
A Unified Hard/Soft Real-Time Schedulability Test for Global EDF
Multiprocessor Scheduling∗

Hennadiy Leontyev and James H. Anderson
Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract

The issue of deadline tardiness is considered under global
earliest-deadline-first(GEDF) multiprocessor scheduling. New
schedulability tests are presented for determining whether a set
of sporadic tasks with arbitrary relative deadlines can be sched-
uled under either preemptive or non-preemptiveGEDF so that
pre-defined tardiness bounds are met. These tests are of pseudo-
polynomial time complexity, and can be used in hard real-time, soft
real-time, and mixed contexts.

1. Introduction

Most major chip manufacturers are investing in multi-
core technologies to continue performance improvements in
their product lines in the face of fundamental limitations of
single-core chip designs. This development is profound as it
means that multiprocessors are now a “common-case” plat-
form. This realization has led to renewed recent interest in
multiprocessor real-time scheduling.

In research on this topic, much work has been directed
at the sporadic task model, wherein tasks repeatedly gen-
erate sequentialjobs subject to deadlines. A sporadic task
has a specificperiod, which defines the minimum spacing
between its jobs, and arelative deadline, which defines the
length of the time interval in which each of its jobs is al-
lowed to complete. Job deadlines can be eitherhard — in
which case they should always be met — orsoft— in which
case misses can occur, provided the extent of violation is
constrained in some way. In this paper, we consider a uni-
fied framework in which all timing constraints are specified
usingdeadline tardiness bounds. For a hard deadline, tar-
diness must be zero, while for a soft deadline, it may be
non-zero. We consider a real-time system to beschedulable
using some scheduling algorithmA if no deadline tardiness
bound is exceeded underA.

In work on multiprocessor scheduling, two basic schedul-
ing approaches have been considered:partitioning and
global scheduling. Under partitioning, tasks are statically
assigned to processors, and a uniprocessor scheduling al-
gorithm is used on each processor to schedule its assigned

∗Work supported by grants from IBM and Intel Corps., by NSF grants
CCF 0541056 and CNS 0615197, and by ARO grant W911NF-06-1-0425.

tasks. In contrast, under global scheduling, a task may ex-
ecute on any processor and may migrate among processors.
Global scheduling becomes a more viable option on multi-
core platforms due to the presence of on-chip shared caches,
which lessen task migration overheads. One global algo-
rithm that has received considerable attention is theglobal
earliest-deadline-first(GEDF) algorithm. Under it, jobs are
are globally prioritized in order of (absolute) deadline.

Motivation. Many systems have both hard and soft real-
time components. One way to ensure task timing constraints
in such a system is to treat all deadlines as hard. Perhaps
partly because of that, most prior work onGEDF has fo-
cused on hard real-time schedulability tests [1, 4, 5, 6]. If
such a test passes, then each task is guaranteed zero tardi-
ness. Unfortunately, ensuring zero tardiness underGEDF
may restrict system utilization severely. Such restrictions
can be eased by allowing deadlines to be missed. For exam-
ple, if only bounded tardiness is required (forsomebound),
then as shown by Devi and Anderson [9], restrictive uti-
lization caps are not required under preemptive and non-
preemptiveGEDF. Unfortunately, as discussed below, the
analysis in [9] imposes several restrictions that precludethe
consideration of arbitrary task systems withspecifiedtardi-
ness bounds. Motivated by these concerns, in this paper, we
present new schedulability tests for the non-preemptive and
preemptiveGEDF scheduling algorithms, henceforth de-
notedNP-GEDF andGEDF, respectively, that ensure that
arbitrary pre-defined deadline tardiness bounds (including
bounds of zero) are met.

Prior work. Of the several existing hard real-time schedu-
lability tests forGEDF, the most accurate and sophisticated
is due to Baruah [4]. This test requires pseudo-polynomial
time complexity. It is also limited toconstrained deadline
systems, wherein each task’s relative deadline is at most
its period. In recent work, Baruah and Baker presented a
pseudo-polynomial test that lifts the latter restriction [5].
However, this test is rather pessimistic, as we demonstrate
later. ForNP-GEDF, a hard real-time test has also been
proposed by Baruah in [3], but it is limited toimplicit dead-
line systems, wherein each task’s relative deadline equals its
period. Also, the maximum worst-case task execution time
is required to be less than the minimum task period.

In [9], Devi and Anderson presented closed-form expres-

1

sions that bound maximum deadline tardiness underGEDF
and NP-GEDF. In [10], they also presented a variant of
GEDF that can ensure arbitrary deadline tardiness (includ-
ing zero) for up tom selected privileged tasks, wherem
is the number of processors; other tasks are guaranteed
bounded deadline tardiness. However, the algorithm can-
not ensure arbitrary deadline tardiness bounds for more than
m tasks. In both [9] and [10], only implicit-deadline sys-
tems are considered and each task’s maximum tardiness is
assumed to be at least its worst-case execution time. More-
over, it is not possible to freelyspecifydesired tardiness
bounds, so systems where different tardiness thresholds are
specified for different classes of tasks cannot be analyzed.

To summarize, using the results discussed above, and
given a task set with specified deadline tardiness bounds,
there are two basic options: check that maximum deadline
tardiness is zero using a hard real-time schedulability test; or
check whether specified tardiness bounds exceed the bounds
computed in [8, 9, 10]. Additionally, it is possible to modify
each task by increasing its relative deadline by an amount
up to its tardiness threshold. However, this changes how
jobs are prioritized and may cause a task’s actual (unmodi-
fied) deadlines to be missed more frequently. Each of these
approaches has limitations in systems where tasks may be
subject to various (possibly quite different) tardiness thresh-
olds (some of which may be zero).

Contributions. In this paper, we present a unified frame-
work for checking that arbitrary pre-defined tardiness
bounds are not violated underGEDF andNP-GEDF. Our
work differs from prior work in several ways. First, in
contrast to [4, 5], we consider non-preemptive job execu-
tion and non-zero tardiness bounds; in contrast to [4], we
also consider arbitrary relative deadlines. Second, unlike
in [8, 9, 10], we allow relative deadlines to differ from task
periods and tardiness bounds to be arbitrary. Fourth, in con-
trast to [3], the presented test forNP-GEDF can be used to
check hard real-time schedulability without severely restrict-
ing task parameters. Fifth, it is possible to apply our testsin
settings where therelative prioritiesof jobs are specified us-
ing deadlines andtimeliness requirementsare specified us-
ing tardiness thresholds.

The rest of this paper is organized as follows. In Sec. 2,
we present our task model. Then, in Sec. 3, we present
the aforementionedGEDF and NP-GEDF schedulability
tests. In Sec. 4, we experimentally compare them with other
methods. In these experiments, our tests exhibited superior
performance, typically by a wide margin. We conclude in
Sec. 5.

2. System Model

We consider the problem of scheduling onm processors
a setτ of n sporadic tasks,T1, . . . , Tn. Each task is invoked

or releasedrepeatedly, with each such invocation called a
job. Associated with each taskTi are two parameters,ei and
pi: ei gives the worst-caseexecution timeof one job ofTi,
while, pi, called theperiod of Ti, gives the minimum time
between consecutive job releases ofTi.

Thejth job of Ti, wherej ≥ 1, is denotedTi,j. A task’s
first job may be released at any timet ≥ 0. The release
time of jobTi,j is denotedri,j and its (absolute) deadline as
di,j = ri,j + Di, whereDi ≥ ei is the relative deadline
of Ti. If the jobTi,j completes at timet, then itstardiness
is max(0, t − di,j). A task’s tardiness is the maximum of
the tardiness of any of its jobs. We denote the maximum
allowed deadline tardiness for taskTi asΘi ≥ 0. We say
that an unfinished job isreadyif it has been released and its
predecessor (if any) has completed execution.1

Throughout the paper, we assume thatei, pi, Di, andΘi

are non-negative integers and all time values are integral.
For brevity, we sometimes use the notationTi(ei, pi, Di, Θi)
to specify task parameters.

The utilization of taskTi is defined asui = ei/Pi, and
the utilization of the task systemτ as Usum =

∑

Ti∈τ ui.
We assumeUsum ≤ m, for otherwise, tardiness may grow
unboundedly.

In what follows, we assume that each jobTa,b has a
unique priority so thatTa,b has higher priority thanTk,j , de-
notedTa,b ≺ Tk,j , iff da,b < dk,j ∨ (da,b = dk,j ∧ b < j).
Ta,b � Tk,j implies that eitherTa,b ≺ Tk,j or Ta,b = Tk,j .
GEDF selects at mostm ready jobs with the highest prior-
ity so that lower-priority jobs can be preempted. In contrast,
underNP-GEDF, all jobs execute non-preemptively.

In the next section, we deviseGEDF and NP-GEDF
tests that, when given a sporadic task setτ with arbitrary rel-
ative deadlines as described above, determine whether task
Ti’s maximum deadline tardiness is at mostΘi. Due to
space constraints, a full proof is given only forNP-GEDF,
as it is more interesting.GEDF is dealt with by noting sim-
plifications to the presented analysis that follow when pre-
emptivity is allowed.

3. Schedulability Tests

In devising our tests, we adapt an approach due to Baruah
for checking hard real-time schedulability underGEDF [4].
Adaptations are needed to deal with non-preemptivity (as
allowed byNP-GEDF) and non-zero tardiness.

Similarly to [4], we order jobs by their priorities and as-
sume thatTk,j is the first job to miss its deadline, at time
td = dk,j , by more than its pre-defined tardiness thresh-
old, Θk. We further assume that each jobTa,b such that
Ta,b ≺ Tk,j misses its deadline by at mostΘa. We con-
sider an interval that includes the time whenTk,j becomes

1Note that, when a job of a task misses its deadline, the release time of
the next job of that task is not altered. However, at most one job of a task
may execute at any time, even if deadlines are missed.

2

ready and the latest time whereTk,j is allowed to complete.
During this interval, we consider demand due to compet-
ing higher-priority jobs and that due to lower-priority (non-
preemptive) jobs that can interfere withTk,j . We first com-
pute a lower boundLB(τ, m) on this demand that is nec-
essary forTk,j ’s tardiness to exceedΘk We then find a fi-
nite upper boundUB(τ, m) on this competing demand. Set-
ting UB(τ, m) ≥ LB(τ, m) will give us a sufficient test for
checking whether a task’s tardiness bound is violated.

Definition 1. We let te denote the time when jobTk,j be-
comes ready, which is the later of its arrival timerk,j and
the time whenTk,j−1 (if j ≥ 2) finishes execution.

BecauseTk,j misses its deadline, there are other jobs that
deprive it of processor time after timete. These could be
higher-priority jobs or lower-priority jobs that execute non-
preemptively at timete.

Definition 2. We say that jobTi,j is pending at time
t if ri,j ≤ t and Ti,j has not completed execu-
tion at time t. We let τp(t) = {Ta | for someb,
Ta,b is pending at timet andTa,b � Tk,j}.

The following lemma identifies conditions under which
Tk,j ’s tardiness exceedsΘk.

Lemma 1. If te > td − min(Di) andTk,j ’s tardiness ex-
ceedsΘk, then |τp(te)| ≥ m or fewer than|τp(te)| tasks
fromτp(te) execute atte.

Proof. Suppose that|τp(te)| ≤ m−1 and all tasks inτp(te)
execute atte. JobTk,j ’s release time isrk,j = td − Dk.
Tk,j ’s predecessor completes at timet′ ≤ td − pk + Θk.
Thus, by Def. 1,

te = max(rk,j , t
′) ≤ max(rk,j , td − pk + Θk). (1)

Because|τp(te)| ≤ m − 1 and all tasks (includingTk) in
τp(te) execute atte, jobTk,j commences execution atte, and
by (1), completes at or beforete +ek ≤ max(rk,j +ek, td−
pk +Θk + ek) ≤ max(rk,j +Dk, td +Θk) ≤ max(td, td +
Θk) ≤ td + Θk. This contradicts the assumption thatTk,j ’s
tardiness exceedsΘk.2

Definition 3. Let t0 ≤ te be the earliest instant such that
∀t ∈ [t0, te), |τp(t)| ≥ m or fewer than|τp(t)| tasks from
τp(t) execute at timet. If such an instant does not exist, then

let t0
∆
= te.

2Note that the conditionte > td − min(Di) is not used in the above
argument. This condition has been included so that the lemmais applicable
to GEDF as well. In this case, no jobTa,b such thatTa,b � Tk,j can be
released at or afterte and preemptTk,j . The argument used forNP-GEDF
can thus be repeated.

Def. 3 generalizes the well-known concept of anidle in-
stantin uniprocessor scheduling. We call an interval[t1, t2)
busyif no processor is idle within it.

Claim 1. The time interval[t0, te) is busy.

Proof. Suppose that a processor is idle at timet ∈ [t0, te).
BecauseNP-GEDF is work-conserving, all tasks inτp(t)
execute at timet and thus|τp(t)| ≤ m − 1, which violates
Def. 3.

If job Tk,j executes forxk,j time units within the interval
[te, td + Θk), wherexk,j ≤ ek is the actual execution time
of Tk,j , then it cannot violate its tardiness threshold. If job
Tk,j executes for less thanxk,j time units within[te, td +
Θk), then it executes for at mostxk,j − 1 time units within
this interval, as time is integral. Hence, ifTk,j misses its
deadline by more thanΘk, then the total time for which it
does notexecute in[te, td + Θk) is at leasttd + Θk − te −
(xk,j −1) ≥ td+Θk−te−(ek−1) = td+Θk−te−ek +1.

Definition 4. Let Γ be a subset of the set of intervals within
[te, td + Θk), where jobTk,j does not execute, such that the
cumulative length ofΓ is exactlyte − td + Θk − ek + 1.

Example 1. Fig. 1 (a) shows a schedule where jobTk,j , re-
leased at timerk,j , misses its deadline at timetd by more
thanΘk time units underNP-GEDF. The schedule shows
the demand placed on allm processors. (It is not intended
to depict a particular assignment of jobs to processors.) The
predecessor jobTk,j−1 misses its deadline at timetd−pk by
Bk ≤ Θk time units, so that jobTk,j becomes ready at time
te. At time t0 ≤ te, there areq tasks with non-preemptive
lower-priority jobs that execute and at leastm− q + 1 tasks
with pending higher-priority jobs. Because at least one of
these tasks is not scheduled att0, theq non-preemptive jobs
must have commenced execution beforet0. This implies
that at mostm − q tasks have pending higher-priority jobs
executing immediately prior tot0. JobTk,j does not com-
mence execution immediately at timete because other jobs
execute duringΓ. Note that, in Fig. 1 (a),Γ consists of one
interval becauseTk,j cannot be preempted once it starts ex-
ecution. The situation is different in Fig. 1 (b), which shows
a GEDF schedule that we examine later.

In Fig. 1, the area of the lightly-shaded intervals corre-
sponds to the competing demand for the jobTk,j . We now
derive a condition this demand must satisfy if the tardiness
threshold forTk is violated.

Definition 5. Let I(Ti) be the total amount of time for
which jobs of taskTi execute within[t0, te) ∪ Γ.

3

time
tdt0

Qk

job release job deadline

rk,j

tet -pd k

G

Tk,jTk,jTk,j

Bk

m-1

time
tdt0

Qktet -pd k

G

Tk,j

Bk

Tk,j
competing demand

m-q

non-preemptive
lower-priority jobs

rk,j

q

Tk,j-1Tk,j-1

(a) (b)

Figure 1. Conditions for tardiness violations under (a) NP-GEDF and (b) GEDF.

If job Tk,j violates its tardiness thresholdΘk, then

n
∑

i=1

I(Ti) ≥ m · (td − t0 + Θk − ek + 1). (2)

This follows from two observations. First, sinceTk,j

does not execute withinΓ while being ready, all processors
execute jobs of tasks other thanTk during Γ. Second, all
processors are busy during[t0, te), by Claim 1. Multiply-
ing the total length of[t0, te) ∪ Γ, which is |[t0, te) ∪ Γ| =
(te − t0)+(td +Θk − te −ek +1) = td − t0 +Θk −ek +1,
by m, we get the RHS of (2).

We construct a schedulability test using Inequality (2)
as follows. In the following subsection, we derive a lower
bound for the termtd − t0 in the RHS of (2). Then, in
Sec. 3.2, we derive an upper bound forI(Ti) in the LHS
of (2). Later, we will show that these bounds can be used to
obtain a schedulability test. To avoid distracting “boundary
cases,” we henceforth assume that the schedule being ana-
lyzed is prepended with a schedule in which no deadlines
are missed that is long enough to ensure thatt0 > 0 holds
and all predecessor jobs referenced in the proof exist.

3.1. Estimating td − t0

Lemma 2. td − t0 ≥ max(min(Di), min(Dk, pk − Θk)).

Proof. By Def. 1 and (1),

t0 ≤ te

= max(rk,j , td − pk + Θk)

≤ max(td − Dk, td − pk + Θk). (3)

From this, we have,

−t0 ≥ min(−td + Dk,−td + pk − Θk)

⇒ td − t0 ≥ min(td − td + Dk, td − td + pk − Θk)

⇒ td − t0 ≥ min(Dk, pk − Θk).

We next provetd − t0 ≥ min(Di). Assume to the contrary
thatt0 > td −min(Di) holds. Then,t0 > td −Dk ≥ 0. Let
γ = τp(t0)\τp(t0−1). By Def. 3,|τp(t0−1)| ≤ m−1 and
all tasks inτp(t0 − 1) execute at timet0 − 1. Consideringγ,
there are two possibilities. Ifγ = ∅, thenτp(t0) ⊆ τp(t0−1)
and hence|τp(t0)| ≤ m−1 and all tasks inτp(t0) execute at
time t0 − 1. At time t0, the scheduler cannot preempt a task
in τp(t0) and schedule a lower-priority task. Thus, all tasks
in τp(t0) execute att0, which violates Def. 3. On the other
hand, ifγ 6= ∅, then a taskTa that is not pending att0 − 1
releases a jobTa,b at time t0 = ra,b such thatda,b ≤ td.
Since, by our assumption,td − min(Di) < t0 = ra,b, we
haveda,b − min(Di) < ra,b and henceDa = da,b − ra,b <
min(Di), a contradiction.

3.2. Bounding I(Ti)

Definition 6. δk
∆
= td − t0.

From the above definition and (2),

n
∑

i=1

I(Ti) ≥ m · (δk + Θk − ek + 1). (4)

To check that pre-defined tardiness bounds are not
violated we have to verify, for each taskTk, that
∑n

i=1
I(Ti) < m · (δk + Θk − ek + 1) holds, where

δk ≥ max(min(Di), min(Dk, pk − Θk)) (from Lemma 2).
Because it is difficult to determine eachI(Ti) term exactly,
we derive upper bounds for them.

The next lemma identifies jobs that cannot interfere with
Tk,j . Its proof is straightforward and is therefore omitted.

Lemma 3. LetTa,b be a job of taskTa, whereTa,b ≻ Tk,j ,
such thatTa,b’s predecessor completes by timet0, and either
ra,b < t0 and Ta,b is pending but not executing att0 or
ra,b ≥ t0. Then,Ta does not execute during[t0, te) ∪ Γ and
I(Ta) = 0.

4

non-preemptive execution

0 2 4 6 8 10 12 14 16 18
time

T1

T2

T3

T4

job release job deadline

T1,1

T2,1

T3,1

T4,1

t0 td

Figure 2. Classification of tasks into τCH, τCL,
and τNC.

Using the lemma above, we can separate the tasks that
may execute within[t0, te) ∪ Γ into three disjoint sets
(which are illustrated with an example below):

τCH (“high-priority carry-in”): Includes each taskTa with
a jobTa,b that executes at timet0 such thatTa,b � Tk,j and
ra,b < t0.
τCL (“low-priority carry-in”): Includes each taskTa with
a jobTa,b that executes at timet0 such thatTa,b ≻ Tk,j and
ra,b < t0 .
τNC (“non-carry-in”): Includes each taskTa with a job
Ta,b, whereTa,b � Tk,j , such thatTa,b does not execute
prior to t0 andTa,b’s predecessor completes by timet0.

Note that a job ofTa ∈ τCH must be pending immediately
prior to t0, thus, by Def. 3,Ta must execute immediately
prior to t0. Also, a job ofTa ∈ τCL must be executing non-
preemptively at timet0.

Example 2. Consider the two-processor schedule in Fig. 2.
In this schedule, jobT1,1, which corresponds to our job of
interestTk,j , becomes ready at time 2 and misses its dead-
line at timetd = d1,1 = 18. At time 2, jobT2,1, which
is released at time 0, executes non-preemptively and jobs
T3,1 and T4,1 have higher priority thanT1,1. Note that
T4,1 becomes ready at time 2 and does not execute at that
time. Also,τp(1) = {T3} andT3 executes at time 1, while
τp(2) = {T3, T4} and onlyT3 executes at time 2. Thus,
t0 = 2, τCH = {T3}, τCL = {T2}, andτNC = {T1, T4}.

Claim 2. If δk < Dk, thenTk ∈ τCH.

Proof. By Def. 6, t0 = td − δk. Assumingδk < Dk, this
implies t0 > td − Dk = rk,j . Becausete ≥ t0 > rk,j ,
job Tk,j is not ready at its release time, and one or more
of Tk,j ’s predecessors is pending throughout[rk,j , t0). Let
Tk,b, whereb < j, be the earliest pending job ofTk at time

t0 − 1. Note thatTk,b ≺ Tk,j . Thus, by the definition of
τp(t0 − 1) (see Def. 2),Tk ∈ τp(t0 − 1), and hence, by
Def. 3, Tk,b executes att0 − 1. Sincerk,j < t0, we have
rk,b < t0, and thus, by the definition ofτCH, Tk ∈ τCH.

We henceforth useICH(Ti), ICL(Ti), andINC(Ti) to de-
noteI(Ti) for the case whenTi is in τCH, τCL, andτNC, re-
spectively. With this notation, (4) becomes

∑

Ti∈τCH

ICH(Ti) +
∑

Ti∈τCL

ICL(Ti) +
∑

Ti∈τNC

INC(Ti)

≥ m · (δk + Θk − ek + 1). (5)

In order to verify that no tardiness bound is violated for
any task inτ , we show that the negation of (5) holds for each
taskTk ∈ τ by establishing the following:

max





∑

Ti∈τCH

ICH(Ti) +
∑

Ti∈τCL

ICL(Ti)

+
∑

Ti∈τNC

INC(Ti)





< m · (δk+Θk−ek+1). (6)

This expression must be checked for eachδk ≥
max(min(Di), min(Dk, pk − Θk)) (from Lemma 2), and
each valid choice ofτCH, τCL, andτNC. Due to the latter, we
take the maximum over all possible choices in the LHS of
(6).

We are left with bounding each ofICH(Ti), ICL(Ti), and
INC(Ti) and maximizing the total demand for any valid
choice of the setsτCH, τCL, andτNC. Some trivial bounds
can be derived easily.

Lemma 4. Each ofICH(Ti), ICL(Ti), andINC(Ti) is at most
δk + Θk − ek + 1, if i 6= k, and at mostmax(δk −Dk, δk −
pk + Θk), if i = k.

Proof. If i 6= k, then the work performed byTi in [t0, te)∪Γ
cannot exceed the cumulative length of[t0, te)∪Γ, which is
δk + Θk − ek + 1, by Def. 4. Also,I(Tk) cannot exceed the
length of[t0, te) becauseTk does not execute withinΓ. By
(3), we can boundte − t0 as follows:

te − t0

≤ max(td − Dk, td − pk + Θk) − t0

= max(td − t0 − Dk, td − t0 − pk + Θk)

{by Def. 6}

≤ max(δk − Dk, δk − pk + Θk).

5

Lemma 5. ICL(Ti) is at most














min(ei − 1,
δk + Θk − ek + 1), i 6= k andDi ≥ δk + 2

or i > k andDi ≥ δk + 1,
0, otherwise.

Proof. If Ti ∈ τCL, then some jobTi,g, whereTi,g ≻ Tk,j

and ri,g < t0, executes non-preemptively att0. Either
di,g > td or di,g = td and i > k. If di,g > td, thenTi

can be any task other thanTk for which Di ≥ δk + 2 holds
(sinceδk = td − t0). If di,g = td, thenDi ≥ δk + 1 and
i > k. It follows from these facts that the only job ofTi that
can execute in[t0, te)∪Γ is Ti,g, and it can do so for at most
ei − 1 time units. Thus,ICL(Ti) ≤ ei − 1. By Lemma 4, the
required result follows.

Lemma 6. INC(Ti) is at most






















min(DBF (Ti, δk),
δk + Θk − ek + 1), i 6= k

min(DBF (Ti, δk) − ek,
max(δk − Dk, δk − pk + Θk)), i = k andδk ≥ Dk,

0, otherwise,

where

DBF (Ti, δk) = max(0,

(⌊

δk − Di

pi

⌋

+ 1

)

· ei). (7)

Proof. ConsiderTi ∈ τNC. There are two cases.
Case 1: i 6= k. SinceTi ∈ τNC, each jobTi,g that ex-
ecutes within[t0, te) ∪ Γ has ri,g ≥ t0 and di,g ≤ td.
According to [4], the demand due to such jobs is at most
DBF (Ti, td − t0) = DBF (Ti, δk), whereDBF is given
by (7). By Lemma 4, the required result follows.
Case 2: i = k. If δk < Dk, then, by Claim 2,Tk 6∈ τNC.
If δk ≥ Dk, then the demand of jobs ofTk other thanTk,j

that are released and have deadlines within[t0, td] is at most
DBF (Tk, δk) − ek. By Lemma 4, the required result fol-
lows.

The following lemma is proved similarly to Lemma 6. Its
proof can be found in an appendix.

Lemma 7. ICH(Ti) is at most






min(DBF ′(Ti, δk), δk + Θk − ek + 1), i 6= k,
min(DBF ′(Ti, δk) − ek,

max(δk − Dk, δk − pk + Θk)), i = k,

where

DBF ′(Ti, δk)

=

⌊

δk + Θi

pi

⌋

·ei+min(ei, (δk+Θi) mod pi)). (8)

Each ofICH(Ti) andINC(Ti) accounts for the demand of
jobs ofTi (excluding that due toTk,j if i = k) having both
release times and deadlines within the interval[t0, td]. In
addition,ICH(Ti) accounts for the demand of higher-priority
jobs released prior tot0 that are pending att0. The lemma
below easily follows.

Lemma 8. For each taskTi, ICH(Ti) ≥ INC(Ti) ≥ 0 and
ICL(Ti) ≥ 0.

Let

M(Tk)

=
∑

Ti∈τCH

ICH(Ti)+
∑

Ti∈τCL

ICL(Ti)+
∑

Ti∈τNC

INC(Ti).

(9)

To verify that (6) holds, we need to find the setsτCH, τCL, and
τNC that would yieldM∗(Tk) = maxτCH,τCL,τNC M(Tk) for
a given valueδk. Not every choice ofτCH, τCL, andτNC is
valid. Overall, the setsτCH, τCL, andτNC must satisfy the
following constraints:

τNC ∪ τCH ∪ τCL ⊆ τ, τNC ∩ τCH ∩ τCL = ∅,
Tk 6∈ τCL, δk < Dk ⇒ Tk ∈ τCH,
|τCH| ≤ m − 1, |τCH ∪ τCL| ≤ m.







(10)

The constraintTk 6∈ τCL follows because each taskTi ∈ τCL

has a job executing at timet0 of lower priority thanTk,j . The
constraintδk < Dk ⇒ Tk ∈ τCH follows from Claim 2. By
Def. 2 and the definition ofτCH, τCH ⊆ τp(t0−1). By Def. 3,
all tasks inτp(t0 − 1) execute att0 − 1 and|τp(t0 − 1)| ≤
m − 1. Thus,|τCH| ≤ m − 1. Because at mostm jobs may
execute at any time, the number of tasks with carry-in jobs
is |τCH ∪ τCL| ≤ m.

3.3. Finding M∗(Tk)

Given the constraints in (10), it is relatively straightfor-
ward to determineM∗(Tk) in polynomial time. In this sec-
tion, we briefly sketch how this can be done. In this descrip-
tion, we assume for simplicity thatn ≥ m andδk ≥ Dk.
The caseδk < Dk only restrictsTk to be in τCH (by
Claim 2) and can be dealt with similarly. Given the con-
straint |τCL ∪ τCH| ≤ m, we must merely check which of
at mostm tasks should be assigned toτCH andτCL and how
such tasks should be distributed between these two sets. (By
(10) and Lemma 8, we can assume that it is desirable to as-
sign at leastm − 1 tasks toτCH ∪ τCL.) In addition, the
constraint|τCL| ≤ m − 1 implies that at least one task is
assigned toτCL if |τCH ∪ τCL| = m.

The appropriate tasks to assign toτCH ∪ τCL can be de-
termined as follows. To begin, imagine a default assignment
wherein all tasks are assigned toτNC. Given such an assign-
ment, we must select at mostm tasks to move fromτNC to

6

τCH ∪ τCL under the restrictions expressed above. For this
purpose, define, for each taskTi, two values:HD(Ti) =
ICH(Ti)−INC(Ti) andLD(Ti) = ICL(Ti)−INC(Ti). In these
expressions,ICH(Ti), ICL(Ti), andINC(Ti) are assumed to
equal their upper bounds as given in Lemmas 5, 6, and 7.
HD(Ti) andLD(Ti) reflect, respectively, how the value of
the RHS of (9) will change ifTi is moved toτCH or τCL.
We say thatτCL (respectively,τCH) is Ti’s preferred groupif
LD(Ti) ≥ HD(Ti) (respectively,HD(Ti) > LD(Ti)). Now,
defineX(Ti) = max(HD(Ti), LD(Ti)). Assume that all
tasks are ranked so thati ≤ j ⇒ X(Ti) ≥ X(Tj). It is easy
to show that there exists an optimal assignment (i.e., one that
maximizes the RHS of (9)) in which(i) the topm − 1 tasks
in this ranking are assigned toτCH ∪ τCL, and(ii) m − 2 of
these tasks are assigned to their preferred group. Given this,
an optimal assignment can be found via a two-step process.
First, consider each of the topm − 1 ranked tasks in order
and move each fromτNC to its preferred group inτCH ∪ τCL.
Second, select anmth task to move toτCH ∪ τCL. If, af-
ter the first step,|τCH| < m − 1, then this can be done by
simply moving themth task to its preferred group. How-
ever, if |τCH| = m − 1, then we must scan the remaining
n − m + 1 tasks, and record the value of the RHS of (9)
that results when each such task is moved to each ofτCH

andτCL. When considering the possibility of moving such a
task toτCH in this case, we must move some task currently
assigned there toτCL (such a task is one of the topm − 1
ranked tasks). Allm − 1 choices of a task to move toτCL

must be considered. Note that these manipulations must re-
spect the conditionTk 6∈ τCL (see (10)). After considering
all possibilities in the process just described, we choose the
assignment that maximizes the RHS of (9).

3.4. Schedulability Test

From the preceding discussion and analysis, we have the
following theorem.

Theorem 1. If

M∗(Tk) < m · (δk + Θk − ek + 1), (11)

holds for each sporadic taskTk ∈ τ and δk ≥
max(min(Di), min(Dk, pk − Θk)), then no tardiness
threshold inτ is violated underNP-GEDF.

So far, we have analyzed onlyNP-GEDF. However, the
reasoning requires only minor changes forGEDF. Under
GEDF, lower-priority jobs can be excluded from consider-
ation when analyzing jobTk,j ’s behavior. In this case, time
t0 is the earliest time instant so that the interval[t0, te) is
busy and one or more processors is idle before timet0. In
fact, this definition oft0 is employed in [4]. Therefore, in
Fig. 1 (b), which shows aGEDF schedule, the time interval
[t0, te) is busy and at least one processor is idle immediately

prior to t0. Also, underGEDF, the setΓ may not be con-
tiguous, as illustrated in Fig. 1 (b), because higher-priority
jobs may preemptTk,j . The setτCL is empty underGEDF,
and hence,ICL(Ti) = 0 for all tasksTi.

If Θi = 0, andDi ≤ pi for all tasks, then ourGEDF test
reduces to the hard real-time test in [4] (assuming integral
time). Note that, since we have assumed that time is integral,
our test’s accuracy (particularly the LHS of (6)) depends on
the assumed granularity of time.

3.5. Computational Complexity

In applying Theorem 1, we have to computeM∗(Tk)
and check (11) for an infinite number of valuesδk ≥
max(min(Di), min(Dk, pk − Θk)). However, the follow-
ing theorem, proved in the appendix, bounds the range of
δk.

Definition 7. Let δmax = (E(m)+U(m− 1) ·max(Θi)+
R + m · (ek −Θk − 1))/(m−Usum), whereE(y) (respec-
tively, U(y)) is the sum ofy largest task execution times (re-
spectively, utilizations), andR =

∑

Ti∈τ max(0, ui · (pi −
Di)).

Theorem 2. If (11) holds for taskTk for all δk ∈
[max(min(Di), min(Dk, pk − Θk)), δmax], then(11)holds
for all δk ≥ max(min(Di), min(Dk, pk − Θk)).

It can also be shown that (11) only needs to be tested at
those values ofδk at whichDBF (Ti, δk) changes for some
Ti. Given thatM∗(Tk) can be determined in polynomial
time, Theorem 2 implies the following

Corollary 1. The condition in Theorem 1 can be tested in
time pseudo-polynomial with respect to the task parameters,
for all task systemsτ for whichUsum is bounded by a con-
stant strictly less than the number of processorsm.

4. Experiments

To evaluate the efficacy of our new tests, we compared
them to other known hard and soft real-time schedulability
tests forGEDF andNP-GEDF when checking randomly-
generated task sets. In this section, we discuss the resultsof
this evaluation.

Task generation procedure. In generating task systems,
we adopted the methodology proposed by Baker in [2].
Integral task periods were distributed uniformly over
[1000, 100000]. (In [2], the range [1,1000] was proposed. In
essence, we are assuming integral time is defined at a finer
granularity.) Integral task execution times were computed
using periods and utilizations. Relative deadlines were
defined to be either implicit (i.e.,Di = pi for each taskTi)
or restricted, in which caseDi was uniformly distributed
over [ei, pi]. Four utilization distributions were considered,

7

truncated to the range[0.001, 0.999]:

U1: uniform over[0.001, 0.999];
U2: bimodal: uniform over[0.1, 0.5] with probability
2/3 and over[0.5, 1] with probability1/3;
U3: exponential with mean0.25;
U4: exponential with mean0.5.

Task sets were generated form = 2, 4, and 8 proces-
sors, as follows. An initial set ofm + 1 tasks was generated
and then tasks were iteratively added until total utilization
exceededm. The schedulability of each of these generated
sets was checked using each tested scheme. After checking
all such task sets, the entire procedure was repeated, starting
with a new initial set ofm + 1 tasks.

UnderNP-GEDF, we only considered the utilization dis-
tribution U1. We also slightly modified the task generation
procedure to ensure thatmin(pi) > max(ei) holds for each
task set. This was done in order for the hard real-time test
in [3] to be applicable to all generated task sets (see below).

We examined three rules for setting each taskTi’s tardi-
ness thresholdΘi:

R1: Θi = min(α · pi, 5 · pi), whereα has a Poisson distri-
bution with mean1;

R2: Θi =

{

0, with probability0.2,
0.5 · pi, with probability0.8;

R3: Θi =

{

uniform(0, pi) if pi < 5000,
uniform(pi, 2 · pi), otherwise.

For Rule R1, approximately one third of all tasks have
Θi = 0, one third haveΘi = pi, and one fifth have
Θi = 2 ·pi. For Rule R2, approximately 20% of all tasks are
hard real-time tasks. For Rule R3, tasks with short periods
have low tardiness thresholds. For each combination of
scheduling algorithm, utilization distribution, processor
count, and tardiness rule, we generated250, 000 task sets.

Schedulability tests. The schedulability of each generated
task setτ = {Ti(ei, pi, Di, Θi)} was checked via four basic
approaches:

• View the system as hard real-time.UnderGEDF, we
tested whether the task setτh = {T h

i (ei, pi, Di, 0)} (note
Θi = 0) is schedulable using the test in [4], denoted asSB.
UnderNP-GEDF, we checked the schedulability ofτh us-
ing the test from [3], which is denotedNP.

• Check previously-established tardiness bounds.We
checked whether the tardiness bound computed for each task
Ti ∈ τ using the analysis from [8, 9] is at mostΘi. These
tests, denotedDA for GEDF and NP-DA for NP-GEDF,
are applicable for the case of implicit deadlines.

• Use the results of our paper.We tested the schedulabil-
ity of τ using Theorem 1. The resulting tests are denotedLA
for GEDF andNP-LA for NP-GEDF.

• Use extended task deadlines.We tested the schedulabil-
ity of the task setτx = {T x

i (ei, pi, Di+Θi, 0)}, where each
task’s relative deadline is extended by its respective tardiness
threshold and its required tardiness is zero. ForGEDF, the
analysis from [4] cannot be applied toτx, because a task’s
relative deadline may exceed its period inτx. Thus, under
GEDF we checked the schedulability ofτx using the test
from [5], which is denotedBB-ext. We also used Theorem 1
for bothGEDF andNP-GEDF. These tests are denotedLA-
ext andNP-LA-ext, respectively.

To constrain computation times, we deemed a task set
to be unschedulable usingSB and any of the aboveLA
variants ifUsum > m − 0.01.

Results. Due to space constraints, we discuss results only
for the case wherem = 4, U1 is the utilization distribution,
and all deadlines are implicit. However, other omitted cases
showed similar trends. (Note that a greater range of schedu-
lability approaches can be compared in the case of implicit
deadlines, as several such approaches requireDi = pi.) In
Fig. 3 the total number of generated tasks is shown along
with the number of task sets deemed schedulable by each
applicable test as a function of total system utilization for
the case under consideration. The three columns correspond
to tardiness Rules R1, R2, and R3, respectively. The two
rows correspond toGEDF andNP-GEDF, respectively.

Insets (a)–(c) show thatLA andLA-ext are superior for
GEDF due to the flexibility of Theorem 1 when analyzing
individual task timing constraints. However, we observed
that for task systems with low per-task utilizations (a large
number of tasks),BB-ext andDA often require substantially
less computation time thanLA or LA-ext. Thus, the latter
tests should be used only ifBB-ext andDA fail or cannot
be applied. As tardiness constraints become more relaxed
(inset (c), Rule R3), the performance ofLA andLA-ext in-
creases dramatically. When a wide range of tardiness thresh-
olds must be supported (inset (a), Rule R1), the performance
of LA is sometimes worse than that ofLA-ext. The reason
for this is that more stringent (unmodified) task deadlines
are assumed in the case ofLA.

For NP-GEDF the obtained results are similar. As in-
sets (d)–(f) show,NP-LA andNP-LA-ext are superior toNP
andNP-DA. Again, due to their higher computational com-
plexity, NP-LA andNP-LA-ext should only be used when
NP or NP-DA fail or cannot be applied.NP-LA-ext exhib-
ited the best performance underNP-GEDF. It outperformed
NP-LA because non-preemptivity causes many of the “ear-
lier” deadlines assumed inNP-LA to essentially be ignored.

8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

S
ch

ed
ul

ab
le

 T
as

k
S

et
s

(x
10

4)

Total Utilization

GEDF m=4

Total
LA

LA-ext
SB

BB-ext
DA

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

S
ch

ed
ul

ab
le

 T
as

k
S

et
s

(x
10

4)

Total Utilization

GEDF m=4

Total
LA

LA-ext
SB

BB-ext
DA

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

S
ch

ed
ul

ab
le

 T
as

k
S

et
s

(x
10

4)

Total Utilization

GEDF m=4

Total
LA

LA-ext
SB

BB-ext
DA

(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

S
ch

ed
ul

ab
le

 T
as

k
S

et
s

(x
10

4)

Total Utilization

NPGEDF m=4

Total
NP-LA-ext

NP-LA
NP
DA

(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

S
ch

ed
ul

ab
le

 T
as

k
S

et
s

(x
10

4)

Total Utilization

NPGEDF m=4

Total
NP-LA-ext

NP-LA
NP
DA

(e)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

S
ch

ed
ul

ab
le

 T
as

k
S

et
s

(x
10

4)

Total Utilization

NPGEDF m=4

Total
NP-LA-ext

NP-LA
NP
DA

(f)

Figure 3. Comparison of schedulability of soft real-time ta sk sets with implicit deadlines for tardiness
thresholds under rules (a,d) R1, (b,e) R2, and (c,f) R3.

Is extending deadlines a good idea?Though showing good
performance,LA-ext andNP-LA-ext require task deadlines
to be extended. In an actual schedule, this may cause jobs
to miss their original deadlines more frequently. Job dead-
lines define jobpriorities while tardiness thresholds define
timing requirements. The manner in which these concepts
are interpreted may be application-dependent. Indeed, in an
actual application, tradeoffs may exist regarding how dead-
lines and tardiness thresholds are defined. Theorem 1 allows
such tradeoffs to be explored, while the tests in [4, 5] do not.

5. Conclusion

We have presented a sufficient test for checking that arbi-
trary pre-defined deadline tardiness bounds are not violated
underGEDF and NP-GEDF. These tests are of pseudo-
polynomial time complexity if total utilization is less than
the number of processors.

The experiments we conducted show that for randomly-
generated task sets, our tests outperform known schedula-
bility tests ([3, 4, 5, 8, 9]) due to their flexibility when con-
sidering individual task timing constraints. Unlike the test
in [3], our NP-GEDF test does not restrict task parameters.

Several interesting avenues for further work exist.
First, it would be interesting to obtain similar analysis
for static-priority scheduling. Second, we would like
to extend our analysis to preemptive tasks that may
have non-preemptive code segments or self-suspend.
Third, we would like to consider more sophisticated task

models (e.g., as in [7]) and systems in which processors
may be only partially available for executing real-time tasks.

Acknowledgment: We are grateful to Sanjoy Baruah for his
valuable comments on earlier drafts of this paper.

References

[1] T. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. InProceedings of the 24th IEEE
Real-Time Systems Symposium, pages 120–129, December
2003.

[2] T. Baker. A comparison of global and partitioned EDF
schedulability tests for multiprocessors. Technical Report
TR-051101, Department of Computer Science, Florida State
University, 2005.

[3] S. Baruah. The non-preemptive scheduling of periodic tasks
upon multiprocessors.Real-time Systems, 32:9–20, 2006.

[4] S. Baruah. Techniques for multiprocessor global schedulabil-
ity analysis. InProceedings of the IEEE Real-Time Systems
Symposium, December 2007.

[5] S. Baruah and T. Baker. Global EDF schedulability analy-
sis of arbitrary sporadic task systems. InProceedings of the
EuroMicro Conference on Real-Time Systems, July 2008. To
appear.

[6] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedu-
lability analysis of EDF on multiprocessor platforms. In
Proceedings of the 17th Euromicro Conference on Real-Time
Systems, pages 209–218, July 2005.

9

[7] S. Chakraborty and L. Thiele. A new task model for stream-
ing applications and its schedulability analysis. InProceed-
ings of the IEEE Design Automation and Test in Europe
(DATE), pages 486–491, March 2005.

[8] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD
thesis, University of North Carolina, Chapel Hill, NC, 2006.

[9] U. Devi and J. Anderson. Tardiness bounds for global EDF
scheduling on a multiprocessor. InProceedings of the 26th
IEEE Real-Time Systems Symposium, pages 330–341, De-
cember 2005.

[10] U. Devi and J. Anderson. Flexible tardiness bounds for spo-
radic real-time task systems on multiprocessors. InProceed-
ings of the 20th IEEE International Parallel and Distributed
Processing Symposium, April 2006 (on CD ROM).

Appendix

In this appendix, we prove Lemma 7 and Theorem 2.
Note that, in the proofs that follow,NP-GEDF is assumed
to be the scheduler.

Lemma 7. ICH(Ti) equals






min(DBF ′(Ti, δk), δk + Θk − ek + 1), i 6= k,
min(DBF ′(Ti, δk) − ek,

max(δk − Dk, δk − pk + Θk)), i = k,

where

DBF ′(Ti, δk)

=

⌊

δk + Θi

pi

⌋

· ei + min(ei, (δk + Θi) mod pi)).

Proof. ConsiderTi ∈ τCH. There are two cases.
Case 1: i 6= k. The competing demand due toTi will be
maximized if we move the deadlines of all competing jobs
so that the deadline of the last competing job coincides with
td as shown in Fig. 4. Under these conditions, we let

di,h = td − q · pi (12)

be the deadline of the earliest job so thatdi,h +Θi ≥ t0. The
job Ti,h is thus the earliest job ofTi (potentially tardy), that
may execute during[t0, td). The competing demand due to
Ti’s jobs executing within[t0, te) ∪ Γ is thus bounded by
the demand due toq jobs that have deadlines at or before
td and are released at or afterri,h + pi, plus the demand
imposed by the jobTi,h, which cannot exceed the smaller
of ei and the length of the interval[t0, di,h + Θi), which is
td − q · pi + Θi − t0. Formally,

ICH(Ti) = q · ei + min(ei, td − q · pi + Θi − t0)

= q · ei + min(ei, δk + Θi − q · pi). (13)

tdt0

Di

Pi

Qi

di,h

time

Pi

Ci Ci Ci

job release job deadline

Figure 4. Computing ICH(Ti) when Ti ∈ τCH.

To find q, observe thatdi,h + Θi ≥ t0, which by (12) yields

td − q · pi + Θi ≥ t0

⇒ td − t0 + Θi ≥ q · pi

⇒
δk + Θi

pi

≥ q

⇒ q =

⌊

δk + Θi

pi

⌋

.

Setting this expression forq into (13), we get

ICH(Ti)

=

⌊

δk + Θi

pi

⌋

· ei + min(ei, δk + Θi − q · pi)

=

⌊

δk + Θi

pi

⌋

· ei + min(ei, (δk + Θi) mod pi).

By Lemma 4, the required result follows.

Case 2: i = k. Repeating the reasoning from the previ-
ous case, we find that the total demand of jobs ofTk with
deadlines at mosttd is at mostDBF ′(Tk, δk). However, the
execution time ofTk,j should be excluded, so we subtract
ek from DBF ′(Tk, δk). By Lemma 4, the required result
follows.

The next three lemmas are used to prove Theorem 2.

Lemma 9. For δ′ ≥ 0, DBF (Ti, δ
′) ≤ ui · δ′ +max(0, ui ·

(pi − Di)), andDBF ′(Ti, δ
′) ≤ ui · (δ′ + Θi − ei) + ei.

Proof. By (7),DBF (Ti, δ
′) ≤ max(0,

(

δ′
−Di

pi

+ 1
)

·ei) =

max(0, ui·(δ
′−Di)+ui·pi) ≤ ui·δ

′+max(0, ui·(pi−Di)).
To proveDBF ′(Ti, δ

′) ≤ ui·(δ′+Θi−ei)+ei, we consider
two cases.
Case 1: ei < (δ′ + Θi) mod pi. In this case,

⌊

δ′
+Θi

pi

⌋

<

δ′
+Θi−ei

pi

. Applying this inequality and the condition of the

case in (8), we getDBF ′(Ti, δ
′) =

⌊

δ′
+Θi

pi

⌋

· ei + ei <

δ′
+Θi−ei

pi

· ei + ei = ui · (δ′ + Θi − ei) + ei.

10

Case 2:ei ≥ (δ′ + Θi) mod pi. In this case,
⌊

δ′ + Θi

pi

⌋

≥
δ′ + Θi − ei

pi

. (14)

As (δ′ +Θi) mod pi = δ′+Θi−q ·pi, whereq =
⌊

δ′
+Θi

pi

⌋

,

by the condition of the case, we can rewrite (8) as,

DBF ′(Ti, δ
′)

= q · ei + δ′ + Θi − q · pi

= δ′ + Θi − (pi − ei)

⌊

δ′ + Θi

pi

⌋

{by (14)}

≤ δ′ + Θi − (pi − ei) ·
δ′ + Θi − ei

pi

= ei + (δ′ + Θi − ei) ·

(

1 −
pi − ei

pi

)

= ui · (δ
′ + Θi − ei) + ei.

Lemma 10. ICL(Ti) ≤ ei. For δ′ ≥ 0, INC(Ti) ≤
DBF (Ti, δ

′) ≤ ui·δ′+max(0, ui·(pi−Di)) andICH(Ti) ≤
DBF ′(Ti, δ

′) ≤ ui · (δ′ + Θi − ei) + ei. If Θk = x + ek,
thenICH(Tk) ≤ DBF ′(Tk, δ′)− ek ≤ uk · (δ

′ +Θk − ek).

Proof. Follows directly follow from Lemmas 5, 6, 7, and
Lemma 9.

Lemma 11.
∑

Ti∈τCH∪τCL
ei ≤ E(m),

∑

Ti∈τCH
ui ≤

U(m − 1), and
∑

Ti∈τNC∪τCH
ui ≤ Usum.

Proof. Follows from Def. 7 and the constraints in (10).

Theorem 2. If (11) holds for taskTk for all δk ∈
[max(min(Di), min(Dk, pk −Θk)), δmax], then(11) holds
for all δk ≥ max(min(Di), min(Dk, pk − Θk)).

Proof. Suppose that (11) does not hold for some taskTk and
someδ′ > δmax. Without loss of generality, we can assume
δ′ ≥ Dk. Then, there existτCH, τCL, τNC subject to (10) such
that

∑

Ti∈τCH

ICH(Ti) +
∑

Ti∈τCL

ICL(Ti) +
∑

Ti∈τNC

INC(Ti)

≥ m · (δ′ + Θk − ek + 1).

Applying Lemma 10 to this inequality, we get

∑

Ti∈τCH

(ui · (δ
′ + Θi − ei) + ei) +

∑

Ti∈τCL

ei

+
∑

Ti∈τNC

(ui · δ
′ + max(0, ui · (pi − Di)))

≥ m · (δ′ + Θk − ek + 1).

After re-grouping, we get

δ′ ·
∑

Ti∈τCH∪τNC

ui +
∑

Ti∈τCH

ui · Θi +
∑

Ti∈τCH∪τCL

ei

+
∑

Ti∈τNC

max(0, ui · (pi − Di))

≥ m · (δ′ + Θk − ek + 1).

Applying Lemma 11 to this inequality, we get

Usum · δ′ + U(m − 1) · max(Θi) + E(m) + R

≥ m · (δ′ + Θk − ek + 1),

whereR is defined as in Def. 7. Solving the inequality above
for δ′, we getδ′ ≤ (E(m) + U(m − 1) · max(Θi) + R +
m · (ek − Θk − 1))/(m − Usum), which contradicts the
assumption thatδ′ > δmax holds.

11

