
LITMUSRT: A Testbed for Empirically Comparing Real-Time
Multiprocessor Schedulers ∗

John M. Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C. Devi, and James H. Anderson
Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract

We present a real-time, Linux-based testbed called
LITMUSRT, which we have developed for empirically eval-
uating multiprocessor real-time scheduling algorithms. We
also present the results from such an evaluation, in which
partitioned earliest-deadline-first (EDF) scheduling, pre-
emptive and nonpreemptive global EDF scheduling, and two
variants of the global PD2 Pfair algorithm were considered.
The tested algorithms were compared based on both raw
performance and schedulability (with real overheads con-
sidered) assuming either hard- or soft-real-time constraints.
To our knowledge, this paper is the first attempt by anyone
to compare partitioned and global real-time scheduling ap-
proaches using empirical data.

1 Introduction
Interest in techniques for effectively scheduling real-time
workloads on multiprocessors has been increasing in recent
years. Two factors are driving this interest. First, algorith-
mic research on this topic has resulted in a number of new
scheduling approaches that remove some of the fundamen-
tal barriers imposed by partitioning approaches, the schemes
most commonly considered in earlier work. Second, the
landscape in terms of hardware platforms has been changing:
“server-class” multiprocessor machines have been available
for some time now, and chip makers are shifting to multi-
core technologies as a solution to the “thermal roadblock”
imposed by single-core designs. In multicore platforms, sev-
eral processor cores are placed on a single chip. Most major
chip manufacturers currently offer dual-core chips, and some
designs with more cores are also available. In the coming
years, chips with 32 or more cores are expected [15]. This
shift in the thinking of chip makers is a watershed event, as
it will fundamentally change the “standard” computing plat-
form in many settings to be a multiprocessor.

Given this convergence of events, the time is now ripe to
extend prior work on algorithmic techniques for scheduling
real-time multiprocessor systems to obtain realistic imple-
mentations that facilitate empirical comparisons. In this pa-
per, we attempt to do just this. While implementations of

∗Work supported by NSF grants CNS 0309825, CNS 0408996, and CCF
0541056, and by a grant from Intel Corp. The third author was supported
by an NSF fellowship, and the fourth author by an IBM fellowship.

partitioning approaches exist, no implementations of many
of the global real-time scheduling approaches that have been
the subject of recent theoretical interest have been produced
before, at least as can be found in the published literature.
Global approaches differ from partitioning approaches in
that, in the latter, tasks are statically assigned to processors,
while in the former, they may migrate.

Global scheduling algorithms are better able than parti-
tioning approaches to utilize multiprocessor systems when
system overheads are negligible. For example, the global
PD2 Pfair algorithm can schedule on M processors any pe-
riodic task system with total utilization at most M [2], and
the global earliest-deadline-first (EDF) algorithm can ensure
bounded deadline tardiness for any such task system, again,
if total utilization is at most M [10, 20]. In contrast, there ex-
ist task systems with total utilization of approximately M/2
that no partitioning approach can correctly schedule, even if
bounded deadline tardiness is allowed.

While global scheduling algorithms may be theoretically
superior, they tend to have higher scheduling and migra-
tion costs than partitioning schemes. As a result, many re-
searchers have been dismissive of global algorithms from a
practical standpoint. One of our main goals in this paper is to
determine whether this viewpoint is warranted. In particular,
we would like to know how partitioning and global real-time
scheduling approaches compare when real overheads, empir-
ically determined, are considered.

Contributions. Driven by the issues raised above, we have
constructed a testbed, which we call LITMUSRT (LInux
Testbed for MUltiprocessor Scheduling in Real-Time sys-
tems), to compare various real-time multiprocessor schedul-
ing approaches. One of the major contributions of this pa-
per is to describe LITMUSRT and its use. We believe
that LITMUSRTmay be useful to other researchers as well.
LITMUSRT was implemented by modifying the Linux 2.6.9
OS kernel configured to run on a symmetric multiprocessor
(SMP) architecture. (Most aspects of this paper should re-
main the same for any release version of Linux 2.6.) Our
particular development platform is an SMP consisting of four
32-bit Intel(R) Xeon(TM) processors running at 2.70 GHz,
with 8K instruction and data caches, and a unified 512K L2
cache per processor, and 2 GB of main memory.

As a second contribution, we report on results obtained
using LITMUSRT on our test platform to compare various

real-time multiprocessor scheduling algorithms. Five algo-
rithms were considered: partitioned EDF (P-EDF), preemp-
tive and nonpreemptive global EDF (G-EDF and NG-EDF),
and two variants of the global PD2 Pfair algorithm [2].
(These algorithms are described in the next section.) The
tested algorithms were compared on the basis of both raw
performance and schedulability (with real overheads con-
sidered) assuming either hard- or soft-real-time constraints.
Raw performance was assessed by measuring task comple-
tion times. Lower completion times are desirable in settings
where good average-case performance is required in addition
to worst-case predictability. We found that all tested schemes
showed somewhat comparable performance (though we did
note some differences, as discussed later). For schedulabil-
ity with hard-real-time constraints, the two PD2 variants and
P-EDF tended to perform the best, and with soft-real-time
constraints, the two PD2 variants and the two global EDF
variants tended to perform the best. These results show that,
for each tested scheme, scenarios exist in which it is a viable
choice. Further, they call into question the belief that global
approaches are not practically viable.

We chose to create our testbed by modifying Linux instead
of an existing real-time OS (RTOS) for two reasons. First,
Linux is free, open-source software that is easy to obtain and
modify, and is widely accepted by both developers and end
users. Second, the potential client base for LITMUSRT as it
evolves will mainly include real-time graphics and multime-
dia applications, many of which have been developed within
our own department. The timing constraints in these applica-
tions are usually soft, and the developers of those produced
locally actually prefer Linux as a development platform.

A few limitations of our experiments are worth noting.
First, while we believe that many of our conclusions are of
a general nature, these conclusions have been drawn based
on empirical data taken from one test platform, a tradi-
tional four-processor SMP. In future work, we hope to eval-
uate larger platforms, and also other architectures, most sig-
nificantly multicore platforms; our design of LITMUSRT

should allow it to be easily ported to these other settings.
Second, in creating LITMUSRT, producing a fully-featured
system was not our goal—this would simply not be feasi-
ble at the present time. Rather, our goal was to produce a
platform that would suffice for the purposes of this paper.
For this reason, our experiments have involved independent,
static tasks. We leave issues such as support for synchroniza-
tion and I/O and dynamic workloads as future work.

Related work. Most prior work on RTOSs has focused on
uniprocessor systems—see [17] for a recent survey. In most
such work, techniques for scheduling multiprocessor work-
loads are rarely discussed. The prevailing attitude seems
to be that, on a multiprocessor platform, partitioning is the
only viable choice, and therefore, scheduling reduces to a
uniprocessor problem. Given this prior emphasis, we mostly

limit our discussion of prior work to research that pertains
to Linux or that addresses multiprocessor systems more di-
rectly. We do not have sufficient space to discuss all prior
Linux-related development efforts, so only those of direct
relevance to our work are considered.

One such effort is RTLinux [21], which runs real-time
tasks in a thin real-time kernel, with Linux itself running on
top of this kernel as a low-priority background task. This
strategy prevents the Linux kernel from disrupting real-time
tasks, but at the same time, restricts the ability of such tasks
to invoke Linux kernel services. We have implemented
LITMUSRT differently, specifically, by incorporating the
scheduling algorithms that we require directly into Linux it-
self. RTLinux supports periodic threads, but scheduling is
limited to FIFO, round-robin, and fixed-priority schemes.
While various multiprocessor scheduling algorithms could
potentially be incorporated within RTLinux, we chose not to
do so, because this would preclude supporting in a straight-
forward manner tasks that require the services of the base
kernel. (We hope to enhance predictability within Linux sys-
tem calls in future work.)

Another relevant Linux-related prior effort is work by
Abeni et al. [1], who measured latencies associated with
timer resolution and non-preemptive sections for several
Linux variants under different types of system “stress” (e.g.,
I/O stress, memory stress, etc.). They found that preempt-
able, lock-breaking kernels using high-resolution timers are
the most effective at handling these stresses. In this paper,
we provide similar measurements but with an emphasis on
multiprocessor overheads such as task migration.

To our knowledge, multiprocessor-based RTOSs were first
considered as part of work on the Spring kernel [18]. The
scope of Spring extended beyond stand-alone multiprocessor
systems and encompassed distributed systems composed of
several multiprocessing nodes and tasks with synchroniza-
tion requirements. Spring predated almost all of the recent
advances in multiprocessor scheduling theory that led us to
construct LITMUSRT.

In other recent work concerning multiprocessors, Stohr et
al. [19] presented the RECOMS software architecture, which
is a framework for running a general-purpose OS and an
RTOS on the same multiprocessor machine. This framework
partitions the system by placing the general-purpose OS on
its own processor and preventing I/O accesses from interfer-
ing with the RTOS. RECOMS was designed as an extension
to RTAI [11], which is closely related to RT-Linux, and there-
fore the work in [19] is different from ours in the same ways.

Organization. The rest of this paper is organized as fol-
lows. In Sec. 2, we present a brief description of the schedul-
ing algorithms that we evaluated. Then, in Sec. 3, we de-
scribe our implementation of LITMUSRT. In Sec. 4, we
present the experimental results mentioned earlier, and in
Sec. 5, we conclude.

Proc. 1 Proc. 2 job/subtask release job/subtask deadline

staggered quantum allocationpartially−used quantum

X X

Y Y

Z Z

0 1 2 3 4 5 6
(c)

X

Y

Z

X

Y

Z

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
(d)(a) (b)

0 1 2 3 4 5 6 7

Figure 1: (a) G-EDF, (b) NG-EDF, (c) PD2, and (d) S-PD2 schedules of a two-processor system of three tasks: X , with an execution
cost of 1.5 and period of 3.0, Y with an execution cost of 2.0 and a period of 3.0, and Z with an execution cost of 4.0 and a period of 6.0.

2 Background

We focus herein on the scheduling of periodic task systems.
Each task in such a system is invoked or released repeatedly;
each such invocation is called a job of the task. A periodic
task is specified by a period, which denotes the (exact) sep-
aration between its successive job releases, and by an execu-
tion cost, which denotes the maximum execution time of any
of its jobs. Each job of a task has a deadline corresponding
to the release time of the task’s next job. Task periods are
assumed to be integral with respect to the length of the sys-
tem’s scheduling quantum, but execution costs may be non-
integral. A task’s utilization or weight is given by the ratio
of its execution cost and period. As noted earlier, both EDF
and Pfair scheduling algorithms are considered in this paper.

In EDF scheduling algorithms, jobs are scheduled in or-
der of increasing deadlines, with ties broken arbitrarily. As
noted in the introduction, we consider three EDF variants:
P-EDF, NG-EDF, and G-EDF. In P-EDF, tasks are stat-
ically assigned to processors and those on each processor
are scheduled on an EDF basis. In NG-EDF, tasks may mi-
grate, but once a job commences execution on a processor, it
will run to completion on that processor without preemption.
Thus, jobs may not migrate. Finally, G-EDF allows jobs
to be preempted and permits job migration with no restric-
tions. No variant of EDF is optimal, i.e., deadline misses can
occur under each EDF variant in feasible systems (i.e., sys-
tems with total utilization at most the number of processors).
It has been shown, however, that deadline tardiness under
NG-EDF and G-EDF is bounded in such systems [10, 20].

In Pfair scheduling algorithms [5, 16], a task T of weight
T.wt is scheduled one quantum at a time in a way that ap-
proximates an ideal allocation in which it receives L · T.wt
time over any interval of length L. This is accomplished
by sub-dividing each task into a sequence of quantum-length
subtasks, each of which must execute within a certain time
window, the end of which is its deadline. Subtasks are sched-
uled on an EDF basis, and tie-breaking rules are used in
case of a deadline tie. A task’s subtasks may execute on

any processor, but not at the same time (i.e., tasks must ex-
ecute sequentially). The most efficient known optimal Pfair
algorithm is PD2 [2, 16], which uses two tie-breaking rules.
We consider two variants of PD2 in this paper: synchronized
PD2 (which we simply denote as PD2) and staggered PD2

(denoted S-PD2) [13]. Under PD2, quantum boundaries on
different processors always align. This alignment has the
potential of creating excessive bus contention at the start of
each quantum, if the tasks scheduled then initially experi-
ence many cache misses in accessing memory. S-PD2 was
proposed as a solution to this problem: under it, quantum
boundaries are “staggered” on different processors so that
they never align. We illustrate this idea with an example be-
low. While PD2 is capable of ensuring all subtask deadlines
for any feasible system, such deadlines can be missed under
S-PD2 by up to one quantum. This amount, though, is still
considerably less than the amount by which deadlines can
be missed under G-EDF and NG-EDF [10, 20]. Moreover,
misses of job deadlines can be avoided in S-PD2 by simply
reducing a task’s period by one quantum. Under both Pfair
schemes, if a task is allocated a quantum when it requires
less execution time, the unused portion of that quantum is
“wasted.” In contrast, under the EDF schemes considered
above, such a task would relinquish its assigned quantum
“early,” allowing another task to be scheduled.

To see some of the differences in these algorithms, con-
sider Fig. 1, which depicts various two-processor schedules
for a system of three tasks, X , Y , and Z, as defined in the
figure’s caption. There are several things worth noting here.
First, these three tasks cannot be partitioned onto two pro-
cessors, so this system is not schedulable under P-EDF (so
we do not depict a schedule for this case). Second, under
each of G-EDF, NG-EDF, and S-PD2, a deadline is missed.
Third, in the NG-EDF schedule in inset (b), task Y ’s second
job cannot execute at time 3 since Z’s job must execute non-
preemptively (there is actually a deadline tie here). Fourth,
each task has the same window structure in insets (c) and (d).
For tasks Y and Z, this is easily explained: a task’s window
structure is determined by its weight and both of these tasks

have a weight of 2/3. As for task X , under each Pfair variant,
windows are defined by assuming that each task’s execution
cost is an integral number of quanta. Thus, we must round
up X’s cost to 2.0, giving it a weight of 2/3. Because of this,
some quanta allocated to task X are only half-used. Finally,
note that in inset (d), quanta on processor 1 always begin at
integral time instants, while on processor 2, they begin at the
midpoint between two integral time instants.

3 LITMUSRT Implementation
Our implementation efforts in developing LITMUSRT fo-
cused on two key tasks: devising support for different quanta
alignments, and incorporating the scheduling algorithms we
require into Linux. These efforts are described in greater de-
tail below. Due to space constraints, we have omitted certain
details in this discussion—we plan to release a technical re-
port soon that describes LITMUSRT in greater depth.

3.1 Supporting Scheduling Quanta

We first discuss our methods for supporting in Linux aligned
and staggered quanta, as required by PD2 and S-PD2, re-
spectively. Before describing how we accomplished this, we
first digress to provide a brief introduction to the local timer
interrupt hardware on our test platform and its operation in
Linux. (This overview is based heavily on material from [7].)

Introduction to local timers. In our hardware configura-
tion, each processor contains an Advanced Programmable
Interrupt Controller (APIC), which is on the same chip as
the processor itself. Each APIC contains a local timer that
generates local timer interrupts on each processor. In Linux,
a check for tasks to be scheduled is made in the local timer
interrupt handlers. (Such checks are also made when a
new process is created or an executing process exits, blocks,
yields, or is suspended, and when returning from interrupt
handlers if the execution of the handler resulted in one or
more processes becoming ready.) To support time sharing,
a quantum size, which can be expressed as a multiple of the
period between timer interrupts, is chosen, and ready tasks of
the same priority are scheduled in a round-robin fashion. As
each APIC is programmed to generate interrupts at the same
frequency on all processors, the interval between timer inter-
rupts is identical across all processors. However, these in-
terrupts do not necessarily coincide. Creating such an align-
ment would require that all local timers be started at the same
time. In Linux, this is not guaranteed, since the time at which
each processor starts its local timer is not predictable.

Supporting aligned quanta. We supported aligned quanta
in PD2 by making scheduling decisions only at timer inter-
rupts, and by aligning such interrupts across processors as
follows.
• After initializing local timer interrupts normally at sys-

tem boot, each processor begins recording the times at

P1

P2

P3

P0

time

aligned

no delay

all quanta
re−enabling APIC

delay before

Figure 2: Illustration of the modification to support aligned quanta.

which its interrupt handler is being invoked by record-
ing the value of the Time Stamp Counter (TSC), a cycle-
based 64-bit counter that records system uptime in ns.

• All processors then use the TSC measurements to cal-
culate how misaligned they are with respect to proces-
sor 0, and by how much they need to delay to align
themselves.

• Each processor then disables and resets its local APIC
timer, so that when it is re-enabled, it will generate its
next interrupt after a full timer period.

• Finally, each processor delays appropriately, and then
re-enables its local APIC timer. Processor 0 delays if
it is not the most “behind” to prevent the calculation of
negative delay values.

The method used to calculate the needed per-processor de-
lays is described in [8]. Such delays were realized using a
non-timer-based kernel delay function called udelay, which
is implemented using a software loop with µs granular-
ity. As shown in Fig. 2, we can get aligned quanta even if
quanta were substantially misaligned before delaying. Such
a statement cannot be made about standard Linux. Also,
note that other (non-timer) interrupts cannot interfere sig-
nificantly with delay times since the network and most I/O
devices are not yet initialized. (It is worth noting that this
approach was devised after considering many that did not
work, including approaches that use global timer interrupts
and various proposed patches.)

We also used the method described above to align timer
interrupts (but not necessarily quanta) in the EDF variants
we implemented. This was done in order to give each pro-
cessor a consistent view of time, which is convenient when
all tasks have periods that are some multiple of the quantum
size. (In our implementations, both the quantum size and the
period between timer interrupts were 1 ms.) However, in
these EDF variants, scheduling decisions (and hence quan-
tum allocations) do not always occur at timer interrupts, as is
the case with PD2. For example, if a job J in an EDF scheme
completes between timer interrupts, then a new job J ′ may

be scheduled. In our implementation, such a job J ′ can be
preempted at the next timer interrupt, if a higher-priority job
is released at that time. In such a case, J ′ would have exe-
cuted for less than a full quantum prior to its preemption.

Supporting staggered quanta We supported staggered
quanta, as required by S-PD2, by simply adjusting the de-
lays discussed earlier so that quantum boundaries on differ-
ent processors are evenly distributed over time. For example,
with a 1-ms quantum size and four processors, some proces-
sor (ideally) reaches a quantum boundary every 250 µs.

3.2 Supporting Scheduling Algorithms

Our framework for supporting multiprocessor scheduling al-
gorithms in Linux is plugin-based, which simplifies the task
of implementing different algorithms and makes the sys-
tem easily extensible. Each scheduling algorithm is imple-
mented as a plugin component. A component is specified by
a collection of function pointers, which reference the func-
tions that define the behavior of the implemented algorithm.
There are three such functions: initialization, which installs
the component into the scheduler at boot time; tick handler,
which is called every timer interrupt; and decision, which
makes scheduling decisions. These functions are described
in greater detail below.

Before continuing, we introduce some relevant terminol-
ogy. A ready queue is a priority-ordered queue of real-time
tasks that are ready for execution, and is implemented as a
linked list. A release queue is a queue of queues. All tasks
in each such queue have the same release time, and these
queues are ordered in the release queue by the release time of
the tasks they contain (earliest to latest). The Linux runqueue
is a complex per-CPU Linux data structure that maintains
all Linux tasks assigned to that CPU. This structure contains
pointers to both the currently-running task and the idle task
for its associated CPU, as well as an active queue, which is a
priority queue containing tasks that are ready for execution.
The organization of these queues allows the scheduler to de-
termine in constant time which task should run next when
a scheduling decision needs to be made. (There is also an
expired queue containing tasks that have exhausted their al-
located time slice; however, knowledge of this queue is not
necessary to understand our implementation.) In global al-
gorithms, we used FIFO queue locks when accessing shared
scheduler data structures, to ensure predictability.

Initialization function. This function is called during sys-
tem boot. A kernel boot option determines which scheduler
to run, and therefore which initialization function to call.
This function installs its component into the scheduler by
changing several function pointers to reference the functions
of the component. We modified the Linux scheduler to call
the functions referenced by these pointers as needed. This
function also creates the ready and release queues (one per
processor in the case of P-EDF).

Tick handler function. This handler, which is called on a
CPU at every local timer interrupt, performs two scheduling-
related activities. First, the tasks in the first queue of the re-
lease queue are merged with the ready queue, if their release
time has been reached. Second, if a scheduling decision is
required, then the native Linux scheduler is called. In the
Pfair algorithms, this happens at every timer interrupt, while
in the EDF algorithms, it happens at a timer interrupt only if
new jobs are released.

Decision function. The decision function is called within
the native Linux scheduler, which is called whenever a
scheduling decision needs to be made. As discussed earlier,
this can occur both at timer interrupts and between them. The
decision function schedules the highest-priority task in the
ready queue by placing it in the active queue of the Linux
runqueue structure for the current processor with a priority
higher than any other task in that queue. As a result, the
native per-processor Linux scheduler switches to this task.
Note that this implementation also supports the preemption
of real-time tasks. A preemption will cause the currently-
executing real-time task to be removed from the active queue
and returned to the ready queue.

Example. As a concrete example, we briefly describe
the implementation of one of our scheduling algorithms,
NG-EDF, pseudo-code for which is given in Fig. 3. The plu-
gin component for NG-EDF maintains a global ready queue
in EDF priority order, and a global release queue. The tick
handling function is called at every quantum boundary and
decreases the budget of the current job. Because jobs cannot
preempt each other, the rescheduling function is called only
when the current job exhausts its execution budget. The de-
cision function is fairly straightforward: it simply places into
the active queue of the Linux runqueue structure the task that
has the earliest deadline, which is at the head of the ready
queue. The other algorithms are implemented similarly, with
only a few differences: for example, PD2 does not permit
scheduling decisions between quantum boundaries.

User API. The system operates in one of two modes: real-
time or non-real-time. It boots in non-real-time mode (dur-
ing which it initializes the appropriate real-time plugin). In
order to run a real-time task set, that task set must first be
created in non-real-time mode, and then the system must
be switched to real-time mode to begin execution. A user
performs these activities by invoking several system calls to
create tasks, set task parameters, and prepare tasks for execu-
tion. When the execution of a real-time task set is complete,
or the user wishes to end real-time task execution, the system
can be switched back to non-real-time mode.

As noted earlier, real-time tasks in LITMUSRT must be
statically-defined and cannot invoke synchronization mecha-
nisms. They also cannot invoke system calls or perform I/O
operations, as their timing is unpredictable. (Note that this

SCHEDULERTICK()

1 CurrentTask.Budget := CurrentTask.Budget − 1;
2 if CurrentTask.Budget ≤ 0 then

� Replenish execution budget
3 CurrentTask.Budget := CurrentTask.ExecCost;
4 SETNEEDRESCHED(CurrentTask);

� Mark that a new job must be released
5 SETNEWRELEASE(CurrentTask)

fi
6 ACQUIRELOCK(QueueLock);

� Only one processor effectively merges queues
7 MERGE(ReadyQueue, ReleaseQueue.Head,CurrentT ime);
8 RELEASELOCK(QueueLock);
9 LINUXSCHEDULERTICK()

MAKESCHEDDECISION(CurrentTask, CPU runqueue)
1 ACQUIRELOCK(QueueLock);

� Unlink from local Linux runqueue
2 UNLINK(CPU runqueue, CurrentTask);

� Examine task’s state and flags
3 if (¬DEADORZOMBIE(CurrentTask)) then

� Reschedule is called only when a job exhausts its exec. budget
4 RELEASENEXT(CurrentTask)

fi
� Select the highest priority real-time task
� from the ready queue

5 next := EXTRACTMAXPRIO(ReadyQueue);
6 if next 6= NIL then
7 SETHIGESTLINUXPRIORITY(next);

� Linux scheduler will select this task
8 INSERTWITHMAXPRIO(CPU runqueue, next)

fi
9 RELEASELOCK(QueueLock)

Figure 3: Pseudo-code for NG-EDF scheduler functions. (For simplicity, task execution costs are assumed to be integral.)

prevents the use of dynamic libraries.) Since I/O operations
are not permissible, paging is not allowed in real-time mode.
Hence, we lock all pages in memory and restrict all real-time
tasks to share the same address space and have a relatively
small memory footprint.

4 Experimental Results
In this section, we report on the results of experiments con-
ducted using LITMUSRT to compare the multiprocessor
real-time scheduling algorithms introduced previously. We
compared these algorithms on the basis of both schedula-
bility and raw performance. The results of these experi-
ments are presented in Secs. 4.2 and 4.3, respectively. In the
schedulability evaluation, random task sets were generated
and their schedulability under each scheme checked. In this
evaluation, real overheads, as measured using LITMUSRT,
were assumed when checking schedulability. In Sec. 4.1 be-
low, we discuss the micro-benchmarks that were used to de-
termine these overheads. For all experiments, measurements
were taken with Linux booted into single user mode (i.e.,
runlevel 1). This minimizes the impact of interrupts and
other background activities by running only a minimal set
of tasks that are required for a single user that is physically
present (i.e., not accessing the machine remotely).

4.1 Micro-Benchmarks
We measured four sources of overhead of relevance to each
algorithm: task preemption and migration costs, and context-
switching and scheduling overhead. Preemption and migra-
tion costs are dominated by the time it takes to reload data
into a cold cache, and potentially invalidate data in remote
caches. Context-switching overhead reflects the actual cost
of switching between two tasks in Linux, and does not in-
clude any task-specific cache-related costs. Scheduling over-
head reflects the cost of making one scheduling decision. We
also measured the quantum alignment error, which is impor-
tant for PD2, as it strongly influences how close to optimal it

is in practice. For all experiments, we measured time using
the TSC, mentioned in Sec. 3.1.

Preemption and migration costs. Under each algorithm
except S-PD2, aligned quanta represent the worst-case sce-
nario in terms of bus contention. For these schemes, such an
alignment will occur at least once per hyperperiod. Thus, we
measured preemption and migration costs for each scheme
except S-PD2 by focusing on one 1-ms quantum of exe-
cution on each processor, with all quanta beginning at the
same time. For S-PD2, we considered a similar situation,
except that these quanta are staggered to (ideally) begin 250
µs apart, with each commencing at a different time.

Preemption costs were measured by reading the TSC be-
fore and after writing some amount of data to main memory
assuming a cold cache, in the worst-case scenario where all
processors are experiencing a preemption within the quan-
tum being considered. We then subtracted from this value
the time it takes to write the same amount of data in the
same scenario, but with all written data being locally cached.
This emulates the situation where the memory words be-
ing written were in cache prior to a preemption, but were
evicted during the preemption, and thus writes after the pre-
emption cause these words to be reloaded. The number of
words to reload depends on the task’s working set (WS). WS
sizes (WSSs) were varied over {4K, 32K, 64K, 128K, 256K}
bytes in the micro-benchmark results. However, due to space
constraints, only the 4K, 128K, and 256K cases are shown in
the schedulability results presented in Sec. 4.2. (The 32K
and 64K cases show similar trends to the 4K case.)

While these WSSs may appear to be small, note the fol-
lowing. First, we define WSS with respect to a single quan-
tum of computation, and it is not possible to write too much
more than 256K bytes within one 1-ms quantum. While
we could have chosen to measure preemption and migration
costs (see below) over several quanta for a larger WS, do-
ing so would not be straightforward, and we believe that the

Preemption and Migration Costs

0

100

200

300

400

500

600

4 32 64 128 256

Working Set Size (KB)

C
o

s
t

(
u

s
)

Align-Mig Align-Preemp Stag-Mig Stag-Premp

(a)

Context Switching Costs

0

200

400

600

800

1000

1200

1400

10 20 50

Number of tasks

C
o

n
te

x
t

s
w

it
c
h

in
g

 c
o

s
ts

(
n

s
)

G-EDF NG-EDF P-EDF PD2 S-PD2

(b)

Scheduling Costs

0

1

2

3

4

5

6

7

8

9

10

10 20 50

Number of tasks

S
c
h

e
d

u
li
n

g
 c

o
s
t

(
u

s
)

G-EDF NG-EDF P-EDF PD2 S-PD2

(c)

Figure 4: (a) Preemption/migration costs (in µs) by WSS; and (b) & (c) context-switching/scheduling costs (in ns/µs) by task-set size.

difference between these two measurement methods would
be insignificant, as our method accounts for the worst-case
costs that could be incurred during any quantum. Second,
these WSSs are intended to be a measure of cache reuse, and
not the total memory usage of a task during a quantum—if
after a preemption or migration a task accesses memory that
was never in the cache, then this access is part of the task’s
execution cost and does not contribute to preemption or mi-
gration costs. Many applications have high locality, so their
WSS is small (in terms of reuse), even if the amount of data
they access in a quantum is large. Third, due to the time-
sensitive nature of real-time tasks, it may be more likely that
such a task will work with a relatively small region of mem-
ory in a quantum. For all of these reasons, we believe that
the smallest WSSs we have considered actually represent a
fairly common case. Nonetheless, we have included larger
WSSs as well, so we can assess performance as the system
is stressed to its limits.

Migration costs were measured similarly, except that,
when we emulated the migration of data from one cache to
another, we also included the cost of invalidating that data at
another processor. The cost of this invalidation can be sig-
nificant, especially during a write, due to the synchronous
nature of certain cache snooping protocols, and therefore we
cannot simply assume that preemption and migration costs
are equivalent. We forced invalidations to occur by first read-
ing the data to be written into the private cache of another
processor and by then measuring the cost of writing that data,
as was done when assessing preemption costs.

Results from experiments conducted to measure both of
these costs are shown in Fig. 4(a). Note that, for both the
aligned and staggered cases, migration costs are higher than
preemption costs, and both scale linearly with WSS, as ex-
pected. Note also that preemption costs are nearly identical
for both aligned and staggered quanta for each WSS; how-
ever, migration costs are higher with aligned quanta. This re-
sult implies that cache invalidations entail less cost with stag-
gered quanta than aligned quanta. This result makes sense,
since invalidation protocols create bus traffic, and hence the
likelihood of bus contention is greater when all four proces-
sors are forcing invalidations at the same time.

The methodology above attempts to estimate worst-case

preemption and migration costs, rather than average-case
costs. This is why we assumed that every memory access
is a write, as writes are more costly than reads. Given that
soft-real-time systems are a major focus of our work, we
acknowledge that it is vital for us to further investigate the
(non-trivial) issue of determining suitable average-case mea-
surements for various classes of applications. Still, our mea-
surements are valid when used to evaluate the relative per-
formance of the tested scheduling algorithms. In particu-
lar, we repeated the same experiments with reads instead of
writes, and found that all costs were roughly halved. Thus,
we would expect the relationship between preemption and
migration costs, and costs associated with aligned and stag-
gered quanta, to remain proportionally the same when com-
paring some other “average-case” memory access patterns.

Context-switching overhead. We measured context-
switching overhead by reading the TSC before and after
a context-switch call assuming all processors perform a
context switch at the beginning of a quantum that is either
aligned or staggered as discussed above. The results of our
measurements are shown in Fig. 4(b). Note that context-
switching overhead is lowest for P-EDF, probably due to
the fact that tasks do not migrate. Also, some variation
among the algorithms probably arises due to differences in
the time taken to load into cache the process control block of
the task being switched to. For all algorithms, this overhead
was several orders of magnitude lower than all other costs,
and thus is relatively negligible.1

Scheduling overhead. We measured scheduling overhead
for each algorithm by reading the TSC at the beginning and
end of the code segment in which the scheduling algorithm is
implemented. Results for varying task-set sizes are shown in
Fig. 4(c). Overall, scheduling overheads are small (approxi-
mately 3 µs), with the exception of G-EDF. This implies that
our G-EDF implementation was significantly less efficient
than the others. This is due to the fact that the tick handler of
G-EDF requires the lookup of M queue entries in the worst
case, where M is the number of processors, whereas all other

1If tasks do not share an address space as assumed, then some additional
overhead may be incurred to invalidate and repopulate the TLB, and to load
into cache the page-table entries of the task that is being switched to.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90
Frequency Distribution of Quantum Alignment Error

Alignment Error (µs)

F
re

qu
en

cy

Figure 5: Quantum alignment error in LITMUSRT.

methods require only one lookup. (Our G-EDF implemen-
tation could possibly be improved, but scheduling costs are
a fairly minor overhead anyway.)

Quantum alignment error. Fig. 5 shows how well quanta
are aligned in LITMUSRT. These results were obtained by
measuring the time between the first and last invocation of a
particular timer interrupt across all processors, specifically,
by reading the TSC at the beginning of each invocation of
the local timer interrupt handler. Overall, 100 interrupt in-
vocations were measured after Linux had fully booted and
stabilized. More measurements were not taken due to con-
straints on the sizes of proc files, to which data was written.
However, we have yet to observe an instance where the quan-
tum alignment error changed significantly over time after the
system had booted and stabilized. As seen, alignment error
never exceeds approximately 25 µs with our method.

4.2 Comparison of Schedulability
To assess differences in schedulability, we determined the
schedulability of randomly-generated task sets under each
scheme, for both hard- and soft-real-time systems, while
varying per-task WSSs, using the overheads computed in
Sec. 4.1. We used the uniform, exponential, and bimodal
distributions to generate task sets as proposed by Baker [3].
(These distributions allow task-set parameters that are in
keeping with multiprocessor real-time systems considered in
our prior work [6].) Task periods were uniformly distributed
over [10, 100] (all units are in ms). Task utilizations were
distributed differently for each experiment: (i) uniformly,
over the range [0.001, 0.1], [0.1, 0.4], or [0.5, 0.9]; (ii) expo-
nentially, with average 0.05 (range [0.001, 0.1]), 0.25 (range
[0.1, 0.4]), or 0.7 (range [0.5, 0.9]), truncated as needed to
achieve the desired ranges; or (iii) bimodally, distributed
uniformly over [0.001, 0.5) with probability 8/9, and over
[0.5, 0.999] with probability 1/9. Task execution costs were
calculated from periods and utilizations (and may be non-
integral). Each task set was created by generating tasks until
either total utilization was at least four (the number of pro-
cessors) or a predetermined cap on the number of tasks was

reached, and by then reducing the last task’s utilization, if
necessary, so that total utilization was exactly four. Each ex-
periment consisted of 100 different task sets.

The definition of a correct schedule depends on whether
we require hard- or soft-real-time guarantees. For hard-real-
time systems, correctness requires that all deadlines be met,
while for soft-real-time systems, it requires that deadline tar-
diness be bounded (regardless of how high the bound may
be). We assessed differences in schedulability for each (100-
task) experiment by computing the average minimum re-
quired number of processors (RNP) for producing a correct
schedule, and the average deadline tardiness (TD). We also
conducted an additional set of experiments in which the to-
tal number of schedulable task sets (NST) was determined
as total utilization ranged from 2.0 to 3.9.

Before continuing, there are a few issues worth address-
ing. First, in the context of hard-real-time systems, we omit
NG-EDF because there is currently no good hard-real-time
schedulability test for it. Second, when determining schedu-
lability under each algorithm, we first inflated the execution
cost of each task to account for the overheads discussed in
Sec. 4.1 using standard techniques. These techniques are de-
scribed at length in [9]. (Note that, even when RNP ex-
ceeds four, we still only consider overheads as computed
on a four-processor testbed. This is perhaps one limitation
of our experimental methodology.) Third, when consider-
ing S-PD2 in hard-real-time systems, task periods were re-
duced by one quantum, to compensate for the fact that dead-
lines under S-PD2 can be missed by this amount. Finally,
we determined whether a task set could be scheduled on M
processors as follows. For G-EDF, the sufficient schedula-
bility test in [4, 12] was used. For P-EDF, we determined
whether each task set could be partitioned using the first-fit
decreasing heuristic. (While a closed-form test is available
for P-EDF [14], our approach is less pessimistic.) For both
Pfair schemes, we simply checked if total utilization, includ-
ing overheads, is at most M . Note that, in these schemes,
execution costs must be rounded up to integral values af-
ter overheads are included. In the context of soft-real-time
systems, schedulability under PD2 and P-EDF was checked
in the same way. However, because G-EDF and NG-EDF
can guarantee bounded deadline tardiness if the system is not
overloaded, only a check that total utilization is at most M is
required. Finally, S-PD2 was dealt with as in hard-real-time
systems, except that task periods do not have to be decreased.

RNP for hard-real-time task sets. Fig. 6 shows RNP re-
sults for hard-real-time task sets for different task WSSs.
There are several things to note here. First, schedulability
under PD2 is strongly related to WSS, because preemption
and migration costs are higher in PD2. (Note that, from
Sec. 4.1, such costs are directly related to WSS.) For task sets
comprised of tasks with utilizations in the range [0.1, 0.4] at
the smallest WSS, PD2 has approximately the same RNP as

Hard - 4KB Working Set

0

1

2

3

4

5

6

7

8

9

Bim Exp (L) Uni (L) Exp (M) Uni (M) Exp (H) Uni (H)

Distribution

R
N

P

P-EDF G-EDF PD2 S-PD2

(a)

Hard - 128KB Working Set

0

1

2

3

4

5

6

7

8

9

Bim Exp (L) Uni (L) Exp (M) Uni (M) Exp (H) Uni (H)

Distribution

R
N

P

P-EDF G-EDF PD2 S-PD2

(b)

Hard - 256KB Working Set

0

1

2

3

4

5

6

7

8

9

Bim Exp (L) Uni (L) Exp (M) Uni (M) Exp (H) Uni (H)

Distribution

R
N

P

P-EDF G-EDF PD2 S-PD2

(c)

Figure 6: RNP results when scheduling hard-real-time task sets under P-EDF, G-EDF, PD2, and S-PD2, where WSS is (a) 4 KB,
(b) 128 KB, and (c) 256 KB. In this and later figures, L, M, and H denote task-utilization ranges of [0.001, 0.1], [0.1, 0.4], and [0.5, 0.9],
respectively.

Soft - 4KB Working Set

0

1

2

3

4

5

6

7

Bim Exp (L) Uni (L) Exp (M) Uni (M) Exp (H) Uni (H)

Distribution

R
N

P

P-EDF G-EDF NG-EDF PD2 S-PD2

(a)

Soft - 128KB Working Set

0

1

2

3

4

5

6

7

Bim Exp (L) Uni (L) Exp (M) Uni (M) Exp (H) Uni (H)

Distribution

R
N

P

P-EDF G-EDF NG-EDF PD2 S-PD2

(b)

Soft - 256KB Working Set

0

1

2

3

4

5

6

7

8

9

Bim Exp (L) Uni (L) Exp (M) Uni (M) Exp (H) Uni (H)

Distribution

R
N

P

P-EDF G-EDF NG-EDF PD2 S-PD2

(c)

Figure 7: RNP results when scheduling soft-real-time task sets under P-EDF, G-EDF, NG-EDF, PD2, and S-PD2, where WSS is (a)
4 KB, (b) 128 KB, and (c) 256 KB.

P-EDF and a substantially lower RNP than G-EDF; how-
ever, for the same task sets at the largest WSS, PD2 has
a substantially larger RNP than both P-EDF and G-EDF.
Second, schedulability under PD2 is strongly related to task
utilizations. For tasks sets comprised of very “light” tasks,
P-EDF and G-EDF always outperform PD2, whereas for
task sets comprised of “heavy” tasks, PD2 outperforms both
G-EDF and P-EDF (except for when the WSS is 256 KB,
in which case the RNP for PD2 is approximately the same
as G-EDF). (The terms “light” and “heavy” are meant to
refer to task utilizations; light implies a weight of less than
1/2, and heavy, at least 1/2.) The reason for this behavior
is that for task sets with light tasks, PD2 incurs a significant
penalty due to partially wasting quanta as a result of rounding
up execution costs.2 On the other hand, the reason why PD2

outperforms both P-EDF and G-EDF (or is approximately
the same as P-EDF) for task systems comprised entirely of
heavy tasks is because heavy tasks often require fewer pre-
emptions and migrations in PD2 than light tasks, and under
P-EDF and G-EDF many processors may be only partially
utilized (due to connections to bin-packing in scheduling
analysis). Third, P-EDF outperforms G-EDF for every task
set. This may be because the schedulability test for P-EDF
is tighter than that for G-EDF. Fourth, P-EDF substantially

2One way to alleviate this problem is by choosing a smaller quantum
size. To assess the impact of this, we re-ran these experiments with a 250-
µs quantum. This actually worsened the performance of PD2, because the
resulting increases in preemptions and migrations negated any performance
gains due to a smaller quantum size. These experiments have been omitted
here due to space constraints.

outperforms both G-EDF and PD2 for systems with light
tasks and large WSSs. This is because lighter tasks are easier
to partition, and P-EDF does not incur the larger migration
costs associated with very light tasks. Fifth, since S-PD2 has
lower migration costs, for larger WSSs, S-PD2 outperforms
PD2; however, for smaller WSSs, PD2 slightly outperforms
S-PD2 since S-PD2 must decrease the period of each task
by one to prevent deadline misses.

RNP for soft-real-time task sets. Fig. 7 shows RNP re-
sults for soft-real-time task sets. Again, there are several
things to observe. First, P-EDF and PD2 perform about the
same as before, since the same schedulability test is used for
them for both hard- and soft-real-time task sets. Second, the
performance of G-EDF is substantially better than before,
because a restrictive schedulability test is not required here.
Third, NG-EDF (not considered earlier) outperforms every
other method. This behavior occurs because NG-EDF in-
curs no intra-job preemption or migration costs. Finally, as
earlier, S-PD2 outperforms PD2 for large WSSs.

TD for soft-real-time task sets. Fig. 8 shows TD results
for soft-real-time task sets with a WSS of 4 KB under
G-EDF and NG-EDF. (We found that TD results do not
change substantially as WSS changes, so we only consider
the 4 KB case here, due to space constraints. In addition,
tardiness is potentially unbounded under P-EDF and is zero
or one quantum under the other remaining schemes, so they
are also not considered.) Note first that, since task periods

Tardiness - 4KB Working Set

0

20

40

60

80

100

120

140

Bim Exp(L) Uni(L) Exp(M) Uni(M) Exp(H) Uni(H)

Distribution

T
a
r
d

in
e
s
s
 (

in
 m

s
)

G-EDF NG-EDF

Figure 8: TD for G-EDF and NG-EDF.

uniformly range
over [10, 100],
the largest aver-
age TD observed
was approxi-
mately 2.1 times
the average task
period. Second,
TD in NG-EDF
is larger than in
G-EDF. This is
because of priority inversions that can occur in NG-EDF
due to non-preemptive execution. (Thus, non-preemptive
execution has both positive and negative consequences.)
Third, TD in both G-EDF and NG-EDF increases substan-
tially as task weights increase. This is a schedulability issue:
these schemes are more likely to cause deadline misses as
weights increase. (As before, this is due to connections to
bin-packing in scheduling analysis.)

NST for hard- and soft-real-time task systems. For both
hard- and soft-real-time systems, an additional set of exper-
iments was conducted to assess the ability of the different
algorithms to meet every deadline and guarantee bounded
tardiness, respectively, for arbitrary task systems on four pro-
cessors. For this purpose, task sets were generated randomly
with total base utilization (i.e., total utilization before ac-
counting for overheads) ranging from 2.0 to 3.9. Per-task
utilizations were distributed either uniformly or bimodally.
In the uniform case, task utilizations ranged over either
[0.1, 0.5) or [0.5, 0.9); in the bimodal case, task utilizations
were uniformly distributed in the same ranges with probabil-
ities 0.2 and 0.8, respectively. Experiments were conducted
for various WSSs for both hard- and soft-real-time systems,
and in each experiment, NST values were determined for
each algorithm. Results for WSSs of 128K and 4K are shown
in Figs. 9 and 10 for hard- and soft-real-time systems, respec-
tively. Additional results can be found in [9].

Several aspects of the results for hard-real-time systems in
Fig. 9 are worth noting. First, the performance of G-EDF is
poor for both light and heavy task systems and for both small
and large WSSs. Second, unlike PD2 and S-PD2, there
is no dramatic improvement in the performance of G-EDF
and P-EDF as WSS decreases (compare the top and bot-
tom plots). These two trends are due to connections to bin-
packing in the scheduling analysis of G-EDF and in the task
partitioning of P-EDF. Third, though P-EDF performs re-
markably well when all tasks are light (insets (a) and (d)),
the Pfair algorithms perform significantly better than P-EDF
in all other cases. Also, for the Pfair algorithms, the im-
provement in schedulability with decreasing WSS is higher
for light tasks. This is because light tasks are more signifi-
cantly impacted by migration costs, as such tasks tend to be
preempted (and hence migrate) more frequently.

Turning now to Fig. 10, several trends in the soft-real-time
case are worth noting. First, the curves for P-EDF and PD2

are identical to those for the hard-real-time case in Fig. 9 (for
the same reason that their RNP results were similar, as dis-
cussed earlier). Similarly, the curves for S-PD2 are nearly
identical to their counterparts in Fig. 9. Second, insets (a)
and (d) show that when tasks are light, schedulability is com-
parable for the three EDF-based algorithms when the total
base utilization is at most 3.5 for both tested WSSs. With
the larger WSS (inset (a)), as with the RNP results, PD2

and S-PD2 perform poorly in comparison to the EDF-based
algorithms. However, with the smaller WSS (inset (d)),
the Pfair algorithms exhibit reasonable performance. Third,
even with light tasks, which is the easy case for P-EDF,
when total utilization is high, G-EDF and NG-EDF are able
to schedule significantly more task sets than P-EDF. For in-
stance, when the total base utilization is 3.8, in inset (a), the
schedulability curves for G-EDF and NG-EDF are higher
than that of P-EDF by roughly 60% and 90%, respectively.
Fourth, referring to insets (b) and (e), when all tasks are
heavy, schedulability drops to close to 0% for P-EDF. This
is due to the fact that, in most cases, at most one task fits on
each processor, and hence, a task system with more than four
tasks cannot be partitioned among four processors. The other
four algorithms exhibit reasonable performance in these in-
sets, with the EDF schemes performing better than the Pfair
schemes, due to the higher preemption and migration costs of
the latter. Fifth, the Pfair schemes perform better when task
utilizations are higher. For instance, in inset (b), when the
total utilization is in [3.0,3.4], PD2 and S-PD2 are capable
of scheduling close to 100% of all task sets in comparison to
0% in inset (a) with light tasks. Finally, when the task sys-
tem is not exclusively heavy but contains some light tasks,
P-EDF performs significantly better than when all tasks are
heavy (insets (c) and (f)). However, its performance is still
worse than that of each of the other four algorithms.

4.3 Backlogged Performance Experiments

Finally, we compared the raw performance of each scheme
on LITMUSRT when scheduling continuously-backlogged
tasks that execute the simple program BACKTEST listed in
Fig. 11 (and discussed below) on three different task sets.
To concisely describe these task sets, we use the notation
“n1 × (e1, p1), n2 × (e2, p2), . . .” to denote that n1 tasks are
included with an execution cost of e1 and period of p1, and
so on. The three sets are: Set (A), with tasks 28× (10, 500),
12 × (35, 350), 12 × (12, 240), and 32 × (9, 300); Set (B)
with tasks 4 × (76, 300), 4 × (4, 16), 5 × (9, 90), and
25×(10, 500); and Set (C) with tasks 4×(18, 30), 5×(4, 40),
and 25 × (4, 200). These task sets are all schedulable under
each scheme considered in this paper. Set (A) is comprised
solely of light tasks of weight at most 0.1, Set (B) includes
“moderate” weights of up to 0.256, and Set (C) includes both
light and heavy tasks. For each task set and scheduling algo-

 0

 2000

 4000

 6000

 8000

 10000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=128K; u_min=0.1; u_max=0.5

All Task Sets
P-EDF

PD2
S-PD2
G-EDF

 0

 2000

 4000

 6000

 8000

 10000

 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=128K; u_min=0.5; u_max=0.9

All Task Sets
PD2

S-PD2
P-EDF
G-EDF

 0

 2000

 4000

 6000

 8000

 10000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=128K; u_min=0.1; u_max=0.9; bimodal with 20% light tasks

All Task Sets
PD2

S-PD2
P-EDF
G-EDF

(a) (b) (c)

 0

 2000

 4000

 6000

 8000

 10000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=4K; u_min=0.1; u_max=0.5

All Task Sets
P-EDF

PD2
S-PD2
G-EDF

 0

 2000

 4000

 6000

 8000

 10000

 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=4K; u_min=0.5; u_max=0.9

All Task Sets
PD2

S-PD2
P-EDF
G-EDF

 0

 2000

 4000

 6000

 8000

 10000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=4K; u_min=0.1; u_max=0.9; bimodal with 20% light tasks

All Task Sets
PD2

S-PD2
P-EDF
G-EDF

(d) (e) (f)

Figure 9: NST results for hard-real-time systems with WSS=128K in insets (a), (b), and (c) and WSS=4K in insets (d), (e), and (f).
Per-task utilizations are uniformly distributed in the range [0.1, 0.5) in insets (a) and (d) and in the range [0.5, 0.9) in insets (b) and (e),
and are bimodally distributed between the ranges [0.1, 0.5) and [0.5, 0.9) with probabilities 0.2 and 0.8, respectively, in insets (c) and (f).
In each inset, the order of the legend is the same as that of the curves. 99% confidence intervals were computed but have been omitted as
their ranges are minimal and their inclusion obscures the identification marks of the different curves.

 0

 2000

 4000

 6000

 8000

 10000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=128K; u_min=0.1 u_max=0.5

All Task Sets
NG-EDF

G-EDF
P-EDF
S-PD2

PD2

 0

 2000

 4000

 6000

 8000

 10000

 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=128K; u_min=0.5; u_max=0.9

All Task Sets
NG-EDF

G-EDF
P-EDF
S-PD2

PD2

 0

 2000

 4000

 6000

 8000

 10000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=128K; u_min=0.1; u_max=0.9; bimodal with 20% light tasks

All Task Sets
NG-EDF

G-EDF
P-EDF
S-PD2

PD2

(a) (b) (c)

 0

 2000

 4000

 6000

 8000

 10000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=4K; u_min=0.1 u_max=0.5

All Task Sets
NG-EDF

G-EDF
P-EDF
S-PD2

PD2

 0

 2000

 4000

 6000

 8000

 10000

 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=4K; u_min=0.5; u_max=0.9

All Task Sets
NG-EDF

G-EDF
P-EDF
S-PD2

PD2

 0

 2000

 4000

 6000

 8000

 10000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 S

ch
ed

ul
ab

le
 T

as
k

S
et

s

Total Utilization (Base)

WSS=4K; u_min=0.1; u_max=0.9; bimodal with 20% light tasks

All Task Sets
NG-EDF

G-EDF
P-EDF
S-PD2

PD2

(d) (e) (f)

Figure 10: NST results for soft-real-time systems. The insets are organized in the same way as in Fig. 9.

BACKTEST (iArray: array of integers, wt: rational)
1 i := 0;
2 T := 0;
3 size := SIZEOF(iArray);
4 while i < 5,000,000 · wt do
5 M1 := RAND() mod (size);
6 M2 := size − M1 − 1;
7 T := T + (iArray[M1] − iArray[M2]);
8 i := i + 1

od

Figure 11: Test function. RAND generates random integers.

rithm, we recorded the completion time of every task, from
which we computed the average task completion time, de-
noted ATC, and its standard deviation. A large ATC is in-
dicative of poor performance, and a large standard deviation
implies that task completion times varied significantly. To
ensure that P-EDF is considered fairly, we partitioned tasks
so that the total utilization on each processor is the same.
This reduces the likelihood that one heavily-loaded proces-
sor will result in an increased ATC value.

BACKTEST randomly accesses elements in an integer ar-
ray iArray, the size of which determines the array size (AS)
of each task. BACKTEST accesses two distinct elements
from iArray during each loop iteration. As a result, up to
two blocks of memory from each task’s array are brought
into cache on every iteration. Thus, a randomly-accessed el-
ement of iArray has a greater probability of being in the
cache, as the cache is “warmed-up” faster. Note that the
number of iterations that each task must perform is scaled
by its weight, so in an “ideal” system, all tasks would com-
plete at the same time. (It would be desirable to consider
other memory-access patterns, but space constraints prevent
this.)

Recorded ATC values with standard deviations for three
ASs are shown in Fig. 12. We note five important behav-
iors. First, perhaps somewhat unexpectedly, the ATC value
for P-EDF is not the smallest for any AS. This is because,
despite our attempts to treat P-EDF fairly, the tasks on one
processor may take a long time to complete relative to the
tasks on all other processors, thus increasing the overall com-
pletion time. This is also the reason for the large standard de-
viations recorded for P-EDF. Second, for Set (C), PD2 has
the lowest ATC of any scheme. This is because heavy tasks
under PD2 are likely to be scheduled in successive time slots,
which reduces the number of preemptions and migrations.
Third, for every task set and AS, NG-EDF has a higher ATC
value than G-EDF. This is because the increased tardiness
of NG-EDF cancels any gain due to lower migration and
preemption costs. Fourth, for Set (A), S-PD2 has the best
ATC value of any scheme. This is because, as the number of
tasks increases, the likelihood of a task being preempted un-
der any scheme (except NG-EDF) increases. Since S-PD2

incurs smaller costs per migration or preemption, its perfor-
mance is impacted less by an increase in the number of mi-

ATC for Set (A)

0

1000

2000

3000

4000

5000

6000

7000

8000

PD2 S-PD2 G-EDF NG-EDF P-EDF

Scheme

A
T
C

 (
in

 m
s
)

Array Size = 16KB Array Size = 64KB Array Size = 128KB

(a)

ATC for Set (B)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

PD2 S-PD2 G-EDF NG-EDF P-EDF

Scheme

A
T
C

 (
in

 m
s
)

Array Size = 16KB Array Size = 64KB Array Size = 128KB

(b)

ATC for Set (C)

0

1000

2000

3000

4000

5000

6000

7000

PD2 S-PD2 G-EDF NG-EDF P-EDF

Scheme

A
T
C

 (
in

 m
s
)

Array Size = 16KB Array Size = 64KB Array Size = 128KB

(c)

Figure 12: ATC values (in ms) and standard deviations for three
task sets ((A), (B), and (C)) and three ASs (16 KB, 64 KB, and
128 KB).

grations/preemptions. Finally, and perhaps surprisingly, the
two Pfair schemes exhibit performance that compares rea-
sonably to the others in terms of ATC, and both tend to per-
form better in terms of standard deviation (perhaps due to the
“fairness” enforced by these algorithms).

5 Concluding Remarks
In this paper, we presented the LITMUSRT testbed, and dis-
cussed the results of experiments using LITMUSRT to com-
pare a number of multiprocessor real-time scheduling algo-
rithms. These experiments suggest that global algorithms are
a viable alternative to partitioning approaches. In fact, our
results clearly show that for each algorithm, scenarios exist
in which it is the preferred choice.

There are numerous directions for future work. First,
we would like to extend LITMUSRT to include support
for separate address spaces (if needed), task synchronization
and communication, non-periodic workloads, and dynamic
behavior (e.g., task-set changes). (Regarding non-periodic
workloads, our implementation of LITMUSRT should en-
able event-driven sporadic tasks to be easily supported.) Sec-
ond, we wish to improve the predictability of LITMUSRT

by further constraining interference due to interrupts. Third,
we would like to evaluate other multiprocessor algorithms
(e.g., static-priority algorithms). Fourth, we want to re-assess
the overheads considered in this paper on larger platforms
and on other architectures, particularly multicore platforms,
and determine if our experimental results apply to them as
well. Fifth, we want to determine average case overheads
for various classes of real-time applications and determine
how using these overheads influences our results. Sixth, we
would like to explore the viability of using tickless schedul-
ing and one-shot timers in EDF schemes. Seventh, we would
like to explore the potential of applying staggering to the
non-Pfair schemes. This would likely not reduce average
preemption and migration costs, but it might ease worst-case
scenarios that would have to be considered when determin-
ing system overheads; of course, such gains would come at
the expense of some losses, such as partially-used quanta.
Eighth, we would like to experiment with a greater variety
of workloads than those we have considered to date. Finally,
we want to document LITMUSRT and improve its API, with
the goal of eventually producing an extension that could be
posted online, e.g., at SourceForge.

Regarding multicore platforms, it is worth noting that, on
such platforms, some of the overheads considered in this pa-
per may be less of a concern. For example, the main cost
associated with a task migration is a loss of cache affinity.
However, most existing and proposed multicore architectures
include shared on-chip caches. The cost of accessing such a
cache is just a few tens of cycles, in comparison to 100-300
cycles for off-chip memory. Thus, losing affinity with re-
spect to dedicated per-core caches in these systems is less of
an issue than in a traditional SMP. This further strengthens
the case for global scheduling approaches. We expect that
our future experimental efforts will validate this conclusion.

References
[1] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole. A

measurement-based analysis of the real-time performance of
Linux. Proc. of the Real-Time Technology and Applications
Symp., 2002.

[2] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling
of asynchronous periodic tasks. JCSS, 68(1):157–204, 2004.

[3] T. Baker. A comparison of global and partitioned EDF
schedulability tests for multiprocessors. Technical Report TR-
051101, Department of Computer Science, Florida State Uni-
versity, 2005.

[4] T. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. In Proc. of the 24th IEEE Real-time
Systems Symp., pp. 120–129, 2003.

[5] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation.
Algorithmica, 15:600–625, 1996.

[6] A. Block, J. Anderson, and U. Devi. Task reweighting under
global scheduling on multiprocessors. In Proc. of the 18th
Euromicro Conference on Real-Time Systems, 2006.

[7] D. Bovet and M. Cesati. In Understanding the Linux Kernel,
3rd edition. O’Reilly Publishers, 2005.

[8] J. Calandrino and J. Anderson. Quantum support for mul-
tiprocessor Pfair scheduling in Linux. In Proc. of the 2nd
Int’l Workshop on Operating System Platforms for Embedded
Real-Time Applications, 2006.

[9] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD
thesis, University of North Carolina at Chapel Hill, 2006.

[10] U. Devi and J. Anderson. Tardiness bounds for global EDF
scheduling on a multiprocessor. In Proc. of the 26th IEEE
Real-time Systems Symp., pp. 330–341, 2005.

[11] DIAPM, Dipartimento di Ingegneria Aerospaziale Politecnico
di Milano. A hard real time support for Linux. 2002.

[12] J. Goossens, S. Funk, and S. Baruah. Priority-driven schedul-
ing of periodic task systems on multiprocessors. Real-Time
Systems, 25(2-3):187–205, 2003.

[13] P. Holman and J. Anderson. Adapting Pfair scheduling for
symmetric multiprocessors. Journal of Embedded Computing,
1(4):543–564, 2005.

[14] J. Lopez, M. Garcia, J. Diaz, and D. Garcia. Worst-case uti-
lization bound for edf scheduling on real-time multiprocessor
systems. In Proc. of the 12th Euromicro Conference on Real-
time Systems, pp. 25–33, 2000.

[15] S. Shankland and M. Kanellos. Intel to elaborate on new
multicore processor. http://news.zdnet.co.uk/hardware/chips/
0,39020354,39116043,00.htm, 2003.

[16] A. Srinivasan and J. Anderson. Optimal rate-based schedul-
ing on multiprocessors. In Proc. of the 34th ACM Symp. on
Theory of Computing, pp. 189–198, 2002.

[17] J. Stankovic and R. Rajkumar. Real-time operating systems.
Real-Time Systems, 28(2-3):237–253, 2004.

[18] J. Stankovic and K. Ramamritham. The Spring kernel: A new
paradigm for real-time systems. IEEE Computer, 8(3):62–72,
1991.

[19] J. Stohr, A. von Bulow, and G. Farber. Using state of the art
multiprocessor systems as real-time systems—the RECOMS
software architecture. Work-in-progress proc. of the 16th Eu-
romicro Conference on Real-Time Systems, 2004.

[20] P. Valente and G. Lipari. An upper bound to the lateness of
soft real-time tasks scheduled by EDF on multiprocessors. In
Proc. of the 26th IEEE Real-time Systems Symp., pp. 311–320,
2005.

[21] V. Yodaiken and M. Barabanov. A real-time Linux. In Proc.
of the Linux Applications Development and Deployment Con-
ference (USELINUX). The USENIX Association, 1997.

