intervals
for HP jobs

r t0 t1 r +R

π1

π2

π3

π4
time

LP jobs are
scheduled

Jk,d is not scheduled Jk,d is sched-
uled without
preemptions

Jk,d

Jk,d+1

Jk,d+2

≤ B exactly Ck

Figure 8: Example partitioning of [r, r +R) into intervals (Lemma 18 reference).

In fact, the proof we provide here is a simplified version of the proof of Lemma 8 that utilizes
alternate definitions of Z andM. Due to the non-preemptivity of the scheduler, some LP jobs
are scheduled within [r, t0). Thus, we define Z to be the set of all intervals for which only
HP jobs are scheduled in S, and M to be the set of all time intervals for which at least one
non-HP job is scheduled in S. Note that these definitions imply thatM = {[r, t0), [t1, r +R)}
and Z = {[t0, t1)}. Fortunately, since Z andM together contain only three time intervals, we
can simplify our reasoning compared to the proof of Lemma 8.

LAGk(r +R)− LAGk(r)

= A(I, r, r +R,HP)−A(S, r, r +R,HP)

≤ {by Lemma 6 with α = HP = {τ1, ..., τk}}
UkR−A(S, r, r +R,HP)

= UkR−A(S, r, t0,HP)−A(S, t0, t1,HP)−A(S, t1, r +R,HP)

≤ {A(S, r, t0,HP) ≥ 0}
UkR−A(S, t0, t1,HP)−A(S, t1, r +R,HP)

= {exactly m processors are busy with tasks from HP within [t0, t1)}
UkR−m(t1 − t0)−A(S, t1, r +R,HP)

≤ {all allocation to tasks in J happens within [t1, r +R)}
UkR−m(t1 − t0)−W

= UkR−m(R− B − Ck)−W
= m(Ck +B) + (Uk −m)R−W. (27)

By rearranging (27), we obtain a bound for LAGk(r +R).

Thus, if R ≥ Ck +B, using Lemma 17 and Lemma 18, we can write

LAGk(r +R) ≤ (Uk + 1) max(B,Cmax) +m(Ck +B) + (Uk −m)R−W. (28)

26



Theorem 3. Non-preemptive G-FP ensures the following response-time bound for any npc-
sporadic task τk.

max

(
Ck +B,

1

m− Uk−1

(
mB + (Uk + 1) max(B,Cmax)

+(m− 1)Ck +
∑
i<k

max(0, (1− ui)Ci)
))

,

where Cmax = max
i≤k

Ci and B = max
i>k

Ci.

Proof. Consider a job Jk,d of task τk. Assume that R ≥ B + Ck. Then (28) holds. We apply
the same reasoning as in Theorem 1 where Lemma 11 is replaced with Lemma 18.

ukR−W
= {by A2, A3, Lemma 9 and (14)}

Lag(τk, r +R)

= LAG(r +R)−
∑
i 6=k

Lag(τi, r +R)

≤ {by Lemma 4}

LAG(r +R) +
∑
i 6=k

max(0, (1− ui)Ci)

≤ {by (28)}
(Uk + 1) max(B,Cmax) +m(Ck +B) + (Uk −m)R−W

+
∑
i 6=k

max(0, (1− ui)Ci). (29)

Canceling W from the both sides of (29), we get

R(uk +m− Uk) ≤ mB + (Uk + 1) max(B,Cmax) + (m− 1)Ck +
∑
i 6=k

max(0, (1− ui)Ci).

Rearranging the last expression (and using Uk − uk = Uk−1) completes the proof.

8 G-FP with Preemption Thresholds
Fixed-priority scheduling is widely used in real-time operating systems (RTOSs). However, G-
FP may induce a high number of preemptions (the preemptive variant) or large blocking times
(the non-preemptive variant). One way to mitigate these issues is to use two priorities per task
instead of one. The first priority is applied at task release; once a task is selected for execution,
the second priority is applied. This approach is known as G-FP with preemption thresholds (G-
FP-PT), and was introduced in the commercial RTOS ThreadX [15] and academically studied
in [28] (corrected in [24]). Other studies include [8, 16–18,25].

To specify the scheduler, we define a preemption priority Pi for every task τi. Recall that our
tasks are sorted by priority, so τi has regular priority i (lower values represent higher priority).
We assume that Pi ≤ i, so the preemption priority of task is not lower than its regular priority.
These priorities are assigned offline. Thus, a scheduled task τi can be preempted by τj only if
τj’s regular priority is higher than Pi.

27



Note that preemptive G-FP is a special case of G-FP-PT (∀i : Pi = i), and non-preemptive
G-FP is also a special case of G-FP-PT (∀i : Pi = 0). For both of these schedulers, in Secs. 4
and 7, we constructed canonical schedules that have properties A2 and A3. Unfortunately,
these properties are relatively strong, so we may not be able to construct a canonical schedule
S with a non-decreased response time for Jk,d. Thus, we introduce a less strict Property A4.

A4: Jk,d has execution time equal to Ck.

This property ensures that all jobs of τk preceding Jk,d are completed at or before Jk,d’s com-
pletion by Assumption SH2.

Consider any instantiation ρτ of a task system τ . Consider an instantiation ρ′τ of the same
task system such that

• All jobs from tasks in τ\{τk} in ρ′τ have the same release and execution times as in ρτ .

• Jobs Jk,1, Jk,1, ..., Jk,d−1, Jk,d+1, Jk,d+2, ... in ρ′τ have the same release and execution times
as in ρτ .

• The execution time of Jk,d is Ck in ρ′τ , and its release time is r (identical to the one in
ρτ ).

Lemma 19. The response time of Jk,d in a schedule produced by G-FP-PT from ρ′τ is not less
than the response time of Jk,d in a schedule produced by the same scheduler from ρτ .

Proof. Note that ρτ and ρ′τ differ only in the execution time of Jk,d. Denote the completion
of Jk,d in a schedule Sinit obtained from ρτ under G-FP-PT as t0. Then, the schedule obtained
from ρ′τ under G-FP-PT (Smod) is identical to Sinit within [0, t0) because all releases of all jobs
are identical. Then, Jk,d is completed in Sinit, but has Ck − Ck,d time units of uncompleted
execution in Smod.

We call a schedule Smod produced from ρ′τ under G-FP-PT a canonical schedule, which we
henceforth denote more simply as S. Define the ideal schedule I for the task system τ and its
instantiation ρ′τ .

In this section, we prove two different response-time bounds. Both of them require specially
defined task sets in order to use Lemma 8.

Definition 15. Let β be the set of tasks in τ such that Pi ≤ k (i.e., have preemption priority
not lower than the regular priority of τk). Note that, by the definition of Pi, Pi ≤ i, so all
tasks that have higher regular priority than τk are in β. Thus, if Jk,d is not scheduled then all
m processors are busy with tasks in β.

Lemma 20. [relaxed Lemma 7]

LAG(β, t) ≤ (dUe − 1)Cmax +
∑
τi∈τ\β

max(0, (1− ui)Ci),

where Cmax = max
i
Ci.
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Proof.

LAG(β, t) = LAG(τ, t)− LAG(τ\β, t)
≤ {by Lemma 7 with α = τ}

(dUe − 1)Cmax − LAG(τ\β, t)
= {by Def. 7}

(dUe − 1)Cmax −
∑
τi∈τ\β

Lag(τi, t)

≤ {by Lemma 4}

(dUe − 1)Cmax −
∑
τi∈τ\β

min(0, (ui − 1)Ci)

= (dUe − 1)Cmax +
∑
τi∈τ\β

max(0, (1− ui)Ci)

Using Lemmas 4, 18, and 20 we provide a response-time bound.

Theorem 4. G-FP-PT ensures the following response-time bound for any npc-sporadic task τk
if Uβ < m:

min

(
Tk,

1

m− Uβ

(
(dUe − 1)Cmax + (m− 1)Ck +

∑
i 6=k

max(0, (1− ui)Ci)

))
,

where Cmax = max
i
Ci and β is as defined in Def. 15.

Proof. We consider the job of interest Jk,d. Assume that R ≥ Tk, so Ck = ukTk ≤ ukR.

Ck −W
= {by Lemma 9, (13), and Ck ≤ ukR}

Lag(τk, r +R)

= LAG(β, r +R)−
∑

τi∈β\τk

Lag(τi, r +R)

≤ {by Lemma 4}

LAG(β, r +R) +
∑

τi∈β\{τk}

max(0, (1− ui)Ci)

≤ {by Lemma 8 with α = β}

LAG(β, r) +mCk + (Uβ −m)R−W +
∑

τi∈β\{τk}

max(0, (1− ui)Ci)

≤ {by Lemma 20, and Cmax = max
i
Ci}

(dUe − 1)Cmax +
∑
τi∈τ\β

max(0, (1− ui)Ci) +mCk + (Uβ −m)R−W

+
∑

τi∈β\{τk}

max(0, (1− ui)Ci)
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= (dUe − 1)Cmax +mCk + (Uβ −m)R−W +
∑

τi∈τ\{τk}

max(0, (1− ui)Ci)

= (dUe − 1)Cmax +mCk + (Uβ −m)R−W +
∑
i 6=k

max(0, (1− ui)Ci) (30)

Canceling W from the both sides of (30), we get

R(m− Uβ) ≤ (dUe − 1)Cmax + (m− 1)Ck +
∑
i 6=k

max(0, (1− ui)Ci.

Rearranging the last expression completes the proof.

Now we repeat the same strategy with a slightly different task set γ to provide a response-
time bound that can be lower than Theorem 4 in some cases.

Definition 16. We call a set of tasks λ closed if and only if ∀τi ∈ λ, τj ∈ τ\λ : i < Pj (tasks
from the closed set preempt any jobs of tasks not in the set). Let γ denote the smallest closed
set that contains τk. Note that γ is well-defined because τ is a closed set.

Now we can prove our second response-time bound for τk using γ. Notice the key difference
with Theorem 4: by the definition of a closed set, we can use Lemma 7 with α = γ, while for
β we have to use its relaxed version, Lemma 20.

Theorem 5. G-FP-PT ensures the following response-time bound for any npc-sporadic task τk
if Uγ < m:

min

Tk, 1

m− Uγ

(dUγe − 1)Cmax + (m− 1)Ck +
∑

τi∈γ\{τk}

max(0, (1− ui)Ci)

 ,

where Cmax = max
τi∈γ

Ci and γ as is defined in Def. 16.

Proof. We consider the job of interest Jk,d. Assume that R ≥ Tk, so Ck = ukTk ≤ ukR.

Ck −W
= {by Lemma 9, (13), and Ck ≤ ukR}

Lag(τk, r +R)

= LAG(γ, r +R)−
∑

τi∈γ\{τk}

Lag(τi, r +R)

≤ {by Lemma 4}

LAG(γ, r +R) +
∑

τi∈γ\{τk}

max(0, (1− ui)Ci)

≤ {by Lemma 8 with α = γ}

LAG(γ, r) +mCk + (Uγ −m)R−W +
∑

τi∈γ\{τk}

max(0, (1− ui)Ci)

≤ {by Lemma 7 with α = γ, and Cmax = max
τi∈γ

Ci}

(dUγe − 1)Cmax +mCk + (Uγ −m)R−W +
∑

τi∈γ\{τk}

max(0, (1− ui)Ci)

Rearranging the last expression completes the proof.
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9 Any Work-Conserving Scheduler
In this section, we extend our attention from the G-FP scheduler and its variants to the broader
range of any global work-conserving schedulers that satisfy Assumptions SH1-SH3. A scheduler
is global work-conserving (Assumption SH1) if it always generates a schedule such that

• At any time instant where at most m jobs are ready, all ready jobs are scheduled.

• At any time instant where more than m jobs are ready, all processors are busy.

The following theorem shows that, for a feasible npc-sporadic task system, any work-
conserving scheduler that prioritizes jobs of the same task in FIFO order will guarantee bounded
response times for all tasks.

Theorem 6. Under any work-conserving scheduler that prioritizes jobs of the same task in
FIFO order, the response time of a task τk is at most

Lk =
(dUe − 1)Cmax + 2Csum + (m− 2)Ck

m− U + uk
, (31)

where Cmax = max
i
Ci and Csum =

∑
i

Ci.

Proof. We prove this theorem by contradiction. Suppose the theorem does not hold and let
Jk,d denote the first job of task τk that has a response time greater than Lk. Recall that the
release time of Jk,d is r, i.e., Jk,d has not completed its execution by time r + Lk.

Because jobs of the same task are prioritized in FIFO order, jobs of τk released after r cannot
prevent Jk,d from being executed. We divide all other jobs into the following three disjoint sets.

Ψ1: the set of jobs that are released before r and have a deadline at or before r;

Ψ2: the set of jobs that are released before r and have a deadline after r;

Ψ3: the set of jobs of any task other than τk that are released at or after r.

Thus, at any time instant at or after time r, either Jk,d is being executed or all m processors are
busy executing jobs from Ψ1 ∪Ψ2 ∪Ψ3, because the scheduler is work-conserving. As a result,
letting ` denote the accumulated length of time where all m processors are busy executing jobs
from Ψ1 ∪Ψ2 ∪Ψ3 at or after time r, the following must hold:

Lk < `+ Ck; (32)

otherwise, Jk,d must have been executed for at least Ck time units during the time interval
[r, r + Lk) but, by the definition of Jk,d, it has not completed yet. This does not comply with
Ck being defined as the worst-case execution time of τk.

Additionally, lettingWtot denote the total work completed during the time interval [r, r+Lk)
for jobs in Ψ1 ∪Ψ2 ∪Ψ3 (“tot” stands for total), we have

Wtot ≥ m · `. (33)

We further consider jobs contributing to Wtot separately by whether they are (a) released before
time r, or (b) released at or after time r. Letting Wco denote the unfinished work of jobs in
Ψ1 ∪ Ψ2 at time r (“co” stands for carry over) and letting Wnr denote the work of jobs in Ψ3

released at or before time r + Lk (“nr” stands for new releases), it is clear that

Wtot = Wco +Wnr. (34)
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Recall that I is the ideal schedule we defined in Sec. 2 where all jobs are completed at or
before their deadlines. Therefore, the total work of jobs in Ψ1 is at most A(I, 0, r, τ). Also,
each task can have at most one job in Ψ2 because its period equals its relative deadline, and
task τk does not have a job in Ψ2 because its job Jk,d is released precisely at time r. Therefore,
the total work of jobs in Ψ2 is at most

∑
i 6=k Ci.

Now, let S denote the schedule generated by the scheduler that, by Assumption SH2,
prioritizes jobs of the same task in FIFO order. Because S cannot schedule any job released at
or after r during the time interval [0, r), the total amount of work completed in S during time
interval [0, r), i.e., A(S, 0, r, τ), contributes to jobs in Ψ1 ∪Ψ2.

Thus, we have

Wco ≤A(I, 0, r, τ) +
∑
i 6=k

Ci −A(S, 0, r, τ)

= {by Def. 7}

LAG(r) +
∑
i 6=k

Ci

= {by the definition of Csum}
LAG(r) + (Csum − Ck)
≤ {by Lemma 7}

(dUe − 1)Cmax + Csum − Ck. (35)

In terms of Wnr, because any task τi releases jobs with a minimum separation Ti, it is clear
that

Wnr ≤
∑
i 6=k

(⌈
Lk
Ti

⌉
Ci

)
< {because dxe < (x+ 1)}∑

i 6=k

((
Lk
Ti

+ 1

)
Ci

)
= {because ui = Ci/Ti}(∑

i 6=k

ui

)
Lk +

∑
i 6=k

Ci

= {by the definition of U and Csum}
(U − uk)Lk + Csum − Ck. (36)

By (32), (33), (34), (35), and (36) and noting that m > 0 holds, we have

Lk <
(dUe − 1)Cmax + Csum − Ck + (U − uk)Lk + Csum − Ck

m
+ Ck.

That is,
(m− U + uk)Lk < (dUe − 1)Cmax + 2Csum + (m− 2)Ck.

Because m ≥ U must hold for any feasible system and uk > 0 holds (as Ck > 0 holds by
definition and uk = Ck/Tk), we have m− U + uk > 0. Thus,

Lk <
(dUe − 1)Cmax + 2Csum + (m− 2)Ck

m− U + uk
,

which contradicts the definition of Lk in (31). Thus, the supposition at the beginning of this
proof cannot be true, and the theorem follows.
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Corollary 3. Any work-conserving scheduler is soft real-time optimal under the npc-sporadic
task model.

10 Experiments
In this section, we evaluate the obtained analytical tardiness bound for the preemptive G-FP
scheduler, which is probably the most practically relevant scheduler among those considered
in the paper. Two evaluation metrics naturally arise with respect to tardiness analysis. The
first one is average tardiness over all tasks in the system, and the second one is maximum
tardiness over all tasks. In order to evaluate our analytical results, we use both metrics in
several experiments.

Firstly, we consider the difference between analytical and observed tardiness. Because the
analytical bound can be significantly higher than the observed one (up to an order of magni-
tude), we propose a bound reduction method based on clustering. Unfortunately, clustering is
an NP-hard problem (it can be reduced to the bin-packing problem). However, we conducted
experiments showing that for tasks systems in which no task has high utilization, clustering
can effectively reduce the analytical bound for almost all task sets.

Secondly, we consider the task prioritization problem. Our experiments pertaining to this
problem focus on heuristics, because, unfortunately, the problem of finding the optimal (with
respect to tardiness minimization) prioritization seems to have no polynomial solution unless
P=NP. We do not have a proof for this statement but provide intuition that it is so. This
intuition comes from examining prior work on two well-studied real-time scheduling models that
are related to the npc-sporadic model: ordinary sporadic tasks and a collection of independent
jobs.

From the point of view of ordinary tasks, Leung and Merril [21, Theorem 2, for a single
processor] and Leung [20, Theorem 4, for multiprocessor] showed that the problem of deciding
if a periodic task system is schedulable under any fixed-priority algorithm is co-NP-hard in the
strong sense. Note that a periodic task system is a special case of a sporadic tasks system.

From the point of view of independent jobs, the problem of minimizing either of our two
evaluation metrics has a similar existing problem known to be NP-hard. Minimizing the average
response time of an npc-sporadic task system has the same nature as the problem of minimizing
the makespan of a collection of jobs, which was studied by Uzsoy [26, Corollary 1]. The concept
of minimizing the maximum response time of an npc-sporadic task system has the same nature
as minimizing the number of tardy jobs; this problem was studied was studied by Li and
Lee [23, Theorem 1].

Thirdly, we consider an exponential algorithm for the optimal prioritization and use it to
evaluate the quality of the considered heuristics for small task sets.

To generate the task systems used in this section, we selected task periods from the range
[10ms, 100ms] (uniformly distributed). We also considered various task utilization ranges: light
tasks with ui ∈ (0.0, 0.3), medium tasks with ui ∈ [0.3, 0.7), and heavy tasks with ui ∈ [0.7, 1.0).

The source code we developed for this experimental evaluation can be found online [1].

10.1 Analytical Tardiness Bound vs Observed Tardiness

Notice that the numerator in the response-time bound given in Theorem 1 depends on the
core count m and priority k, which determines the number of higher-priority tasks that exist.
Therefore, a reduced bound can be ensured if these values can be lowered. One way to do this is
by partitioning the hardware platform into clusters of cores, assigning each task to one cluster,
and applying global scheduling only within clusters. To evaluate the efficacy of such a strategy,
we conducted experiments in which clusters of size two, four, eight, and 16 were considered on
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PA period ascending PD period descending
UA utilization ascending UD utilization descending
EA execution time ascending ED execution time descending
A1 Algorithm 1

Table 1: List of tested heuristics.

a 16-core platform. (A cluster size of 16 is simply pure global scheduling.) For these cluster
sizes, we randomly generated npc-sporadic task systems and assessed both schedulability (i.e.,
the fraction of generated systems deemed schedulable) and tardiness bounds for the generated
systems as a function of total system utilization. To assign tasks to clusters, we tried four
well-known bin-packing heuristics, worst-fit decreasing, best-fit decreasing, next-fit decreasing,
and first-fit decreasing, and declared a task system to be schedulable if any of these heuristics
could produce an assignment of tasks to clusters that was schedulable. We assigned higher
priorities to lower-indexed tasks (i.e., those generated earlier).

In order to account for variations in task periods, we used average relative tardiness as
our primary evaluation metric; a task’s relative tardiness is given by its tardiness divided by
its period. We computed both bounds on relative tardiness, using Corollary 2, and observed
relative tardiness, by examining schedules in which jobs were released periodically for 10000
time units. The results we obtained for light tasks are plotted in Fig. 9, those for medium
tasks in Fig. 10, and those for heavy tasks in Fig. 11. Each plot in these figures pertains to one
cluster size and shows schedulability, the average observed relative tardiness, and the average
relative tardiness bound (each as a function of total utilization) for that cluster size.

As these plots show, clustering had virtually no negative impact on schedulability for light
task systems. For medium and heavy task systems, there was some non-negligible impact for
clusters of size two and four, as seen by the decline in schedulability as total utilization nears
16.0. As expected, the likelihood of obtaining a schedulable clustering seems to be lower for the
task sets with higher average utilization. However, task systems with a large number of tasks,
which gain the largest analytical bound decrease from clustering, have to have low average
utilization.

For both light and medium task systems, using clusters of size eight decreased the average
relative tardiness bound compared to global scheduling (i.e., using one cluster of size 16) by
about 30% with almost no impact on schedulability. Using clusters of size four decreased the
bound by around 40%, and using clusters of size two reduced it by around 55%, though for
these cluster sizes some schedulability impacts existed for medium task systems, as already
noted. Heavy task systems have almost zero relative tardiness, so the tasks number in cluster
is smaller, though the analytical bound decreased up to six times for the clusters of size two.

Across all of our experiments, average relative tardiness bounds for light and medium task
systems with high total utilization were four to ten times larger than average observed relative
tardiness. The difference in the observed results follows from two main reasons. First, the
provided bound depends on Cmax, which tends to be larger for tasks with higher utilization.
Second, in general, observed tardiness tended to be smaller for task sets with a smaller number
of tasks (which arises from the larger average utilization).

10.2 Task Prioritization

In this subsection, we consider seven task prioritization heuristics (see Tbl. 1). We compared
them to an initial random ordering.

As discussed above we have two evaluation metrics: relative average tardiness and relative
maximum tardiness.
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Figure 9: Experimental results for light tasks.

35



Figure 10: Experimental results for medium tasks.
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Figure 11: Experimental results for heavy tasks.
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function order tardiness max avg
optimal_max [5, 3, 1, 2, 4] 0.00 0.38 0.00 1.53 2.01 2.01 0.78
optimal_avg [3, 2, 1, 5, 4] 0.00 0.00 0.00 0.89 2.01 2.01 0.58

UA [1, 2, 3, 4, 5] 0.00 0.00 0.07 0.89 2.46 2.46 0.68
EA [1, 2, 3, 4, 5] 0.00 0.00 0.07 0.89 2.46 2.46 0.68
PA [2, 1, 3, 4, 5] 0.00 0.00 0.07 0.89 2.46 2.46 0.68
A1 [3, 2, 5, 1, 4] 0.00 0.00 0.48 0.60 2.46 2.46 0.71
UD [5, 4, 3, 2, 1] 0.00 0.36 1.37 2.58 2.69 2.69 1.40
ED [5, 4, 3, 1, 2] 0.00 0.36 1.37 1.15 4.57 4.57 1.49
PD [5, 4, 1, 3, 2] 0.00 0.36 0.00 1.67 4.57 4.57 1.32

Table 2: Relative tardiness from Corollary 2 for the task set {(1, 5); (1, 3); (4, 5); (5, 6); (5,
6)}.

Note that we consider implicit-deadline tasks, so PA in Tbl. 1 is equivalent to the Deadline
Monotonic Priority Ordering (DMPO), which is known to be optimal for constrained-deadline
sporadic tasks on uniprocessors [22].

Example 4. Note that all heuristics from the Tbl. 1 may produce sub-optimal prioritiza-
tions. For example, consider the following task system (denoted as (execution time, period)):
{(1, 5); (1, 3); (4, 5); (5, 6); (5, 6)}. Tbl. 2 shows relative tardiness for both the average and the
maximum case for this task system under each heuristic and also under prioritizations that
minimize maximum (optimal_max) and average (optimal_avg) tardiness. As this table shows,
none of the heuristics is optimal.

10.2.1 Heuristics Comparison

In this experiment, we compared the seven heuristics described above with the initial random
ordering. We generated task systems of all three types described above: light, medium and
heavy for a platform with 16 cores. A comparison of all heuristics can be found in Fig. 12.

As these plots show, three heuristics greatly outperformed the others others: PA, EA, and
A1. The difference among their absolute values is not significant, so no one heuristic is best.
To provide a more thorough comparison as to which heuristic is best, we limited the scope of
the remaining experiments to the three best-performing heuristics. Note that the three best
heuristics were able to find prioritizations that ensure almost zero tardiness for nearly all task
systems with total utilization in [0, 10]. Thus, we focus on the utilization range [10, 16].

To more precisely compare PA, EA and A1 we computed the share of the generated task
systems where each heuristic yields higher schedulability than the other two. A comparison of
all three types of task sets on the basis of the two evaluation metrics can be found in Fig. 13.

For all types of task systems with utilization less than the system capacity, the EA heuristic
dominates when maximum tardiness is used as the evaluation metric. For task systems with
utilization close to the system capacity, the PA heuristic dominates.

However, when the average relative tardiness is used as the evaluating metric, A1 dominates
for almost all task systems with utilizations in the range [10, 15].

10.2.2 Heuristics vs. Optimal

In the subsection above, we considered heuristics for task prioritization. Unfortunately, none
of them are optimal. To compute the quality of each heuristic, we need to understand how
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(a) Light tasks and average tardiness (b) Light tasks and maxumum tardiness

(c) Medium tasks and average tardiness (d) Medium tasks and maxumum tardiness

(e) Heavy tasks and average tardiness (f) Heavy tasks and maxumum tardiness

Figure 12: Comparison of all seven heuristics and default random ordering.
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(a) Light tasks and average tardiness (b) Light tasks and maxumum tardiness

(c) Medium tasks and average tardiness (d) Medium tasks and maxumum tardiness

(e) Heavy tasks and average tardiness (f) Heavy tasks and maxumum tardiness

Figure 13: Comparison of three best heuristics. The y-axis of each plot shows the percentage
of tasks sets where each heuristic performed better than two others.
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(a) Medium tasks and average tardiness (b) Medium tasks and maxumum tardiness

(c) Heavy tasks and average tardiness (d) Heavy tasks and maxumum tardiness

Figure 14: Comparison of three best heuristics.

close to optimal it is. To determine the optimal priority assignment, we computed all priority-
assignment permutations and selected the one that yielded the lowest tardiness according to
the chosen metric. Such an algorithm is exponential, so we can only test small task systems.

As we see from the previous experiment, three heuristics (EA, PA, A1) performed the best.
They outperformed all others for the almost all task systems, so we focused on them only.

Based on the comparison of the relative analytical and observed tardiness, we considered
task systems with high per-task utilizations relative to the total system utilization. Such task
systems tend to have higher observed and analytical tardiness, so the difference between the
optimal algorithm and the other algorithms for the prioritization should be larger. Thus, we
focused on medium and heavy tasks (light task systems have lower total utilization). For
medium tasks, we considered a 4-core system; for heavy tasks, we considered an 8-core system.

As we can see in Fig. 14, an optimal prioritization does not produce significantly better
results for task systems with small numbers of tasks.

11 Conclusion
In this paper, we considered the scheduling of npc-sporadic task systems under G-FP and its
variants on a multiprocessor platform. We showed that G-FP (preemptive or non-preemptive)
may generate unbounded task response times under the standard sporadic task model, even
when the underlying platform is significantly under-utilized. In contrast, under the npc-sporadic

41



task model, we showed that preemptive G-FP ensures bounded task response times (and hence
tardiness) for any task system whose utilization does not exceed the platform’s capacity—that
is, G-FP is SRT-optimal under the npc-sporadic task model. We further showed that our derived
response-time bound is asymptotically tight and that it can be reduced in practice through the
use of clustered scheduling. We considered the problem of task system prioritization, and how
different heuristics affect the bound. We extended our approach to non-preemptive G-FP and
its generalization, G-FP with preemption thresholds.

We showed that any (preemptive or non-preemptive) work-conserving scheduler is SRT-
optimal under the npc-sporadic task model. However, this approach may yield conservative
bounds for certain schedulers because it does not take into account scheduler-specific informa-
tion that may be important for obtaining reduced bounds. In the future, we hope to refine this
proof strategy so that it can be applied to obtain an asymptotically tight response-time bound
for any such scheduler.

This paper was motivated by an industry problem (pertaining to the processing done within
5G cellular base stations) in which tasks exist as nodes within a directed acyclic graph (DAG),
the edges of which denote precedence constraints between different tasks, and intra-task par-
allelism is allowed. In prior work, response-time bounds for such DAG-based systems were
presented assuming a dynamic-priority scheduler is used [30]. In this industry problem, a
static-priority scheduler would be desirable to use because it would entail lower runtime over-
heads than a dynamic-priority one. In the future work, we intend to consider in detail the
applicability of G-FP scheduling under the npc-sporadic task model in this DAG-based set-
ting.
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