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Abstract

We consider the issue of deadline tardiness under global
multiprocessor scheduling algorithms. We present a general
tardiness-bound derivation that is applicable to a wide
variety of such algorithms (including some whose tardiness
behavior has not been analyzed before). Our derivation is
very general: job priorities may change rather arbitrarily
at runtime, arbitrary non-preemptive regions are allowed,
and capacity restrictions may exist on certain processors.
Our results show that, with the exception of static-priority
algorithms, most global algorithms considered previously
have bounded tardiness. In addition, our results provide
a simple means for checking whether tardiness is bounded
under newly-developed algorithms.

1 Introduction

There is growing interest in using multicore platforms,
which are becoming increasingly ubiquitous, in settings
where soft real-time constraints are required. For example,
one envisioned use of such platforms is as multi-purpose
home appliances, with one machine providing many
functions, including soft real-time applications like HDTV
streaming and interactive video games. In soft real-time
applications, deadline constraints exist, but deadline misses
are sometimes tolerable.

To support such applications on a multicore platform,
an appropriate multiprocessor scheduling algorithm must
be used. This paper is directed at issues concerning
such algorithms. Our specific focus is multiprocessor
algorithms for scheduling soft real-time workloads specified
as sporadic tasks (see Sec. 2). In devising such algorithms,
two basic approaches exist: partitioning and global
scheduling. Under partitioning, tasks are statically assigned
to processors, and each processor schedules its assigned
tasks using a uniprocessor scheduling algorithm. Under
global scheduling, tasks are scheduled from a single run
queue and may migrate among processors. For soft real-
time systems, global algorithms have the advantage of being
able to ensure bounded deadline tardiness, as long as the
available processing capacity is not exceeded (something
we assume throughout this paper). Bounded tardiness is
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a sufficient property in many soft real-time applications
(provided the bounds are not too large). In particular, such
bounds ensure that the long-term processor share of each
task is in accordance with its specified utilization. Due
to bin-packing limitations, such share guarantees are not
possible under partitioning approaches, unless the overall
system utilization is restricted. The main focus of this paper
is algorithms that are capable of ensuring bounded tardiness
(without restrictions on overall utilization).
Motivation and prior work. The first tardiness bounds
to be established for a global scheduling algorithm
pertained to the earliest-pseudo-deadline-first (EPDF) Pfair
algorithm [5, 13]. This analysis was later extended to
establish tardiness bounds for several variants of the global
earliest-deadline-first (EDF) algorithm, wherein jobs with
earlier deadlines have higher priority. These include
preemptive and non-preemptive EDF [6] and two variants
that slightly alter EDF prioritizations and allow a small
number of special tasks to be guaranteed lower tardiness [7]
or cause temporary overloads [9]. (The latter variant arises
in an approach for scheduling multi-speed multiprocessor
systems.) Tardiness bounds have also been established for
the global first-in first-out (FIFO) algorithm [10], wherein
jobs with earlier release times have higher priority. Given
that tardiness is bounded under such disparate algorithms,
several questions come to mind. Do other widely-studied
global algorithms have bounded tardiness? Is there a
singular characteristic of such algorithms that results in
bounded tardiness? Can the class of algorithms for which
tardiness is bounded be generally characterized?
Contributions. In this paper, we present a generalized
tardiness result that answers these questions. This result
implies that the singular characteristic needed for tardiness
to be bounded is that a pending job’s priority eventually (in
bounded time) is higher than that of any future job. Global
algorithms that do not have this characteristic (and for
which tardiness can be unbounded) include static-priority
algorithms such as the rate-monotonic (RM) algorithm, and
“non-fair” dynamic-priority algorithms such as the earliest-
deadline-last (EDL) algorithm, wherein jobs with earlier
deadlines have lower priority. Global algorithms that do
have this property include the EDF, FIFO, EDF-until-
zero-laxity (EDZL), and least-laxity-first (LLF) algorithms.
(EDZL and LLF are described later.)

We establish a generalized tardiness result by considering
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a generic scheduling algorithm where job priorities are
defined by points in time that may vary as time progresses.
All of the algorithms mentioned above can be seen as special
cases of this generic algorithm in which priorities are further
constrained. Even the PD2 Pfair algorithm [1], which uses
a rather complex notion of priority, is a special case. The
main result of this paper is a derivation of a tardiness bound
that applies if priorities are window-constrained: a job’s
priority at any time must correspond to a point in time lying
within a certain time window that contains its release and
deadline. We also show that if this window constraint is
violated, then tardiness can be unbounded. It is possible to
define window-constrained prioritizations for EDF, FIFO,
EDZL, LLF, EPDF, and PD2, so these algorithms have
bounded tardiness. (For EDF, FIFO, EPDF, and PD2, this
was previously known.) For any other algorithm that may
be devised in the future, our results enable tardiness bounds
to be established by simply showing that prioritizations
can be expressed in a window-constrained way (instead of
laboriously devising a new proof).

The notion of priority used in our generic algorithm
is very general. For example, it allows arbitrary non-
preemptive regions within a job to be specified, as well
as combinations of different prioritizations, e.g., using a
combination of EDF and FIFO in the same system. Priority
rules can even change dynamically (subject to the window
constraint). For example, if a task has missed too many
deadlines, then its job priorities can be boosted for some
time so that it receives special treatment. Or, if a single
job is in danger of being tardy, then its prioritization may
be changed so that it completes execution non-preemptively.
Tardiness also remains bounded if early-release behavior is
allowed (see Sec. 4.3) or if the capacity of each processor
that is available to the (soft) real-time workload is restricted.
In simplest terms, the main message of this paper is that,
for global scheduling algorithms, bounded tardiness is the
common case, rather than the exception (at least, ignoring
clearly impractical algorithms such as EDL). For the widely-
studied EDZL and LLF algorithms, and for several of the
variants of existing algorithms discussed above, this paper
is the first to show that tardiness is bounded.

The rest of this paper is organized as follows. In Secs. 2–
3, we present our task model and scheduling framework.
Then, in Sec. 4, we present the tardiness proof that is the
main result of this paper. As discussed later, tardiness may
be different under different scheduling algorithms. In Sec. 5,
we present results from experiments conducted to assess
such differences. We conclude the paper in Sec. 6.

2. System Model

We consider the problem of scheduling onm processors a
set τ of n sporadic tasks, T1, . . . , Tn. Each task is invoked or
released repeatedly, with each such invocation called a job.

Associated with each task Ti are two parameters, ei and pi:
ei gives the maximum execution time of one job of Ti, while,
pi, called the period of Ti, gives the minimum time between
consecutive job releases of Ti. For simplicity, we assume
that each job of Ti has an execution time of exactly ei; this
assumption can be removed and ei treated as an upper bound
at the expense of additional notation. For brevity, we often
use the notation Ti = (ei, pi) to specify task parameters.
The utilization of task Ti is defined as ui = ei/pi, and the
utilization of the task system τ as Usum=

∑
Ti∈τ

ui.
The jth job of Ti, where j ≥ 1, is denoted Ti,j . A task’s

first job may be released at any time t ≥ 0. The release
time of job Ti,j is denoted ri,j and its (absolute) deadline
di,j is defined as ri,j + pi. If Ti,j completes at time t, then
its tardiness is max(0, t − di,j). A task’s tardiness is the
maximum of the tardiness of any of its jobs. We assume

Usum ≤ m. (1)

Otherwise, tardiness may grow unboundedly. When a job of
a task misses its deadline, the release time of the next job of
that task is not altered. However, at most one job of a task
may execute at any time, even if deadlines are missed.

We assume that released jobs are placed into a single
global ready queue. When choosing a new job to schedule,
the scheduler selects (and dequeues) the ready job of highest
priority. As reiterated in Def. 4 in Sec. 4, a job is ready if it
has been released and its predecessor (if any) has completed
execution. Priorities are determined as follows.

Definition 1. (prioritization functions) Associated with
each released job Ti,j is a function of time χi,j(t), called
its prioritization function. If χi,j(t) < χk,h(t), then the
priority of Ti,j is higher than the priority of Tk,h at time t.

We assume that, when comparing priorities, any ties are
broken arbitrarily but consistently.

3. Example Mappings

We now show how to describe several well-known sched-
uling policies in our framework, using the two-processor
task set τ = {T1 = (1, 3), T2 = (2, 3), T3 = (1, 4), T4 =
(3, 4)} as an example. In depicting example schedules, we
use up (down) arrows to depict job releases (deadlines).

Example 1. Fig. 1 shows a schedule for τ under the
preemptive EDF algorithm. In this case, since jobs are
prioritized by deadline, it suffices to define χi,j(t) = di,j
for each Ti,j . In Fig. 1, the value of χi,j(t) is shown for
each job Ti,j using a black circle.

Example 2. Fig. 2 shows a schedule for τ under the
preemptive global RM algorithm. In this case, Ti,j should
have priority over Tk,h if i < k (since the tasks in τ are
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Figure 1. Example 1 (preemptive global EDF).
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Figure 2. Example 2 (preemptive global RM).
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Figure 3. Example 3 (global FIFO).

ordered by increasing periods). Thus, we can simply define
χi,j(t) = i for each job Ti,j , as shown.

Example 3. Fig. 3 shows a schedule for τ under the global
FIFO algorithm (which, by definition, schedules jobs non-
preemptively). In this case, since jobs are prioritized by
release times, it suffices to define χi,j(t) = ri,j for each
job Ti,j , as shown.

Example 4. We now consider a slightly more complicated
example, namely the preemptive LLF global scheduling
algorithm [11]. The laxity or slack of a job Ti,j at time t
is defined as

slacki,j(t) = di,j − t− (ei − δi,j(t)), (2)

where δi,j(t) is the amount of time for which Ti,j has
executed before t. If a job does not miss its deadline, then
its slack is always non-negative; if it does miss its deadline,
then its slack becomes negative at some time prior to its
deadline. According to LLF, Ti,j has higher priority than
Tk,h at time t if slacki,j(t) < slackk,h(t). To capture this,

Table 1. χ-values in Example 4.

Time t χ1,j(t) χ2,j(t) χ3,j(t) χ4,j(t)

0 2 1 3 1
1 2 2 3 2
2 2 − 3 3
3 5 4 3 −

4 5 5 7 5
5 5 − 7 6
6 8 7 7 7
7 8 8 7 −

8 8 − 11 9
9 11 10 11 10
10 11 11 11 11
11 11 − 11 −
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Figure 4. Example 4 (global preemptive LLF).

we can simply define χi,j(t) = di,j − (ei− δi,j(t)) for each
job Ti,j . Because this definition depends on δi,j(t), χi,j(t) is
not constant, as in the prior examples, but is time-dependent.
Assuming that it is updated only at integral points in time,
χi,j(t+1) := χi,j(t)+1, if Ti,j executes during the interval
[t, t+ 1), and χi,j(t+ 1) := χi,j(t), otherwise.

Fig. 4 shows an LLF schedule for τ where ties are broken
in favor of jobs currently executing. Because χ-values
change with time, they are not shown in the schedule, as
earlier, but are depicted separately in Table 1. The table
shows the value of χi,j(t) for the earliest pending job Ti,j
of each task Ti where 0 ≤ t ≤ 11.

Example 5. Interestingly, the definition of χi,j(t) is flexible
enough to allow combinations of scheduling policies to
be specified. For example, we can prioritize the jobs of
T1, . . . , T3 on an EDF basis and those of T4 on a FIFO basis
by defining χi,j(t) = di,j for 1 ≤ i ≤ 3, and χ4,j(t) = r4,j .
A schedule for this hybrid policy is shown in Fig. 5.

Example 6. The EDZL algorithm [12], which is a hybrid
of EDF and LLF, can be specified as well. In this case,
χi,j(t) is set to di,j (as in EDF) when Ti,j is released,
and is reset to di,j − (ei − δi,j(t)) ≤ di,j (as in LLF)
when Ti,j’s slack becomes zero, where δi,j(t) is as defined
earlier. To our knowledge, EDZL has not been considered
previously in systems where deadlines can be missed.
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Figure 5. Example 5 (hybrid global scheduler).

However, if no deadlines are missed, then our definition
yields priority comparisons that match exactly how EDZL
has been specified in prior work. It is possible that other
variants could be defined that prioritize jobs differently
when deadlines are missed.

As noted earlier, the PD2 Pfair algorithm [1] can
also be modeled using our framework. PD2 uses a
rather complicated notion of priority, and correspondingly,
requires more complex definitions than those used above.
Due to space constraints, these definitions are omitted here.

4. Tardiness Bound

In this section, we show that any scheduling algorithm
(specified according to Def. 1) has bounded tardiness if
its prioritization functions are “window-constrained,” as
defined below in Def. 5. This definition imposes two
separate constraints on χ-values. We show that if either is
violated, then tardiness may become unbounded.

4.1. Definitions

The system start time is assumed to be zero. For any time
t > 0, t− denotes the time t− ε in the limit ε→ 0+.

Definition 2. (active jobs) A task Ti is active at time t if
there exists a job Ti,j (called Ti’s active job at t) such that
ri,j ≤ t < di,j . By our task model, every task has at most
one active job at any time.

Definition 3. (pending jobs) Ti,j is pending at t in a
schedule S if ri,j ≤ t and Ti,j has not completed execution
by t in S .

Definition 4. (ready jobs) A pending job Ti,j is ready at
t in a schedule S if t ≥ ri,j and all prior jobs of Ti have
completed execution by t in S .

Definition 5. (window-constrained priorities) A
scheduling algorithm’s prioritization functions are window-
constrained iff, for each task Ti, there exist constants
φi ≥ 0 and ψi ≥ 0 such that, for each job Ti,j of Ti,

ri,j − φi ≤ χi,j(t) ≤ di,j + ψi (3)

holds at each time t where Ti,j is pending.

Note that (3) requires a job’s χ-values to lie within
a window that contains its release and deadline. This
window may extend beyond the release and deadline by
constant amounts. It is easy to see that, other than RM, all
of the algorithms considered in Sec. 3 have prioritization
functions that satisfy this requirement. In fact, for these
algorithms, even non-preemptive execution can be allowed.
(FIFO is non-preemptive, by definition.) Specifically, non-
preemptivity can be modeled by setting χi,j(t) to be ri,j−C
whenever the job Ti,j enters a non-preemptive region, where
C is a constant large enough to ensure that any unscheduled
or newly-released job has lower priority.

In contrast, the prioritization functions specified for RM
fail to be window-constrained because they violate the
required lower bound: as new jobs of each task Ti are
released, χi,j(t) < ri,j − φi will eventually hold for some
job Ti,j for any choice of the constant φi. It can be shown
that the task system in Example 2 has unbounded tardiness.
In particular, if each job is released as soon as possible, then
the processing capacity available to T4 every 12 time units
is the same as is depicted in Fig. 2. This capacity is less
than the amount of work generated by T4 during the same
interval. As a result, more and more work shifts to future
intervals, causing tardiness for T4 to grow unboundedly.
(The fact that tardiness can be unbounded under RM was
also established by Devi [4].)

It is possible to “fix” the prioritization functions for RM
so that the required lower bounds are adhered to, but then
the upper bounds will be violated. For example, we could
simply define χi,j(t) = i + t′, where t′ is the time where
the most recent job release occurred at or before t. This
definition simply shifts the χ-values defined earlier to future
points in time as new jobs are released. However, we know
that tardiness for T4 is unbounded, so eventually χ4,j(t) >
d4,j + ψ4 will hold for some pending job T4,j of T4 for any
choice of the constant ψ4. We summarize this discussion as
follows. (Recall that any task set considered in this paper is
assumed to satisfy (1).)

Theorem 1. If either the lower or upper bound given in
(3) is eliminated, then there exists a scheduling algorithm
that satisfies the remaining condition for which tardiness is
unbounded for some task set.

Most of the rest of this paper is devoted to showing
that any scheduling algorithm A with window-constrained
prioritization functions has bounded tardiness. Before
embarking on the proof, a few more definitions are in order.

A task system is concrete if the release times of all jobs
are specified, and non-concrete, otherwise. The tardiness
bound established for A is derived by comparing the
allocations to a concrete task system τ in an ideal processor-
sharing (PS) schedule to those in a schedule produced by
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Figure 6. PS schedule for τ in Example 1.

A. In a PS schedule, each job of a task Ti is executed at a
constant rate of ui = ei

pi
between its release and deadline.

Fig. 6 depicts an example. Note that, in a PS schedule, each
job completes exactly at its deadline. Thus, if a job misses
its deadline, then it is “lagging behind” the PS schedule —
this concept of “lag” is instrumental in the analysis and is
formalized below.

Let A(Ti,j , t1, t2,S) denote the total allocation to the
job Ti,j in an arbitrary schedule S in [t1, t2). Then, the
difference between the allocations to a job Ti,j up to time
t in a PS schedule and an arbitrary schedule S, termed the
lag of job Ti,j at time t in schedule S , is given by

lag(Ti,j , t,S) = A(Ti,j , 0, t,PS) − A(Ti,j , 0, t,S). (4)

Task lags can be similarly defined:

lag(Ti, t,S) =
∑

j≥1

A(Ti,j , 0, t,PS) − A(Ti,j , 0, t,S). (5)

Finally, the lag for a finite job set Ψ at time t in the schedule
S is defined by

LAG(Ψ, t,S)

=
∑

Ti,j∈Ψ

lag(Ti,j , t,S)

=
∑

Ti,j∈Ψ

(A(Ti,j , 0, t,PS) − A(Ti,j , 0, t,S)). (6)

Since LAG(Ψ, 0,S) = 0, the following holds for t′ ≤ t.

LAG(Ψ, t,S)

= LAG(Ψ, t′,S)

+A(Ψ, t′, t,PS) − A(Ψ, t′, t,S) (7)

The concept of lag is important because, if lags remain
bounded, then tardiness is bounded as well.

Definition 6. (busy/non-busy intervals) A time interval
[t1, t2) is busy for a job set Ψ if, at each time t ∈ [t1, t2),
all processors execute jobs from Ψ, and is non-busy for Ψ
otherwise. An interval [t1, t2) is maximally non-busy for Ψ
if it is non-busy for Ψ at every instant within it and either
t1 = 0 or t−1 is a busy instant for Ψ.

When using the above terminology, we will omit “for Ψ”
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Figure 7. A schedule for τ in Example 7.

if the job set under consideration is clear. According to the
lemma below, the lag for a job set Ψ cannot increase across
a busy interval for Ψ. This fact was proved in [6]. Its proof
relies only on the fact that the interval in question is non-
busy, and not on how jobs are scheduled, so it applies in our
context as well.

Lemma 1. For any interval [t1, t2) that is busy for Ψ,
LAG(Ψ, t2,S) ≤ LAG(Ψ, t1,S).

We are interested in non-busy intervals (for a job set)
because total lag (for that job set) can increase unboundedly
only across such (non-busy) intervals. Such increases can
lead to deadline misses. The following example illustrates
how lag can change across busy and non-busy intervals.

Example 7. Consider a two-processor system upon which
a task set τ = {T1 = (1, 2), T2 = (2, 6), T3 = (2, 8), T4 =
(11, 12)} is to be scheduled, where the first jobs of T1,
T2, T3, and T4 are released at times 2, 1, 0, and 0
respectively. Assume that A is the FIFO algorithm, i.e., jobs
are prioritized using χi,j(t) = ri,j . Consider the schedule
for τ in Fig. 7. Under A, T1,1 misses its deadline at time
4 by one time unit because it cannot preempt T2,1 and T4,1,
which have earlier release times and later deadlines.

Let Ψ = {T1,1, . . . , T1,5, T2,1, T3,1, T4,1} be the set of
jobs with deadlines at most 12. The interval [4, 7) in
Fig. 7 is a busy interval for Ψ. By (7), LAG(Ψ, 7,S) =
LAG(Ψ, 4,S) + A(Ψ, 4, 7,PS) − A(Ψ, 4, 7,S), where S
is the schedule under A. The allocation of Ψ in the PS
schedule during the interval [4, 7) is A(Ψ, 4, 7,PS) = 3/2+
6/6+6/8+33/12 = 6. The allocation of Ψ in S throughout
[4, 7) is also 6. Thus, LAG(Ψ, 7,S) = LAG(Ψ, 4,S).

Now let Ψ = {T1,1} be the set of jobs with deadlines
at most 4. Because the jobs T2,1 and T4,1, which have
deadlines after time 4, execute within the interval [2, 4)
in Fig. 7, this interval is non-busy for Ψ in S. By (6),
LAG(Ψ, 4,S) = A(Ψ, 0, 4,PS) − A(Ψ, 0, 4,S). The
allocation of Ψ in the PS schedule throughout the interval
[0, 4) is A(Ψ, 0, 4,PS) = 2 · 1/2 = 1. The allocation of Ψ
in S is A(Ψ, 0, 4,S) = 0. Thus, LAG(Ψ, 4,S) = 1− 0 = 1.
Fig. 7 shows that at time 4, T1,1 from Ψ is pending. This
job has unit execution cost, which is equal to the amount of
pending work given by LAG(Ψ, 4,S).
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4.2 Tardiness Bound for A

Given an arbitrary non-concrete task system τN , we want
to determine the maximum tardiness of any job of any task in
any concrete instantiation of τN scheduled onm processors.

The approach for doing this is based on techniques
from [6, 7]. Let τ be a concrete instantiation of τN . Let

ρ = maxTh∈τ (φh) +maxTh∈τ (ψh). (8)

Let T`,j be a job of a task T` in τ , let td = d`,j , and let S be
a schedule, produced for τ by the scheduling algorithm A.
We assume that the schedule S has the following property.

(P) The tardiness of every job of every task Tk in τ with
deadline less than td is at most x+ ek, where x ≥ ρ.

Our goal is to determine the smallest x ≥ ρ such that the
tardiness of T`,j remains at most x+e`. Such a result would
by induction imply a tardiness of at most x+ ek for all jobs
of every task Tk ∈ τ . Because τ is arbitrary, the tardiness
bound will hold for every concrete instantiation of τN .

The objective is easily met if T`,j completes by its
deadline, td, so assume otherwise. The completion time of
T`,j then depends on the amount of work that can compete
with T`,j after td. Hence, a value for x can be determined
via the following steps.

1. Compute an upper bound on pending work for tasks in
τ (including T`,j) that can compete with T`,j after td.

2. Determine the amount of such work necessary for the
tardiness of T`,j to exceed x+ e`.

3. Determine the smallest x ≥ ρ such that the tardiness of
T`,j is at most x + e` using the upper bound in Step 1
and the necessary condition in Step 2.

To reason about the tardiness of T`,j we need to
determine how other jobs delay its execution. We classify
such jobs based on the relation between their prioritization
functions and deadlines and those of T`,j , as follows.

dH = {Ti,k :: ∃a : χi,k(a) ≤ χ`,j(a) ∧ (di,k ≤ td)}

dL = {Ti,k :: ∀a : χi,k(a) > χ`,j(a) ∧ (di,k ≤ td)}

DH = {Ti,k :: ∃a : χi,k(a) ≤ χ`,j(a) ∧ i 6= `

∧ (di,k > td)}

DL = {Ti,k :: ∀a : χi,k(a) > χ`,j(a) ∧ (di,k > td)}

In this notation, d and D denote, respectively, deadlines at
most and greater than td. Also, H denotes that Ti,k’s priority
is higher or equal to that of T`,j and L denotes that Ti,k’s
priority is lower than that of T`,j . Note that T`,j ∈ dH.

Example 8. Consider the task set τ = {T1 = (1, 2), T2 =
(4, 7), T3 = (8, 9)} and the PS schedule for it in Fig. 8.
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Figure 8. Job set partitioning.

Jobs T1,1 and T2,1 are released at time 1, and job T3,1 is
released at time 0. Consider the job T`,j = T2,1, which has
a deadline at time 8. As in Example 7, assume that A is
the FIFO algorithm, i.e., jobs are prioritized using χi,j(t) =
ri,j . With respect to T2,1, the four sets mentioned above are
dH = {T1,1, T2,1}, dL = {T1,2, T1,3}, DH = {T3,1}, and
DL = {T1,4, T1,5, T2,2, T3,2}. (DL would also include any
jobs released after time 11.)

The set of jobs with deadlines at most td is further
referred to as Ψ = dH ∪ dL. We are interested in this set
of jobs because these jobs do not execute beyond td in the
PS schedule. Because the jobs in dH ∪ DH might have
the priority at least that of T`,j (at some time instant), the
execution of T`,j might be postponed (in the worst case)
until there are at most m ready jobs in Ψ including T`,j .

Determining an upper bound on competing work.
Because jobs in dH ∪ DH can have priority at least that
of T`,j , the competing work for T`,j beyond td, W (dH ∪
DH, td,S), is bounded from above by the sum of (i) the
amount of work pending at td for jobs in dH, and (ii) the
amount of work D(DH, td,S) demanded by jobs in DH that
can compete with T`,j after td.

For the pending work mentioned in (i), because jobs from
Ψ have deadlines at most td, they do not execute in the PS
schedule beyond td. Thus, the work pending for jobs in
dH is given by LAG(dH, td,S), which must be positive in
order for T`,j to miss its deadline at td. We find it more
convenient to reason about LAG(Ψ, td,S) instead. Note
that LAG(dL, td,S) is non-negative because the jobs in dL
cannot perform more work by time td in S than they have
performed in the PS schedule. Hence, LAG(dH, td,S) ≤
LAG(Ψ, td,S), which implies that W (dH ∪ DH, td,S) ≤
LAG(Ψ, td,S) + D(DH, td,S). Thus, an upper bound on
W (dH∪DH, td,S) can be obtained by determining bounds
for LAG(Ψ, td,S) and D(DH, td,S) individually.

Upper bound on LAG(Ψ, td,S). In deriving this bound,
we assume that all busy and non-busy intervals considered
are with respect to Ψ and the schedule S produced by the
scheduling algorithm A unless stated otherwise.
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To begin, note that, by Lemma 1, if no non-busy interval
exists in [0, td), then LAG(Ψ, td,S) ≤ LAG(Ψ, 0,S) = 0.
In that which follows, we consider the more interesting case
wherein some non-busy interval exists in [0, td). An interval
could be non-busy for two reasons:

1. There are not enough ready jobs in Ψ to occupy all
available processors, so it is immaterial whether jobs
from DH or DL execute during the interval. We call
such an interval non-busy non-displacing.

2. There are ready jobs in Ψ that cannot execute because,
within certain sub-intervals, jobs in DH occupy one or
more processors because they have higher priority. We
call such an interval non-busy displacing.

Let the carry-in job Tk,j of a task Tk be defined as the
job, if any, for which rk,j ≤ td < dk,j holds. At most one
such job could exist for each task Tk. Only such jobs may
prevent the execution of jobs in Ψ before time td and hence
increase the LAG for Ψ.

Definition 7. Let τH be the set of tasks that have carry-in
jobs in DH.

Definition 8. Let δk be the amount of work performed by a
carry-in job Tk,j in the schedule S by time td.

In much of the rest of the analysis, we focus on a time tn
defined as follows: if there exists a non-busy non-displacing
interval before td, then tn is the end of the latest such
interval; otherwise, tn = 0.

Lemmas 2 and 3, given next, were proved in [7, 10]
and [8], respectively. These proofs rely only on Property (P),
and for Lemma 2, the definition of tn. In particular, the exact
way in which jobs are scheduled does not arise. Thus, both
apply in our context. Intuitively, Lemma 2 holds because
when carry-in jobs execute prior to td, they deprive the jobs
in Ψ of processor time. If a carry-in job executes prior
to td in the actual schedule S for δi time, then while it
is executing, it receives an allocation of ui · δi in the PS
schedule. This means its lag changes by ui · δi − δi, which
is a decrease. Such decreases translate into a corresponding
increased lag for the jobs in Ψ. Lemma 3 holds because, by
Property (P), each job with a deadline prior to td is tardy by
at most x + ek time units. From this, it can be shown that
the allocation difference for any task in comparison to the
PS schedule at any point in [0, td] is at most uk · x+ ek.

Lemma 2. LAG(Ψ, td,S) ≤ LAG(Ψ, tn,S) +∑
Tk∈τH

δk(1 − uk).

Lemma 3. lag(Tk, t,S) ≤ x · uk + ek for any task Tk and
t ∈ [0, td].

Lemma 4. LetU(τ, y) (E(τ, y)) be the set of at most y tasks
from τ of highest utilization (execution cost), and let

EL =
∑

Ti∈E(τ,m−1)

ei and UL =
∑

Ti∈U(τ,m−1)

ui. (9)

Then, LAG(Ψ, tn,S) ≤ EL + x · UL.

Proof. If tn = 0, then LAG(Ψ, tn,S) = 0 and the lemma
holds trivially, so assume that tn > 0. Consider the set of
tasks α = {Ti : ∃Ti,j ∈ Ψ such that Ti,j is pending at t−n }.
Because the instant t−n is non-busy non-displacing, |α| ≤
m − 1. If a task has no pending jobs at t−n , then
lag(Ti, tn,S) ≤ 0. Thus, by (6) and Lemma 3, we have

LAG(Ψ, tn,S)

=
∑

Ti: Ti,j ∈ Ψ

lag(Ti, tn,S) ≤
∑

Ti ∈ α

lag(Ti, tn,S)

≤
∑

Ti ∈ α

x · ui + ei ≤ EL + x · UL.

From Lemmas 2 and 4, we have the desired upper bound,
LAG(Ψ, td,S) ≤ EL + x · UL +

∑
Tk∈τH

δk(1 − uk).
Upper bound on D. To compute a bound on the demand
of jobs that can compete with T`,j after td, D(DH, td,S), we
first find the latest release time of such a job.

Lemma 5. If Tk,h ∈ DH∪ dH, then rk,h ≤ d`,j +ψ`+φk.

Proof. Given that ri,j−φi ≤ χi,j(t) ≤ di,j+ψi is assumed
to hold for any job Ti,j , if Tk,h ∈ DH ∪ dH, then for some
time t, rk,h − φk ≤ χk,h(t) ≤ χi,j(t) ≤ d`,j + ψ` holds.
This implies rk,h ≤ d`,j + ψ` + φk.

Corollary 1. All jobs in DH ∪ dH are released at or before
td + ρ, where ρ = maxTh∈τ (ψh) +maxTh∈τ (φh).

The following lemma bounds the amount of work due to
jobs in DH that may delay T`,j after td.

Lemma 6. D(DH, td,S) ≤
∑
Tk∈τH

(ek − δk) +
∑

Tk∈τ\T`

(⌈
ψ`+φk

pk

⌉)
· ek.

Proof. Each job Tk,h in DH is either a carry-in job or is
released after td. In the latter case, by Lemma 5, Tk,h is
released in the interval (td, td+ψ`+φk]. Each task Tk may
have one carry-in job in DH and up to

⌈
ψ`+φk

pk

⌉
jobs in DH

released after td. If Tk has a carry-in job, then Tk is in τH
and the work due to its carry-in job after td is at most ek−δk.
The work generated by any job of Tk in DH released after
td is at most ek. From these facts, the lemma follows. (Note
that T` is excluded from the second summation because it is
does not have jobs in DH.)
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Figure 9. Illustration of Lemma 7.

Upper bound on W (dH ∪ DH, td,S). Because W (dH ∪
DH, td,S) ≤ LAG(Ψ, td,S) + D(DH, td,S), from
Lemmas 2, 4, and 6 we have

W (dH ∪ DH, td,S)

≤ EL + x · UL +
∑

Tk∈τH

(δk · (1 − uk) + (ek − δk))

+
∑

Tk∈τ\T`

(⌈
ψ` + φk
pk

⌉)
· ek

≤ EL+x · UL+
∑

Tk∈τ\T`

(⌈
ψ` + φk
pk

⌉
+1

)
· ek. (10)

Necessary condition for tardiness to exceed x + e`. We
now find a lower bound on the amount of competing work
that is necessary for T`,j to miss its deadline by more than
x + e`. The following lemma, which is proved in an
appendix, establishes the desired bound. Here, we give
an informal explanation. The tardiness of T`,j can exceed
x + e` only if competing jobs execute during the interval
[td, td+x+e`) and the remaining processing capacity is not
sufficient to accommodate the work pending for T`,j and any
preceding jobs of T`. Fig. 9 illustrates the situation wherein
the tardiness of T`,j barely exceeds x + e`. This happens
because jobs in DH, released at td+ρ (refer to Corollary 1),
occupy all the processors, thereby postponing the execution
of T`,j . The time instants where processors are allocated to
jobs in dH ∪ DH are shaded. As seen, W (dH ∪ DH, td,S)
must exceed ρ+m · (x− ρ) + e`, which is outlined in bold.

Lemma 7. If the tardiness of T`,j exceeds x + e`, where
x ≥ ρ, then W (dH ∪ DH, td,S) > ρ+m · (x− ρ) + e`.

Deriving a tardiness bound. By Lemma 7, setting the
upper bound onW (dH∪DH, td,S) as implied by (10) to be
at most ρ+ e` +m · (x− ρ) will ensure that the tardiness of
T`,j is at most x+ e`. The resulting inequality is as follows.

EL + x · UL +
∑

Tk∈τ\T`

(⌈
ψ` + φk
pk

⌉
+ 1

)
· ek

≤ m · (x− ρ) + e` + ρ

Solving (11) for x, we have

x ≥
EL +A(`)

m− UL
, (11)

where

A(`) = (m− 1) · ρ− e` +
∑

Tk∈τ\T`

(⌈
ψ` + φk
pk

⌉
+ 1

)
· ek.

If x equals the greater of ρ and the right-hand side of (11)
(recall that x ≥ ρ is required), then the tardiness of T`,j
will not exceed x + e`. A value for x that is independent of
the parameters of T` can be obtained by replacing A(`) by
maxT`∈τ (A(`)) in the numerator of (11).

Theorem 2. With x as defined above, the tardiness for a
task Tk scheduled under the window-constrained algorithm
A is at most x+ ek.

Note that, for tardiness to be bounded under A, the
denominator in the right-hand side of (11) must be positive.
This condition is satisfied because UL < m holds by (9).

4.3. Extensions to the Analysis

In this section, we briefly discuss several possible
extensions to the analysis above.
Tightening the bound for specific algorithms. The
bound in Theorem 2 can be improved for particular
algorithms, by exploiting the structure of the set of tasks
with carry-in jobs τH and the way jobs are prioritized.
For example, for EDF, jobs with deadlines after td have
lower priority than T`,j . Thus, DH = ∅, τH = ∅, and
D(DH, td,S) = 0, which makesW (dH∪DH, td,S) in (10)
at most EL + x · UL. As a result, tardiness under EDF is at
most EL−minTh∈τ (eh)

m−UL
+ ek.

Allowing early releases. Our analysis applies if jobs are
allowed to be “early-released” [1], i.e., to become available
for execution before their actual release times. The idea of
early releasing is illustrated in Fig. 10, which shows an EDF
schedule for the task set in Example 1 in which early releases
are allowed. Note that job T1,2 begins its execution one time
unit earlier than its actual release time. Note also that jobs
T4,1 and T4,3 miss their deadlines by one time unit.
Restricting the available processing capacity. Several
authors have established tardiness bounds in scenarios in
which the full capacity of one or more processors is not
available for the soft real-time workload [2, 7, 9]. Such
capacity restrictions can be more generally dealt with in
analyzing tardiness through the use of service functions [3].
Specifically, the capacity that Processor k can provide to the
tasks in τ in any time interval of length ∆ > 0 can be
characterized by a service function βk(∆) = max(0, ûk ·
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Figure 10. Early releasing under global EDF.

(∆ − σk)), where ûk ∈ (0, 1] and σk ≥ 0. We require
βk(∆) and σk to be specified for each k and further require
Usum ≤

∑m

k=1 ûk. Note that, if (unit-speed) Processor k is
fully available to the tasks in τ , then βk(∆) = ∆.

Example 9. Consider a system with two processors that are
not fully available for soft real-time tasks. The availability
pattern, which repeats every eight time units, is shown in
Fig. 11(a); intervals of unavailability are shown as shaded
regions. For Processor 1, the minimum amount of service
that is guaranteed to soft real-time tasks over any interval
of length ∆ is zero if ∆ ≤ 2, ∆ − 2 if 2 ≤ ∆ ≤ 4,
and so on. Fig. 11(b) shows the minimum amount of time
β∗(∆) that is available on Processor 1 for soft real-time
tasks over any interval [t, t + ∆]. It also shows a service
curve β1(∆) = max(0, û1(∆ − σ)), where û1 = 5

8 and
σ = 2, which bounds β∗(∆) from below. β1(∆) can be
used to reflect the minimum service guarantee for soft real-
time tasks on Processor 1.

Theorem 2 can be generalized as follows when service
functions are used in this way.

Theorem 3. If service functions are used as described
above, then the tardiness of any task Tk under A is at most
x+ ek, where

x =
EL +max(A(`))∑m

k=1 ûk −max(H − 1, 0) ·max(u`) − UL
,

A(`) = e` · (
m∑

k=1

(1 − ûk) − 1) +

m∑

k=1

ûk · (σ + σk)

+
∑

Tk∈τ\T`

(⌈
ψ` + φk
pk

⌉
+ 1

)
· ek

+(m− 1 −max(H − 1, 0) · u`) · ρ,

σ = maxk∈[1..m](σk), and H is the number of processors
with βk(∆) 6= ∆, provided the denominator of x is positive.

The new bound differs from that stated in Theorem 2
in several ways. First, the total processing capacity of the
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Figure 11. (a) Unavailable time instants and
(b) service functions for Processor 1 (denoted
P1) in Example 9.

system in the denominator of (11) is changed from m to∑m

k=1 ûk, which is the total guaranteed processing capacity
of the system. Second, the term

∑m

k=1 ûk · (σ + σk) in
A(`) appears because one or more processors might not
be available during an interval of length σ. This results
in postponing pending work to the future and increasing
tardiness. The other terms, specifically e` · (

∑m

k=1(1 −
ûk)− 1) in A(`) and the two expressions involvingH , arise
because of the fact that capacity is not provided to the tasks
in τ at a steady rate. (Due to space constraints, it is not
possible to give a more precise explanation of these terms.)
For example, in Fig. 11(b), no service is guaranteed for
intervals of length at most two. Note that, if all processors
are fully available to the tasks in τ , then for each k, βk(∆) =
∆, ûk = 1, and σk = σ = H = 0. Thus, Theorem 2
becomes a special case of Theorem 3.

5. Experiments

As noted in Sec. 4.3, different algorithms to which
Theorem 2 applies may exhibit very different behavior in
terms of tardiness. To provide a sense of how significant
such differences can be, we present here the results of
some experiments that we conducted to compare observed
tardiness under different scheduling algorithms. (The setup
in these experiments is rather simple. We do not have
sufficient space to present more exhaustive experiments.)
In these experiments, task sets were generated at random.
Task periods and utilizations were taken from {5, 6, 8,
9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 28, 30, 32, 36,
40} and (0, umax], respectively, where umax varied over
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different scheduling algorithms.

{0.1, 0.3, 0.5, 0.7, 0.9}. For each value of umax, 50 task sets
were generated for a four-processor system. Schedules were
then produced for these task sets (with job releases occurring
in a synchronous, periodic manner) for each of EDF, FIFO,
LLF, and EDZL for 20,000 time units. In producing these
schedules, system and scheduling overheads were taken to
be negligible. For each schedule, the maximum observed
tardiness was recorded. Fig. 12 shows the average of these
values as a function of umax. Note that tardiness under
LLF and EDZL is smaller than that under FIFO and EDF
(much smaller than FIFO). While LLF may be impractical
in reality because it preempts jobs frequently, EDZL could
be a viable approach for scheduling soft real-time workloads
when tardiness is allowed.

6 Conclusion

We have presented a general tardiness-bound derivation
that applies to a wide variety of global scheduling
algorithms. This result shows that, with the exception of
static-priority algorithms, most global algorithms of interest
in the real-time-systems community have bounded tardiness.
When considering new algorithms, the question of whether
tardiness is bounded can be answered in the affirmative
by simply showing that the required prioritization can be
specified. Of course, a tardiness bound that is tighter than
that given by our results might be possible through the use
of reasoning specific to a particular algorithm. Indeed, it is
difficult to obtain a very tight bound when assuming so little
concerning the nature of the scheduling algorithm. Our goal
in this paper was not to produce the tightest bound possible,
but rather to produce a bound that could be widely applied.

Several interesting avenues for further work exist. For
example, it would be interesting to determine if service
functions could be used to deal with heterogeneous systems

with processors of different speeds. It would also be
interesting to investigate reactive techniques that can lessen
tardiness for certain jobs, as circumstances warrant. Such
techniques might exploit the fact that our framework allows
priority definitions to be changed rather arbitrarily at
runtime. Finally, our experimental results suggest that actual
tardiness under EDZL is likely to be very low. It would be
interesting to improve our analysis as it applies to EDZL in
order to obtain a tight tardiness bound.
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Appendix: Proof of Lemma 7

The proof of Lemma 7 is based on similar proofs found
in [4, 7, 10]. We prove it by proving the contrapositive: we
assume thatW (dH∪DH, td,S) ≤ ρ+m(x−ρ)+ e` holds
and show that the tardiness of T`,j cannot exceed x + e`.
In that which follows, the terms “busy” and “non-busy” are
assumed to be interpreted with respect to the job set dH ∪
DH.

To begin, note that, by Property (P), if T` releases jobs
before T`,j , then the job T`,j−1 completes by time t′, where

t′ ≤ td − p` + e` + x ≤ td + x. (12)

Thus, if the latest busy instant after td is at or before td + x,
then T`,j executes uninterruptibly after td + x (if it has not
completed by then) and completes by td + x + e`, i.e., its
tardiness is at most x+ e`.

In the rest of the proof, we assume that the latest busy
instant is after td + x. Let B1 denote the total length of all
busy intervals in [td+x, td+x+e`), as illustrated in Fig. 13.
According to Corollary 1, all jobs in dH ∪ DH are released
at or before td + ρ. Thus, the number of tasks with pending
jobs in dH∪DH can only decrease after td+ρ. If fewer than
m processors are busy at any instant tn ∈ [td + ρ, td + x),
then at mostm−1 tasks with jobs in dH∪DH have pending
work at or after tn. These tasks can be accommodated by at
most m − 1 processors and execute without interruption at
or after tn. Because T`,j is in dH (see Sec. 4.2), by (12),
this implies that it completes by time td + x + e`, i.e., its
tardiness is at most x+ e`.

In the rest of the proof, we assume the following.

(B) m processors are busy throughout [td + ρ, td + x).

Let B2 denote the total length of all busy intervals during
[td, td + ρ), and let B denote the total length of all busy
intervals in [td, td + x + e`), as illustrated in Fig. 13. Then,
from Property (B), it follows that

B = B1 +B2 + (x− ρ). (13)

Let W1 denote the total length of all non-busy intervals
in [td + x, td + x + e`), and let W2 denote the total length
of all non-busy intervals in [td, td + ρ). Then, we have the
following.

W1 = e` −B1 (14)

W2 = ρ−B2 (15)

As noted above, T`,j ∈ dH. Also, any earlier jobs of T`
that are pending at td are also in dH. Given this, we now
show that the assumption that the tardiness of T`,j exceeds
x + e` leads to a contradiction. Assuming this, the system
performs work on a least one job in dH (namely, a job of
T`) at every non-busy instant in [td, td + x + e`). Thus,

B1

B2

B

td t +
d

r t +xd
t +x+ed l

jobs in DHjobs in dH

m

Figure 13. The structure of busy intervals in
Lemma 7.

by the definition of B, the total work performed on jobs in
dH ∪ DH in this interval is at least Z = W1 +W2 +m ·B.
By (13)–(15),

Z = W1 +W2 +m ·B

= e` −B1 + ρ−B2 +m · (x− ρ+B1 +B2)

= e` + ρ+m · (x− ρ) + (m− 1) · B3, (16)

where B3 = B1 +B2 ≥ 0.
At the beginning of the proof, we assumed that W (dH ∪

DH, td,S) ≤ ρ + m · (x − ρ) + e`. From this and (16), it
follows that the amount of work pending at td + e` + x for
jobs in dH∪DH is at most ρ+m ·(x−ρ)+e`−e`−ρ−m ·
(x−ρ)− (m−1) ·B3 = −(m−1) ·B3 ≤ 0. From this, we
conclude that the tardiness of T`,j does not exceed x + e`,
which contradicts our assumption to the contrary above.
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