
Parallel Real-Time Task Scheduling on Multicore Platforms ∗

James H. Anderson and John M. Calandrino
Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract
We propose a scheduling method for real-time systems im-
plemented on multicore platforms that encourages individ-
ual threads of multithreaded real-time tasks to be scheduled
together. When such threads are cooperative and share a
common working set, this method enables more effective use
of on-chip shared caches.

1 Introduction
Multicore architectures, which include several processors on
a single chip, are being widely touted as a solution to the
“thermal roadblock” imposed by single-core designs. Sev-
eral chip makers have released dual-core chips, and a few
designs with more than two cores have been announced as
well. For instance, Sun recently released its eight-core Ni-
agara chip, while Intel is expected to release chips with 80
cores within five years [6].

Core 1

L1

L2

L1

Core M

Figure 1: Multicore architecture.

In most proposed
multicore platforms, dif-
ferent cores share on-chip
caches. To effectively
exploit the available par-
allelism in these systems,
such caches must not
become performance
bottlenecks. In fact, the
issue of efficient cache usage on multicore platforms is one
of the most important problems with which chip makers
are currently grappling. In this paper, we consider this
issue in the context of real-time applications. To reasonably
constrain the discussion, we henceforth limit attention to
the widely-studied multicore architecture shown in Fig. 1,
where all cores are symmetric, single-threaded, and share an
L2 cache.

In prior work pertaining to throughput-oriented systems,
Fedorova et al. [7] noted that L2 misses affect performance
to a much greater extent than L1 misses or pipeline con-
flicts. They showed that L2 contention can be reduced, and
throughput improved, by discouraging threads that generate
significant memory-to-L2 traffic from being co-scheduled.
In recent work [1], we presented results comparable to
those of Fedorova et al. but pertaining to real-time systems.
Specifically, we showed that it is possible to discourage high-

∗Work supported by a grant from Intel Corp. and by NSF grants CNS
0309825, CNS 0408996, and CCF 0541056.

cache-impact tasks from being co-scheduled while ensuring
real-time constraints.

The problem. In this paper, we consider the opposite is-
sue of whether certain groups of real-time tasks can be en-
couraged to be co-scheduled. Specifically, we consider a
periodic task model in which tasks may be multithreaded:
a multithreaded task (MTT) consists of several (sequential)
threads, which may have different execution costs but a com-
mon period. Our goal is to devise mechanisms that encour-
age a task’s threads to be co-scheduled. Such encourage-
ment would be beneficial in settings wherein a task’s threads
are cooperative and share a common working set. Specif-
ically, when cooperating threads execute in close proximity
in time, their accesses of common data will give rise to fewer
L2 misses. Multithreaded tasks such as this arise naturally
in many settings. For example, in multimedia applications,
multiple threads may be useful for performing different func-
tions on common data (e.g., a frame of an MPEG video) at
the same rate.

Related work. In work on parallel computing, it is well-
known that the memory-reference patterns of threads can
lead to co-scheduling choices that are either constructive
or destructive [12]. However, to the best of our knowl-
edge, we are the first to consider mechanisms for influencing
such choices when analysis validating real-time constraints
is required. Related work that lacks such analysis includes
work on symbiotic scheduling [9, 11, 14] in (non-multicore)
multithreaded systems. In symbiotic scheduling, the goal
is to maximize the overall “symbiosis factor,” which indi-
cates how well various thread groupings perform when co-
scheduled. Related work on multicore systems includes the
work of Fedorova et al. [7] noted earlier, as well as a related
paper [8] on a scheduling approach that encourages “fair-
ness” in shared cache usage by different threads. In the latter
paper, quality-of-service requirements are considered exper-
imentally, but no real-time analysis is presented. Caching
issues that arise when non-real-time multithreaded applica-
tions are implemented on multicore platforms have also been
considered in prior work [4, 10].

Proposed approach. The essence of the problem at hand
is to encourage parallelism: when one thread of an MTT is
scheduled, all threads of that MTT should be scheduled. Un-
fortunately, perfect parallelism is not always possible. For
example, scheduling in parallel two threads with an execu-
tion cost of 1.0 and a period of 2.0 on a two-processor sys-

tem that also includes a task with an execution cost of 3.0 and
period of 4.0 will result in deadline misses. Additionally, we
have shown that the general problem of optimizing for par-
allelism while respecting real-time constraints (not surpris-
ingly) is NP-hard in the strong sense.

Due to these limitations, we have chosen to focus on min-
imizing a factor we call spread. For ease of explanation, we
assume for now that each MTT is comprised of threads that
have the same execution cost, and thus the same utilization
or weight as well, as they share a common period. Later,
this restriction will be removed. Given this assumption, if
an MTT has a spread of k, then the ith quantum of compu-
tation for each thread of the MTT must be scheduled within
the interval [t, t + k) for some t (treating each “time unit”
as a quantum). Our goal, then, is to schedule MTTs so that
real-time constraints are met and spread is minimized to the
extent possible. Note that, though a spread of one is perfect
parallelism, even with somewhat larger spreads, a potential
for cache reuse exists. Our approach for minimizing spread
while meeting real-time constraints is based upon three ob-
servations.

First, global scheduling algorithms, which use a single
run queue, are more naturally suited to minimizing spread
than partitioning approaches. This is particularly the case
when using deadline-based scheduling methods. This is be-
cause “work” with a common deadline submitted at the same
time will occupy consecutive slots in the scheduler’s run
queue, and thus, such work will be scheduled in close prox-
imity over time, unless disrupted by later-arriving, higher-
priority work. Based on this observation, we henceforth
limit our attention to global, deadline-based scheduling ap-
proaches. Two such approaches will be considered in de-
tail: the PD2 Pfair scheduling algorithm [2] and the global
earliest-deadline-first (EDF) algorithm. In Pfair scheduling,
each “unit of work” is a quantum-length subtask, while un-
der EDF, each unit is a job of arbitrary (but bounded) length.

Second, in all global, deadline-based scheduling methods
known to us, the ability to meet timing constraints is not
compromised if subtasks or jobs (as the case may be) are
“early released,” i.e., allowed to become eligible for execu-
tion “early.” This is depicted with respect to Pfair scheduling
in Fig. 2. In Pfair scheduling, each subtask must be sched-
uled within a time window, the end of which is its deadline.
Note that, in inset (b), allowing early releasing does not cause
deadline misses.

Third, when a subtask or job is early released, it is op-
tional as to whether the scheduler considers it for execution.
We can exploit this fact to minimize disruptions to an MTT’s
threads caused by higher-priority work. As an example, con-
sider the Pfair schedules in Fig. 3, where both tasks of weight
1/4 are threads of the same MTT. Inset (a) shows a sched-
ule without early releasing. In inset (b), all subtask windows
are shifted right by one quantum, and all subtasks are early

(a) 0 1 2 3 4

1/4

X
1/4

X

1/2

X

X

(b) 0 1 2 3 4

1/4

1/4

X

1/2

X

X

Scheduled one
quantum early

X

Figure 2: A one-processor Pfair schedule for a set of three tasks
(of weight 1/2, 1/4, and 1/4, respectively) with (a) no early releasing
and (b) early releases allowed by one quantum. Solid lines indicate
subtask windows, dashed lines indicate where early releasing is al-
lowed, and an “X” indicates when a subtask is scheduled.

released by one quantum, producing the same schedule as in
(a). (All deadline comparisons are the same.) We refer to a
schedule in which all subtask windows are right-shifted by k
quanta and all subtasks are early released by k quanta as a k-
shifted schedule. In inset (b), k = 1. The schedules in (a) and
(b) both result in a spread of three for the MTT. In inset (c),
we show that selectively allowing early releasing can reduce
spread to two. Alternately, instead of shifting the schedule
and early releasing subtasks, as in (b) and (c), we can instead
consider a subtask to be optional for scheduling for the first
k quanta after its release, and allow it to miss its deadline
by up to k quanta, as shown in inset (d). Here, the dotted
lines after each window indicate by how much each deadline
could be missed (though no misses occur here). Note that
there are “intermediate” cases between an unshifted and a k-
shifted schedule. For example, if k = 4 is required by our
method for a given task set, then we could choose instead to
create a 3-shifted schedule, but consider a subtask optional
for scheduling in the first quantum after its actual release. In
this case, deadlines could be missed by at most one quantum.
More generally, if subtasks can be early released to the ex-
tent we require, then no deadlines will be missed; otherwise,
deadlines may be missed, but by bounded amounts only.

Contributions. Based upon the above observations, we
have devised a set of rules for guaranteeing low spreads in
deadline-based, global scheduling approaches. We present
these rules by first focusing on PD2 and by then explaining
how to adapt them to EDF. In both cases, we consider first
only MTTs with same-weight threads (as above) and then
ease this restriction. In all cases, we establish the spread
guarantees that are possible (though some properties are only
stated or sketched, due to page limitations). As a final contri-
bution, we evaluate the efficacy of the proposed rules in two
ways. First, we assess the spread reductions they enable by
presenting experiments involving randomly-generated task
sets. Second, we assess the corresponding L2 miss-rate re-
ductions that result by presenting experiments that involve
running actual tasks on a multicore simulator. These exper-

0 1 2 3 4

X

1/4

1/4

X

X

X

X

X1/2

1/2 X

X1/2

three
Spread of

1/4

1/2

1/2

1/2

1/4

0 1 2 3 4 5

X

X

X

X

X

X

X

X

Spread of
three

1/4

1/2

1/2

1/2

1/4

0 1 2 3 4 5

X

X

X

X

X

X

X

X

Spread of
two

1/4

1/2

1/2

1/2

1/4

0 1 2 3 4 5

X

X

X

X

X

X

X

X

Spread of
two

(a) (b) (c) (d)

Figure 3: A two-processor Pfair schedule of a set of five tasks (three of weight 1/2, and two of weight 1/4) with (a) no early releasing;
(b) early releasing by one quantum and all windows right-shifted by one quantum; (c) similarly-shifted windows, but selective early
releasing; (d) no shifting or early releasing, but subtasks are considered optional within the first quantum after their release, and deadlines
can be missed by one quantum.

iments show that our rules often reduce spreads to close to
one (perfect parallelism) and can reduce L2 miss rates sig-
nificantly.

The rest of this paper is organized as follows. In Sec. 2,
we present a brief overview of Pfair and EDF scheduling.
Then, in Sec. 3, we describe our spread-reduction approach
and establish the PD2 and EDF spread guarantees mentioned
earlier. In Sec. 4, we present experimental results, and in
Sec. 5, we conclude.

2 Background
In this section, we briefly introduce both Pfair [3, 15] and
EDF scheduling. For simplicity, we consider only periodic
task systems, though our results apply to sporadic and intra-
sporadic [15] task systems as well. In a periodic task system
τ , each task T releases successive jobs and is characterized
by a per-job execution cost T.e and a period T.p. Every T.p
time units, starting at time 0, T releases a new job with an
execution cost of T.e time units. Execution costs and periods
are assumed to be integral. In Pfair scheduling, a time unit is
actually a unit of processor allocation, and thus is referred to
as a quantum. In EDF, a time unit is not necessarily a unit of
allocation, but can be any convenient size such that execution
costs and periods are integral. The quantity T.e/T.p is the
weight, or utilization, of T , denoted wt(T).

Our goal is to schedule on M processors (or cores) a set of
periodic tasks of total weight at most M , where some tasks
correspond to threads within an MTT. For now, we assume
each of an MTT’s threads has the same execution cost (as
well as period), but later this restriction is removed. We also
assume the following.

(PM) Each MTT has at most M threads, the maxi-
mum parallelism achievable on M cores.

0 5 10 15 20

T1

T2

T3

T4

T5

T6

Figure 4: Windows for a task T of weight 3/10. Three (six) sub-
tasks have deadlines by time 10 (20), so if all deadlines are met, T ’s
allocation up to these times matches its ideal allocation (3

10
×10 and

3

10
× 20).

2.1 Pfair Scheduling

Pfair scheduling algorithms [3, 15] allocate processor time
one quantum at a time. The quantum-length time interval
[t, t + 1), where t ≥ 0, is called slot t. In each slot, each
processor (task) can be assigned to at most one task (pro-
cessor). Task migration is allowed. Per-quantum allocations
are achieved by sub-dividing each task T into a sequence of
quantum-length subtasks, denoted T1, T2, Each subtask
Ti has an associated release r(Ti) and deadline d(Ti), de-
fined as follows.

r(Ti) =

⌊

i − 1

wt(T)

⌋

∧ d(Ti) =

⌈

i

wt(T)

⌉

(1)

The time-slot interval [r(Ti), d(Ti)) is called the window of
Ti. Consecutive subtask windows of a task are either disjoint
or overlap by one slot, as seen in Fig. 4. A task’s windowing
is defined to approximate an ideal (fluid) system that allo-
cates wt(T) ·L units of processor time to each task T in any
interval of length L.

Pfair scheduling algorithms schedule tasks by scheduling
their subtasks on an EDF basis. Tie-breaking rules are used
when two subtasks have equal deadlines. The most efficient
optimal algorithm known is PD2 [2, 15], which uses two tie-

breaking rules. Because it is optimal, PD2 meets all subtask
deadlines, as long as total utilization,

∑

T∈τ wt(T), does not
exceed M . PD2’s ability to meet subtask deadlines is not
affected if early-release behavior is allowed [2], i.e., if sub-
tasks can become eligible to execute before their windows.
Note that, with early releasing, we can speak of a subtask
being scheduled before its designated release time. The de-
cision of whether to release a subtask early is arbitrary.

2.2 EDF Scheduling

Under (global) EDF scheduling, jobs are scheduled in order
of increasing deadlines, with ties broken arbitrarily. EDF
is not optimal, so tasks may miss their deadlines. It has
been shown, however, that deadline tardiness under EDF is
bounded [5, 16]. Additionally, jobs may be optionally and
arbitrarily early released under EDF, as in Pfair scheduling,
with no additional tardiness penalties. For EDF, we will de-
note the jth job of a task T as Tj .

3 Spread-Cognizant Scheduling
In describing our method, we consider PD2 and EDF sepa-
rately.

3.1 Method Applied to PD2

In general, we will use X to denote the spread guarantee we
seek to establish. For PD2, X is defined as follows, where
Wmax = maxT∈τ wt(T), and T can be any task (including
a task corresponding to a thread of an MTT).

X =

3, if Wmax ≤ 1/3
4, if 1/3 < Wmax ≤ 1/2
2 × d 1

1−Wmax
e − 1, if Wmax > 1/2

(2)

We describe our method as additional rules for PD2. We
assume we are working with an (X −1)-shifted schedule (or
alternately, that subtasks can miss their deadlines by up to
X − 1 quanta—see Fig. 3(d)). Three rules are required:

• Urgent Tasks. When subtask Ti is scheduled, where
task T corresponds to a thread within some MTT R, and
T is the first thread in R whose ith subtask is scheduled,
each subtask Ui, where U is also a thread of R and U 6=
T , is flagged “urgent” until it is also scheduled.

• Early-Release Eligibility. A non-urgent subtask Tj at
time t is “early-release eligible” at t if all of the follow-
ing hold:

(i) r(Tj)−(X−1) ≤ t < r(Tj) (i.e., time t is within
X − 1 slots of the actual release time of subtask
Tj).

(ii) All subtasks Tk of T , where k < j, have already
been scheduled prior to time t.

(iii) |U| + |H| < M , where, at time t, U is the set
of eligible urgent subtasks, and H is the set of
non-urgent eligible subtasks Tk, where r(Tk) ≤ t,
such that each subtask in H has higher priority
than at least one subtask in U . Note that tasks in
H are (by definition) not early-release eligible at
time t.

(iv) Subtask Tj is one of the e = M − (|U| + |H|)
highest-priority subtasks at time t satisfying (i)
and (ii) above.

A subtask Tj that is urgent at time t is “early-release
eligible” at time t if conditions (i) and (ii) hold for it.

• Priorities. Eligible subtasks (early released or not) are
scheduled using the same priority rules as in PD2. In the
case of a tie, urgent subtasks have higher priority, with
the MTT identity used as a tie-break. (This ensures that
MTTs achieve the lowest possible spread when nothing
in the PD2 priority rules would prevent it.)

These rules are illustrated in Fig. 5. For simplicity, we
have assumed here that early releases occur by one slot in-
stead of as implied by (2). With regular PD2 (inset (a)),
the task set achieves maximum spreads of two and six for
MTTs 1 and 2, respectively. Our rules reduce the spread of
MTT 2 to two (inset (b)), without changing the spread of
MTT 1. This reduction happens because at time 5 in (b), the
1/10-weight task not scheduled at that time in (a) is favored
over the 3/5-weight tasks by the Urgent Tasks rule. Note that
the Early-Release Eligibility rule only allows one of the 3/5-
weight subtasks released at time 6 to become early-release
eligible at time 5. Note also that, if the task set included
some additional tasks of weight 1/10 that were eligible at
time 5, the Priorities rule would ensure that the urgent sub-
task was scheduled first, and MTT 2 would still have a spread
of two.

In an appendix, we prove the following.

Theorem 1 If PD2 is modified as described above, subtasks
are early-release eligible X − 1 quanta before their actual
release times, and all task threads in the same MTT have the
same weight, then the spread of any MTT is no greater than
X as defined in (2).

Removing the “same-weight” restriction. Define two
subtasks as being equivalent if they have equal releases and
deadlines (as defined by (1)) and PD2 tie-breaks. Then, the
essence of the rules presented above is that, by exploiting
early-release behavior, equivalent subtasks can be made to
execute within a constrained time interval. If the threads of
an MTT are all of the same weight, then their ith subtasks are

(a) 0 1 2 3 4 5 6 7 8 9 10

1/10

1/10

3/5

3/5

3/5
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

MTT 1

MTT 2

(b)

X

X

X

X

X

X

X

X

MTT 2

MTT 1

3/5

3/5

3/5

1/10

1/10

XX

X

X

X

X

X

X

X

X

X

X

0 1 2 3 4 5 6 7 8 9 1110

Figure 5: An example two-processor schedule with (a) regular
PD2, and (b) PD2 using our method.

all equivalent. However, if the threads of an MTT are of dif-
ferent weights, then this will no longer be the case. Nonethe-
less, many subtasks will share a common deadline and tie
breaks—in particular, this will definitely be the case for the
final subtask per job of each thread, and will likely be the
case for some other subtasks as well. Such subtasks can be
made to be “equivalent” as before, by defining their releases
to be the same. Here, again, we can exploit early-release be-
havior, specifically, by defining the release of each subtask
in a job of a thread to be the same as the first such subtask
(though subtasks must still execute in sequence); the first
subtask per job would be early released by X − 1 quanta, as
before. With this change, we can offer the same spread guar-
antees as earlier, but we must alter the definition of spread
slightly to account for the fact that two equivalent subtasks
may have indices that differ significantly. The condition for
an MTT to have a spread of k is now as follows: if a subtask
Ti of some thread T of the MTT is scheduled at time t, then
for each thread U of the MTT with an unscheduled subtask
Uj that is equivalent to Ti, either subtask Uj is scheduled

at time t, or some subtask Um is scheduled in the interval
[t + 1, t + k), where m ≤ j. (Note that if some Um, where
m < j, is scheduled in [t +1, t + k), then we still have a po-
tential for cache reuse.) With this new spread definition, and
a few cosmetic changes to the rules stated earlier, Theorem 1
can be strengthened to remove the “same-weight” restriction.

1/2

1/2

1/2

0 1 2 3

X

X

X

X

X

X

X

X

1/10

1/10

3/10T

U

V
X

Spread of
two

Figure 6: A three-processor
PD2 schedule using our
method modified for MTTs
with different-weight threads.

We illustrate some of the
nuances of this new spread
definition by considering an
example, shown in Fig. 6. In
this example, all tasks with
period 10 are threads in the
same MTT. We define the
(early) release time of each
subtask in a job to be the
same, with the first being
early released by one quan-
tum. At time 1, subtasks
T1, U1, and V1 are sched-
uled; however, by our new
definition of spread, this does
not result in a spread of one.
While U1 and V1 are clearly
equivalent, T1 is equivalent
to neither subtask (because its
deadline is at time 5, while U1

and V1 have a deadline at time 11). However, T3 (not shown)
is equivalent, as it has the same deadline and tie-breaks as U1

and V1. Therefore, when T2 is scheduled at time 2, the con-
dition for a spread of two is met, as T2 both precedes T3 and
is scheduled at time t + 1 or later, where t = 1.

3.2 Method Applied to EDF

T not scheduled in these slots

X

X X

J 2

1J
T

X

X X

0 1 2 3 4 5 6 7 8

Figure 7: Assuming ∆ =
0, T executes for the max-
imum possible number of
consecutive time units when
consecutive jobs are sched-
uled as shown here.

In considering EDF, we ini-
tially assume (as before) that
each of an MTT’s threads has
the same weight, and that
spread is as defined in the in-
troduction. Under the condi-
tions of Theorem 2 below, a
thread can execute for at most
2 · emax consecutive time units,
as shown in Fig. 7, which al-
lows us to prove (in the ap-
pendix) the stated spread guar-
antee. Note that, in EDF, jobs
become urgent, not subtasks.

Theorem 2 Consider a task set τ for which tardiness is at
most ∆ under EDF, and let emax denote the largest job exe-
cution cost in τ . If EDF is modified as described above for
PD2, but instead jobs (rather than subtasks) are allowed to
become early-release eligible up to 2 ·emax time units before

their actual release times, and T.p ≥ T.e + 1 + ∆ for each
T ∈ τ , then the spread of any MTT is at most 2 · emax + 1.

As an aside, recall that tasks scheduled by EDF may miss
their deadlines by bounded amounts, as stated in Sec. 2.2.
Any tardiness arising from our method (by choosing to not
shift the schedule as required) would be added to the tardi-
ness bound for EDF.

Non-preemptive EDF. In non-preemptive EDF, lower-
priority jobs can block higher-priority jobs for up to emax−1
time units. We already account for at least this level of dis-
ruption in most cases for preemptive EDF; however, addi-
tional disruption can occur because a thread can block other
pending threads in its MTT. To account for this extra disrup-
tion, our spread guarantee must be increased by emax − 1
time units, i.e., to 3 · emax.

1/2

1/2

1/2

0 1 2 3

X

X

X

X

X

1/10V

Spread of
one

3/10T

U 1/10
X

X

X

X

Figure 8: Task set from
Fig. 6, scheduled with EDF.

Removing the “same-
weight” restriction. In
both variants of EDF, during
each period, all jobs in the
same MTT have the same
release and deadline regard-
less of execution cost. Thus,
referring back to our earlier
discussion of PD2, such jobs
are “equivalent.” We can
therefore re-define spread for
EDF in the case where the
“same-weight” restriction is
removed, as we did for PD2,
and with a few minor changes
to the rules stated earlier, our
results for both preemptive
and non-preemptive EDF still
hold.

The new definition of spread k is as follows: if a job Tj

of some thread T of the MTT is scheduled at time t, then for
each thread U of the MTT, where job Uj has not executed
to completion, at least one time unit of execution of Uj is
scheduled in the interval [t, t+ k). We can claim that at least
one time unit of execution of Uj is scheduled due to our ear-
lier requirement that the size of our time unit is set such that
all execution costs and periods are integral. Note that this
definition of spread provides nearly the same opportunities
for cache reuse as before.

As an example, consider Fig. 8, which depicts the same
task set considered earlier in Fig. 6. We allow early releas-
ing of all jobs by one time unit. At time 1, jobs T1, U1,
and V1 are scheduled and execute for one time unit. This
results in a spread of one for this MTT, since all jobs were
scheduled concurrently. When job T1 next executes it will
achieve a spread of “one” by default, since all jobs of other

Spread
Wt. MTT Size = 2 MTT Size = 3 MTT Size = 4

Algorithm Constr. X ER Min Avg Max Min Avg Max Min Avg Max
Reg. Pfair (0, 1/3] – 0 1 1.35 41 1 1.66 40 1 1.99 41
Mod. Pfair (0, 1/3] 3 2 1 1.27 2 1 1.52 2 1 1.77 3

Reg. Pfair (0, 1/2] – 0 1 1.40 37 1 1.78 41 1 2.18 37
Mod. Pfair (0, 1/2] 4 3 1 1.28 2 1 1.53 2 1 1.77 3

Reg. Pfair (0, 3/4] – 0 1 1.39 25 1 1.83 33 1 2.29 41
Mod. Pfair (0, 3/4] 7 6 1 1.29 2 1 1.57 2 1 1.81 3

Table 1: Spread under PD2. Each entry represents 50,000 task sets.

task threads in the MTT either will have not been released or
have run to completion. Note that while this example is for
preemptive EDF, the schedule would only change slightly for
non-preemptive EDF and would result in the same spread.

4 Experimental Results
In this section, we assess the efficacy of our method in re-
ducing spread and improving cache performance. With the
exception of the last set of experiments below, the MTTs in
our experiments have same-weight threads. Due to space
constraints, we only consider PD2 (though similar data could
also be presented for EDF).

Spread reduction experiments. First, we randomly gen-
erated 50,000 task sets in several categories, and simulated
the scheduling of these task sets on a four-core system. For
each generated task set, we first allowed no early releasing
and did not shift the schedule, and then allowed early releas-
ing and shifted by X − 1 quanta, as in (2). An upper bound
of 1/3, 1/2, or 3/4 was enforced on task weights, depending
on the experiment. Task periods varied from two (or three, if
task weights could not exceed 1/3) to 50. All task sets fully
utilized all four cores, and MTTs varied in size from two to
four (the total number of cores). These constraints permitted
the inclusion of task sets with a wide variety of task weights,
including those with large periods (e.g., 50). The only types
of tasks not included were tasks with weight exceeding 3/4.
All simulations were run up to the task-set hyperperiod. Re-
sults are shown in Table 1. As seen, our method always gen-
erates low average spreads (near one or two quanta), even
lower than might be expected from the spread guarantees
proved in Sec. 3. Note also that our method always prevents
extremely high spreads, as shown in the boldface columns of
Table 1.

L2 Cache Performance. We next demonstrate the effec-
tiveness of our method in reducing L2 miss rates. We first
estimated miss ratios for the same 50,000 task sets consid-
ered earlier using a simple (hand-coded) cache model. This
model assumed a “best-case” scenario where the cache was
fully associative. Each thread sequentially accessed 10,000
cache blocks, or 640K of memory, every quantum. The re-
gion of memory accessed was dependent on the subtask—
equivalent subtasks of threads in the same MTT accessed the

(a) (b)

Figure 9: Cache-miss ratios for PD2 both (a) without and (b) with our method, using a simulated simple cache model. Each scatter plot
represents the same 50,000 task sets from Table 1 with weight constraint (0, 3/4].

same unique region of memory. Thus, the only opportuni-
ties for cache reuse existed when threads of the same MTT
accessed the same region of memory. We assumed that the
amount of data accessed per subtask is the same every quan-
tum regardless of cache performance: if a task finishes early,
the rest of the quantum is wasted. We further assumed that
the L2 cache can hold exactly four working sets of data, and
used an LRU replacement policy. Cache blocks that could
be reused during the current quantum were reused before be-
ing replaced (an idealistic assumption). Cache blocks that
were not reused were eventually replaced per the LRU pol-
icy. This admittedly simplistic cache model allowed all tasks
to be scheduled up to the task-set hyperperiod, as done in
the prior experiment. This was not possible with the ex-
periments discussed below, where a very exact (but slow)
computer-architecture simulator was used. The results of
experiments conducted assuming our simple cache model,
shown in Fig. 9, are quite dramatic. Note that the best achiev-
able cache-miss ratio for an MTT with N threads is 1/N , and
most MTTs approach this miss ratio with our method.

We next ran more realistic and complex experiments by
using the SESC Simulator [13], which is capable of simulat-
ing a variety of multicore architectures. (Note that SESC
executes actual task and scheduling code, and therefore
scheduling, preemption, and migration costs were accounted
for in these simulations.) In order to examine the benefits
of our method per MTT, the simulator was modified so that
each memory access could be “tagged” with a value indicat-
ing the MTT with which it was associated. The simulated ar-
chitecture consisted of four cores, each with dedicated 16K
L1 data (4-way set associative) and instruction (2-way set
associative) caches with random and LRU replacement poli-
cies, respectively, and a shared 2048K 8-way set associative
on-chip L2 cache with an LRU replacement policy. Each
cache has a 64-byte line size. The memory access pattern

of all threads remained the same as in the simpler experi-
ments, and thus the L2 cache could hold approximately three
working sets of data. Additionally, all threads in the same
MTT start accessing memory regions from a different loca-
tion, wrapping if necessary. This better utilizes the cache and
prevents threads from proceeding in “lock step” while wait-
ing for blocks to be loaded into the cache from main memory,
resulting in virtually no cache benefit.

One application with such a memory-access pattern is
parallel motion compensation search, which is the most
compute-intensive part of MPEG-2 video encoding. Here,
tasks access the same region of memory during the search
but starting at different locations. Such an application might
encode a video stream in real time on a frame-by-frame
basis, and therefore would require (soft) real-time guaran-
tees. Additionally, there would clearly be some benefit to
co-scheduling tasks that are encoding the same frame (dur-
ing the same quantum of computation).

In these experiments, we simulated 50 randomly-
generated task sets for 20 quanta (instead of up to the hy-
perperiod) assuming a 0.75-ms quantum. While the SESC
Simulator is very accurate, it comes at the cost of being quite
slow. Therefore, longer and more detailed results could not
be obtained because of the length of time it took the simula-
tions to run. In order to demonstrate the substantial impact of
our method on MTTs with low-weight threads, we required
all tasks to either have weight at most 1/4 or at least 3/4.
(This creates opportunities for heavier tasks to disrupt lighter
tasks in the same MTT.) Task periods varied from three to
100, and all task sets fully utilized all four cores as before,
with MTTs varying in size from two to four. In all cases,
we only early release by six quanta—we would need to early
release by much more in order to make spread guarantees,
but we can still see substantial benefits with limited early re-
leasing. Results are shown in Fig. 10. These realistic results,

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight of each thread in MTT

C
ac

he
−

m
is

s
ra

tio
Cache−miss Ratios Per MTT (unmod. Pfair)

MTT Size = 2
MTT Size = 3
MTT Size = 4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight of each thread in MTT

C
ac

he
−

m
is

s
ra

tio

Cache−miss Ratios Per MTT (mod. Pfair)

MTT Size = 2
MTT Size = 3
MTT Size = 4

(a) (b)

Figure 10: Cache-miss ratios for PD2 both (a) without and (b) with our method, using the SESC Simulator. Each scatter plot represents
50 task sets.

while not as dramatic, still demonstrate a significant benefit
for lower-weight threads. Note the especially large benefit
for MTTs of size three and four, where cache-miss ratios in
the range of 50% to 75% decrease to at most 50% with few
exceptions. Note also that opportunities for cache reuse are
limited by our memory access pattern, and therefore all miss
ratios are quite high. However, our method shows a substan-
tial overall improvement with these task sets. Additionally,
because an L2 miss incurs a time penalty up to two orders of
magnitude greater than a hit, a relatively small miss-rate dif-
ference can impact performance significantly, as seen in [1].

Removing the “same-weight” restriction. To evaluate
our method when scheduling MTTs with threads of varying
weights, we ran on SESC a task set with seven 1/2-weight
tasks and one MTT containing four 4/41-weight threads (a
prime period was desired for these experiments), allowing
early releasing by one quantum. The setup was exactly the
same as in the prior SESC experiments, except that a 4096K
L2 cache was used, task sets were run for 50 quanta in-
stead of 20 to accommodate the large periods of the MTT
threads, and the region of memory accessed was unique
to same-deadline jobs in each MTT, rather than equivalent
subtasks. Our method resulted in a substantial decrease of
the L2 miss rate for the MTT, from 85.59% to 42.82%.
We then modified the weights of the tasks in the MTT so
that they gradually diverged in different ways. As we did
this, the benefit of our method decreased; however, it was
still substantial. With thread execution costs of {1, 3, 5, 7}
(evenly distributed), the miss-rate was reduced from 86.42%
to 74.01%; with {1, 1, 1, 13} (equal small, one large), from
89.20% to 71.10%; with {1, 5, 5, 5} (equal large, one small),
from 84.26% to 52.50%; with {1, 2, 3, 10} (multiple small,
one large), from 88.70% to 76.67%; and with {1, 4, 5, 6}
(multiple large, one small), from 85.74% to 72.44%. Note
that we see less benefit for MTTs with fewer equal-weight
threads.

5 Concluding Remarks
We have proposed a “spread-cognizant” scheduling method
that decreases average and maximum spreads in both the PD2

and global EDF scheduling algorithms. This method can be
generalized to apply to any deadline-based global scheduling
algorithm. We also presented an evaluation of our method
that demonstrates its effectiveness in reducing spreads and
lowering L2 miss rates.

There are several directions for future work. First, we
want to combine this scheduling method with the methods
in [1] so that both the “encouragement” and “discourage-
ment” of co-scheduling can be supported in the same system.
Second, we wish to include support for critical sections
and precedence constraints in our work. Third, we want
to investigate further any potential for a trade-off between
the early-release interval length and the spread we can
guarantee. Fourth, we would like to showcase our method
by using it within applications on a real multicore system.
Finally, the execution cost of a task is strongly dependent
on its cache performance, which may depend on the spread
guarantees made for its MTT. Those guarantees are, in turn,
a function of task weights, and thus execution costs. Thus,
there appears to be a “chicken and egg” problem that we
need to investigate further. Timing analysis on multicore
platforms is still in its infancy, and is a non-trivial area
of future work upon which our work depends; however,
if a timing analysis tool for multicore architectures were
developed that could determine the execution cost of a task
given the spread guarantees of the task set, then we may be
able to avoid the “chicken and egg” problem by performing
timing analysis for all tasks in the task set assuming a
certain spread guarantee. If the execution costs calculated
would guarantee such a spread, then the timing analysis is
valid and we can assume the execution costs calculated are
correct; otherwise, we can repeat the attempt with another
spread guarantee. Naturally, as lower spreads imply lower

cache-miss rates, thus implying reduced execution costs, it
would be beneficial to choose the execution costs associated
with the lowest valid spread guarantee.

References
[1] J. Anderson, J. Calandrino, and U. Devi. Real-time scheduling

on multicore platforms. Proc. of the 12th IEEE Real-Time and
Embedded Technology and Applications Symp., pp. 179–190,
2006.

[2] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling
of asynchronous periodic tasks. JCSS, 68(1):157–204, 2004.

[3] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation.
Algorithmica, 15:600–625, 1996.

[4] G. Blelloch and P. Gibbons. Effectively sharing a cache
among threads. Proc. of the 16th ACM Symp. on Parallelism
in Algs. & Archs., 2004.

[5] U. Devi and J. Anderson. Tardiness bounds for global EDF
scheduling on a multiprocessor. Proc. of the 26th IEEE Real-
Time Systems Symp., pp. 330–341, 2005.

[6] C. Farivar. Intel Developers Forum roundup: four cores now,
80 cores later. http://www.engadget.com/2006/09/26/intel-
developers-forum-roundup-four-cores-now-80-cores-later/,
2006.

[7] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.
Throughput-oriented scheduling on chip multithreading sys-
tems. Technical Report TR-17-04, Division of Engineering
and Applied Sciences, Harvard University, 2004.

[8] A. Fedorova, M. Seltzer, and M. Smith. Cache-fair schedul-
ing for chip multiprocessors. Manuscript, Harvard University,
2006.

[9] R. Jain, C. Hughs, and S Adve. Soft real-time scheduling
on simultaneous multithreaded processors. Proc. of the 23rd
IEEE Real-Time Systems Symp., pp. 134–145, 2002.

[10] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning on a chip multiprocessor architecture. Proc. of
the 13th Int’l Conf. on Parallel Arch. and Comp. Techs., pp.
111–122, 2004.

[11] S. Parekh, S. Eggers, H. Levy, and J. Lo.
Thread-sensitive scheduling for SMT processors.
http://www.cs.washington.edu/ research/smt/.

[12] L. Peng, J. Song, S. Ge, Y.-K. Chen, V. Lee, J.-K. Peir, and
B. Liang. Case studies: Memory behavior of multithreaded
multimedia and AI applications. Proc. of 7th Workshop on
Computer Architecture Evaluation using Commercial Work-
loads, 2004.

[13] J. Renau. SESC website. http://sesc.sourceforge.net.
[14] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job

scheduling with priorities for a simultaneous multithreading
processor. Proc. of SIGMETRICS 2002.

[15] A. Srinivasan and J. Anderson. Optimal rate-based scheduling
on multiprocessors. JCSS, 72(6):1094–1117, 2006.

[16] P. Valente and G. Lipari. An upper bound to the lateness
of soft real-time tasks scheduled by EDF on multiprocessors.
Proc. of the 26th IEEE Real-Time Systems Symp., pp. 311–
320, 2005.

Appendix: Proofs of Theorems 1 and 2

Theorem 1. Recall that Theorem 1 deals with MTTs with
same-weight threads. We prove that for any i, if t is the
earliest time at which some subtask Ti is scheduled, where
T is in MTT R, then all task threads in R have their ith

subtask scheduled in [t, t + X). We henceforth use the term
“thread” when referring to the tasks of some MTT, and the
term “task” to refer to any task (which may or may not be
from some MTT). We begin by stating a lemma concerning
the execution rate of same-weight tasks, which follows easily
by inducting over the subtask indices.

Lemma 1 If U and V are threads in the same MTT, and if
subtask Uj is scheduled at or after subtask Vk, then k − j ≤
1.

Set categorization. At time t in a schedule S, tasks are
placed in the sets below—see Fig. 11. Subsets G2 and H2

contain threads with a subtask that is eligible at time t and
must be scheduled over the interval [t + 1, t + X) to avoid
a spread violation. Hereafter, we call such eligible subtasks
pending subtasks (and, implicitly, this term is used with re-
spect to time t).
• Set G: includes each thread T ∈ R, where R is any

MTT, such that, for some i:
(i) No subtask Ui is scheduled before time t, for U ∈

R;
(ii) Ui is scheduled at time t for some thread U ∈ R;
(iii) Ui−1 is scheduled at time t for some thread U ∈

R;
(iv) Ti or Ti−1 is scheduled at time t.

Set G is partitioned into subsets G1 and G2 where T ∈
G1 iff Ti is scheduled at t, and T ∈ G2 iff Ti−1 is
scheduled at t (implying Ti is not scheduled at t). Note
that, by (ii), (iii), and Lemma 1, no subtask of a thread
in MTT R with an index other than i or i − 1 can be
scheduled at time t.

• Set H : includes each thread T ∈ R, where R is any
MTT, such that, for some i:
(i) No subtask Ui is scheduled before time t, for U ∈

R;
(ii) Ui is scheduled at time t for some thread U ∈ R;
(iii) Some thread U ∈ R is not scheduled at time t.

Set H is partitioned into disjoint subsets H1 and H2

where T ∈ H1 iff Ti is scheduled at t, and T ∈ H2

otherwise.

X

X

X

X

X X

X

X

XX

I

I

I

H

H

1

2

3

2

1

X

X

X

X

X

X

X

X
1

G

G

2

X

X

X

X

X

X

X

X
1

G

G

2

MTT 1

MTT 2

MTT 3

X

X

G

H

I

t+Xt

Figure 11: Sets G, H , and I , and their respective subsets.

Note that if U and U ′ are from the same MTT, and Ui

is scheduled at t but U ′

i could not be scheduled at t,
then either U ′

i ’s predecessor is scheduled at t, or U ′

i

is not among the M highest-priority subtasks selected
for execution. Since we assume that all threads of an
MTT have equal weight, by the Priorities rule, there is
at most one MTT for which the latter could have hap-
pened. Thus, we have the following.

(PH) Set H contains threads from at most one MTT, and
these threads have lower priority than the lowest-
priority thread in set G at time t.

• Set I : includes each task T not in sets G or H . Set I
contains disjoint subsets I1, I2, and I3, defined as fol-
lows.
(i) T ∈ I1 iff T is scheduled at time t, but not within

[t + 1, t + X).
(ii) T ∈ I2 iff T is not scheduled at t, but is within

[t + 1, t + X).
(iii) T ∈ I3 iff T is scheduled at t and within [t+1, t+

X).
If G2 ∪ H2 is empty, then perfect parallelism is achieved

for any subtasks from MTTs scheduled at time t. Thus, we
assume:

(PE) G2 ∪ H2 is non-empty.

In our proof, we assume there is a spread violation, which
implies that t′ defined next exists, and then derive a contra-
diction.
Definition 1: t′ is the latest time at which any pending
subtask of a thread in G2∪H2 is scheduled, where t′ ≥ t+X .

We assume the following for any task T in either I2 or I3.
(PI) A subtask of T has equal or higher priority

than at least one pending subtask of a thread
in G2 ∪ H2 at some time u in the interval
[t + 1, t′ + 1).

Otherwise, by the Priorities rule and Def. 1, T could not be
scheduled until all pending subtasks of threads in G2 ∪ H2

were scheduled, and we would not need to account for T in
our proof.

Task allocations over an interval. For any subset α ∈
{G1, G2, H1, H2, I2, I3}, we define AX (α) to be the maxi-
mum number of subtasks Tk of any one task T ∈ α, where
k > 0, scheduled over the interval [t + 1, t + X). At′(α) is
similarly defined with respect to [t + 1, t′ + 1), except that
subtasks scheduled at time t′ with priority lower than any
pending subtask of a thread in G2 ∪ H2 also scheduled at
that time are not counted, as such subtasks do not interfere
with the scheduling of any pending subtask. By Def. 1, we
have the following.

(PT) For any α, At′(α) ≥ AX(α).
Free processor allocations. The number of “free” proces-
sor allocations, F , available for pending subtasks of tasks in
G2 ∪H2 over the interval [t+1, t+X) is given by subtract-
ing from (X − 1) · M the maximum number of allocations
to tasks in other groups, and the additional allocations (over
the first) that may be made to tasks in G2 ∪ H2 before all
pending subtasks in G2 ∪ H2 are scheduled. That is, F ≥
(X−1)·M−AX(I2)·|I2|−AX(I3)·|I3|−AX (G1)·|G1|−
(AX (G2)−1) · |G2|−AX(H1) · |H1|− (AX (H2)−1) · |H2|.
Our proof obligation is to show that F ≥ |G2| + |H2|. By
(PT),

F ≥ (X − 1) · M − AX(I2) · |I2| − AX(I3) · |I3|

−AX(G1) · |G1| − (AX(G2)−1) · |G2|

−At′(H1) · |H1| − (At′(H2)−1) · |H2|. (3)

The next lemma follows almost directly from the Early-
Release Eligibility rule, and thus is stated without proof.
Lemma 2 Suppose subtask Ti is released in the interval [t+
1, t + X) (i.e., t + 1 ≤ r(Ti) < t + X). If no prior subtask
of task T is scheduled in [t, r(Ti)), and Ti is one of the e
highest-priority subtasks at time t, where e = M − (|U| +
|H|) as defined by the Early-Release Eligibility rule, then Ti

is early-release eligible in slot t. Additionally, if Ti is non-
urgent in [t + 1, t′), then Ti is not early-release eligible in
[t + 1, t′).

The following lemma is used later to calculate F .

Lemma 3 The properties below hold for M , and the vari-
ables and subsets defined above.

(a) |G1| + |G2| + |H1| + |I1| + |I3| ≤ M .

(b) |H2| ≤ M .

(c) AX (I2) = 0.

(d) At′(H1) = 0 and At′(H2) = 1.

(e) (AX (I3)=AX (G1)=AX (G2)≤X−2)⇒(F ≥|H2|+
|G2|).

Proof: Part (a) holds since all tasks in sets G1, G2, H1, I1,
and I3 are scheduled at time t by definition. Thus, these
subsets together contain at most M tasks. By (PH) and (PM),
|H | ≤ M . Hence, |H2| ≤ M , and therefore part (b) holds.

We prove part (c) by proving that no task in I2 can receive
an allocation in [t + 1, t + X). Assume to the contrary that
some subtask of a task in I2 is scheduled in [t + 1, t + X).
Let Ti denote the earliest-scheduled such subtask and assume
that it is scheduled in slot u. Note that, because T ∈ I2, Ti’s
predecessor is not scheduled in [t, u). Now, if r(Ti) < t+X ,
then by (PI) and Lemma 2, Ti would be scheduled at time t,
contradicting T ∈ I2. Hence, r(Ti) ≥ t + X . This implies
that Ti was early-release eligible when it was scheduled. But
by condition (iii) of the Early-Release Eligibility rule, this
implies that all of the urgent subtasks in G2 ∪ H2 are sched-
uled in [t + 1, u]. However, this contradicts Def. 1.

We begin our proof of part (d) with the following claim,
which follows easily from (PH).

Claim 1 A task in set H1 can receive no subtask
allocations in the interval [t+1, t′). Also, a task in
set H2 can receive only one subtask allocation in
the interval [t + 1, t′)—the allocation for its pend-
ing subtask.

If H is empty, then (d) holds easily. Otherwise, by part
(iii) of the definition of set H , H2 is nonempty. Thus, by
Claim 1, At′(H1) = 0 and At′(H2) = 1.

Finally, part (e) can be established as follows.

F ≥ (X − 1) · M − AX(I3) · |I3| − AX(G1) · |G1|

−(AX(G2) − 1) · |G2| {by (3), (c), and (d)}
≥M + |G2| + (X − 2) · |H1| + (X − 2) · |I1|

{by (a) and AX (I3) = AX(G1) = AX(G2) ≤ X − 2}

≥M + |G2|

≥ |H2| + |G2| {by (b)}
�

The next lemma concerns urgent subtasks.

Lemma 4 Suppose a subtask Ti of a task T is urgent from
time t + 1 until it is scheduled, is scheduled in the interval
[t+1, t′), and Ti is not the first subtask of a task T scheduled
in the interval [t + 1, t′). Then, Ti must be scheduled at time
r(Ti) or later, i.e., it cannot be scheduled before its release
time.

Proof: If Ti is scheduled at time tu, where t + 1 ≤ tu < t′,
then by the Urgent Tasks rule, there must exist some subtask
Ui in the same MTT that was both non-urgent and scheduled
at time tnu < tu. If tnu > t, then by Lemma 2, Ui is not
early-release eligible in the interval [t + 1, t′), and thus Ui

and Ti must both be scheduled at time r(Ui) or later. Since
r(Ui) = r(Ti), Ti must therefore be scheduled at time r(Ti)
or later. If tnu ≤ t, then Ti must be the first subtask of task
T scheduled in the interval [t+1, t′), for otherwise, subtasks
Ti and Ti−1 would be scheduled at time t + 1 or later, while
subtasks Ui and Ui−1 are scheduled at time t or earlier, since
Ui−1 must be scheduled earlier than Ui. This cannot be the
case since it implies that at some time tnu ≤ t, Ui was sched-
uled instead of Ti−1, and by Lemma 1, Ti−2 must have been
scheduled before time tnu, and therefore Ti−1 must have
been eligible at time tnu. �

The following lemma concerns the first urgent subtask of
a task scheduled in the interval [t, t + X).

Lemma 5 If subtask Ti of a task T is urgent from time t + 1
until it is scheduled, is the first subtask of T scheduled in the
interval [t + 1, t + X), and Ti is scheduled early, then the
maximum number of allocations that task T can receive over
the interval [t+1, t+X) is no more than what it could have
received if Ti had not been scheduled early.

t t+X

X

X

X

X

T

X

X

Ti

T
(no early
releasing)

iT

Figure 12: Lemma 5.

Proof: In the absence of early
releasing, a maximal alloca-
tion for T over [t + 1, t +
X) occurs when every sub-
task of T released in this in-
terval is scheduled in the first
slot of its window. As seen
in Fig. 12, early releasing
Ti cannot increase this allo-
cation. This is due to the
fact that, by Lemma 2 and
Lemma 4, Ti is the only sub-
task of T that can be scheduled early in the interval [t+1, t′),
and therefore by Def. 1, in the interval [t + 1, t + X). �

The following lemma is proved in [2].

Lemma 6 Task T has windows of length
⌈

1
wt(T)

⌉

or
⌈

1
wt(T)

⌉

+ 1.

The next lemma allows us to contradict Def. 1.

Lemma 7 F ≥ |G2| + |H2|, i.e., t′ < t + X .

Proof: Consider a subtask Ti of a task T such that t + 1 ≤
r(Ti) < t + X . If Ti is non-urgent over the entire interval
[t + 1, t + X), then by Def. 1 and Lemma 2, early releasing
is disabled for Ti over that same interval. The same is true
if Ti is urgent at some time in the interval [t + 1, t + X),
and therefore is urgent at some time in the interval [t + 1, t′)
by Def. 1, but is not the first subtask of T scheduled in the
interval [t+1, t′), by Lemma 4. If Ti is urgent at some time in
the interval [t+1, t+X) and is the first task of T scheduled
in the interval [t + 1, t + X) then Ti can be scheduled early,
but by Lemma 5, T cannot receive any more allocations over
the interval [t + 1, t + X) than if Ti had not been scheduled
early. Together, these facts imply that we do not need to
consider early-releasing over the interval [t+1, t+X) when
determining the maximum number of allocations a task can
receive in that interval. We now consider three cases.

t

X

X

X

X

t+X

1/3

3/10

Figure 13: Lemma 7: Wmax ≤ 1/3.

Case Wmax ≤ 1/3.
We establish
X = 3 (a spread
of three) in this
case. By Lemma 6,
Wmax ≤ 1/3, and
(1), no task can
have a subtask
window of length
less than three, or an
overlapping subtask
window of length
less than four. Thus, tasks in I3 and G can receive at most
two consecutive allocations before becoming ineligible,
and thus no more than one additional allocation in the
interval [t + 1, t + X), since they have already received
an allocation in slot t. This is illustrated in Fig. 13. Thus,
AX(I3) = AX(G1) = AX (G2) = 1 ≤ X − 2, and by
Lemma 3(e), F ≥ |G2| + |H2|.

Case 1/3 < Wmax ≤ 1/2. We establish X = 4 (a spread
of four) in this case. The reasoning is similar to the case
above, and hence is omitted due to space constraints.

Case Wmax > 1/2. In this case, we consider a sequence
Ti, . . . , Tj of subtasks of a task T of weight greater than 1/2
such that if any of Ti, . . . , Tj is scheduled in the last slot of its
window, then each subsequent subtask in this sequence must
be scheduled in its last slot (e.g., T1, T2 or T3, T4, T5 or T6,
T7 in Fig. 14). In effect, Ti, . . . , Tj must be considered as a
single schedulable entity subject to a group deadline, defined
as d(Tj) + 1. Intuitively, if we imagine a job of T in which
each subtask is scheduled in the first slot of its window, then
the remaining empty slots correspond to the group deadlines
of T . In Fig. 14, T has group deadlines at slots 4, 8, 11,
15, 19, and 22. The following claim follows from results
concerning group deadlines proved in [2].

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

0 1 2 3 4 5 6 7 8 9 11

T

T

T

T

T

T

T

T

T 1

2

3

4

5

6

7

8

10

T

T

T

T

T

T

T

2221201918171615141312

T 9

10

11

12

13

14

15

16
X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

T not scheduled in these slots

Figure 14: Maximum consecutive allocations to a task T of weight
8/11.

Claim 2 If Wmax > 1/2, then the maximum number of
consecutive subtask allocations any task can receive is 2 ×
d 1

1−Wmax
e − 2.

As an example, if Wmax = wt(T) in Fig. 14, then a task
can receive at most 2×d 1

1−Wmax
e−2 = 2×d 1

1−(8/11) e−2 =

6 consecutive allocations, demonstrated from time 8 to time
14.

By Claim 2, if X is 2 × d 1
1−Wmax

e − 1, then every task
in I3 and G is guaranteed to be ineligible for at least one
quantum in the interval [t + 1, t + X) (again, in the absence
of early releasing). Tasks in I3 and G can receive no more
than 2×d 1

1−Wmax
e− 3 additional allocations in the interval

[t + 1, t + X) since they have already received an allocation
in slot t. Therefore, AX (I3) = AX (G1) = AX(G2) =
2 × d 1

1−Wmax
e − 3 ≤ X − 2. Thus, by Lemma 3(e), F ≥

|G2| + |H2|. �

From Lemma 7, Theorem 1 follows.

Theorem 2. This proof is similar to that for the Wmax >
1/2 case of PD2, so only a sketch is provided. As with the
PD2 cases, we assume t′ is defined as in Def. 1 and derive
a contradiction by showing that F ≥ |G2| + |H2|, given
the X (spread) stated in Theorem 2. For EDF, the maxi-
mum number of consecutive time units that a task can exe-
cute is 2 · emax. This is illustrated in Fig. 7, where ∆ = 0
is assumed. With a spread of 2 · emax + 1, every task
in I3 and G is guaranteed to be ineligible for at least one
time unit in the interval [t + 1, t + X) (again, in the ab-
sence of early releasing). This means that tasks in I3 and
G will execute for no more than 2 · emax − 1 consecutive
time units in the interval [t + 1, t + X) since they have
already executed one time unit by time t + 1. Therefore,
AX(I3) = AX(G1) = AX(G2) = 2 · emax − 1 ≤ X − 2.
Thus, by Lemma 3(e), F ≥ |G2| + |H2|.

