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Abstract

The issue of deadline tardiness is considered under global
earliest-deadline-firsf GEDF) multiprocessor scheduling. New
schedulability tests are presented for determining whretheet
of sporadic tasks with arbitrary relative deadlines can lobed-
uled under either preemptive or non-preempt@&DF so that
pre-defined tardiness bounds are met. These tests are afiggseu
polynomial time complexity, and can be used in hard reaktisoft
real-time, and mixed contexts.

1. Introduction

Most major chip manufacturers are investing in multi-
core technologies to continue performance improvements in
their product lines in the face of fundamental limitatioris o
single-core chip designs. This developmentis profountl as i
means that multiprocessors are now a “common-case” plat-
form. This realization has led to renewed recent interest in
multiprocessor real-time scheduling.

In research on this topic, much work has been directed
at the sporadic task model, wherein tasks repeatedly gen-
erate sequentigbbs subject to deadlines. A sporadic task
has a specifiperiod, which defines the minimum spacing
between its jobs, and relative deadlinewhich defines the
length of the time interval in which each of its jobs is al-
lowed to complete. Job deadlines can be eitied — in
which case they should always be met —soft— in which
case misses can occur, provided the extent of violation is
constrained in some way. In this paper, we consider a uni-
fied framework in which all timing constraints are specified
usingdeadline tardiness boundd-or a hard deadline, tar-
diness must be zero, while for a soft deadline, it may be
non-zero. We consider a real-time system tesbleedulable
using some scheduling algorithsif no deadline tardiness
bound is exceeded unddr

In work on multiprocessor scheduling, two basic schedul-
ing approaches have been considergghrtitioning and
global scheduling Under partitioning, tasks are statically
assigned to processors, and a uniprocessor scheduling al-
gorithm is used on each processor to schedule its assigned
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tasks. In contrast, under global scheduling, a task may ex-
ecute on any processor and may migrate among processors.
Global scheduling becomes a more viable option on multi-
core platforms due to the presence of on-chip shared caches,
which lessen task migration overheads. One global algo-
rithm that has received considerable attention isglubal
earliest-deadline-firs§GEDF) algorithm. Under it, jobs are

are globally prioritized in order of (absolute) deadline.

Motivation. Many systems have both hard and soft real-
time components. One way to ensure task timing constraints
in such a system is to treat all deadlines as hard. Perhaps
partly because of that, most prior work @EDF has fo-
cused on hard real-time schedulability tests [1, 4, 5, 6]. If
such a test passes, then each task is guaranteed zero tardi-
ness. Unfortunately, ensuring zero tardiness urigleDF

may restrict system utilization severely. Such restritsio
can be eased by allowing deadlines to be missed. For exam-
ple, if only bounded tardiness is required (Bamebound),

then as shown by Devi and Anderson [9], restrictive uti-
lization caps are not required under preemptive and non-
preemptiveGEDF. Unfortunately, as discussed below, the
analysis in [9] imposes several restrictions that prectheée
consideration of arbitrary task systems wipecifiedtardi-

ness bounds. Motivated by these concerns, in this paper, we
present new schedulability tests for the non-preemptide an
preemptiveGEDF scheduling algorithms, henceforth de-
notedNP-GEDF and GEDF, respectively, that ensure that
arbitrary pre-defined deadline tardiness bounds (inciydin
bounds of zero) are met.

Priorwork.  Of the several existing hard real-time schedu-
lability tests forGEDF, the most accurate and sophisticated
is due to Baruah [4]. This test requires pseudo-polynomial
time complexity. It is also limited t@onstrained deadline
systems, wherein each task’s relative deadline is at most
its period. In recent work, Baruah and Baker presented a
pseudo-polynomial test that lifts the latter restrictid]. [
However, this test is rather pessimistic, as we demonstrate
later. ForNP-GEDF, a hard real-time test has also been
proposed by Baruah in [3], but it is limited tmplicit dead-
line systems, wherein each task’s relative deadline equals its
period. Also, the maximum worst-case task execution time
is required to be less than the minimum task period.

In [9], Devi and Anderson presented closed-form expres-



sions that bound maximum deadline tardiness uGtEeDF or releasedrepeatedly, with each such invocation called a
and NP-GEDF. In [10], they also presented a variant of job. Associated with each tagk are two parameters; and
GEDF that can ensure arbitrary deadline tardiness (includ- p;: e; gives the worst-casexecution timef one job ofT;,

ing zero) for up tom selected privileged tasks, whene while, p;, called theperiod of T3, gives the minimum time

is the number of processors; other tasks are guaranteedbetween consecutive job releasednf

bounded deadline tardiness. However, the algorithm can-  The ;" job of T;, wherej > 1, is denoted’; ;. A task’s
not ensure arbitrary deadline tardiness bounds for more tha first job may be released at any timme> 0. The release
m tasks. In both [9] and [10], only implicit-deadline sys- time of job7; ; is denoted; ; and its (absolute) deadline as
tems are considered and each task’s maximum tardiness isd; ; = r;; + D;, whereD; > ¢; is therelative deadline
assumed to be at least its worst-case execution time. More- of 7;. If the jobT; ; completes at time, then itstardiness
over, it is not possible to freelgpecifydesired tardiness is max(0,t — d; ;). A tasKs tardiness is the maximum of
bounds, so systems where different tardiness threshodds ar the tardiness of any of its jobs. We denote the maximum
specified for different classes of tasks cannot be analyzed. allowed deadline tardiness for ta%k as©; > 0. We say

To summarize, using the results discussed above, and that an unfinished job iadyif it has been released and its
given a task set with specified deadline tardiness bounds, predecessor (if any) has completed execution.
there are two basic options: check that maximum deadline  Throughout the paper, we assume thap;, D,, and©,
tardiness is zero using a hard real-time schedulability t&s are non-negative integers and all time values are integral.
check whether specified tardiness bounds exceed the boundd~or brevity, we sometimes use the notatiofe;, p;, D;, ©;)
computedin [8, 9, 10]. Additionally, it is possible to mogif to specify task parameters.
each task by increasing its relative deadline by an amount  The utilization of taskT; is defined asi; = ¢;/P;, and
up to its tardiness threshold. However, this changes how the utilization of the task system as Usum = 7, ¢, Ui-
jobs are prioritized and may cause a task’s actual (unmodi- We assumé/,,,,, < m, for otherwise, tardiness may grow
fied) deadlines to be missed more frequently. Each of these unboundedly.
approaches has limitations in systems where tasks may be In what follows, we assume that each jah;, has a
subject to various (possibly quite different) tardineses- unique priority so thaf’, ; has higher priority thaf’}, ;, de-
olds (some of which may be zero). notedT, , < Tk j, iff dap < dij V (dap = dij ANb < j).
Tap = Tk ; implies that eithefl, , < Ty ; or Ty, = T} ;.
GEDF selects at most: ready jobs with the highest prior-
ity so that lower-priority jobs can be preempted. In corttras
underNP-GEDF, all jobs execute non-preemptively.

In the next section, we deviSBEDF and NP-GEDF
tests that, when given a sporadic taskssefth arbitrary rel-
ative deadlines as described above, determine whether task
T;'s maximum deadline tardiness is at ma3t. Due to
space constraints, a full proof is given only f§P-GEDF,
as it is more interestingsEDF is dealt with by noting sim-
plifications to the presented analysis that follow when pre-
emptivity is allowed.

Contributions. In this paper, we present a unified frame-
work for checking that arbitrary pre-defined tardiness
bounds are not violated und&EDF andNP-GEDF. Our
work differs from prior work in several ways. First, in
contrast to [4, 5], we consider non-preemptive job execu-
tion and non-zero tardiness bounds; in contrast to [4], we
also consider arbitrary relative deadlines. Second, enlik
in [8, 9, 10], we allow relative deadlines to differ from task
periods and tardiness bounds to be arbitrary. Fourth, in con
trast to [3], the presented test fliP-GEDF can be used to
check hard real-time schedulability without severelyniest
ing task parameters. Fifth, it is possible to apply our tests
settings where theelative prioritiesof jobs are specified us- 3, Schedulability Tests
ing deadlines antimeliness requirementre specified us-
ing tardiness thresholds. In devising our tests, we adapt an approach due to Baruah
The rest of this paper is organized as follows. In Sec. 2, for checking hard real-time schedulability und&EDF [4].
we present our task model. Then, in Sec. 3, we present Adaptations are needed to deal with non-preemptivity (as
the aforementione@GEDF and NP-GEDF schedulability allowed byNP-GEDF) and non-zero tardiness.
tests. In Sec. 4, we experimentally compare them with other  Similarly to [4], we order jobs by their priorities and as-
methods. In these experiments, our tests exhibited superio sume thatl}, ; is the first job to miss its deadline, at time
performance, typically by a wide margin. We conclude in t; = dj ;, by more than its pre-defined tardiness thresh-

Sec. 5. old, ©,. We further assume that each jah ;, such that
Top < Tk,; misses its deadline by at moSt,. We con-
2. System Model sider an interval that includes the time whep,; becomes

. . INote that, when a job of a task misses its deadline, the elias of
We consider the problem of scheduling @nprocessors the next job of that task is not altered. However, at most obeof a task

a setr of n sporadic tasks[, ..., T,,. Each task is invoked may execute at any time, even if deadlines are missed.



ready and the latest time whefg ; is allowed to complete.
During this interval, we consider demand due to compet-
ing higher-priority jobs and that due to lower-priority (mo
preemptive) jobs that can interfere wilf ;. We first com-
pute a lower bound.B(7, m) on this demand that is nec-
essary forl, ;’s tardiness to excee@; We then find a fi-
nite upper boundB(7, m) on this competing demand. Set-
ting UB(r,m) > LB(r, m) will give us a sufficient test for
checking whether a task’s tardiness bound is violated.

Definition 1. We lett. denote the time when job}, ; be-
comes ready, which is the later of its arrival timg; and
the time wheril}, ;_, (if j > 2) finishes execution.

Becausd, ; misses its deadline, there are other jobs that
deprive it of processor time after timg. These could be
higher-priority jobs or lower-priority jobs that executem
preemptively at time...

Definition 2. We say that jobT;; is pendingat time
tif r,; < t and T;; has not completed execu-
tion at time¢. We let 7,(t) = {TI, | forsomeb,
T, is pending at time andT, , < T} ;}.

The following lemma identifies conditions under which
Ty,;'s tardiness exceeds,.

Lemma 1. If t. > ¢4 — min(D;) andT}, ;'s tardiness ex-
ceedsOy, then|r,(t.)| > m or fewer than|r,(t.)| tasks
from7,(t.) execute at..

Proof. Suppose that, (t.)| < m—1 and all tasks im, (¢.)
execute at.. JobT} ;'s release time isy ; = tq — Dy.
Ty ;'s predecessor completes at tintfe< t; — py + Oy.
Thus, by Def. 1,

(1)

Becausdr,(t.)|] < m — 1 and all tasks (includingy,) in
7p(te) €xecute at., job T}, ; commences executionat and
by (1), completes at or befote+ ex, < max(rg, j + ek, tqg —
Pr+ Ok +er) < max(ry j + Dy, ta+ Oy) < max(tq, tq+
) < tq+ Oy. This contradicts the assumption that ;s
tardiness exceed3;, .2 O

te = max(ry,j,t') < max(ry j, ta — pr + Ok).

Definition 3. Letty < t. be the earliest instant such that
Vit € [to,te), |Tp(t)| > m or fewer than|7,(¢)| tasks from
7,(t) execute attime. If such an instant does not exist, then

letto 2 t..

°Note that the conditiot > t4 — min(D;) is not used in the above
argument. This condition has been included so that the leimaaplicable
to GEDF as well. In this case, no jobb, ; such thatli, ;, = T}, ; can be
released at or after and preempf}, ;. The argument used foiP-GEDF
can thus be repeated.

Def. 3 generalizes the well-known concept ofidle in-
stantin uniprocessor scheduling. We call an intereal ¢5)
busyif no processor is idle within it.

Claim 1. The time intervalt, t.) is busy.

Proof. Suppose that a processor is idle at titne [to, t.).
BecauseNP-GEDF is work-conserving, all tasks im,(t)
execute at time and thug7,(¢)| < m — 1, which violates
Def. 3. O

If job T} ; executes fory, ; time units within the interval
[te,ta + O), Wherezy, ; < ey, is the actual execution time
of T} ;, then it cannot violate its tardiness threshold. If job
Ty,; executes for less thary, ; time units within(t.,tq +
©y), then it executes for at mosy, ; — 1 time units within
this interval, as time is integral. Hence, i, ; misses its
deadline by more thaf,, then the total time for which it
does noexecute int., t; + Of) is at least; + O — t. —
(x;w'—l) >tg+O0—te—(ex—1) =tqg+ Ok —te—er+1.

Definition 4. LetT" be a subset of the set of intervals within
[te, ta + O), Where jobT}, ; does not execute, such that the
cumulative length of" is exactlyt, — tq + O — e + 1.

Example 1. Fig. 1 (a) shows a schedule where jBh;, re-
leased at time, ;, misses its deadline at timg by more
than©; time units undeNP-GEDF. The schedule shows
the demand placed on alt processors. (It is not intended
to depict a particular assignment of jobs to processorse) Th
predecessor jolby, ;_; misses its deadline at tintg — p;, by

By, < 0y, time units, so that joli’, ; becomes ready at time
t.. Attimet, < t., there argy tasks with non-preemptive
lower-priority jobs that execute and at least— ¢ + 1 tasks
with pending higher-priority jobs. Because at least one of
these tasks is not scheduled@ttheg non-preemptive jobs
must have commenced execution befeye This implies
that at mostn — ¢ tasks have pending higher-priority jobs
executing immediately prior t&y. Job7}, ; does not com-
mence execution immediately at timebecause other jobs
execute during”. Note that, in Fig. 1 (a)l" consists of one
interval becausé}, ; cannot be preempted once it starts ex-
ecution. The situation is differentin Fig. 1 (b), which sreow
a GEDF schedule that we examine later. O

In Fig. 1, the area of the lightly-shaded intervals corre-
sponds to the competing demand for the Jab;. We now
derive a condition this demand must satisfy if the tardiness
threshold for7}, is violated.

Definition 5. Let I(7;) be the total amount of time for
which jobs of taskl’; execute withinty,t.) UT.
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Figure 1. Conditions for tardiness violations under (a) NP-GEDF and (b) GEDF.

If job T}, ; violates its tardiness threshof),, then
S IT) = m- (ta—to+ Or — e +1). 2)
i=1

This follows from two observations. First, sindg, ;
does not execute withifi while being ready, all processors
execute jobs of tasks other thdj duringI". Second, all
processors are busy durifg, t.), by Claim 1. Multiply-
ing the total length ofto, t.) U T, which is|[tg, t) UT| =
(te—to) +(tq+ Ok —te —er+1) =tg—to+Or —ep+1,
by m, we get the RHS of (2).

We construct a schedulability test using Inequality (2)
as follows. In the following subsection, we derive a lower
bound for the termt; — ¢y in the RHS of (2). Then, in
Sec. 3.2, we derive an upper bound IfT;) in the LHS
of (2). Later, we will show that these bounds can be used to
obtain a schedulability test. To avoid distracting “bouryda

cases,” we henceforth assume that the schedule being ana-

lyzed is prepended with a schedule in which no deadlines
are missed that is long enough to ensure that 0 holds
and all predecessor jobs referenced in the proof exist.

3.1. Estimating ¢, — ¢

Lemma 2. tg — to > max(min(D;), min(Dg, pr — O)).

Proof. By Def. 1 and (1),

tO < te
= max(rg,j,tq — px + Ok)
< max(tq — Dy, ta — pr + Ok). (3)

From this, we have,

—to > min(—tq + Dy, —tq + pr — Ok)
= tqg—tyg > min(td—td—l—Dk,td—td—l—pk _@k)
= tg—ty > min(Dk,pk — Gk)

We next prove, — to > min(D;). Assume to the contrary
thatty > t4 —min(D;) holds. Thenty > t; — Dy, > 0. Let

v = 7p(to) \ 7p(to —1). By Def. 3,|7,(to —1)] < m—1and

all tasks inr, (to — 1) execute at timey — 1. Consideringy,
there are two possibilities. #f = 0, thenr,,(to) C 7,(to—1)
and hencér, (to)| < m—1 and all tasks irr,(t¢) execute at
timety — 1. Attime ¢y, the scheduler cannot preempt a task
in 7,(to) and schedule a lower-priority task. Thus, all tasks
in 7,(to) execute aty, which violates Def. 3. On the other
hand, ify # (, then a task’, that is not pending afy — 1
releases a joll;, , at timet, = r, such thatd,, < tg4.
Since, by our assumptiotly — min(D;) < to = 74,4, WE
haved, , — min(D;) < 7., and hencd, = dgp — rap <

min(D;), a contradiction. O
3.2. Bounding I(T3)
.. A
Definition 6. §, = t4 — to.
From the above definition and (2),
ZI(Ti)Zm'((Sk-F@k—ek-i-l)- (4)
=1

To check that pre-defined tardiness bounds are not
violated we have to verify, for each tasfj, that
Sr o I(T) < mo- (0 + ©p — e, + 1) holds, where
0 > max(min(D;), min(Dg, pr — Of)) (from Lemma 2).
Because it is difficult to determine eaélil;) term exactly,
we derive upper bounds for them.

The next lemma identifies jobs that cannot interfere with

Ty,;. Its proof is straightforward and is therefore omitted.

Lemma 3. LetT, ;, be a job of taskly,, whereT, ; > T} ;,

such thatly, ,'s predecessor completes by titgeand either
rap < to and T, is pending but not executing &§ or

rab > to. ThenI, does not execute durirg, t.) UT and
I(T,) =0.



Tjob release ljob deadline to — 1. Note thatl};, < Ti ;. Thus, by the definition of
b L b Tp(to — 1) (see Def. 2)T}, € Tp(to — 1), and hence, by
T, T,, \ Def. 3, T}, executes aty — 1. Sincery ; < to, we have
rip < to, and thus, by the definition otn, T}, € 7cn. O

L We henceforth usécy(T;), IcL(T;), andInc(T;) to de-
T, Ty note(T;) for the case wheff; is in Tcn, 7cL, and7yc, re-

spectively. With this notation, (4) becomes
T, Ty Il R
T time
0 2 4 6 8 10 12 14 16 18 o Iew(T) + > IelT)+ Y Ine(Th)
D . . TieTcH TieTcL TieTne
non-preemptive execution
> m- (0 + 0O —ep+1). (5)

Figure 2. Classification of tasks into  7cy, 7cL,

In order to verify that no tardiness bound is violated for
and TNC-

any task inr, we show that the negation of (5) holds for each

) taskT}, € T by establishing the following:
Using the lemma above, we can separate the tasks that

may execute within[tg,t.) U I" into three disjoint sets

(which are illustrated with an example below): max Z Icw(T;) + Z I (T3)
Ti€TCH TieTcL

Tcy (“high-priority carry-in”):  Includes each task, with

ajobT, , that executes at timg such thatl, , < 7T} ; and + Z Ine(T))

Tap < to.

Ti€™Ne

“low-priority carry-in”):  Includes each task, with
TeL ( p y y-in”) ' < m-(0+Or—er+1). (6)

ajobT, , that executes at timg such that, , >~ 7} ; and
Tap < lo .

e (“non-carry-in”):  Includes each tasi, with a job
Top, whereT,, < Ty ;, such thatl,;, does not execute
prior to ¢y andTy, u's predecessor completes by tiie

This expression must be checked for eaéh >
max(min(D;), min(Dy, pr, — ©)) (from Lemma 2), and
each valid choice ofcy, 7cL, andmyc. Due to the latter, we
take the maximum over all possible choices in the LHS of
(6).

We are left with bounding each dgn(T;), IcL(T;), and
Inc(T;) and maximizing the total demand for any valid
choice of the setscnh, 7cL, andmye. Some trivial bounds
can be derived easily.

Note that a job of, € 7cy must be pendingimmediately
prior to ty, thus, by Def. 3,T, must execute immediately
prior to tg. Also, a job ofT, € 7¢. must be executing non-
preemptively at time,.

Example 2. Consider the two-processor schedule in Fig. 2.

In this schedule, joli; 1, which corresponds to our job of | sqyma 4. Each ofIen(T}), IeL(T;), andIne(T;) is at most

interest7},, ;, becomes ready at time 2 and misses its dead- 5, @, — ¢, + 1, if i # k, and at mostnax(dy, — Dy, 6% —

line at timetq = di; = 18. Attime 2, jobT;, which pe+Op), ifi = k.

is released at time 0, executes non-preemptively and jobs

T5, and T,,; have higher priority thari; ;. Note that

T}y,1 becomes ready at time 2 and does not execute at that Proof. If i # k, then the work performed b; in [to, t.)UT

time. Also,7,(1) = {T3} andT; executes at time 1, while  cannot exceed the cumulative lengtHef ¢.) UT, which is

m(2) = {13,714} and onlyT; executes at time 2. Thus,  §, + O, — ¢, + 1, by Def. 4. Also,I(T},) cannot exceed the

to = 2, 7cn = {13}, e = {12}, andmc = {11, T4}. length of[ty, t.) becausd}, does not execute withiii. By
(3), we can bound. — t, as follows:

Claim 2. If §;;, < Dy, thenT}, € 7ch.

te — to
Proof. By Def. 6,ty = t4 — dx. Assumingd, < Dy, this < max(tqg — Dg,ta — pr + O) — to
impliesty > tq — Dy = ;. Becausd. > to > 1y, = max(ty — to — Dy, ta — to — p + Ok)
job Ty, ; is not ready at its release time, and one or more by Def. 6
of T}, ;'s predecessors is pending throughput;, to). Let {by Def. 6}
Tk, Whereb < j, be the earliest pending job @, at time < max(6x — Dy, 0k — pr. + O). 0



Lemma5. Ic (T;) is at most

min(e; — 1,
Sk + Ok —ex+1), i#kandD; > 6 + 2
ori>kandD; > 0, +1,

0, otherwise

Proof. If T; € 7cL, then some jold; 4, whereT; , > T} ;
andr;, < %o, executes non-preemptively &f. Either
dig > tgord;y = tgandi > k. If d; ;, > tg, thenT;
can be any task other than for which D; > §; + 2 holds
(sincedy, = tq —to). If di,g = tq, thenD; > 6, + 1 and

i > k. It follows from these facts that the only job ©f that
can execute iftg, t.) UT"is T} 4, and it can do so for at most
e; — 1 time units. Thus/c (T;) < e; — 1. By Lemma 4, the
required result follows. O

Lemma 6. Inc(T;) is at most

min(DBF(T;, k),
Ok +Or —ep+1), i1 £k
min(DBF(T;, 6k) — ek,
max(8, — Dy, 0, — pr + Ok)), i = kanddy, > Dy,
0, otherwise

where

— D,
Di

DBF(T;, 6;,) = max(0, (V’“ J + 1) e).  (7)

Proof. ConsiderT; € rne. There are two cases.
Case 1.7 # k. SinceT; € 7nc, each jobT; , that ex-
ecutes withinftg,t.) UT hasr;, > to andd, , < tg.

According to [4], the demand due to such jobs is at most

DBF(T;, tq — to) = DBF(T;, ), whereDBF is given
by (7). By Lemma 4, the required result follows.

Case 2:i = k. If 6, < Dy, then, by Claim 27T}, ¢ mnc.

If 0, > Dy, then the demand of jobs @, other thanT}, ;
that are released and have deadlines withint ] is at most
DBF(Ty,0r) — ex. By Lemma 4, the required result fol-
lows. O

The following lemma is proved similarly to Lemma 6. Its
proof can be found in an appendix.

Lemma 7. Icy(T;) is at most

min(DBF'(T;, 0), 0k + O —ex + 1), @ #Ek,
min(DBF'(T;, 0) — ek,
max (0 — Dy, 0k — pi + Ok)), i =k,

where

DBF'(T;,8)
B {51@ + 0,

- J st min(es, (3x+0;) mod ). (8)

Each ofIcn(T;) andInc(T;) accounts for the demand of
jobs of T; (excluding that due td@}, ; if < = k) having both
release times and deadlines within the inteffggl¢4]. In
addition,Icy(T;) accounts for the demand of higher-priority
jobs released prior téy that are pending af. The lemma
below easily follows.

Lemma 8. For each taskl;, Icn(T;) > Inc(T:) > 0 and
Ic (T;) > 0.

Let

M(Ty)
= Z Ich(Ty)+ Z I (T)+ Z Inc(T3).

TieTcH TietcL TieTNe

(9)

To verify that (6) holds, we need to find the setg, 7cL, and
7ne that would yieldM *(T},) = MaXroy rol, 7NG M (Ty,) for
a given valuej,. Not every choice ofcy, 7cL, andmyc is
valid. Overall, the setscy, 7cL, andmyc must satisfy the
following constraints:

e N 7en N el = 0,
5k < Dk =T € TCH,
|TCHUTCL| <m.

™NcUTchHUTeL C T,
Ty & TcL,
|TCH| S m — ]-a

(10)

The constraint}, ¢ ¢ follows because each tagk € ¢

has a job executing at timg of lower priority thanT}, ;. The
constrainty, < Dy = T} € 7cn follows from Claim 2. By
Def. 2 and the definition ofcy, 7cn € 75(to—1). By Def. 3,

all tasks in7,(to — 1) execute aty — 1 and|7,(tp — 1)| <

m — 1. Thus,|7cu| < m — 1. Because at most jobs may
execute at any time, the number of tasks with carry-in jobs
iS |rch U teL] < m.

3.3. Finding M*(T})

Given the constraints in (10), it is relatively straightfor
ward to determiné/*(T}) in polynomial time. In this sec-
tion, we briefly sketch how this can be done. In this descrip-
tion, we assume for simplicity that > m andd, > Dj.

The cased, < Dy only restrictsTy to be inmcy (by
Claim 2) and can be dealt with similarly. Given the con-
straint |7cL U 7cn| < m, we must merely check which of

at mostm tasks should be assigned#gy andrc and how
such tasks should be distributed between these two sets. (By
(10) and Lemma 8, we can assume that it is desirable to as-
sign at leastn — 1 tasks torcy U 7¢L.) In addition, the
constraint|tc | < m — 1 implies that at least one task is
assigned tocy if |7cy U mcL| = m.

The appropriate tasks to assigngy U 7c. can be de-
termined as follows. To begin, imagine a default assignment
wherein all tasks are assignedrg:. Given such an assign-
ment, we must select at maost tasks to move frommc to



TcH U 7cL under the restrictions expressed above. For this
purpose, define, for each tagk, two values:HD(T;) =
ICH(T%)—IN(:(T%) andLD(TJ = ICL(Ti)_INC(T%)- Inthese
expressions/cu(T;), Ic(T;), andInc(T;) are assumed to
equal their upper bounds as given in Lemmas 5, 6, and 7.
HD(T;) andLD(T;) reflect, respectively, how the value of
the RHS of (9) will change ifl; is moved torcy or 7¢L.

We say thatc, (respectivelyrcn) is T;'s preferred grougf
LD(T;) > HD(T;) (respectivelyHD(T;) > LD(T;)). Now,
define X(T;) = max(HD(T;),LD(T;)). Assume that all
tasks are ranked so tha¥ j = X (T;) > X (T;). Itis easy

to show that there exists an optimal assignment (i.e., cate th
maximizes the RHS of (9)) in whicfi) the topm — 1 tasks

in this ranking are assigned tey U 7c, and(ii) m — 2 of
these tasks are assigned to their preferred group. Given thi
an optimal assignment can be found via a two-step process.
First, consider each of the top — 1 ranked tasks in order
and move each fromyc to its preferred group ificy U 7cL.
Second, select am!" task to move torcy U 7¢.. If, af-

ter the first step|rcu| < m — 1, then this can be done by
simply moving them!" task to its preferred group. How-
ever, if |[7ch| = m — 1, then we must scan the remaining
n — m + 1 tasks, and record the value of the RHS of (9)
that results when each such task is moved to eacttpf
and7cL. When considering the possibility of moving such a
task torcn in this case, we must move some task currently
assigned there tac, (such a task is one of the top — 1
ranked tasks). Alln — 1 choices of a task to move tq_

must be considered. Note that these manipulations must re-

spect the conditiofl}, ¢ cL (see (10)). After considering
all possibilities in the process just described, we chobee t
assignment that maximizes the RHS of (9).

3.4. Schedulability Test

From the preceding discussion and analysis, we have the
following theorem.

Theorem 1. If

M*(Ty) <m- (6x + Ok —ex + 1), (11)

holds for each sporadic task, € 7 and §, >

max(min(D;), min(Dy,pr — ©)), then no tardiness
threshold in7 is violated undeNP-GEDF.

So far, we have analyzed onyP-GEDF. However, the
reasoning requires only minor changes BEDF. Under
GEDF, lower-priority jobs can be excluded from consider-
ation when analyzing jold}, ;'s behavior. In this case, time
to is the earliest time instant so that the interfal ¢.) is
busy and one or more processors is idle before timeln
fact, this definition oft, is employed in [4]. Therefore, in
Fig. 1 (b), which shows &EDF schedule, the time interval
[to, t.) is busy and at least one processor is idle immediately

prior to to. Also, underGEDF, the setl” may not be con-
tiguous, as illustrated in Fig. 1 (b), because higher-gsior
jobs may preemgf, ;. The setrc, is empty undeGEDF,
and hencelc,(T;) = 0 for all tasksT;.

If ©;, =0, andD; < p; for all tasks, then ouUGEDF test
reduces to the hard real-time test in [4] (assuming integral
time). Note that, since we have assumed that time is integral
our test’s accuracy (particularly the LHS of (6)) depends on
the assumed granularity of time.

3.5. Computational Complexity

In applying Theorem 1, we have to computé*(T})
and check (11) for an infinite number of valués >
max(min(D;), min(Dy,pr — O)). However, the follow-
ing theorem, proved in the appendix, bounds the range of

Definition 7. Letd,er = (E(m)+U(m —1) - max(©;)+
R+m- (e — O —1))/(m — Usym ), WhereE(y) (respec-
tively, U(y)) is the sum of; largest task execution times (re-
spectively, utilizations), an® = > ;. . max(0,u; - (p; —
D;,)).

Theorem 2. If (11) holds for taskT}) for all ¢, €
[max(min(D;), min(Dy, px — Ok)), dmaz], then(11)holds
for all §;, > max(min(D;), min(Dy, pr — O)).

It can also be shown that (11) only needs to be tested at
those values of;, at whichDBF (T3, §;,) changes for some
T;. Given thatM*(T) can be determined in polynomial
time, Theorem 2 implies the following

Corollary 1. The condition in Theorem 1 can be tested in
time pseudo-polynomial with respect to the task parameters
for all task systems for which Uy, is bounded by a con-
stant strictly less than the number of processars

4. Experiments

To evaluate the efficacy of our new tests, we compared
them to other known hard and soft real-time schedulability
tests forGEDF andNP-GEDF when checking randomly-
generated task sets. In this section, we discuss the re$ults
this evaluation.

Task generation procedure. In generating task systems,
we adopted the methodology proposed by Baker in [2].
Integral task periods were distributed uniformly over
[1000, 100000]. (In [2], the range [1,1000] was proposed. In
essence, we are assuming integral time is defined at a finer
granularity.) Integral task execution times were computed
using periods and utilizations. Relative deadlines were
defined to be either implicit (i.el); = p; for each taskr;)

or restricted, in which cas®; was uniformly distributed
over[e;, p;]. Four utilization distributions were considered,



truncated to the rang6.001, 0.999]:

U1: uniform over[0.001, 0.999];

U2: bimodal: uniform oveff0.1, 0.5] with probability
2/3 and ovel[0.5, 1] with probability1/3;

U3: exponential with meaf.25;

U4: exponential with meaf.5.

Task sets were generated for = 2, 4, and 8 proces-
sors, as follows. An initial set of: + 1 tasks was generated
and then tasks were iteratively added until total utiliaati
exceededn. The schedulability of each of these generated

e Use the results of our papadte tested the schedulabil-
ity of 7 using Theorem 1. The resulting tests are denated
for GEDF andNP-LA for NP-GEDF.

¢ Use extended task deadlin&¥e tested the schedulabil-
ity of the task set” = {T7(e;, p;, D;+©;,0)}, where each
task’s relative deadline is extended by its respectivanass
threshold and its required tardiness is zero. G&DF, the
analysis from [4] cannot be applied 1§, because a task’s
relative deadline may exceed its periodrih. Thus, under
GEDF we checked the schedulability ef using the test
from [5], which is denote®B-ext. We also used Theorem 1
for bothGEDF andNP-GEDF. These tests are denoted-

sets was checked using each tested scheme. After checkingext andNP-LA-ext, respectively.

all such task sets, the entire procedure was repeatedngtart
with a new initial set ofn + 1 tasks.

UnderNP-GEDF, we only considered the utilization dis-
tribution Ul. We also slightly modified the task generation
procedure to ensure thatin(p;) > max(e;) holds for each
task set. This was done in order for the hard real-time test
in [3] to be applicable to all generated task sets (see below)

We examined three rules for setting each task tardi-
ness threshol®;:

R1: ©; = min(« - p;, 5 - p;), wherea has a Poisson distri-
bution with meart;

R2 0 -1 0 with probability0.2,
"' 0.5-p;,  with probability0.8;
R3: O, — uniform(0, p;) if p; < 5000,
© 7t uniform(p;, 2 - p;), otherwise.

For Rule R1, approximately one third of all tasks have
©; = 0, one third have®; = p;, and one fifth have
0; = 2-p;. For Rule R2, approximately 20% of all tasks are
hard real-time tasks. For Rule R3, tasks with short periods
have low tardiness thresholds. For each combination of
scheduling algorithm, utilization distribution, process
count, and tardiness rule, we genera?sd, 000 task sets.

Schedulability tests. The schedulability of each generated
task setr = {T;(e;, pi, D;, ©;)} was checked via four basic
approaches:

¢ View the system as hard real-timeinder GEDF, we
tested whether the task set = {T}*(e;, p;, D;,0)} (note
©; = 0) is schedulable using the test in [4], denote®as
UnderNP-GEDF, we checked the schedulability of us-
ing the test from [3], which is denotedP.

e Check previously-established tardiness boundge

To constrain computation times, we deemed a task set
to be unschedulable usingB and any of the abovéA
variants ifUg,,, > m — 0.01.

Results. Due to space constraints, we discuss results only
for the case wherer = 4, U1 is the utilization distribution,
and all deadlines are implicit. However, other omitted sase
showed similar trends. (Note that a greater range of schedu-
lability approaches can be compared in the case of implicit
deadlines, as several such approaches reduire- p;.) In

Fig. 3 the total number of generated tasks is shown along
with the number of task sets deemed schedulable by each
applicable test as a function of total system utilization fo
the case under consideration. The three columns correspond
to tardiness Rules R1, R2, and R3, respectively. The two
rows correspond tGEDF andNP-GEDF, respectively.

Insets (a)—(c) show thatA andLA-ext are superior for
GEDF due to the flexibility of Theorem 1 when analyzing
individual task timing constraints. However, we observed
that for task systems with low per-task utilizations (a &arg
number of tasksBB-ext andDA often require substantially
less computation time thapA or LA-ext. Thus, the latter
tests should be used only BB-ext and DA fail or cannot
be applied. As tardiness constraints become more relaxed
(inset (c), Rule R3), the performanceloA andLA-ext in-
creases dramatically. When a wide range of tardiness thresh
olds must be supported (inset (a), Rule R1), the performance
of LA is sometimes worse than that loA-ext. The reason
for this is that more stringent (unmodified) task deadlines
are assumed in the caseld.

For NP-GEDF the obtained results are similar. As in-
sets (d)—(f) showNP-LA andNP-LA-ext are superior tiNP
andNP-DA. Again, due to their higher computational com-
plexity, NP-LA and NP-LA-ext should only be used when

checked whether the tardiness bound computed for each taskNP or NP-DA fail or cannot be appliedNP-LA-ext exhib-

T; € 7 using the analysis from [8, 9] is at mo®t. These
tests, denote®A for GEDF and NP-DA for NP-GEDF,
are applicable for the case of implicit deadlines.

ited the best performance und¢P-GEDF. It outperformed
NP-LA because non-preemptivity causes many of the “ear-
lier” deadlines assumed P-LA to essentially be ignored.
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Figure 3. Comparison of schedulability of soft real-time ta

thresholds under rules (a,d) R1, (b,e) R2, and (c,f) R3.

Is extending deadlines a good ideaPhough showing good
performancel A-ext andNP-LA-ext require task deadlines

to be extended. In an actual schedule, this may cause jobs

sk sets with implicit deadlines for tardiness

models (e.g., as in [7]) and systems in which processors
may be only partially available for executing real-timedss

to miss their original deadlines more frequently. Job dead- Acknowledgment: We are grateful to Sanjoy Baruah for his

lines define jolpriorities while tardiness thresholds define
timing requirements The manner in which these concepts

valuable comments on earlier drafts of this paper.

are interpreted may be application-dependent. Indeedy in a References
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Appendix

In this appendix, we prove Lemma 7 and Theorem 2.

Note that, in the proofs that followNP-GEDF is assumed
to be the scheduler.

Lemma 7. Icy(T;) equals
min(DBF'(T;,0;), 6, + Or —er + 1), i #k,
min(DBF'(T;, 01) — ek,
ma'x((sk_Dkadk_pk+9k))’ Z:ka

where

DBF'(T;, 6)
_ {51@ +0;
b

J - €; + min(e;, (9 + ©;) mod p;)).

Proof. ConsiderT; € mcn. There are two cases.
Case 1:i # k. The competing demand due 1 will be

maximized if we move the deadlines of all competing jobs
so that the deadline of the last competing job coincides with

tq as shown in Fig. 4. Under these conditions, we let

din =ta—q-pi (12)

be the deadline of the earliest job so that +©; > ty. The
job T; 1, is thus the earliest job df; (potentially tardy), that
may execute durino, t4). The competing demand due to
T;’s jobs executing withifto,t.) U I" is thus bounded by
the demand due tg jobs that have deadlines at or before
tq and are released at or after,, + p;, plus the demand
imposed by the joly; 5, which cannot exceed the smaller
of e; and the length of the intervélly, d; , + ©;), which is
tq—q-p; +©; —tg. Formally,

Icn(T;) =
= ¢-e; +min(e;, 0k +O; —q - pi).

q-pi+0; —to)
(13)

q-e; +min(e;, tg —
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;) when T; € 1ch.

Figure 4. Computing  Icn(T:

To find ¢, observe thatl; ;, + ©; > to, which by (12) yields

ta—q-pi+0; >t
= tqg—to+0,>q -p;

Di
Vk—F@iJ
= ¢g=|—]|.
Di

Setting this expression farinto (13), we get

Ien(Ts)
- Vk;@iJ e +-min(e, 0 +Oi —q-pi)
- Vk ;@)iJ ~e; +min(e;, (O + ©;) mod p;).

By Lemma 4, the required result follows.

Case 2:7 = k. Repeating the reasoning from the previ-
ous case, we find that the total demand of jobg pfwith
deadlines at most; is at mostD BF' (T, 6, ). However, the
execution time ofl, ; should be excluded, so we subtract
er from DBF'(Ty,dx). By Lemma 4, the required result
follows. O

The next three lemmas are used to prove Theorem 2.

Lemma9. Foré’ > 0, DBF(T;,6") < u; -6 + max(0, u; -
(pi — DZ‘)), andDBF’(Ti, 5/) < u; - (5’ + 06, — ei) + e;.

Proof. By (7), DBF(T;, ') < max(0, (5;D v 1)- ) =
max (0, u;- (6’ —D;)+u;-p;) < ug-8'+max(0, u;-(p;—Dy))-
To proveDBF'(T;,8") < (5’+@ —e;)+e;, we consider
two cases.

Case 1:e; < (8" + ©;) mod p;. In this case V 19, J <
‘”(2% Applying this inequality and the condition of the
case in (8), we geDBF'(T;,0") = {%J e e <

%-ei—}—ei:ui-(é’—i—@i—ei)—i—ei.



Case 2:e; > (&' + ©;) mod p;. In this case,

{5/ + @Z‘J
Dbi

As (6'4+0;) mod p; = ' +©; —q-p;, whereg = {% ,

by the condition of the case, we can rewrite (8) as,/

S 0 +0; —e;
a Di

(14)

DBF'(T,, &)
= qe+d+0,—q-p

/ .
{by (14);
/ Pp— .
< 5'+9¢—(pz'—€i)'%

= ei+(5'+9¢—ei)-<1—]%>

= ui-(dl—l—@i—ei)—i—ei. O
Lemma 10. I (T;) < ¢. Ford > 0, Inc(Ti) <
DBF(TZ, 5’) < ui-d’—i—maX(O, ul(pl—Dl)) andICH(Ti) <

DBF/(Ti,(S/) < u;- (5’ +0; —¢€)+e. IfOp =+ e,
thenlcy(Ty) < DBF’(Tk, 5’) —er < ug- (5/ + O —ep).

Proof. Follows directly follow from Lemmas 5, 6, 7, and
Lemma 9. O

Lemma 11. 3> "pc e € < E(m), Yper i <
Ulm —1),and}"r c o reyy Wi < Usum-

Proof. Follows from Def. 7 and the constraints in (10)]

Theorem 2. If (11) holds for taskTj for all ¢, €
[max(min(D;), min(Dy, px — Ok)), Omaz), then(11) holds
for all §, > max(min(D;), min(Dy, px — Ok)).

Proof. Suppose that (11) does not hold for some tisland
somed’ > dnqa.. Without loss of generality, we can assume

0" > Dy,. Then, there existch, 7cL, Tne Subject to (10) such
that

Z Iew(Ty) +

Ti€TCH

Y e+ Y Inc(Ti)

TieTcL
> m-(d’—i—@k—ek—i—l).

Tie™Ne

Applying Lemma 10 to this inequality, we get

Z (uz(é'—l—@q—e?)—i—eq)—i— Z €;

TieTcH TieTcL
+ Z (u; - 0" + max(0, u; - (p; — Dy)))
TieTNe

Zm-((sl—l—@k—ek—l—l).
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After re-grouping, we get

5 - Z u; + Z u; - 0; +

> o

Ti€TCHYTNC Ti€TcH Ti€TcHYTCL
+ > max(0,u; - (p; — D;))
Ti€TNe

2m-(5/+@k—ek+1).
Applying Lemma 11 to this inequality, we get

Usum . 5/ + U(m - 1) . max(@i) + E(m) + R

> m-(0'+0 —ep+1),

whereR is defined as in Def. 7. Solving the inequality above
for &', we gety’ < (E(m) + U(m — 1) - max(©;) + R +

m - (ex — O — 1))/(m — Usum), which contradicts the
assumption that’ > §,,.. holds. O



