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Abstract
In the domain of multiprocessor real-time systems, there has
been a wealth of recent work on scheduling, but relatively
little work on the equally-important topic of synchronization.
When synchronizing accesses to shared resources, four basic
options exist: lock-free execution, wait-free execution, spin-
based locking, and suspension-based locking. To our knowl-
edge, no empirical multiprocessor-based evaluation of these
basic techniques has ever been conducted before. In this pa-
per, we present such an evaluation, which was conducted on a
real-time multiprocessor testbed called LITMUSRT. In addi-
tion to presenting this evaluation, we also report on our efforts
to incorporate synchronization support in LITMUSRT.

1 Introduction

There has been much recent interest in techniques for schedul-
ing real-time workloads on multiprocessors. With the advent
of multicore technologies, this is a timely and important topic:
in the future, multiprocessors will be increasingly common, in-
cluding in settings where real-time constraints are required.

One shortcoming of prior work on multiprocessor real-
time scheduling is that its scope has been mainly limited to
purely algorithmic issues. In an attempt to push this work
in a more applied direction, our research group recently de-
veloped a testbed called LITMUSRT (LInux Testbed for
MUltiprocessor Scheduling in Real-Time systems), which is
an extension of Linux (currently, version 2.6.20) that allows
different scheduling algorithms to be linked as plug-in compo-
nents [7]. It is our goal to ultimately use LITMUSRT as a basis
for implementing complex real-time applications on multicore
platforms. For this, support for synchronization clearly will
be required. In this paper, we report on efforts towards pro-
viding such support. We also present an empirical investiga-
tion conducted using the resulting platform to compare various
real-time multiprocessor synchronization options.

The particular focus of this paper is synchronization mecha-
nisms for controlling access to shared resources. Of the options
available for doing this, lock-based mechanisms are clearly the
most commonly used. However, when the resource in question
is a shared data object, non-blocking algorithms can be used in-
stead. We consider two forms of non-blocking synchronization
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in this paper: lock-freedom and wait-freedom. Lock-free object
accesses are implemented using “retry loops,” and wait-free ac-
cesses are implemented using code that is free of blocking or
(repeated) retrying. In contrast, when locks are used, blocking
is inherent. When a task must block, it can do so either by spin-
ning (busy-waiting) or by being suspended. Thus, four funda-
mental techniques exist that can be used for resolving conflict-
ing accesses to shared resources: lock-free execution, wait-free
execution, blocking by spinning, and blocking by suspension.
The main goal of the empirical investigation discussed herein
is to determine when (if ever) each of these mechanisms is
preferable on a multiprocessor, if real-time schedulability is
the main concern. We are mainly interested in resources for
which interesting tradeoffs exist (e.g., we are less interested in
external devices with long access times for which suspension-
based blocking is the only choice). To our knowledge, these
four synchronization options have never been empirically com-
pared before in this context.

Multiprocessor scheduling. We assume that the workload
to be scheduled is specified as a collection of sporadic tasks.
As explained in Sec. 2, such a task repeatedly submits work to
the system in the form of sequential jobs. A sporadic task sys-
tem can be scheduled via two basic approaches: partitioning
and global scheduling. Under partitioning, tasks are statically
assigned to processors, and each processor is scheduled using
a uniprocessor scheduling algorithm. Under global scheduling,
all jobs are scheduled using a single run queue, and tasks/jobs
may migrate across processors. To reasonably constrain the
focus of this paper, we consider only deadline-based schedul-
ing algorithms—such algorithms have many desirable proper-
ties compared to other alternatives, as discussed in [11]. In
the partitioned case, we consider partitioned EDF (P-EDF),
wherein the earliest-deadline-first (EDF) algorithm is used
on each processor, and in the global case, we consider the
global EDF (G-EDF) algorithm (which behaves as its name
suggests). We consider both hard-real-time systems in which
deadlines can never be missed, and soft-real-time systems in
which bounded deadline tardiness is permissible. Under either
P-EDF or G-EDF, overall utilization must be capped if every
deadline must be met (see [8] for a discussion of this issue). In
contrast, under G-EDF, such caps are not required if bounded
deadline tardiness is allowed [12].

Prior synchronization-related work. Rajkumar et al. [19]
were the first to propose locking protocols for real-time mul-
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tiprocessor systems. They presented two multiprocessor vari-
ants of the priority-ceiling protocol (PCP) [22] for systems
where partitioned, static-priority scheduling is used. In later
work, several protocols were presented for systems scheduled
by P-EDF. The first such protocol was presented by Chen and
Tripathi [9], but it is limited to periodic (not sporadic) task sys-
tems. In later work, Lopez et al. [16] and Gai et al. [14] pre-
sented protocols that remove such limitations, at the expense
of imposing certain restrictions on critical sections (such as,
in [14], requiring all global critical sections to be non-nested).
A scheme for G-EDF that is also restricted was presented by
Devi et al. [13]. More recently, Block et al. [5] presented the
flexible multiprocessor locking protocol (FMLP), which does
not restrict the kinds of critical sections that can be supported
and can be used under either G-EDF or P-EDF. The FMLP is
the only scheme known to us that is capable of supporting arbi-
trary critical sections under G-EDF. Furthermore, the schemes
in [13, 14, 16] are special cases of it. Thus, given our focus
on G-EDF and P-EDF, it suffices to consider only the FMLP
when considering lock-based synchronization.

The literature on non-blocking synchronization is quite ex-
tensive and we do not have sufficient space to cite every related
paper on this topic. However, we do note that non-blocking al-
gorithms have been considered before in the context of real-
time systems; relevant citations can be found in [1, 20]. The
two main issues that have been investigated in this context are
scheduling-analysis techniques that account for non-blocking
algorithm overheads, and optimizations of such algorithms that
exploit characteristics of real-time schedulers.

Contributions. In the first part of the paper, we explain how
we modified LITMUSRT to include support for synchroniza-
tion. This modified platform was used in performing the em-
pirical evaluation mentioned above. In this evaluation, we first
obtained system and synchronization overheads by running
benchmarks on LITMUSRT. Using these overheads, we then
conducted two sets of schedulability experiments—in each,
both hard- and soft-real-time schedulability were considered.

In the first set of experiments, we considered only block-
ing mechanisms. Our goal was to determine when (if ever)
suspending is better than spinning. In this study, we consid-
ered a wide spectrum of lock nesting levels and critical-section
durations. To determine reasonable ranges for these parame-
ters, we traced lock usage in the Linux kernel under various
workloads. While Linux is not a real-time system, it is rea-
sonable to believe that the locking patterns used in it are typ-
ical of many complex systems. Our trace data revealed that
short, non-nested lock requests are by far the common case.
Still, in our experiments, we also considered longer critical
sections and relatively deep nesting. In these experiments,
suspension-based blocking never resulted in better schedula-
bility than spin-based blocking.

In the second set of experiments, we considered specifically
the problem of implementing shared data objects. Our main

objective here was to determine when (if ever) non-blocking
techniques are preferable to blocking techniques. Our study
focused on three representative objects: read/write buffers,
queues, and binary heaps (listed in order of increasing com-
plexity). We assumed that only accesses to individual objects
had to be supported. While multi-object accesses can be easily
implemented by nesting locks, non-blocking algorithms that
provide this functionality are too complex to be practical. This
study revealed that for simple objects (buffers), non-blocking
algorithms are very efficient, and for more complex objects
(heaps), they are less competitive (but still, somewhat surpris-
ingly, a viable option in some cases).

Our major findings regarding multiprocessor platforms can
be summarized as follows: (i) for small, simple objects, non-
blocking approaches have better performance than blocking
approaches; (ii) lock-based mechanisms should be tuned to
perform well in the common case of short, non-nested criti-
cal sections; (iii) schedulability will be poor under any scheme
if deeply-nested or long critical sections occur frequently; (iv)
with the possible exception of resources that are external de-
vices, where suspending is inherent, blocking by suspending is
rarely preferable to spinning (provided spinning can be done
in-cache, which we assume); (v) global scheduling is a bet-
ter option than partitioning in systems where suspension-based
synchronization is used.

We present these findings below by first providing needed
background (Sec. 2), and by then describing our modifications
to LITMUSRT (Sec. 3) and experimental results (Sec. 4).

2 Background
In the following subsections, we present our task model and
describe the FMLP.

2.1 Task Model

We consider the scheduling of a system of sporadic tasks, de-
noted T1, . . . , TN , on m processors. The jth job (or invoca-
tion) of task Ti is denoted T j

i . Such a job T j
i becomes available

for execution at its release time, r(T j
i ). Each task Ti is spec-

ified by its worst-case (per-job) execution cost, e(Ti), and its
period, p(Ti). The job T j

i should complete execution by its ab-
solute deadline, r(T j

i )+p(Ti); otherwise, it is tardy. The spac-
ing between job releases must satisfy r(T j+1

i ) ≥ r(T j
i )+p(Ti).

Task Ti’s utilization is given by e(Ti)/p(Ti). The job T j
i is

pending at time t iff t ≥ r(T j
i ) and T j

i has not completed
execution by t. Pending jobs can be in one of three states:
suspended, preemptable, and non-preemptable. If a job is sus-
pended, then it cannot be scheduled on any processor. If a job
is preemptable, then it can be scheduled on a processor, but can
be preempted by another job with a higher scheduling priority.
Finally, if a job is non-preemptable, then it will execute until it
becomes preemptable or is no longer pending. A job can only
become non-preemptable when it is scheduled on a processor.
If a job is either preemptable or non-preemptable, then it is said
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to be runnable. When a job’s state is changed from suspended
to preemptable, it is said to resume.

Resources and shared objects. A resource can be accessed
either by using a lock-free or wait-free algorithm or by ac-
quiring locks. The former is possible only if the resource is
a shared data object. To avoid confusion, we will henceforth
use the term “shared object” (instead of the more generic “re-
source”) when referring to lock-free or wait-free algorithms.

In a lock-free object implementation, each object call is im-
plemented using a “retry loop.” Each iteration of such a loop is
called an access. An access may either succeed or fail. A suc-
cessful access causes the implemented object to be updated as
desired, while a failed one has no effect on the object and must
be retried. In the absence of any contention for an object, any
access will succeed. However, if multiple jobs attempt to ac-
cess the same object concurrently, then some (but not all) may
fail. In a wait-free implementation, each object call is imple-
mented using purely sequential code, i.e., blocking by spinning
or suspending is not allowed, nor is repeated retrying.

When locks are used, jobs issue requests for exclusive ac-
cess to resources. A request R for a resource ` by a job T j

i

is considered to be satisfied as soon as T j
i holds the resource.

Associated with such a resource request R is the (worst-case)
duration of time that T j

i requires `. Once T j
i has executed for

the amount of time it requires `, R is said to be complete and
the resource ` is said to be released. If R cannot be immedi-
ately satisfied, then T j

i is said to be blocked on `. After R has
been satisfied, T j

i is said to be unblocked.
A resource request R1 is contained (or nested) within an-

other resource request R2 iff R1 is issued after R2 is issued
but before R2 completes. We assume requests are “properly”
contained: if R1 is contained within R2, then R1 completes
before R2. For simplicity, we assume in this paper that the
manner in which resource requests are contained within other
requests is known a priori. This simplifying assumption can
be eliminated at the expense of more cumbersome notation.

2.2 The FMLP

The FMLP can be used under either P-EDF or G-EDF. (Ac-
tually, jobs may become non-preemptable in the FMLP, so
variants of P-EDF and G-EDF must be used that allow jobs
to have non-preemptable regions. See [5] for details.) In
the FMLP, each resource is classified as either short or long.
Short resources are protected by non-preemptable queue locks
(a type of spin lock in which spinning is in-cache [17]), and
long resources are protected by semaphores that can cause a
job to suspend. Whether a resource should be considered short
or long is user-defined, but requests for long resources may not
be contained within requests for short resources.

To describe the FMLP, some additional terminology is
needed. We say that the short (long) resource request R is s-
outermost (l-outermost) iff R is not contained within any other
short (long) resource request. Alternatively, if R is contained
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Figure 1: A three-processor P-EDF/FMLP schedule. A, B,
and C are long resources, and Z is a short resource.

within another short (long) resource request, then we say that
R is s-inner (l-inner). Notice that it is possible for a short re-
source request R to be contained within a long resource request
and still be considered an s-outermost request.

Resource groups are the fundamental unit of locking in the
FMLP. Each group contains either only long or only short
resources, and is protected by a group lock, which is either a
non-preemptive queue lock (short) or a semaphore (long). Two
resources `1 and `2 are in the same group iff there exists a job
that issues a request for `1 that is contained within a request
for `2 and `1 and `2 are either both short or both long. For
example, in Fig. 1 (discussed shortly), A and B are in the same
group because a request for A is contained within a request for
B; however, C is in a group by itself. We now explain how
short and long resource requests are handled.

Short resource requests. When a job T j
i issues an s-

outermost request R for a short resource `, it must acquire the
queue lock for `’s group. In a queue lock, blocked processes
spin in FIFO order. Before attempting to acquire such a lock,
a job must first become non-preemptable, and must remain in
that state until it relinquishes the lock. Any request R′ con-
tained within R is satisfied immediately as the requested re-
source is by definition in `’s group. (Recall, that long requests
cannot be contained within short requests.) The queue lock for
`’s group is only relinquished when R completes.

Long resource requests. Long resource requests are han-
dled differently under P-EDF and G-EDF. Under P-EDF,
when a job T j

i issues an l-outermost request R for a long re-
source `, it must acquire the semaphore for `’s group. Under a
semaphore lock, blocked jobs are added to a FIFO queue and
suspended. We say that a resource ` in Group g is local if
all jobs that issue requests for any resource in Group g are as-
signed to the same processor; otherwise, ` is global. All long
local resources are governed by Baker’s uniprocessor stack re-
source protocol (SRP) [4]. Additionally, whenever a job is
scheduled while it holds a long or short resource, it becomes
non-preemptable until the resource is released. Finally, if a job
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T j
i is directly blocked by a job T b

a on its assigned processor,
then T b

a inherits the scheduling priority of T j
i if it is higher than

T b
a ’s scheduling priority. As an example, consider the schedule

in Fig. 1. In this example, resources A and B are in Group 1,
and C and Z are in Groups 2 and 3, respectively. Notice that,
when T 1

3 issues a request for the long resource B at time 2.5,
it becomes suspended because T 1

5 holds B and by FIFO order-
ing T 1

2 will hold B before T 1
3 . As a result, when T 1

2 holds B at
time 5, T 1

2 inherits T 1
3 ’s priority and T 1

2 is scheduled instead.
Under G-EDF there is no notion of local and global, so if a

job T j
i holds a resource `, then T j

i can inherit the highest prior-
ity of any job that is waiting for `. Additionally, long resource
requests are preemptable (see [5] for a detailed explanation).

It is worthwhile to note that under P-EDF the synchroniza-
tion protocol of Gai et al. [14] is equivalent to the FMLP when
all long resource requests are local, and that of Lopez et al. [16]
is equivalent to the FMLP when all long resource requests are
local and there are no short resource requests. Therefore, an
experimental evaluation of the FMLP would implicitly apply
to the aforementioned approaches.

3 Implementation

Our implementation of the FMLP consists of both a user-
space library and kernel support added to LITMUSRT.
In this section, we briefly discuss both parts. Unfortu-
nately, a detailed description of the implementation is be-
yond the scope this paper. Further details can be found at
http://www.cs.unc.edu/˜anderson/litmus-rt, where the source
code of LITMUSRT is available.

As described in [5], the FMLP requires slightly modified
versions of both G-EDF and P-EDF that allow tasks to sus-
pend and become non-preemptable. Further, support for pri-
ority inheritance is required. In LITMUSRT, schedulers are
implemented as plugin components that provide algorithm-
specific functionality via callbacks [7]. We added two new
scheduler plugins that realize the FMLP under both G-EDF
and P-EDF. Further, we added new system calls that, by the
use of scheduler callbacks, allow real-time tasks to signal the
start and end of non-preemptable sections (to support short re-
sources), to register resource usage (to support the SRP), and
to access semaphores protecting long resources.

In order to support object sharing, we created a user-level
shared-object library (libso) in which objects are stored in
shared data files. Libso is realized on top of the mmap(2)
system call and provides support for common tasks such as
process naming and in-object memory management. Further,
libso provides the group locks required by the FMLP as an ab-
straction on top of the LITMUSRT kernel services.
Short resources. We implemented queue locks entirely in
user space using the MCS algorithm [17]. The user-space
implementation notifies the scheduler of the associated non-
preemptable section using two LITMUSRT-specific system
calls, enter np() and exit np().

Long global resources. Semaphores (subject to priority in-
heritance) are provided by the kernel to implement the group
locks required for long resources. To keep the in-kernel im-
plementation simple, we require that resources are grouped
offline. Our semaphore implementation is modeled after that
in Linux, with the exception that LITMUSRTsemaphores en-
force a strict FIFO ordering of jobs in the wait-queue. In the
current prototype, a static number of semaphores is allocated
at boot time.

Long local resources. We also used system calls to imple-
ment the SRP and allow tasks to register, acquire, and release
resources local to a processor under P-EDF. We provided a
system call to register tasks with resources, since such knowl-
edge is required in the SRP to determine priority ceilings.
When a job of a task subject to the SRP (i.e., it has registered
its intent to access a SRP-controlled resource) is released, the
job’s priority (as given by its period) is checked. If the job’s
priority does not exceed the processor’s priority ceiling, it is
suspended and added to a per-processor wait-queue, where it
remains until the priority ceiling is lowered.

4 Experiments

In this section, we report on the results of experiments con-
ducted using LITMUSRT to compare lock-free and wait-free
algorithms and spin-based and suspension-based synchroniza-
tion mechanisms as provided via the FMLP. We compared
these four approaches on the basis of both schedulability and
worst-case tardiness bounds. A task set is schedulable if it can
be guaranteed (via some test) that any schedule for it will be
correct. For hard-real-time systems, correctness requires that
all deadlines be met, while for soft-real-time systems, it re-
quires that deadline tardiness be bounded (regardless of how
high the bound may be). The development platform used in
our experiments is an SMP consisting of four 32-bit Intel(R)
Xeon(TM) processors running at 2.7 GHz, with 8K L1 instruc-
tion and data caches, and a unified 512K L2 cache per pro-
cessor, and 2 GB of main memory. Our results are presented
below in Secs. 4.3–4.4 after first describing the basic experi-
mental framework in Secs. 4.1–4.2.

4.1 Overheads

In real systems, task executions are affected by the following
sources of overhead (most of which are described in detail
in [7, 11]). At the beginning of each quantum, tick schedul-
ing overhead is incurred, which is the time needed to service
a timer interrupt. Whenever a scheduling decision is made,
a scheduling cost is incurred, which is the time taken to se-
lect the next job to schedule. Whenever a job is preempted,
context-switching overhead is incurred, as is either preemp-
tion or migration overhead; the former term includes any non-
cache-related costs associated with the preemption, while the
latter two terms account for any costs due to a loss of cache
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affinity. Preemption (migration) overhead is incurred if the
preempted job later resumes execution on the same (a differ-
ent) processor. Finally, additional overheads exist associated
with the FMLP. In particular, overhead is incurred whenever
a short or long group lock is acquired or released. In addition,
under P-EDF, a different overhead is incurred for those long
resources that are local and handled via the SRP. (For P-EDF,
whenever we refer to overheads for long resources below, we
mean those not implemented with the SRP.)

We determined values for the above overheads in
LITMUSRT on our test system by averaging timing values
recorded while running different test workloads, and then
taking the maximum of these per-workload average values.
These values were recorded using Feather-Trace, a tracing
toolkit developed at UNC [6]. The values obtained were
then extrapolated to apply for various processor/task counts.
This overhead-estimation approach is based upon prior work
in [7, 11] and the non-synchronization overheads we computed
are quite similar to those reported there. (Much more detail
concerning overheads can be found in these papers; in particu-
lar, this issue is a major focus of [7].) This choice of approach
was influenced by three factors. First, LITMUSRT, being an
extension of Linux, is provisioned as a soft-real-time platform.
Second, code execution on our test platform is not determinis-
tic, so it is not possible to obtain worst-case execution times.
(Research on timing analysis for multiprocessor platforms has
not matured to the point where such timings can be obtained.)
Third, in Linux, sources of unpredictability such as interrupts
may affect any timings obtained. While the issue of accu-
rately benchmarking overheads on multiprocessor platforms
is clearly non-trivial and warrants further study, our measure-
ments are valid when used to evaluate the relative performance
of the tested scheduling and synchronization methods. In our
experiments, we considered systems of m ∈ {4, 16} proces-
sors, with a quantum size of 1000µs. The overhead values (in
µs) that we used are as follows.

• Preemption cost for P-EDF: 1.
• Migration cost for G-EDF: 4 · m.
• Context-switching cost: 2.
• Cost of switching to kernel mode: 0.75.
• Scheduling cost for G-EDF: 0.75 + 2.80 · m/4.
• Scheduling cost for P-EDF: 0.75 + 2.00.
• Tick scheduling overhead for G-EDF: 0.75+m · (1.27+

0.005 · N) (recall that N is the number of tasks).
• Tick scheduling overhead for P-EDF: 3.0+0.003 ·N/m.
• Short group-lock acquisition overhead: 4.5 for P-EDF,

0.85 · m/4 + 3.7 for G-EDF.
• Short group-lock release overhead: 4.5 for P-EDF, 0.85 ·

m/4 + 3.5 for G-EDF.
• Long group-lock acquisition overhead: 5.7+0.232 ·N/m

for P-EDF, 3.5 + m · (1.25 + 0.002 · N) for G-EDF.

• Long group-lock release overhead: 4.3 for P-EDF, 4.5
for G-EDF.

• SRP resource acquisition overhead: 3.9.
• SRP resource release overhead: 3.78.

Linux locking trends. To better understand locking patterns
in “real-world” systems, we used Feather-Trace to trace the
locking behavior of the Linux kernel under various loads. Al-
though we acknowledge that Linux is not a real-time system,
its locking behavior should be similar to that of many complex
systems. We found that roughly 83% of critical sections pro-
tected by spin-locks were non-nested, 13% were singly-nested,
and deeper levels of nesting occurred only rarely, with the
deepest being six. Critical sections protected by semaphores
were even less frequently nested (more than 95% were non-
nested, and the deepest nesting level was two). More than 93%
of all critical sections were shorter than 10µs (30µs) in the case
of spin-locks (semaphores); average lengths were much less.
A more detailed discussion of these results and the Feather-
Trace toolkit can be found in [6]. In the experimental set-up
discussed next, we set parameters involving nesting levels and
critical-section lengths based upon the trace data we collected.

4.2 Experimental Set-Up

We determined the schedulability of randomly-generated task
sets under each scheme, for both hard- and soft-real-time sys-
tems, using the overheads listed in Sec. 4.1. We used distribu-
tions proposed by Baker [3] to generate task sets. Task periods
were uniformly distributed over [10ms, 100ms]. Task utiliza-
tions were distributed differently for each experiment: (i) uni-
formly, over the range [0.001, 0.1], [0.1, 0.4], or [0.5, 0.9];
(ii) exponentially, with average 0.05 (range [0.001, 0.1]), 0.25
(range [0.1, 0.4]), or 0.7 (range [0.5, 0.9]); or (iii) bimodally,
distributed uniformly over [0.001, 0.5) with probability 8/9,
and over [0.5, 0.999] with probability 1/9. Task execution costs
excluding the cost of resource access times were calculated
from periods and utilizations (and may be nonintegral). Each
task set was created by generating tasks until either a specified
cap on total utilization ( 8·m

9
) was reached or 100 tasks were

generated, and by then discarding the last added task, thereby
allowing some slack to account for overheads. (We considered
other caps in some experiments, but they are omitted here.)

Resource access generation. The number of shared re-
sources in a task set was determined using the formula K·N

α·m
.

The parameter K denotes the maximum number of resource
accesses per task and was varied from 2 to 10. The parameter
α ∈ {1, 2} was used to control the degree of sharing. Each
resource has an access cost, which is added to each accessing
task’s execution cost. This cost represents the cost of an access
in the contention-absent case, excluding any synchronization
overheads. Such overheads are discussed below. The manner
in which access costs and nesting levels were determined is
also explained below.
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Schedulability tests. Schedulability can be checked for a
given task set by using a schedulability test that has been aug-
mented to account for both resource-sharing costs and the var-
ious overheads mentioned in Sec. 4.1. Overheads can be ac-
counted for by using standard accounting techniques to inflate
task execution costs, as described in [11].

Resource-sharing costs must be determined differently for
each of the four basic schemes being considered. Wait-free
sharing is the simplest: in this case, tasks can be viewed as
being independent, i.e., as if no sharing occurs. This is be-
cause wait-free object accesses are implemented using purely
sequential code. In contrast, bounds on retries are needed in
the lock-free case: if a retry loop completes on its jth itera-
tion, then the processing capacity needed for j − 1 iterations
is wasted. Retry-loop bounds can be computed using formu-
las from [11, 13]. Such formulas are obtained by bounding the
number of potentially conflicting accesses that can occur while
some lock-free access is in progress, and this is a function of
the number of job releases that can occur over such an interval.

Given our focus on the FMLP, lock-based resource-sharing
costs can be estimated using analysis presented in [5]. For
short resources, the needed analysis is straightforward, since
jobs waiting for such resources consume processor time. For
long resources, however, the situation is more complex, since
jobs wait by suspending. Suspensions are notoriously difficult
to deal with in scheduling analysis. Even in the uniproces-
sor case, Ridouard et al. [21] have shown that the problem of
checking hard-real-time feasibility when jobs may suspend is
NP-hard in the strong sense. Because of such difficulties, sus-
pensions are often dealt with by viewing a job that suspends
for s time units as if it had actually executed for those s time
units. For G-EDF, this is the approach we take. To our knowl-
edge, the same approach is used in all prior work on multi-
processor synchronization where suspensions can arise due to
blockings across processors [9, 22]. For P-EDF, it is possible
to do slightly better: Devi [10] has presented sufficient tech-
niques for accounting for suspensions on uniprocessors, and
these techniques can be used under P-EDF, since each pro-
cessor is scheduled independently. We have used these tech-
niques in our analysis, but it should be noted that the alter-
native of viewing suspensions under P-EDF as computation
produced nearly identical results. The difficulties noted here
associated with analyzing the impact of suspensions will have
major repercussions later, as we shall see later.

With overheads and resource-related costs accounted for as
discussed above, we checked schedulability as follows. For
P-EDF, a check was made of whether the given task set could
be partitioned using the worst-fit decreasing heuristic, with the
added constraint that tasks accessing common long resources
be assigned to the same processor. (This is less pessimistic than
using available closed-form tests and increases the likelihood
of being able to implement long resources more efficiently via
the SRP.) If the additional constraint could not be met, a sec-
ond attempt was made to partition the task set without it. If

this failed, then the task set was deemed to be unschedulable.
Note that, for P-EDF, there is no distinction between hard-
and soft-real-time schedulability: under partitioning, if tardi-
ness is bounded, then it is zero, so the only way to schedule a
soft-real-time task set is to view it as a hard-real-time task set.

As for hard-real-time schedulability under G-EDF, the suf-
ficient schedulability test in [15] was used. For soft-real-time
schedulability under G-EDF, a check that total utilization is at
most m was used. Only schedulable task sets were used when
computing tardiness bounds. Such bounds were computed us-
ing formulas from [11, 13] (which can be applied in systems
where jobs have non-preemptive regions).

In the next two subsections, we present results from two
sets of experiments, one conducted to compare spin-based and
suspension-based synchronization under the FMLP when im-
plementing arbitrary critical sections, and a second that focuses
specifically on shared data objects. Taking all possible com-
binations of parameters in our experimental set-up, over 400
graphs would be required to present all of our data. Due to
space constraints, this is clearly infeasible, so we only present
some representative example graphs. However, all graphs can
be found at http://www.cs.unc.edu/˜anderson/papers.

4.3 Spinning vs. Suspending

The first set of experiments was conducted to compare the
short- and long-resource-variants of the FMLP. As mentioned
above, we designed our experiments to approximately match
data collected from Linux. Based on this data, we varied max-
imum critical-section lengths (access costs) from 1 to 14 µs.

Fig. 2 shows the results of experiments conducted for m =
16, α = 1, K = 5, and tasks of low (left column), medium
(middle column), and high (right column) utilizations. The x-
axis of each graph gives the maximum critical section length;
50 task sets were generated for each data point on this axis.
Consider first insets (a)–(c), which depict results concerning
hard-real-time schedulability. There are several things to no-
tice here. First, schedulability is very poor under either syn-
chronization scheme if task utilizations are high (inset (c)).
Second, as critical sections become longer (or nesting levels
become deeper, though this is not seen in the graphs), schedu-
lability tends to worsen. Third, schedulability is very poor un-
der P-EDF whenever the long-resource-variant of the FMLP
is used. Fourth, in the short-resource case, schedulability is
very good under both P-EDF and G-EDF if task utilizations
are low (inset (a)), but when task utilizations are moderate (in-
set (b)), it is poor under G-EDF and good under P-EDF only
if critical sections are relatively short. These results (for the
short-resource case) are in agreement with results presented
in [7], where P-EDF was shown to exhibit better schedulabil-
ity than G-EDF for hard-real-time systems. The reason for
this is that a closed-form schedulability test must be used for
G-EDF, while more accurate bin-packing heuristics may be
used for P-EDF. Our conclusions concerning hard-real-time
systems can be summarized as follows. First, if long resources

6



 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

P
e
rc

e
n
t 
o
f 
s
c
h
e
d
. 
ts

e
ts

Max. critical section length

Schedulability Hard Uniform [0.001 0.1] m=16 α=1.00

short P-EDF
short G-EDF
long G-EDF
long P-EDF

(a)

(1)

(2)
(3)

(4)

(1)

(2)

(3)

(4)
 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

P
e
rc

e
n
t 
o
f 
s
c
h
e
d
. 
ts

e
ts

Max. critical section length

Schedulability Hard Uniform [0.1 0.4] m=16 α=1.00

short P-EDF
short G-EDF
long G-EDF
long P-EDF

(b)

(1)

(2)
(3)

(4)

(1)

(2)
(3)

(4)  0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

P
e
rc

e
n
t 
o
f 
s
c
h
e
d
. 
ts

e
ts

Max. critical section length

Schedulability Hard Uniform [0.5 0.9] m=16 α=1.00

short P-EDF
short G-EDF
long G-EDF
long P-EDF

(c)

(1)

(2)
(3)

(4)
(1)

(2)
(3)

(4)

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

P
e
rc

e
n
t 
o
f 
s
c
h
e
d
. 
ts

e
ts

Max. critical section length

Schedulability Soft Uniform [0.001 0.1] m=16 α=1.00

short P-EDF
short G-EDF
long G-EDF
long P-EDF

(d)

(1)

(2)
(3)

(4)

(1)

(2)

(3)

(4)
 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

P
e
rc

e
n
t 
o
f 
s
c
h
e
d
. 
ts

e
ts

Max. critical section length

Schedulability Soft Uniform [0.1 0.4] m=16 α=1.00

short G-EDF
short P-EDF
long G-EDF
long P-EDF

(e)

(1)

(2)
(3)

(4)

(1)

(2)

(3)

(4)
 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

P
e
rc

e
n
t 
o
f 
s
c
h
e
d
. 
ts

e
ts

Max. critical section length

Schedulability Soft Uniform [0.5 0.9] m=16 α=1.00

short G-EDF
long G-EDF
long P-EDF

short P-EDF

(f)

(1)

(2)
(3)

(4)

(2)

(1)

(3)

(4)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  2  4  6  8  10  12  14

A
v
g
. 
M

a
x
 t
a
rd

in
e
s
s

Max. critical section length

Tardiness G-EDF Soft Uniform [0.001 0.1] m=16 α=1.00

long
short

(g)

(1)

(2)

(1)

(2)  68000

 70000

 72000

 74000

 76000

 78000

 80000

 82000

 0  2  4  6  8  10  12  14

A
v
g
. 
M

a
x
 t
a
rd

in
e
s
s

Max. critical section length

Tardiness G-EDF Soft Uniform [0.1 0.4] m=16 α=1.00

long
short

(h)

(1)

(2)

(1)

(2)

 210000

 212000

 214000

 216000

 218000

 220000

 222000

 224000

 226000

 0  2  4  6  8  10  12  14

A
v
g
. 
M

a
x
 t
a
rd

in
e
s
s

Max. critical section length

Tardiness G-EDF Soft Uniform [0.5 0.9] m=16 α=1.00

long
short

(i)

(1)

(2)

(1)

(2)

Figure 2: (a)–(c) Hard-real-time schedulability, (d)–(f) soft-real-time schedulability, and (g)–(i) tardiness bounds (in µs) as a
function of maximum critical-section length for three task utilization ranges. (Numeric identifiers have been added to these and
subsequent graphs to help in distinguishing the curves.)

must be supported, then P-EDF should not be used. Sec-
ond, the choice between G-EDF and P-EDF is not impacted
by the presence of short resources (P-EDF is generally the
better choice). Third, it is much better (from the standpoint
of schedulability) to implement resources via spinning (short)
rather than suspending (long). Other experimental results that
were obtained but not shown support these conclusions.

We next consider the remaining insets of Fig. 2, which per-
tain to soft-real-time systems; schedulability results are shown
in insets (d)–(f) and tardiness results for G-EDF are shown
in insets (g)–(i). Again, there are several interesting things
to note. First, because a soft-real-time system scheduled by
P-EDF must be considered as hard, the schedulability results
shown for P-EDF in insets (d)–(f) are the same as those shown
in insets (a)–(c). Of course, under P-EDF, if a task set can
be scheduled, tardiness is zero. Second, the usage of short re-
sources under G-EDF always results in the best schedulability
(often by a very wide margin). As above, this is in agreement
with schedulability results presented in [7], where G-EDF was
shown to exhibit better schedulability for soft-real-time sys-
tems than P-EDF. Third, in the long-resource case, schedu-
lability under G-EDF is quite good if task utilizations are not

too high and critical sections are not too long (see the left parts
of insets (d) and (e)) or if task utilizations are very high (inset
(f)). The latter may seem counterintuitive, but when task uti-
lizations are high, fewer tasks exist, so synchronization costs
are reduced. Fourth, tardiness under G-EDF tends to be much
lower if resources are implemented as short rather than long
(insets (g)–(i)). (Note that, since tardiness bounds are calcu-
lated only for schedulable task sets, tardiness results are miss-
ing at some data points in these insets.) Overall, the three con-
clusions stated for the hard-real-time case apply here as well
(though here, G-EDF is generally preferable to P-EDF). As
above, other experimental results that were obtained but not
shown support these conclusions.

A major reason why long resources yield poorer results
than short resources is the difficulty in analyzing the impact
of suspensions noted earlier. Given the earlier-cited result of
Ridouard et al. [21] pertaining to hard-real-time uniproces-
sor systems, we are doubtful that significantly better analysis
techniques can be found for dealing with suspensions in the
hard-real-time case. However, there is some hope that better
techniques may be found for soft-real-time systems. Nonethe-
less, it remains to be seen whether better analysis, if it can be
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obtained, would alter our conclusion that spinning is usually
preferable. We in fact believe that it would not. This belief is
based upon empirical evidence, discussed next.

Spin-based utilization loss. Spinning clearly wastes pro-
cessing capacity where suspending would not. By determining
the conditions under which such waste leads to poorer perfor-
mance, we can gain insight into the extent of conservatism in
our analysis techniques for suspensions, because these tech-
niques do not reveal any performance advantages for suspend-
ing. In an attempt to determine such conditions, we conducted
experiments on LITMUSRT in which we measured the uti-
lization available to background jobs over an interval of 60s
in the presence of real-time tasks exhibiting different levels of
lock contention. We assessed the impact of spinning in com-
parison to suspending by measuring the processing capacity
available to the background jobs: when capacity is lost due to
spinning, the background jobs receive less capacity. We varied
the number of resources, relative and absolute critical-section
lengths, and task periods and execution costs. The relative
critical-section length (RCSL) of a job is the fraction of its
execution time spent in critical sections. Of the listed param-
eters, we found that only RCSLs and the number of resources
had an impact on our results, so in the discussion that follows,
performance is assessed with respect to these parameters only.

We implemented six task sets, each consisting of 32
identical real-time tasks. Each task had a period within
[40ms, 1000ms] (different periods were used for different task
sets) and a utilization of 0.125, but was configured to actu-
ally consume only about a quarter of its utilization. Thus, if
no utilization is lost due to spinning, then the background jobs
should receive about 75% of the system’s capacity. Each task’s
RCSL was configurable and was the same for all tasks in a set
in each system run. Our results are shown in Fig. 3, which
plots the processing capacity available to the background jobs
in different scenarios versus RCSL. Each curve in the figure
was obtained by averaging values obtained from the six im-
plemented task sets. Resources were implemented as either
short or long, with one, two, or four resources in total. For
the scenario in which x resources are present, the tasks were
partitioned into groups of 32/x, with the tasks in each group
accessing a separate resource. Note that, with one resource,
contention is very high (likely much higher than would ever
arise in practice). Fig. 3 depicts curves for each implemented
scenario (only one curve is shown for long resources because
the curves are almost identical in all cases). Note that, when
resources are implemented as long resources, the background
jobs receive about 75% of the system’s capacity, as expected.

The impact of spinning can be seen by comparing the three
short-resource curves to the long-resource curve. With only
one resource, spinning becomes detrimental when the RCSL
surpasses 0.2. With less contention, the impact of spinning is
lower: with two (four) resources, spinning becomes detrimen-
tal when the RCSL surpasses roughly 0.4 (0.6). Note, that in
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Figure 3: The effect of spinning on best-effort job utilization.

our experiments, all tasks of a given set have the same (large)
RCSL. Thus, for example, an RCSL of 0.6 means that the real-
time component of the system as a whole spends 60% of its
time in critical sections (ignoring time spent spinning). This is
a highly unlikely scenario. In practice, we would expect any
utilization loss due to spinning to often be negligible.

4.4 Blocking vs. Non-blocking

In the second set of experiments, we limited attention to
shared data objects that are accessed in a non-nested man-
ner. Our main objective in these experiments was to deter-
mine when non-blocking techniques are preferable to blocking
techniques. Because, as established earlier, spin-based block-
ing is preferable to suspension-based blocking in the FMLP,
we assumed that, in the lock-based case, all objects are short
resources. Three shared objects were considered: read/write
buffers, queues, and binary heaps (which can be used to im-
plement priority queues). For each, we surveyed the literature
and chose algorithms that we felt would have the best perfor-
mance. (In some cases, we implemented and evaluated mul-
tiple algorithms before choosing.) We implemented lock-free
buffers using an algorithm of Tsigas et al. [23] and wait-free
buffers using an algorithm of Anderson and Holman [1]. We
implemented lock-free queues using an algorithm of Michael
et al. [18]. The remaining algorithms were implemented us-
ing lock-free and wait-free universal constructions of Ander-
son and Moir [2].1 Specifically, we implemented lock-free
heaps using their lock-free universal construction and wait-free
queues and heaps using their wait-free universal construction.

We determined access costs for lock-free and wait-free ob-
jects as follows. For each object, we timed only one thread,
but within an implementation that could support from two to
32 threads. For both buffer implementations, we calculated
the maximum time to access a buffer consisting of ten words
over 10,000 read/write operations. For the queue implementa-

1Universal constructions can be used to implement any type of object.
They are the only choice for implementing “complex” objects for which spe-
cialized implementations do not exist. Universality is usually achieved by re-
quiring tasks to copy portions of the constructed object’s state. The construc-
tions of Anderson and Moir are designed to lessen copying overhead.
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Object Scheme Access Cost
Buffer Short 0.4 µs

Buffer LF 0.4 µs

Buffer WF (1.36 + 0.026 · N) µs

Queue Short 0.38 µs

Queue LF 0.57 µs

Queue WF (15.33 + 0.209 · N) µs

Heap Short 0.72 µs

Heap LF 9.7 µs

Heap WF (28.26 + 0.102 · N) µs

Table 1: Formulas for determining object access costs in spin-
based (Short), lock-free (LF), and wait-free (WF) implemen-
tations, where the number of tasks that share an object is
N ∈ [2, 32]. In the lock-free case, the term “access cost” refers
to one retry-loop iteration.

tions, we measured the maximal access time over 10,000 en-
queues/dequeues, where 60% of the operations were enqueues
and 40% of the operations were dequeues. For the heap im-
plementations, we considered a heap with a maximum size of
1,000 elements, and considered runs in which 60% of the oper-
ations were insertions, and 40% were extractions of the max-
imum element. We determined the maximum operation cost
by considering a sequence of 10,000 operations. In the case of
lock-based sharing, we considered sequential versions of each
object, and obtained timings in a similar way. Our results con-
cerning object access costs are summarized in Table 1.

In describing our results, we limit our attention to tardi-
ness for soft-real-time systems scheduled by G-EDF, due to
space constraints. We also consider only buffers and heaps
(the simplest and most complex objects considered in our ex-
periments). The conclusions drawn from the presented re-
sults are the same as those that would follow if queues and
hard- and soft-real-time schedulability were considered. Fig. 4
shows tardiness results for buffers (top row) and heaps (bot-
tom row) for the case where m = 4 and α = 1 and task
utilizations are low (left column), medium (middle column),
and high (right column). The x-axis of each graph gives the
value of K (access frequency); 50 task sets were generated
for each integral point on this axis. These graphs illustrate
several conclusions. First, non-blocking implementations are
generally better than spin-based ones for simple objects (in-
sets (a)–(c)), while spin-based implementations are roughly as
good, and sometimes much better, for complex objects (insets
(d)–(f); note that, given the scale in inset (e), there is not much
difference between the three schemes in this case). Spinning
is also effective in the case of simple objects shared by rela-
tively few tasks of low utilization (see the left part of inset (a)).
Second, lock-free and wait-free algorithms are often equally
preferable, but when implementing complex objects shared by
tasks of low to moderate utilization, wait-free algorithms are
better (insets (d) and (e)). This difference is due to excessive
retries in the lock-free case. As before, other omitted results
for task sets with other parameters support these conclusions.

5 Conclusion
With the advent of multicore technologies, multiprocessor plat-
forms are of growing importance in the real-time domain.
While this realization has fueled much recent work on schedul-
ing, the issue of synchronization has been somewhat neglected.
Motivated by this, we have produced an extension of the
LITMUSRT testbed that incorporates support for synchroniza-
tion, and have used the resulting testbed to compare several
synchronization approaches. To our knowledge, such a com-
parison has not been attempted before.

The major conclusions of our study are as follows: (i) when
implementing shared data objects, non-blocking algorithms
are generally preferable for small, simple objects, while spin-
based implementations are generally preferable for large or
complex objects: (ii) wait-free algorithms are preferable to
lock-free algorithms; (iii) frequently-occurring long or deeply-
nested critical sections will lead to poor schedulability under
any scheme; (iv) suspension-based blocking should be avoided
under P-EDF (and under partitioning generally) for global re-
sources; (v) using current analytical techniques, suspension-
based blocking is never preferable (on the basis of schedulabil-
ity or tardiness) to spin-based blocking; (vi) if such techniques
can be improved, then the use of suspension-based blocking
will most likely not lead to appreciably better schedulability or
tardiness than spinning unless a system (in its entirety) spends
at least 20% of its time in critical sections (something we find
highly unlikely to be the case in practice).

There are numerous directions for future work. First, the
FMLP can also be applied within the PD2 Pfair algorithm [5];
it would be interesting to empirically evaluate this alterna-
tive as well. Second, we would like to move the current
LITMUSRT implementation to a multicore platform and re-
peat this evaluation. Third, our current LITMUSRT imple-
mentation sometimes relies on coarse-grained locking within
the kernel; we would like re-examine this implementation to
see if finer-grained locking or non-blocking techniques could
be used instead. Finally, we would like to integrate adaptive
behavior into LITMUSRT so that changes in task-set parame-
ters can be supported at run time.
Acknowledgement: We are grateful to Mengsheng Zhang for
his help with this paper.
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