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Abstract

This paper considers the scheduling of soft real-time sporadic task systems under global EDF on an iden-

tical multiprocessor. Though Pfair scheduling is theoretically optimal for hard real-time task systems on

multiprocessors, it can incur significant run-time overhead. Hence, other scheduling algorithms that are not

optimal, including EDF, have continued to receive considerable attention. However, prior research on such

algorithms has focussed mostly on hard real-time systems, where, to ensure that all deadlines are met, ap-

proximately 50% of the available processing capacity will have to be sacrificed in the worst case. This may

be overkill for soft real-time systems that can tolerate deadline misses by bounded amounts (i.e., bounded

tardiness). In this paper, we derive tardiness bounds under preemptive and non-preemptive global EDF on

multiprocessors when the total utilization of a task system is not restricted and may equal the number of pro-

cessors. Our tardiness bounds depend on per-task utilizations and execution costs — the lower these values,

the lower the tardiness bounds. As a final remark, we note that global EDF may be superior to partitioned

EDF for multiprocessor-based soft real-time systems in that the latter does not offer any scope to improve

system utilization even if bounded tardiness can be tolerated.
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1 Introduction

A number of present-day and emerging applications require real-time and quality-of-service (QoS) guar-

antees and also have workloads that necessitate multiprocessor-based designs. Systems that track people

and machines, virtual-reality systems, systems that host web-sites, and signal-processing systems such as

synthetic-aperture imaging are some examples. Timing constraints in several of these applications are pre-

dominantly soft in that deadlines may be missed as long as the long-run fraction of the processing time

allocated to each task in the application is in accordance with its utilization. A system design that can guar-

antee that deadline misses, if any, are bounded by constant amounts is sufficient to provide guarantees on

long-term processor shares. Hence, scheduling methods that ensure bounded deadline misses and that can

be applied when other methods cannot are of considerable value and interest.

Multiprocessor scheduling algorithms can be classified according to whether they use a partitioning or

global-scheduling approach. Under partitioning, tasks are statically partitioned among processors, with

tasks assigned to each processor scheduled using a separate instance of a uniprocessor scheduling algorithm.

In contrast, under global scheduling, a task may execute on any processor and may migrate across processors.

A single ready queue stores ready jobs, and the job with the highest priority is chosen for execution from this

ready queue at each scheduling decision. The two approaches can be differentiated further based on the

scheduling algorithm that is used. For instance, the earliest-deadline-first (EDF) or the rate-monotonic (RM)

scheduling algorithm could be used as the per-processor scheduler under partitioning, or as the system-wide

scheduler under global scheduling. Though Pfair scheduling [5], which falls under the umbrella of global

scheduling, is theoretically optimal∗ for recurrent real-time task systems on multiprocessors, it can incur

significant preemption, migration, and scheduling overheads due to its quantum-based scheduling. Hence,

other scheduling algorithms that are not optimal have continued to receive considerable attention.

It is well known that EDF with job preemptions allowed is optimal for scheduling independent periodic or

sporadic tasks on uniprocessors and that its utilization bound is 100% when relative deadlines are implicit,

i.e., equal periods [10]. However, the worst-case utilization bound of EDF for implicit-deadline systems is ap-

proximately 50% on multiprocessors, under both partitioning and global scheduling [7]. Moreover, partition-

ing schemes suffer from the drawback of offering no scope for improving system utilization even if bounded

deadline misses can be tolerated. This is because, if a task set cannot be partitioned without over-utilizing

some processor, then deadline misses and tardiness for tasks on that processor will increase with time. On

the other hand, as we will see, the outlook is more promising if inter-processor migrations are permissible.

In 1978, Dhall and Liu showed that there exist task sets with total utilization arbitrarily close to 1.0 that

cannot be correctly scheduled on m processors for any m ≥ 2 under global EDF or RM scheduling [8]. Perhaps

∗A real-time scheduling algorithm is said to be optimal iff it can correctly schedule (i.e., without deadline misses) every task system

for which a correct schedule exists.
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due to this negative result, also referred to as the “Dhall effect,” the real-time research community had

largely ignored global scheduling. However, in the recent past, several researchers have noted that the Dhall

effect is due to the presence of tasks with high and low utilizations and have shown that it can be overcome

by restricting per-task utilizations. First, in [14], Srinivasan and Baruah showed that on m processors, EDF

can correctly schedule any independent periodic task system (with implicit deadlines) in which the maximum

utilization of any task, umax, is at most m/(2m−1), as long as the total utilization of all tasks, Usum, is at most

m2/(2m−1). They also proposed a variant of EDF that prioritizes tasks with utilization exceeding m/(2m−1)

over the rest, and showed that the modified algorithm can correctly schedule any task system for which Usum

does not exceed m2/(2m − 1). Later, Goossens et al. [9] showed that EDF can correctly schedule any task

system with total utilization not exceeding m − (m − 1)umax on m processors, and improving upon the result

in [14], Baruah [4] proposed an EDF variant that can schedule any task system if Usum is at most (m + 1)/2.

The above-mentioned results were derived using a result in [11] that relates the speed of the processors

running an optimal algorithm to the speed required for the processors running EDF to avoid deadline misses.

This was noted by Baker in [2], who then extended the processor-time demand argument commonly used

in uniprocessor analysis to multiprocessors, and used it to derive a sufficient schedulability condition under

EDF for independent periodic or sporadic task systems when relative deadlines are at most periods (i.e.,

constrained deadline systems). Baker’s condition reduces to that of Goossens et al. when relative deadlines

equal periods. Recently, a new schedulability test for constrained deadline systems was proposed by Bertogna

et al. [6].

The schedulability test for global EDF depends on umax — the lower the value of umax, the higher the total

utilization of a task system that is schedulable. Nevertheless, even with umax = 0.5, half the total available

processing capacity will have to be wasted, if every deadline must be met. This may be overkill for soft

real-time systems that can tolerate bounded deadline misses.

The research discussed above is for preemptive EDF (or, simply EDF), under which a job may be preempted

by another arriving higher-priority job. To our knowledge, non-preemptive EDF (NP-EDF) has been considered

only in [3], where a sufficient schedulability condition is derived for task systems in which the maximum

execution cost of any task is less than the minimum period of any task.

Non-trivial schedulability tests have been developed for global RM scheduling also [1, 2]. However, the

schedulable utilizations that these tests allow are less than that allowed by EDF. Furthermore, like parti-

tioning algorithms, global RM (or any global static-priority algorithm) may not be suited for soft real-time

systems. This is because, it is easy to construct task systems in which tardiness for low-priority tasks in-

creases with time when scheduled under RM.

Contributions. In this paper, we address the issue of determining the amount by which any deadline may

be missed under global EDF or NP-EDF on a multiprocessor, if the total system utilization is not restricted
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and may be any value up to m, where m is the total number of processors. We show that the tardiness bound

depends on per-task utilizations and execution costs, and for EDF is at most ((m − 1) · emax − emin)/(m −

(m − 2) · umax) + emax, where emax and emin are the maximum and minimum execution costs of any task.

For NP-EDF, we derive a bound of (m · emax − emin)/(m − (m − 1) · umax) + emax, which is worse than that of

EDF by over emax/(m − (m − 1)umax). Better bounds, which may be possible by considering the m − 1 tasks

with highest utilizations and execution costs, are also provided in the paper. The difference between the EDF

and NP-EDF bounds is approximately emax/m when umax ≈ 0.0, and increases to around ((m + 1) · emax)/2 as

umax → 1.0. However, for task systems in which much fewer than m tasks have an execution cost of emax

or a utilization of umax, the difference between the two bounds narrows considerably if computed using the

more accurate methods described in the paper. It is also interesting to note that as m → ∞, both bounds

converge to emax/(1−umax)+emax. Because a job may be blocked for up to emax time units by a lower-priority

job under NP-EDF, the small difference between the two bounds at low utilizations or for high values of m

suggests that the analysis of EDF may not be tight. In a similar vein, the significantly higher difference at

high utilizations, when close to m tasks have a utilization of umax and an execution cost of emax, suggests

that a better bound may be possible for NP-EDF. Nevertheless, these results should enable the class of soft

real-time applications described above to be EDF-scheduled on multiprocessors. We consider the NP-EDF-

result to be particularly significant in that, due to its potential to lower worst-case execution-cost estimates

by eliminating preemptions, a large overall improvement in system utilization should be possible if bounded

deadline misses are acceptable.

Other work on soft real-time systems. Most prior work on soft real-time systems has focussed on unipro-

cessor systems only. The main objective has been to decrease the response time for aperiodic tasks, or to

derive probabilistic or deterministic bounds on deadline misses for task systems provisioned using average-

case task parameters, as opposed to worst-case parameters [12]. While such complex formulations of soft

real-time systems are important and useful for multiprocessor systems also, in this paper we seek to im-

prove the system utilization of a multiprocessor for a simple model.

Soft real-time scheduling on multiprocessors has previously been considered in [13]. Here, a tardiness

bound is derived for a suboptimal Pfair scheduling algorithm that is less expensive than optimal algorithms.

Organization. The rest of this paper is organized as follows. Our system model is formally presented in

Sec. 2. Tardiness bounds are derived for EDF and NP-EDF in Sec. 3. In Sec. 4, an empirical evaluation of the

tightness of the bounds is presented. Finally, Sec. 5 concludes.

2 System Model

A sporadic task system τ comprised of n > 0 independent, sporadic tasks is to be scheduled upon a multipro-

cessor platform comprised of m ≥ 2 identical processors. Each task Ti(ei, pi), where 1 ≤ i ≤ n, is characterized
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by a minimum inter-arrival time, also referred to as its period, pi > 0, an execution cost ei ≤ pi, and a rel-

ative deadline Di = pi. Every task Ti may be invoked zero or more times with two consecutive invocations

separated by at least pi time units. Each invocation of Ti is referred to as a job of Ti and the kth job of Ti,

where k ≥ 1, is denoted Ti,k. The first job may be invoked or released at any time at or after time zero. The

release time of job Ti,k is denoted ri,k. A periodic task system, in which every two consecutive jobs of every

task are separated by exactly pi time units, is a special instance of a sporadic task system. Every job of Ti has

a worst-case execution requirement of ei time units. The absolute deadline (or just deadline) of Ti,k, denoted

di,k and given by ri,k +Di, is the time at or before which Ti,k should complete execution. The notation Ti(ei, pi)

is sometimes used to concisely denote the execution cost and period of task Ti. Each task is sequential, and

at any time may execute on at most one processor.

We say that a sporadic task system τ is concrete, if the release time of every job of each of its tasks is

specified, and non-concrete, otherwise. Note that infinite concrete task systems can be specified for every

non-concrete task system. When unambiguous from context, we omit specifying the type of the task system.

The results in this paper are for non-concrete task systems, and hence hold for every concrete task system.

The utilization of Ti is denoted ui and is given by ei/pi. The total utilization of a task system τ is defined as

Usum(τ) =
∑n

i=1 ui. We place no constraint on total utilization except that Usum(τ) ≤ m hold. The maximum

utilization and the maximum execution cost of any task in τ are denoted umax(τ) and emax(τ), respectively.

The minimum execution cost of any task is denoted emin(τ). Umax(τ, k), where k ≤ n, denotes a subset of k

tasks with highest utilizations in τ , i.e., a subset of k tasks of τ each with utilization at least as high as that of

every task in τ \ Umax(τ, k).† Emax(τ, k) is defined analogously with respect to execution costs. (In all of these

max and min terms, the task system will be omitted when it is unambiguous.) A task system is preemptive if

the execution of its jobs may be interrupted and resumed later, and non-preemptive, otherwise. Under both

preemptive EDF (or just EDF) and non-preemptive EDF (or NP-EDF), ready jobs are prioritized on the basis of

their deadlines, with jobs with earlier deadlines having higher priority than jobs with later deadlines. Ties

among jobs with the same deadline are resolved arbitrarily, but consistently. Under EDF, an arriving job

with higher priority preempts the executing job with the lowest priority if no processor is available. The

preempted job may later resume execution on a different processor. Under NP-EDF, the arriving job waits

until some job completes execution and a processor becomes available. Thus, under NP-EDF, once scheduled,

a job is guaranteed execution until completion without interruption.

As discussed in the introduction, this paper is concerned with deriving a lateness or tardiness [12] bound

for a sporadic task system scheduled under EDF or NP-EDF. Formally, the tardiness of a job Ti,j in schedule S

is defined as tardiness(Ti,j ,S) = max(0, t−di,j), where t is the time at which Ti,j completes executing in S. The

tardiness of a task system τ under scheduling algorithm A is defined as the maximum tardiness of any job of

†\ is the set difference operator. A \ B is the subset of all the elements of A that are not in B.
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a task in τ in any schedule for any concrete instantiation under A. If κ is the maximum tardiness of any task

system under A, then A is said to ensure a tardiness bound of κ. Though tasks in a soft real-time system are

allowed to have nonzero tardiness, we assume that missed deadlines do not delay future job releases. That

is, if a job of a task misses its deadline, then the release time of the next job of that task remains unaltered.

Of course, we assume that no two jobs of the same task can execute in parallel. Thus, a missed deadline

effectively reduces the interval over which the next job should be scheduled in order to meet its deadline.

3 Tardiness Bounds for EDF and NP-EDF

Our approach towards determining tardiness bounds under EDF and NP-EDF involves comparing the allo-

cations to a concrete task system τ in a processor sharing (PS) schedule for τ and an actual EDF or NP-EDF

schedule of interest for τ , as the case may be, and quantifying the difference between the two. In a PS sched-

ule, each job of Ti is allocated a fraction ui of a processor at each instant (or equivalently, a fraction ui of each

instant) in the interval between its release time and its deadline. Because Di = pi for all i, and Usum ≤ m

holds, the total demand at any instant will not exceed m in a PS schedule, and hence no deadlines will be

missed; in fact, every job will complete executing exactly at its deadline. We begin by setting the required

machinery in place.

3.1 Definitions and Notation

A time interval [t1, t2), where t2 ≥ t1, consists of all times t, where t1 ≤ t < t2, and is of length t2− t1. Interval

(t1, t2) excludes t1. The system start time is assumed to be zero. For any time t > 0, the notation t− is used

to denote a time instant that is earlier than t and is arbitrarily close to t. More specifically, t− ≥ 0 is the

latest time instant before t such that the state of the system is unchanging in [t−, t) in the following sense:

(i) There are no job releases or deadlines in (t−, t). (ii) If a processor is executing a job, say Ti,j, at t−, then

it executes Ti,j throughout [t−, t), and if a processor is idle at t−, then it is idle throughout [t−, t). (In other

words, t− denotes the time t − ε in the limit ε → 0+.)

Definition 1 (active tasks, active jobs, and windows): A task Ti is said to be active at time t, if there

exists a job Ti,j such that ri,j ≤ t < di,j ; Ti,j is said to be the active job of Ti at t and the interval [ri,j , di,j) is

referred to as the window of Ti,j. By our task model, every task can have at most one active job at any time.

Definition 2 (pending jobs): Ti,j is said to be pending at t in a schedule S if ri,j ≤ t and Ti,j has not

completed execution by t in S. Note that a job with a deadline at or before t is not considered to be active at t

even if it is pending at t.

We now quantify the total allocation to τ in an interval [t1, t2) in a PS schedule for τ , denoted PSτ . For

this, let A(S, Ti, t1, t2) denote the total time allocated to Ti in an arbitrary schedule S for τ in [t1, t2). Then,

since in PSτ , Ti is allocated a fraction ui of each instant at which it is active in [t1, t2), we have
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A(PSτ , Ti, t1, t2) ≤ (t2 − t1)ui. (1)

The total allocation to τ in the same interval in PSτ is then given by

A(PSτ , τ, t1, t2) ≤
∑

Ti∈τ

(t2 − t1)ui = Usum · (t2 − t1) ≤ m(t2 − t1). (2)

We are now ready to define lag and LAG, which play a pivotal role in this paper. In the scheduling literature,

the lag of task Ti at t in an arbitrary schedule S for τ is defined as the difference between the allocations to

Ti in PSτ and S in interval [0, t). This difference, which is denoted lag(Ti, t,S) in this paper, is given by

lag(Ti, t,S) = A(PSτ , Ti, 0, t) − A(S, Ti, 0, t). (3)

If lag(Ti, t,S) is positive, then schedule S has performed less work on the jobs of Ti until t than PSτ (or Ti is

under-allocated in S), and more work if lag(Ti, t,S) is negative (or Ti is over-allocated in S). The total lag of a

task system τ at t, denoted LAG(τ, t,S), is given by the sum of the lags of all tasks in τ . That is,

LAG(τ, t,S) =
∑

Ti∈τ

lag(Ti, t,S) = A(PSτ , τ, 0, t) − A(S, τ, 0, t). (4)

Note that LAG(τ, 0,S) and lag(Ti, 0,S) are both zero, and that by (3) and (4), we have the following for t2 > t1.

lag(Ti, t2,S) = lag(Ti, t1,S) + A(PSτ , Ti, t1, t2) − A(S , Ti, t1, t2) (5)

LAG(τ, t2,S) = LAG(τ, t1,S) + A(PSτ , τ, t1, t2) − A(S, τ, t1, t2) (6)

Finally, one more definition before beginning the derivation proper.

Definition 3 (busy interval): A time interval [t1, t2), where t2 > t1, is said to be busy for τ if all m processors

are executing some job of a task in τ throughout the interval, i.e., no processor is ever idle in the interval or

executes a job that is not of a task in τ . An interval [t1, t2) that is not busy for τ , is said to be non-busy for

τ , and is said to be maximally non-busy if every time instant in [t1, t2) is non-busy, and either t1 = 0 or t1- is

busy.

If [t1, t2) is a busy interval in a schedule S for τ , then the tasks in τ receive a total allocation of m(t2 − t1)

time in S in that interval. By (2), the total allocation to τ in [t1, t2) cannot exceed m(t2− t1) in PSτ . Therefore,

by (6), the LAG of τ at t2 cannot exceed that at t1, and we have the following lemma.

Lemma 1 If LAG(τ, t + δ,S) > LAG(τ, t,S), where δ > 0 and S is a schedule for τ , then [t, t + δ) is a non-busy

interval for τ .

3.2 Deriving a Tardiness Bound for Preemptive EDF

Our goal is to determine a tardiness bound for non-concrete sporadic task systems. For this, we first de-

termine a lower bound on the LAG at di,j of an arbitrary concrete task system τ that is necessary for the

tardiness of an arbitrary job Ti,j of a task Ti in τ to exceed a given value in an EDF schedule. Next, we
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determine an upper bound on the LAG possible for τ at di,j , in terms of the parameters of the tasks in τ .

Using these two values, it is then possible to determine a tardiness bound for τ . As we shall see, this tar-

diness bound that we derive is independent of release times of jobs in τ , and hence applies to all concrete

task systems that are specified by the same non-concrete task system as τ , i.e., to non-concrete task systems

(Theorem 1). The lemma that follows determines a lower bound on LAG necessary for a given tardiness.

Lemma 2 Let the deadline of every job of every task in a sporadic task system τ be at most td and let the

tardiness of every job of Tk with a deadline less than td be at most x + ek, where x ≥ 0, for all 1 ≤ k ≤ n, in an

EDF schedule S for τ on m processors. Let LAG(τ, td,S) ≤ mx + ei, where td = di,j , for some 1 ≤ i ≤ n. Then,

tardiness(Ti,j ,S) is at most x + ei.

Proof: Note that because the deadline of every job of a task in τ is at most td, LAG(τ, td,S) denotes the amount

of work that needs to be done on jobs of tasks in τ after td in S. Because there are no new job arrivals at or

after td, there can be no preemptions, either, at or after td. Let δi ≤ ei denote the amount of time that Ti,j has

executed for before time td and let y = x+δi/m. We consider two cases depending on whether [td, td+y) is busy.

td

Ti,j

td+y

Ti,j−1

proc. m

is idle
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Figure 1: Lemma 2. (a) [td, td + y) is busy.

Ti,j commences execution at or before td +y.

(b) [td, td + y) is not busy.

Case 1: [td, td + y) is busy. In this case, the amount of work

completed in [td, td + y) is exactly my = mx + δi, and hence, the

amount of work pending at td + y is at most ei − δi. Thus, the

latest time that Ti,j resumes execution after td is td+y, and because

there are no preemptions at or after td, Ti,j completes execution at

or before td + y + ei − δi ≤ td + x + ei. Hence, tardiness(Ti,j ,S) ≤

td + x + ei − di,j = x + ei. This is illustrated in Fig. 1(a).

Case 2: [td, td + y) is not busy. Let t′ denote the first (earliest)

non-busy instant in [td, td + y). Then, because every job has its

release time before td, and hence is ready at t′ if its predecessor job

has completed executing by t′, we have the following.

(J) At most m − 1 tasks have pending jobs at or after t′.

Therefore, if Ti,j has not completed executing before td + y, then

either Ti,j or a prior job of Ti should be executing at t′. If Ti,j is

executing at t′, then because there are no preemptions after td and

t′ < td + y holds, Ti,j will complete executing before td + y + ei − δi ≤

td + x + ei. Thus, the tardiness of Ti,j is less than x + ei, which

establishes the lemma. The remaining possibility is that j > 1 holds, and that a job of Ti that is prior to

Ti,j is executing at t′. In this case, Ti,j could not have executed before td, and hence δi = 0 and y = x holds.
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Because successive jobs of Ti are separated by at least pi time units, di,j−1 ≤ td − pi holds. Hence, by the

statement of the lemma, Ti,j−1 completes executing by td − pi + x + ei. Thus, the latest time that a prior job

of Ti could complete executing is td − pi + x + ei ≤ td + x. Because t′ < td + y = td + x, by (J), Ti,j commences

execution at or before td + x, and hence, completes executing by td + x + ei. This is illustrated in Fig. 1(b). �

By Lemma 1, the LAG of τ can increase only across an interval that is non-busy. Thus, if t′ is the end of

the latest maximally non-busy interval in [0, td) in a schedule S for τ (i.e., t′− is non-busy and [t′, td) is busy),

then LAG(τ, t) ≤ LAG(τ, t′), for all t′ ≤ t < td. (If every instant in S is busy, then LAG(τ, t,S) ≤ 0, for all t.)

Hence, an upper bound on the LAG of τ at the end of the latest maximally non-busy interval at or before td

would serve as an upper bound on the LAG of τ at td. The next lemma derives such an upper bound on LAG.

Lemma 3 Let the deadline of every job of every task in a sporadic task system τ with Usum ≤ m be at most td

and let S be an EDF schedule for τ on m processors. Let the tardiness in S of every job of Ti with a deadline

less than td be at most x + ei, where x ≥ 0, for all 1 ≤ i ≤ n. Let [t, t′), where 0 ≤ t < t′ ≤ td, be a maximally

non-busy interval in [0, td), and let k denote the number of jobs of tasks in τ that are executing at the end of

the interval. Then, k ≤ m − 1 and LAG(τ, t′,S) is at most x ·
∑

Ti∈Umax(k) ui +
∑

Ti∈Emax(k) ei.

Proof: Recall that t′− denotes a time instant before t′ that is arbitrarily close to t′. By the statement of the

lemma, t′− is non-busy, and by (4), the LAG of τ at t′ is given by the sum of the the lags at t′ of tasks in τ .

Therefore, an upper bound on the LAG of τ at t′ can be determined by determining an upper bound on the lag

at t′ of each task in τ . For this, we partition the tasks in τ into subsets α, γ, β, and ρ, as defined below, and

then determine an upper bound on the lag of a task in each subset. This partitioning is illustrated in Fig. 2.

α
def
= subset of all tasks in τ executing throughout [t, t′)

γ
def
= subset of all tasks in τ not executing at least in part of [t, t′), but executing at t′−

β
def
= subset of all tasks in τ not executing at t′−, but are active at t′−

ρ
def
= subset of all tasks in τ not executing at t′− and inactive at t′−

i+e i

in α

in ρ

in γ

βin Tk

Tl

Tj
0

Tl,y+1Tl,y

window of
   Ti,u Ti,u Ti,u+1 Ti,u+2

Tj,v+1Tj,v

Tk,x Tk,x+1

lag at t’ < x.u

t’

lag at t’ =

lag at t’ <

lag at t’ <

0

t

0

Figure 2: Lemma 3. Partitioning of tasks

in τ . Jobs of a sample task in each subset

are shown. In this figure, all jobs except

those of Ti, which is in α, complete execut-

ing by their deadlines.

Upper bound on the lag of a task in α. Let Ti be a task in α and

let Ti,j be its job executing at t. Let δi denote the amount of time

that Ti,j has executed before t in S. We first determine the lag of

Ti at t by considering two cases depending on di,j . (We consider t′

afterwards.)

Case 1: di,j < t. Because Ti,j is executing at t and a newly arriving

job, whose deadline would be greater than t, cannot preempt Ti,j ,

the latest time that Ti,j completes executing is t + ei − δi. (It could

complete earlier if its actual execution time is less than ei.) By

the statement of the lemma, the tardiness of every job of Ti with

a deadline less than td is at most x + ei. Therefore, di,j ≥ t + ei −
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δi − (x + ei) = t − δi − x holds. (Note that di,j ≥ t − δi − x holds even if Ti,j completes early, because the

tardiness bound should hold for the worst case, when Ti,j executes for a full ei time units.) In PSτ , Ti,j

completes execution at di,j , and the jobs of Ti succeeding Ti,j are allocated a share of ui in every instant in

their windows. Because windows of no two jobs overlap, Ti is allocated a share of ui in every instant in [di,j , t)

in which it is active. Thus, the under-allocation to Ti in S in [0, t) is equal to the sum of the under-allocation

to Ti,j in S, which is ei − δi, and the allocation to later jobs of Ti in [di,j , t) in PSτ . Hence, lag(Ti, t,S) is at most

ei − δi + (t − di,j) · ui ≤ ei − δi + (x + δi) · ui.

Case 2: di,j ≥ t. In this case, the amount of work done by PSτ on Ti,j up to time t is given by ei− (di,j − t) ·ui.

Because all prior jobs of Ti complete execution by t in both S and PSτ , and Ti,j has executed for δi time units

before t, lag(Ti, t,S) = ei − (di,j − t) · ui − δi ≤ ei − δi ≤ ei − δi + (x + δi) · ui.

Thus, in both cases, we have

lag(Ti, t,S) ≤ ei − δi + (x + δi) · ui. (7)

Next, to determine the lag of Ti at t′, we determine the allocations to Ti in [t, t′) in S and in PSτ . In PSτ , Ti is

allocated a share of at most ui at every instant in [t, t′), for a total allocation of at most (t′ − t) ·ui. Because Ti

executes throughout [t, t′) in S, its total allocation in S in [t, t′) is t′ − t. Hence, A(PSτ , Ti, t, t
′)−A(S, Ti, t, t

′) ≤

(ui − 1) · (t′ − t), and so, by (5) and (7),

lag(Ti, t
′,S) ≤ ei − δi + (x + δi) · ui + (ui − 1) · (t′ − t) ≤ ei + x · ui {because t′ > t, ui ≤ 1, and δi ≥ 0}. (8)

Upper bound on the lag of a task in γ. Let Ti be a task in γ and let t′′, where t < t′′ < t′, denote the latest

time at or before t′ that Ti transitions from a non-executing to an executing state. Because [t, t′) is maximally

non-busy and Ti is not executing at t′′- , jobs of Ti released before t′′ complete execution in S before t′′, and

a job of Ti is released at t′′. Hence, the total allocations to Ti in [0, t′′) are equal in both S and PSτ , and so,

lag(Ti, t
′′,S) = 0. Therefore, lag(Ti, t

′,S) = A(PSτ , t′′, t′) − A(S, t′′, t′) ≤ (t′ − t′′)ui − (t′ − t′′) ≤ 0.

Upper bound on the lag of a task in β. Let Ti,j be the active job at t′− of a task Ti in β. Then, Ti,j is not

executing at t′− in S and di,j > t′− holds. By the definition of t′−, di,j ≥ t′ holds. Thus, since EDF is a work-

conserving algorithm that does not idle a processor when there is pending work, and at least one processor is

idle throughout [t, t′), Ti,j completes execution before t′−. However, in PSτ , Ti,j would not complete execution

until di,j , and hence, Ti is not under-allocated in [0, t′) in S. Thus, Ti’s lag at t′ is at most zero.

Upper bound on the lag of a task in ρ. Reasoning here is similar to that used for tasks in β. Let Ti be a

task in ρ. Then, Ti is not executing at t′− in S, no job of Ti is active at t′−, and the deadline of every job of Ti

released before t′− is at most t′−. Hence, because EDF is work-conserving and at least one processor is idle at

t′−, all jobs of Ti released before t′− complete execution by t′− in S. Because their deadlines are at most t′−,

these jobs complete execution by t′− in PSτ also. There are no new job releases for Ti in [t′−, t′), and thus, the

total allocations to Ti in S and PSτ in [0, t′) are equal. Therefore, lag(Ti, t
′,S) = 0.
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By (4), the LAG of τ at t′ is given by the sum of the lags of tasks in subsets α, β, γ, and ρ. As shown above,

only tasks in α may have a positive lag, and thus, LAG(τ, t′,S) =
∑

Ti∈α∪γ∪β∪ρ lag(Ti, t
′,S) ≤

∑
Ti∈α lag(Ti, t

′,S),

and by (8), LAG(τ, t′,S) ≤
∑

Ti∈α(ei + x · ui). Since [t, t′) is maximally non-busy and k tasks are executing at

the end of the interval, k ≤ m− 1 holds. Hence, since a task in α executes throughout [t, t′), there could be at

most k tasks in α. Therefore, LAG(τ, t′,S) ≤ x ·
∑

Ti∈Umax(k) ui +
∑

Ti∈Emax(k) ei. �

Finally, to determine a tardiness bound for EDF, we are left with determining as small an x as possible such

that the upper bound given by Lemma 3 is at most the lower bound required in Lemma 2. We do this next.

Theorem 1 The tardiness of every task Tk of a sporadic task system τ , where Usum(τ) ≤ m, is at most

(
∑

Ti∈Emax(m−1) ei) − emin

m −
∑

Ti∈Umax(m−1) ui

+ ek (9)

in any EDF schedule for τ on m processors.

Proof: Suppose the theorem does not hold. Then, there exists a concrete task system τ̂ whose task param-

eters are the same as τ such that the tardiness of some job of τ̂ exceeds the bound in (9) in an EDF schedule

S for τ̂ . Let Tk,` denote one such job such that the deadline of Tk,` is not later than that of any such job. Let

τ ′ denote the task system obtained from τ̂ by removing all jobs with deadlines exceeding dk,`, and let S ′ be

an EDF schedule for τ ′. Assuming an EDF scheduler that resolves ties among jobs consistently, every job in τ ′

will have identical schedules in both S and S′, and hence, the tardiness of every job in τ ′ will be the same in

both schedules.

Let td = dk,`. Then, since Tk,` misses its deadline, lag(Tk,`, td,S
′) > 0. Also, since no job in τ ′ has a deadline

exceeding td, no task of τ ′ is over-allocated in [0, td) in S′, i.e., no task of τ ′ has a negative lag at td. Thus, by

(4), LAG(τ ′, td,S
′) > 0. Since LAG(τ ′, 0,S′) = 0, by Lemma 1, there exists a non-busy interval in [0, td) in S′.

Let t′ be the end of the latest maximally non-busy interval before td. Then, as discussed earlier, by Lemma 1,

LAG(τ ′, td,S
′) ≤ LAG(τ ′, t′,S′). By our definition of Tk,`, the tardiness of every job of task Tj with deadline

less than td is at most x + ej for all 1 ≤ j ≤ n, where

x =

∑
Ti∈Emax(m−1) ei − emin

m −
∑

Ti∈Umax(m−1) ui

. (10)

Hence, by Lemmas 1 and 3,

LAG(τ ′, td,S
′) ≤ LAG(τ ′, t′,S′) ≤ x ·

∑
Ti∈Umax(m−1) ui +

∑
Ti∈Emax(m−1) ei. (11)

By our assumption, the tardiness of Tk,` exceeds x + ek. Hence, by Lemma 2, LAG(τ ′, td,S
′) > mx + ek,

which by (11) implies mx + ek < x ·
∑

Ti∈Umax(m−1) ui +
∑

Ti∈Emax(m−1) ei, i.e., x < �Ti∈Emax(m−1) ei−emin

m−�Ti∈Umax(m−1) ui
. This

contradicts (10), and hence the theorem follows. �

A sufficient condition on the individual task utilizations for a given tardiness bound, that places no restriction

on the total utilization can be derived from the above theorem, as given by the following corollary.

10



Corollary 1 EDF ensures a tardiness of at most x+ek for every task Tk of a sporadic task system τ on m proces-

sors if the sum of the utilizations of the tasks in Umax(m−1),
∑

Ti∈Umax(m−1) ui, is at most
mx−�Ti∈Emax(m−1) ei+emin

x

and Usum(τ) ≤ m.

Proof: By Theorem 1, the tardiness for task Tk of τ in an EDF schedule is at most
(�Ti∈Emax(m−1) ei)−emin

m−�Ti∈Umax(m−1) ui
+

ek. Therefore, a tardiness not exceeding x + ek can be guaranteed if
(�Ti∈Emax(m−1) ei)−emin

m−�Ti∈Umax(m−1) ui
≤ x holds. On

rearranging the terms, we arrive at the condition in the corollary. �

3.3 Improving Accuracy and Speed

In this subsection, we discuss possible improvements to the accuracy of the tardiness bound in Theorem 1

and the time required to compute it.

Improving the bound. Recall that in determining an upper bound on LAG in Lemma 3, we assumed that

m − 1 tasks are executing in the maximally non-busy interval, and that each such task has the highest

possible lag. However, using some additional reasoning, it can be shown that for LAG to increase across a

non-busy interval, there should be at least one task that is active in the interval, but had completed execution

before the start of the interval (i.e., β is non-empty). This fact can then be used to argue that at least one job

executing at the end of the non-busy interval has its deadline at or beyond the end of the interval, and hence

that the lag of its task is at most ek, from which x
∑

Tk∈Umax(m−2) uk +
∑

Tk∈Emax(m−1) ek follows as an upper

bound on LAG. Therefore, an improved tardiness bound can be obtained by using
∑

Tk∈Umax(m−2) uk instead

of
∑

Tk∈Umax(m−1) uk in (9). Similarly, it is sufficient to apply the utilization condition of Corollary 1 to tasks

in Umax(m − 2). We will refer to the bound evaluated with Umax(m − 2) in (9) as EDF-BASIC.

Two-processor systems. With the reasoning described above, the upper bound on LAG given by Lemma 3

reduces to emax for m = 2, which is independent of x. Hence, unlike in the general case (i.e., arbitrary m), we

are not constrained to determine an x that would apply for all tasks, and it can be shown that tardiness for

task Ti is at most (emax − ei)/2 + ei, which is at most emax.

If the time taken to compute a tardiness bound or sufficient task utilizations is not a concern, then some

more improvement may be possible by relaxing another pessimistic assumption that we make in Lemma 3.

We not only assume that the tasks that are executing at the end of the non-busy interval have the highest

utilizations, but also that they have the highest execution costs. This can be relaxed by sorting tasks by non-

increasing order of x ·uk +ek (where as defined in Lemma 3, the tardiness of Tk is at most x+ek) and by using

the top m − 2 tasks, denoted E-U(m − 2), in the expressions. (The (m − 1)st execution cost should be taken

as the maximum of the execution costs of the remaining tasks.) If x is known, as in applying Corollary 1,

then this procedure is straightforward. Nevertheless, even when seeking x, as in the proof of Theorem 1, an

iterative procedure could be used. In this iterative procedure, the bound given by EDF-BASIC will be used as

the initial value for x. This initial value will then be used to construct E-U(m− 2), whose utilizations and ex-
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ecution costs should be used in improving x. The procedure should be continued until the task set E-U(m−2)

converges. (It is easy to show that convergence is guaranteed.) We will refer to the bound computed using

such an iterative procedure as EDF-ITER. This procedure is illustrated in the example below.

Example. Let τ be a task set comprised of the following 8 tasks scheduled under EDF on m = 4 proces-

sors: T1(15, 150)–T4(15, 150), T5(9, 10)–T8(9, 10). For this task set, Umax(τ, m − 2) = {T5, T6}, Emax(τ, m − 1) =

{T1, T2, T3} (where ties are resolved by task indices), and emin = 9. Therefore, a tardiness bound for Tk

obtained using EDF-BASIC is (45 − 9)/(4 − 18/10) + ek, which equals 360/22 + ek. Thus, x ≈ 16.36. Comput-

ing x · uk + ek for all the tasks, we obtain values of 16.636 for tasks T1–T4, and 23.727 for T5–T8. Hence,

E-U(m−2) = {T5, T6}. Using the execution costs and utilizations of tasks in E-U(m−2) and 15 as the (m−1)st

execution cost, we obtain an improved value of 10.9 for x, which is more than 5 units less than the initial

value. The tasks in E-U(m − 2) are not altered in the next iteration, and so, the procedure terminates.

Improving computation time. Computing the tardiness bound or determining utilization restrictions on

tasks for a given bound involves selecting m−1 tasks with highest utilizations, and/or m−1 tasks with highest

execution costs, and summing the values. Hence, these are O(n+m) computations. If speed is a concern, as in

online admission tests, and if umax and emax are known, then O(1) computations, which assume a utilization

of umax and an execution cost of emax for each of the m− 1 tasks, and hence yield more pessimistic values, can

be used. Under this assumption, tardiness under EDF is at most ((m− 1)emax − emin)/(m− (m− 2)umax) + ei.

Similarly, for a tardiness of at most x+ei for every Ti, it is sufficient that umax be at most (mx− (m−1)emax +

emin)/((m − 2)x). We will refer to the bound computed using umax and emax as EDF-FAST.

Tightness of the bound. As discussed in the introduction, we do not believe that our result for EDF is tight.

However, we can show that our result is off by at most emax for small values of umax. For this, consider a

task system τ comprised of a primary task T1(e1, p1) and (m − u1)p1/δ auxiliary tasks. Let δ � e1 and p1

be the execution cost and period, respectively, of each auxiliary task. Let δ divide (m − u1) evenly and let

p1 be a multiple of m. Suppose the first job of each task is released at time 0 and suppose the first job of

every auxiliary task is scheduled before T1,1 and executes for a full δ time units. In such a schedule, the

auxiliary jobs will execute continuously until time ( (m−u1)p1

δ
× δ)/m = p1 − e1/m on each processor. Hence,

T1 will not begin executing until time p1 − e1/m, and hence would not complete until p1 + e1(1 − 1/m) for a

tardiness of e1(1 − 1/m). By choosing e1 = m, this tardiness can be made to equal e1 − 1. In this example,

emax = e1, and hence tardiness is at least emax − 1. Note that when umax is arbitrarily low, tardiness under

EDF computed using EDF-FAST is at most ((m − 1) · emax)/m + emax, and since e1/p1 can be arbitrarily low in

the above example, our result is off by at most emax.

Earlier in this section, we noted that tardiness is at most emax for two-processor systems. The following

is an example that shows that this result is tight. Let T1(1, 2), T2(1, 2), and T3(2k + 1, 2k + 1), where k ≥ 1,

be three periodic tasks all of whose first jobs are released at time zero. If deadline ties are resolved in favor
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T1 and T2 over T3, then on two processors, tardiness for jobs of T3 can be as high as 2k time units. (If T3 is

favored, then its jobs can miss by 2k− 1.) For this task set, estimated tardiness is emax = 2k +1, and for large

k, the difference between estimated and actual tardiness is negligible.

An empirical evaluation of the accuracy of the bounds is available in Sec. 4. Interestingly, we have found

that tardiness can exceed emax even for task systems with umax near 1/2. The following is one such task set:

T1(1, 2)–T4(1, 2), T5(1, 5)–T7(1, 5), T8(1, 11), T9(34, 110), T10(23, 63), T11(7, 18)–T12(7, 18), T13(3, 7)–T14(3, 7). The

total utilization of this task set is five. When scheduled on five processors with deadline ties resolved using

task indices, a job of T9 misses its deadline at time 7295 by 35 > 34 = emax time units. (The EDF-BASIC and

EDF-ITER bounds for this task set are 54 and 51.78, respectively.) Hence, the best bound that can be hoped for

an arbitrary task set definitely exceeds emax.

3.4 Deriving a Tardiness Bound for NP-EDF

In this subsection, a tardiness bound is derived for NP-EDF. The analysis required for NP-EDF differs slightly

from that of EDF due to priority inversions.

T3 (1,2)

0 1 2 3 4 5 6 7 8 9 10

T4

Processor 1

T1 (2,10)

T4 (1,2)

T2,1

B B B

BBB

B

first deadline
miss for 

T1,1

T2 (8,10)

T3,1 T3,2 T3,3 T3,4 T3,5

T4,5T4,4T4,3T4,2T4,1

Processor 2

Figure 3: Priority inversion under NP-EDF. Inter-

vals in which tasks T3 and T4 are blocked are indi-

cated using a “B.” T3 and T4 are blocked by jobs T1,1

and T2,1 in [2, 3). In addition, T3 is blocked in [4, 5),

[6, 7), and [8, 9), while T4 is blocked in [3, 4), [5, 6),

and [7, 8).

Priority inversions, blocked jobs, and blocking jobs.

Under NP-EDF, once scheduled, each job continues to exe-

cute until completion without any interruption. Therefore,

a job arriving at time t, even if ready at t and has a deadline

that is earlier than some other job executing at t, cannot

preempt the lower-priority job. If no processor is available

at t, then this will lead to a priority inversion. In such a

scenario, the waiting ready, higher-priority job is referred

to as a blocked job, and the executing lower-priority job as

a blocking job. Task Ti is said to be blocked at t if Ti is not

executing at t and the earliest pending job (i.e., the ready

job) of Ti has a higher priority than at least one job execut-

ing at t. Fig. 3 gives an example. In this example, because job T4,2 is executing in [4, 5), task T4 is not blocked

in [4, 5) even though job T4,3, which has a higher priority than T2,1, is not executing. (Similarly, T4,3 is not

blocked in [4, 5) because it is not ready.)

Under EDF, jobs with deadlines later than td do not interfere with jobs with deadlines at most td. Hence in

Sec. 3.2 (Theorem 1), while determining an upper bound on LAG at td in order to derive a tardiness bound for

an arbitrary job with deadline at td under EDF, it was sufficient to consider a concrete task system comprised

of jobs with deadlines at most td. However, under NP-EDF, due to the possibility of priority inversions, not

all jobs with deadlines later than td can be ignored from the concrete task systems that we work with. Let τ

be a concrete task system and let Ψ denote the set of all jobs of tasks in τ with deadlines at most td.Then, to
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determine a tardiness bound for a job with deadline at td, we need an estimate of the amount of work pending

at td for jobs in Ψ. However, because not every job in τ has deadline at most td, using an upper bound on LAG

of τ at t for this does not suffice. To see this, let S be the schedule in Fig. 3. Letting td = 4 in this example,

we have Ψ = {T3,1, T3,2, T4,1, T4,2}. The amount of work pending for Ψ at td is equal to the amount of work

pending for T4,2, which is one. However, since the lags of T1 through T4 are −1.2, 0.2, 0, and 1, in that order,

LAG(τ, td,S) =
∑n

i=1 lag(Ti, td,S) = 0 holds. Thus, because tasks of blocking jobs may have negative lags, the

LAG of τ may be an underestimate of the amount of work pending for Ψ. To deal with this, we extend the

notion of lag to apply to jobs and job sets, and determine the lag of jobs in Ψ at td. Finally, since a job not in

Ψ that commences execution before td may execute after td, an estimate on the amount of such blocking work

pending at td is also required. To properly handle this, we formally define intervals in which jobs not in Ψ

may be executing and the amount of work pending for such blocking jobs at any time t. We begin by formally

defining lag for jobs.

Lag for jobs. The notion of lag can be applied to a job or a set of jobs in an obvious manner. Just as with

tasks, we will use the terms lag and LAG to denote the lag of an individual job and that of a set of jobs,

respectively. Let τ denote a concrete task system and Ψ a subset of jobs in τ . Let A(PSτ , Ti,j , t1, t2) and

A(S, Ti,j , t1, t2) denote the allocations to Ti,j in the interval [t1, t2) in PSτ and S respectively. (These values

will depend on t1, t2, ri,j , and di,j .) Then, lag(Ti,j , t,S) = A(PSτ , Ti,j, ri,j , t)−A(S, Ti,j , ri,j , t), and LAG of Ψ at t

can be defined analogously to the definition in (4) as LAG(Ψ, t,S) =
∑

Ti,j∈Ψ lag(Ti,j , t,S). The total allocation

in [0, t), where t > 0, to a job that is neither pending at t− in S nor is active at t− is the same in both S and

PSτ , and hence, its lag at t is zero. Therefore, for t > 0, we have the following.

LAG(Ψ, t,S) =
∑

{Ti,j is in Ψ, and is

pending or active at

t−}

lag(Ti,j , t,S).

The above expression for LAG of Ψ can be expressed in terms of lags of tasks in τ as follows.

LAG(Ψ, t,S) ≤
∑

{Ti ∈ τ : Ti,j is in Ψ, and

is pending or active at t−}

lag(Ti, t,S). (12)

The next definition identifies intervals in which jobs in Ψ are blocked. In this definition and in the rest of

the paper, Ψ is to be taken as the set of all jobs of tasks in τ with deadlines at most td.

Definition 4 (blocking interval): An interval [t1, t2) in S, where 0 ≤ t1 < t2 ≤ td and S is a schedule for

τ , is said to be a blocking interval for Ψ, if at least one job of Ψ is blocked in [t1, t2) by a job not in Ψ, i.e., a

job with a deadline exceeding td. [t1, t2) is said to be maximally blocking, if every non-empty subinterval of

[t1, t2) is a blocking interval, and either t1 = 0 or t1- is non-blocking.

Definition 5 (pending blocking jobs (B) and work (B)): The set of all jobs, of tasks in τ , not in Ψ, that
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block one or more jobs of Ψ at some time before t and may continue to execute at t in S is denoted B(τ, Ψ, t,S)

and the total amount of time that the jobs in B(τ, Ψ, t,S) will execute beyond t, i.e., the total amount of work

pending for those jobs at t, is denoted B(τ, Ψ, t,S). The set of all jobs, of tasks in τ , not in Ψ, that can block

some job in Ψ under NP-EDF at some time is denoted B(τ, Ψ,NP-EDF), or simply B, when the parameters are

obvious.

Non-busy interval categories. With respect to Ψ, an interval [t1, t2) is said to be busy only if every proces-

sor is executing some job of Ψ throughout the interval. With this definition, it is easy to see that the LAG of Ψ

can increase only across a non-busy interval, and so Lemma 1 applies to Ψ also in a schedule for τ . Also note

that by this definition, a blocking interval for Ψ is also a non-busy interval for Ψ. However, not every instant

in which a job in B is executing need be a blocking instant. For example, in Fig. 3, if td = 4, then T1,1 and T2,1

are not in Ψ. Therefore, [1, 2) is a non-busy interval for Ψ. However, [1, 2) is not a blocking interval, because

no job of Ψ is awaiting execution in [1, 2). Thus, a non-busy interval in an NP-EDF schedule for Ψ ∪ B can be

classified as either (i) a blocking, non-busy interval or (ii) a non-blocking, non-busy interval.

t2 t4 t5t3 td

...

t2 t4 t5t3 td

...

t6 t7

J1

J3

t1

J4 J5

N B N B

(b)

J2

N

t1

J1

J2

J3

J4 J5

N B N B

(a)

N

jobs, (in B)

blocking

jobs in

ψ

: Non−blocking non−busy interval B: Blocking non−busy interval

Figure 4: Illustration of the reasoning required for NP-EDF.

Differences in reasoning. Our approach for

deriving a tardiness bound for NP-EDF differs

from that used for EDF in the following. (In this

description, every non-busy interval or a block-

ing interval is to be taken to be maximal, un-

less otherwise stated. We refrain from explic-

itly saying so for conciseness.)

By Lemma 1, we know that the LAG of Ψ can increase only across a non-busy interval (not necessarily

maximal), and hence, to determine an upper bound on LAG at td it is sufficient to determine an upper bound at

the end of the latest non-busy interval. As discussed above, a non-busy interval for Ψ in an NP-EDF schedule is

either blocking or non-blocking. Therefore, to determine an upper bound on the LAG of Ψ at td, we determine

an upper bound on LAG at the end of the last blocking, non-busy interval, or the last non-blocking, non-busy

interval, whichever is later. For example, in Fig. 4(a), [t4, td) is the latest non-busy interval. Within this

interval, subinterval [t4, t5) is non-blocking, while [t5, td) is blocking. Therefore, we will determine an upper

bound for LAG at td by considering [t5, td). Similarly, in Fig. 4(b), an upper bound on LAG will be determined

at t7 by considering interval [t6, t7). Next, because every job of Ψ that is not executing in a non-blocking,

non-busy interval is either not pending, or pending but not ready (because a prior job is executing), the

procedure for determining LAG at the end of a such an interval is identical to that used for EDF in Lemma 3.

(In Lemma 3, we showed that the lag of a task that does not execute at the end of a non-busy interval is at

most zero.) However, since throughout a non-busy interval that is blocking, there is at least one task whose

ready job in Ψ is not executing, the lag of a task that is not executing at the end of such a non-busy interval
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cannot be taken to be zero. For example, in Fig. 4(a), J5 is not executing in [t5, td) and the lag of its task at td

is positive. Therefore, the procedure for determining LAG is slightly different in this case.

A blocking job with deadline later than td, that is executing but is incomplete at td, will continue to execute

beyond td, which will delay the execution of pending jobs in Ψ. Hence, in order to determine a tardiness bound

for a job in Ψ, apart from an upper bound on the amount of work pending for jobs in Ψ at td, i.e., LAG(Ψ, td,S),

we also need to determine an upper bound on the total amount of work pending for the jobs that are blocking

those of Ψ at td, i.e., B(τ, td,S). In our example in Fig. 4(a), assuming that J2 is the only pending blocking

job at td, we will also need an estimate of the amount of time that J2 will execute after td. In Fig. 4(b), the

amount of pending work for jobs in B is positive at t6, while it is zero at and after t7. Note that unless the

latest non-busy instant is td, the amount of blocking work that is pending at td will be zero.

As with EDF, we then determine a lower bound on the sum of the blocking work B and the LAG of Ψ at

td that is necessary for the tardiness of a job with deadline at most td to exceed a given value, and an upper

bound on the maximum value for the same that is possible with a given task set. Finally, we use these to

arrive at a tardiness bound. The lemma that follows parallels Lemma 2 and its proof is similar.

Lemma 4 Let τ be a concrete sporadic task system and let Ψ denote the set of all jobs with deadlines at most

td of tasks in τ . Let B and B be as defined in Def. 5. Let Usum ≤ m and let the tardiness of every job of Tk

with deadline less than td be at most x + ek, where x ≥ 0, for all 1 ≤ k ≤ n in an NP-EDF schedule S for

τ on m processors. Let LAG(Ψ, td,S) + B(τ, Ψ, td,S) ≤ mx + ei, where td = di,j , for some 1 ≤ i ≤ n. Then,

tardiness(Ti,j ,S) ≤ x + ei.

An upper bound on LAG(Ψ, t′,S) + B(τ, Ψ, t′,S), where t′ is the end of a maximally non-busy interval, is given

by the next lemma. Its proof is only slightly different from that of Lemma 3, and is available in an appendix.

Lemma 5 Let τ , Ψ, and B be as defined in Lemma 4. Let S be an NP-EDF schedule for τ on m processors and

let [s, t′), where 0 ≤ s < t′ ≤ td, be a maximally non-busy interval for Ψ in [0, td) in S, such that either t′ = td

or t′ is busy. Let the tardiness in S of every job of Ti with a deadline less than td be at most x + ei, where x ≥ 0

for all 1 ≤ i ≤ n. Then, LAG(Ψ, t′,S) + B(τ, Ψ, t′,S) is at most x ·
∑

Ti∈Umax(m−1) ui +
∑

Ti∈Emax(m) ei.

Lemmas 4 and 5 can be used to establish the following.

Theorem 2 NP-EDF ensures a tardiness of at most
(�Ti∈Emax(m) ei)−emin

m−�Ti∈Umax(m−1) ui
+ ek on m processors for every task Tk

of a sporadic task system τ with Usum(τ) ≤ m.

Corollary 2 NP-EDF ensures a tardiness of at most x + ek for every task Tk of a sporadic task system τ on

m processors, if the sum of the utilizations of the tasks in Umax(m − 1) is at most
mx−�Ti∈Emax(m) ei+emin

x
and

Usum(τ) ≤ m.
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We denote the tardiness bound given by Theorem 2 as NP-EDF-BASIC. As with EDF, a less-pessimistic

bound, denoted NP-EDF-ITER, can be obtained using an iterative procedure, and a more-pessimistic bound,

denoted NP-EDF-FAST, can be computed in constant time.

It is known that the tardiness bound for a task system with Usum = 1 is emax under NP-EDF on a uniproces-

sor. However, the bound obtained using Theorem 2 is emax − emin + ek for Tk, which may be higher than emax.

The tight bound of emax can be shown to hold by treating m = 1 as a special case in the proof of Theorem 2.

4 Experimental Evaluation

In this section, we describe the results of two sets of simulation experiments conducted using randomly-

generated task sets to evaluate the accuracy of the tardiness bounds for EDF and NP-EDF derived in Sec. 3.

The first set of experiments compares the tardiness bounds given by EDF-BASIC and NP-EDF-BASIC and

their fast (EDF-FAST and NP-EDF-FAST) and iterative (EDF-ITER and NP-EDF-ITER) variants for 4, 8, and 16

processors (m). For each m, 106 task sets were generated. For each task set, new tasks were added as long as

total utilization was less than m. For each task Ti, first its utilization ui was generated as a uniform random

number between (0, y], where y was fixed at 0.1 for the first 100, 000 task sets, and was incremented in steps

of 0.1 for every 100, 000 task sets. Ti’s execution cost was chosen as a uniform random number in the range

(0, 20]. For each task set, the maximum tardiness of any task and the average of the maximum tardiness of

all tasks as given by the six bounds (three each for EDF and NP-EDF) were computed. The mean maximum

tardiness is plotted for m = 4 and m = 8 in Fig. 5 as a functions of uavg and eavg, where uavg denotes the

average of the m − 2 highest utilizations and eavg that of the m − 1 highest execution costs. (Mean average

tardiness is around eavg/2 time units less.) The descriptions of the plots can be found in the caption of the

figure. The rest of this section discusses the results in some detail.

Comparison of BASIC and FAST. For m = 4, the difference between BASIC and FAST is negligible for EDF,

but is quite considerable for NP-EDF at high values of uavg and eavg. This is due to an additional emax term

in the numerator and a negative umax term in the denominator of NP-EDF-FAST. The difference widens with

m for both EDF and NP-EDF for high uavg. For m = 8, NP-EDF-FAST is almost twice as much as NP-EDF-BASIC.

For EDF, the difference seems to be tolerable at m = 8, but EDF-FAST increases to close to 100% higher than

EDF-BASIC for m = 16 (not shown here). Overall, FAST appears to yield good results for small m and small

uavg or eavg.

Comparison of BASIC and ITER. The difference between ITER and BASIC is almost the same as that between

BASIC and FAST for EDF for m = 4, but is lower for NP-EDF. The difference increases with increasing m for

both EDF and NP-EDF. This is because there is not much increase in ITER with increasing m.

Comparison of EDF and NP-EDF. While there is a large difference between the FAST versions of EDF and

NP-EDF, which widens with increasing m, the difference between EDF-ITER and NP-EDF-ITER is much less and
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Figure 5: Comparison of the three bounds derived for EDF and NP-EDF for (a)–(c) m = 4 and (d)–(f) m = 8. Tardiness

bounds as a function of eavg for (a) & (d) 0.7 < uavg ≤ 0.8, and for (b) & (e) 0.2 < uavg ≤ 0.3, and as a function of uavg

for (c) & (f) 19 < eavg ≤ 20. Comparison of EDF-ITER and NP-EDF-ITER to tardiness observed in actual EDF and NP-EDF

schedules for (g) & (h) m = 4, and for (i) m = 8. (The order of the legends and curves coincide in all the graphs.)

narrows with increasing m. The peak difference between the ITER versions, which is less than 20 time units,

occurs for m = 4, 0.9 < uavg ≤ 1.0, and 19 < eavg ≤ 20 (see inset (c)). At low utilizations, the difference is

around five time units for m = 4 and three time units for m = 8. The difference between the BASIC versions

is also not much and decreases with m. Furthermore, these results assume the same worst-case execution

costs for both EDF and NP-EDF, whereas in practice the estimates for NP-EDF will be lower due to the absence

of job preemptions and migrations. This should further close the gap between the two.

Though not shown here, we also plotted the tardiness bounds by uavg for low and medium values of eavg,

and found that in comparison to the plots in insets (c) and (f), all the bounds are proportionately reduced.

Comparison of ITER to actual tardiness. The experiments in the second set compare the bounds estimated

by EDF-ITER and NP-EDF-ITER, the best bounds derived, to actual tardiness observed under EDF and NP-EDF,
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respectively. In this case, 100,000 task sets were generated for each m. For each task set, the tardiness

bounds given by EDF-ITER and NP-EDF-ITER were computed. Also, an EDF and an NP-EDF schedule were

generated for each task set for 20,000 and 50,000 time units, respectively, and the maximum tardiness

observed in each schedule was noted. (Though we have found tardiness to increase even after these time

limits, we were forced to constrain the experiments due to restrictions on available time.) Plots of the average

of the estimated and observed values for task sets grouped by eavg and uavg are shown in insets (g)–(i) of

Fig. 5. For medium values of eavg, the estimates are twice as much as the observed values, with the difference

increasing with increasing execution costs. It is somewhat surprising that actual tardiness does not increase

much with increasing eavg and that it decreases in some cases.

5 Conclusion

We have derived tardiness bounds under preemptive and non-preemptive global EDF for sporadic real-time

task systems on multiprocessors, when the total utilization of a task system is not restricted, but may equal

the number of processors, m. These results should help in improving the effective system utilization when

soft real-time tasks that can tolerate bounded deadline misses but require guarantees on the long-run frac-

tion of the processing time allocated are multiplexed on a multiprocessor .

Our task model can alternatively be viewed as one in which the relative deadline of each task is greater

than its period by an amount that is dependent on the parameters of the task system. Our conditions

that check if a tardiness bound can be guaranteed can then be used as schedulability tests for such task

systems. While it is possible to extend the EDF schedulability tests derived in prior research discussed in

the introduction to task systems with relative deadlines greater than periods, it does not seem likely that

such extensions would allow total utilization to equal m even when per-task utilizations are low and relative

deadlines are large.

One limitation of our approach is that the tardiness bound that can be guaranteed to each task is fixed

and is dependent on task parameters. The problem of guaranteeing arbitrary and different tardiness bounds

to different tasks remains to be explored.
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A Appendix — Proof of Lemma 5
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Figure 6: Lemma 5. (a) CASE A. (b) CASE B.

Referring to the statement of the lemma, [s, t′) is

a maximal non-busy interval for Ψ. Hence, every

instant in the interval is either a blocking, non-

busy instant, or a non-blocking, non-busy instant.

We consider two cases depending on whether t′− is

blocking.

CASE A: t′− is a non-blocking instant. This

case is illustrated in Fig. 6(a). Let t be the earli-

est instant at or after s such that every instant in [t, t′) is non-blocking. Hence, because [s, t′) is maximally

non-busy, at each instant in [t, t′), either at least one processor is idle or at least one job in B is executing or

both hold. However, the jobs in B that are executing in the interval do not block any job in Ψ. Therefore, in

both cases, every job of Ψ that is not executing at some instant in [t, t′) is either inactive at that instant, or is

active, but has no pending jobs. Hence, for the purpose of determining the LAG of Ψ at t′, the jobs of B that

are executing in [t, t′) can be ignored and the intervals in which they are executing can be taken to be idle

intervals on the respective processors. Therefore, the LAG of Ψ at t′ can be determined in the same manner

as that used in the case of preemptive EDF in Lemma 3 to be at most

x ·
∑

Ti∈Umax(τΨ,k) ui +
∑

Ti∈Emax(τΨ,k) ei, (13)

where τΨ is the subset of all tasks in τ whose jobs in Ψ are executing at the end of the interval [t, t′), and

k = |τΨ| ≤ m − 1.

We next determine a bound on B(τ, Ψ, t′,S). If t′ < td, then by the statement of the lemma, t′ is busy.

Therefore, no job of B that is executing at t′− executes at t′ or later. Hence, in this case B(τ, Ψ, t′,S) = 0.

The other case is that t′ = td holds. Note that each job Ti,j in B(τ, Ψ, td,S) could execute for at most ei time

units after td. Because k jobs executing at the end of the interval [t, t′) are in Ψ, at most m − k jobs of B are

executing at t′−. Therefore, when t′ = td, B(τ, Ψ, td,S) ≤
∑

Ti∈Emax((τ\τΨ),m−k) ei. Hence, for either case, by
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(13), we have LAG(Ψ, t′,S) + B(τ, Ψ, t′,S) ≤ x ·
∑

Ti∈Umax(τ,m−1) ui +
∑

Ti∈Emax(τ,m) ei.

CASE B: t′− is a blocking instant. In this case, let t denote the earliest instant at or after s such that

[t, t′) is a maximally-blocking interval. Since every job of Ψ has an earlier deadline than a job in B, a job

in Ψ cannot be blocked at time 0 due to a job in B commencing execution at time 0. Therefore t > 0 holds.

Also, no job of Ψ ( including jobs that are blocked at t) is blocked at t−. Hence, it cannot be the case that a

job in Ψ is blocked at t due to a job in B commencing execution at t. Rather, the blocking job should have

commenced execution before t. Similarly, since every instant in [t, t′) is a blocking instant, at which one or

more ready jobs of Ψ are waiting, no job in B can commence execution anywhere in (t, t′). Therefore, we have

the following.

(B) Every job in B that is executing at t̂, where t ≤ t̂ < t′, is executing throughout [t−, t̂].

Let J denote the set of all jobs of B that are executing at t, and hence are blocking one or more jobs of Ψ.

Let b = |J|, and let µ denote the subset of all tasks in τ whose jobs are in J. By the nature of [t, t′), b ≥ 1.

Because each task can have at most one job executing at any instant, we have

|J| = |µ| = b ≥ 1. (14)

By (12), the LAG of Ψ at t is at most the sum of the lags of all tasks in τ with at least one job in Ψ that is

either pending or active at t−. Let ρ denote the set of all such tasks. (It is easy to see that no task in µ is in

ρ.) Therefore,

LAG(Ψ, t,S) ≤
∑

Ti∈ρ lag(Ti, t,S), (15)

Partitioning ρ. Our approach for determining an upper bound on the LAG of Ψ at t′ is mostly similar to that

used in Lemma 3. Because (15) holds, we first partition the tasks in ρ into subsets α and β, as defined below,

and determine upper bounds on the lag at t of tasks in each subset, and the number of tasks in each subset.

We use these to determine an upper bound on the LAG of Ψ at t, from which we then determine an upper

bound on the LAG of Ψ at t′.

α
def
= subset of all tasks in ρ executing at t−

β
def
= subset of all tasks in ρ not executing at t−

Upper bound on the lag at t of a task in α. Let Ti be a task in α and let Ti,j be its job executing at t−.

Let δi denote the amount of time that Ti,j has executed for before t in S. We determine the lag of Ti at t by

considering two cases depending on di,j .

Case 1: di,j < t. Because Ti,j cannot be preempted, the latest time that Ti,j completes executing can be

t + ei − δi. (It could complete earlier if its actual execution time is lower than ei.) By the statement of

the lemma, the tardiness of every job of Ti with deadline less that td is at most x + ei. Therefore, di,j ≥

t + (ei − δi) − (x + ei) = t − δi − x holds. (As in Lemma 3, di,j ≥ t − δi − x holds, even if Ti,j completes early,

because, the tardiness bound should hold even for the worst case, when Ti,j executes for a full ei time units.)

In PSΨ, Ti,j completes execution by di,j and Ti is allocated a share of ui in every instant in [d(Ti,j), t) in which

it is active. Thus, the under-allocation to Ti in S in [0, t) is at most ei − δi + (t− di,j) · ui ≤ ei − δi + (x + δi) · ui.

Hence, lag(Ti, t,S) ≤ ei − δi + (x + δi) · ui ≤ ei + x · ui.
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Case 2: di,j ≥ t. In this case, the amount of work done by PSΨ on Ti,j up to time t is given by ei− (di,j − t) ·ui.

Because all prior jobs of Ti have completed execution by t in both S and PSΨ, and Ti,j has executed for δi time

units before t in S, lag(Ti, t,S) = ei − (di,j − t) · ui − δi ≤ ei − δi ≤ ei − δi + (x + δi) · ui ≤ ei + x · ui.

Thus, in both cases, we have
lag(Ti, t,S) ≤ ei + x · ui. (16)

Upper bound on the lag at t of a task in β. Let Ti be a task in β. Then, no job of Ti is executing at t−.

However, since Ti is in ρ, there is at least a job of Ti that is in Ψ that is either pending or active at t−. We

show that no job of Ti that is in Ψ is pending at t−. Suppose job Ti,j is in Ψ and is pending at t−. Then,

di,j ≤ td holds and because Ti is in β, Ti,j is not executing at t−. Since [t, t′) is maximally-blocking, at least

one job of B is executing at t, which, by (B), is executing at t− as well. Because such a blocking job has its

deadline after td and no job of Ti is executing at t−, this implies that Ti,j is blocked at t−, contradicting our

assumption that [t, t′) is a maximally-blocked interval. For example, Ti,j could be as indicated in Fig. 6(b).

Thus, no job of Ti that is in Ψ is pending at t−. Therefore, the total allocation to jobs of Ti in Ψ up to time

t in S is at least that in PSΨ, and hence, the lag of Ti at t is at most zero.

Because the lag of a task in β is at most zero at t,
∑

Ti∈ρ lag(Ti, t,S) =
∑

Ti∈α lag(Ti, t,S)+
∑

Ti∈β lag(Ti, t,S)

≤
∑

Ti∈α lag(Ti, t,S). Hence, by (16),
∑

Ti∈ρ lag(Ti, t,S) ≤
∑

Ti∈α(ei + x · ui). Therefore, by (15), we have

LAG(Ψ, t,S) ≤
∑

Ti∈α(ei + x · ui) (17)

Since we need to determine an upper bound on the sum of LAG(Ψ, t′,S) and B(τ, Ψ,S, t′), we also need

to determine an upper bound on B(τ, Ψ,S, t). By (B), no job of B that is not in J can execute anywhere

in [t, t′). Hence, the amount of work pending for jobs in B (i.e., the blocking work) at any time u in [t, t′),

B(τ, Ψ,S, u), equals the amount of work pending at u for the jobs in J. Let Ti be a task in µ. Then, the amount

of work that can be pending for its job executing at t (which is in J) can be at most ei. Therefore, we have

B(τ, Ψ,S, t) ≤
∑

Ti∈µ ei, and hence, by (17), we have

LAG(Ψ, t,S) + B(τ, Ψ, t,S) ≤
∑

Ti∈α(ei + x · ui) +
∑

Ti∈µ ei =
∑

Ti∈α∪µ ei +
∑

Ti∈α x · ui

≤
∑

Ti∈Emax(τ,m) ei +
∑

Ti∈Umax(τ,m−1) x · ui, (18)

where the last inequality follows from (14) (|µ| = b ≥ 1) and |α| = m− b. |α| = m− b holds because every task

in µ or α is executing at t−.

Finally, we are left with determining an upper bound on the sum of LAG and B at t′. Let X ≤ B(τ, Ψ, t,S)

denote the total amount of time that jobs in J execute on all m processors in [t, t′). (For example, if there

are two jobs in J, with one job executing for the entire interval and the second executing for the first half

of the interval, then X = 3(t′ − t)/2.) Because [t, t′) is maximally blocking, no processor is idle in [t, t′).

Hence, the total time allocated to jobs in Ψ in [t, t′), A(S, Ψ, t, t′), is equal to m · (t′ − t) − X . In PSΨ, jobs

in Ψ could execute for at most m · (t′ − t) time, i.e., A(PSΨ, Ψ, t, t′) ≤ m · (t′ − t). Therefore, LAG(Ψ, t′,S) =

LAG(Ψ, t,S)+A(PSΨ, Ψ, t, t′)−A(S, Ψ, t, t′) ≤ LAG(Ψ, t,S)+X . However, since jobs in J execute for a total time

of X in [t, t′), the pending work for jobs in J, and hence, those in B at t′, B(τ, Ψ, t′,S), is at most B(τ, Ψ, t,S)−X .

Thus, LAG(Ψ, t′,S) + B(τ, Ψ, t′,S) ≤ LAG(Ψ, t,S) + B(τ, Ψ, t,S), which by (18), is at most
∑

Ti∈Emax(τ,m) ei + x ·
∑

Ti∈Umax(τ,m−1) ui. �
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