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Abstract—Many embedded platforms consist of a hetero-
geneous collection of processing elements, memory modules,
and communication subsystems. These components often im-
plement different scheduling/arbitration policies, havedifferent
interfaces, and are supplied by different vendors. Hence,
compositional techniques for modeling and analyzing such
platforms are of interest. In prior work, the real-time calc ulus
framework has proven to be very effective in this regard.
However, real-time calculus has heretofore been limited to
systems with uniprocessor processing elements, which is a
serious impediment given the advent of multicore technologies.
In this paper, a two-step approach is proposed that allows the
power of real-time calculus to be applied in globally-scheduled
multiprocessor systems: first, assuming that job response-time
bounds are given, determine whether these bounds are met;
second, using these bounds, determine the resulting residual
processor supply and streams of job completion events using
formalisms from real-time calculus. For this methodology to
be applied in settings where response-time bounds are not
specified, such bounds must be determined. Though this is an
issue that warrants further investigation, a method is discussed
for calculating such bounds that is applicable to a large family
of fixed job-priority schedulers. The utility of the proposed
analysis framework is demonstrated using a case study.

Keywords-component-based design; multiprocessor schedul-
ing; real-time calculus

I. I NTRODUCTION

The increasing complexity and heterogeneity of mod-
ern embedded platforms have led to growing interest in
compositional modeling and analysis techniques [15]. In
devising such techniques, the goal is not only to analyze
the individual components of a platform in isolation, but
also to compose different analysis results to estimate the
timing and performance characteristics of the entire plat-
form. Such analysis should be applicable even if individual
processing and communication elements implement different
scheduling/arbitration policies, have different interfaces, and
are supplied by different vendors. These complicating factors
often cause standard event models (e.g., periodic, sporadic,
etc.) and schedulability-analysis techniques to lead to overly
pessimistic results or to be altogether inapplicable.

To overcome this difficulty, a compositional framework
— often referred to asreal-time calculus— was proposed
by Chakraborty et al. in [3] and then subsequently extended
in a number of papers (e.g., see [4]). Real-time calculus is a

specialization ofnetwork calculus, which was proposed by
Cruz in 1991 [5], [6] and has been widely used to analyze
communication networks since then. Real-time calculus spe-
cializes network calculus to the domain of real-time and em-
bedded systems by, for example, adding techniques to model
different schedulers and mode/state-based information (e.g.,
see [14]). A number of schedulability tests have also been
derived based upon network calculus. An overview of these
tests can be found in [18].

In real-time calculus, timing properties of event streams
are represented using upper and lower bounds on the num-
ber of events that can arrive over any time interval of
a specified length. These bounds are given by functions
αu(∆) andαl(∆), which specify the maximum and min-
imum number of events, respectively, that can arrive at a
processing/communication resource within any time interval
of length∆ (or the maximum/minimum number of possible
task activations within any∆). The service offered by a
resource is similarly specified using functionsβu(∆) and
βl(∆), which specify the maximum and minimum number
of serviced events, respectively, within any interval of length
∆. Given the functionsαu and αl corresponding to an
event stream arriving at a resource, and the serviceβu

and βl offered by it, it is possible to compute the timing
properties of the processed stream and remaining processing
capacity, i.e., functionsαu′, αl′, βu′, andβl′, as illustrated
in Fig. 1(a), as well as the maximum backlog and delay
experienced by the stream. As shown in the same figure,
the computed functionsαu′ and αl′ can then serve as
inputs to the next resource on which this stream is further
processed. By repeating this procedure until all resourcesin
the system have been considered, timing properties of the
fully-processed stream can be determined, as well as the
end-to-end event delay and total backlog. This forms the
basis for composing the analysis for individual resources,to
derive timing/performance results for the full system.

Similarly, for any resource with tasks being scheduled
according to some scheduling policy, it is also possible to
compute bounds (βu(∆) andβl(∆)) on the service available
to its individual tasks. Fig. 1(b) shows how this is done
for the fixed-priority (FP) andtime-division-multiple-access
(TDMA) policies. As shown in this figure, for the FP policy,
the remaining service after processing Stream A serves
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Figure 1. (a) Computing the timing properties of the processed stream using real-time calculus.(b) Scheduling networks for fixed priority and TDMA
schedulers.

as the input (or, is available) to Stream B. On the other
hand, for the TDMA policy, the total serviceβ is split
between the services available to the two streams. Similar
so calledscheduling networks[4] can be constructed for
other scheduling policies as well. Various operations on the
arrival and service curvesα and β, as well as procedures
for the analysis of scheduling networks on uniprocessors
(and partitioned systems) have been implemented in the
RTC (real-time calculus) toolbox [17], which is a MATLAB-
based library that can be used for modeling and analyzing
distributed real-time systems.
Our contribution. Unfortunately, none of the compositional
techniques described above can be used when the resource
in question is a multiprocessor that is scheduled using a
global multiprocessor scheduling algorithm. In particular,
when such algorithms are used, processors may be idle
even though tasks are available for execution, as tasks
must execute sequentially; this situation does not arise on
uniprocessors and thus is not addressed in uniprocessor
compositional techniques.

There are two reasons why existing compositional tech-
niques need to be extended to incorporate such multipro-
cessors. First, multicore chips are becoming increasingly
common. Second, viewing a multiprocessor system as a
collection of independent uniprocessors and applying parti-
tioning techniques is unnecessarily restrictive and precludes
supporting workloads that fundamentally require global
scheduling approaches (such a workload is considered in
a case study presented later).

Motivated by these observations, we present in this paper
an extension of the real-time calculus framework [3], [4]
that incorporates globally-scheduled multiprocessors and is
compatible with the RTC toolbox. The core of our frame-
work is a pseudo-polynomial-time procedure that, given a
collection of arrival curves for input streamsαu andαl, their
execution requirements, and the available resource supply,
checks that event delays on such a multiprocessor reside

within specified bounds. Second, using these event delays,
we compute arrival curves for the processed streams,αu′

andαl′, and the remaining-total-service curve; these curves
— as in the uniprocessor case — can in turn be used as input
for other resources, thereby resulting in a compositional
framework (as shown in Fig. 1(a)). To apply these results,
per-stream delay bounds must be given. In settings where
such bounds are not given, they must be determined. We
present a simple method for calculating such bounds, but
a comprehensive evaluation of its properties is deferred to
future work.
Prior work. Our work is based upon multiprocessor schedu-
lability tests by Baruah [1] and Leontyev and Anderson [9].
In some aspects, the presented analysis is also similar to
results by Bertogna et al. [2], Shin et al. [16], and Zhang
and Burns [19]. The main difference between our work and
these prior efforts is that we consider more general task
arrival and execution models, viz. those supported by the
real-time calculus framework. Also, we consider the case
when one or more processors can be partially available,
which is similar to analysis in [16], where partial availability
is considered in the context of hierarchical scheduling. Our
work is different from that in [18] and related works listed
there in that we are primarily concerned with multiprocessor
scheduling and earliest-deadline-first-like algorithms.Due to
space constraints, this paper covers only the most essential
parts of the new framework. Proofs for some lemmas and
claims are omitted here but can be found in [11].

The rest of the paper is organized as follows. Sec. II
presents our task model. In Secs. III and IV, timing char-
acteristics of processed streams and the remaining supply
are computed. In Secs. V and VI, the response-time-bound
test is presented and its time complexity is discussed. In
Sec. VII, we present closed-form expressions for calculating
response-time bounds. Sec. VIII presents a case study for our
analysis, and finally, Sec. IX discusses some directions for
future work.



II. TASK MODEL

In this paper, we consider a task setτ = {T1, . . . , Tn}.
Each task has incoming jobs that are processed by a mul-
tiprocessor consisting ofm ≥ 2 unit-speed processors. We
assume thatn ≥ m. We also assume that all time quantities
are integral.

The jth job of Ti, where j ≥ 1, is denotedTi,j.
The arrival (or release) time of Ti,j is denotedri,j . The
completion timeof Ti,j is denotedfi,j and the delay between
its start time and completion,fi,j−ri,j , is called itsresponse
time. As in prior work on real-time calculus, we wish to be
able to accommodate very general assumptions concerning
job executions and arrivals and the available service. Most
of the remaining definitions in this section are devoted to
formalizing the assumptions we require. Table I summarizes
the notation introduced in this section.

Definition 1. γu
i (k) (γl

i(k)) denotes an upper (lower) bound
on the total execution time of anyk consecutive jobs ofTi.
(We assumeγu

i (k) = 0 for all k ≤ 0 andγu
i (k) ≤ γu

i (k+1),
and similarly forγl

i(k).) These definitions are equivalent to
the workload demand curves in [12].

Example 1. Suppose that taskTi’s job execution times
follow a pattern 1, 5, 2, 1, 5, 2, . . . . Then, γu

i (1) = 5,
γu
i (2) = 7, γu

i (3) = 8, γu
i (4) = 13, etc. Also,γl

i(1) = 1,
γl
i(2) = 3, γl

i(3) = 8, γl
i(4) = 9, etc.

Definition 2. Thearrival functionαu
i (∆) (αl

i(∆)) provides
an upper (lower) bound on the number of jobs ofTi that can
arrive withinany time interval(x, x+∆], wherex ≥ 0 and
∆ > 0 [4]. (We assumeαu

i (∆) = 0 for all ∆ ≤ 0.) αi(∆)
denotes the pair(αu

i (∆), αl
i(∆)).

Example 2. The widely-studied periodic and sporadic task
models are subcases of this more general task model. In
both models, consecutive job arrivals ofTi are separated by
at leastpi time units, wherepi is theperiodof Ti, and each
job requires at mostemax

i execution units. Therefore, under

both models,αu
i (∆) =

⌈
∆
pi

⌉
andγu

i (k) = k · emax
i .

Definition 3. Let A−1
i (k) = inf{∆ | αu

i (∆) > k},
where ∆ > 0. This function characterizes the minimum
length of the time interval(x, x + ∆] during which jobs
Ti,j+1, . . . , Ti,j+k can be released for somej, assumingTi,j

is released at timex. We defineA−1
i (0) = 0 and require that

there existsKi ≥ 1 such that

A−1
i (Ki) ≥ γu

i (Ki). (1)

We further require that there existsRi > 0 and Bi ≥ 0,
whereRi = lim∆→+∞

αu
i (∆)
∆ , such that

αu
i (∆) ≤ Ri ·∆+Bi for all ∆ ≥ 0. (2)

Also, we assume that there existsei > 0 and vi, where
ei = limk→+∞

γu
i (k)
k

, such that

γu
i (k) ≤ ei · k + vi for all k ≥ 1. (3)

(1) is needed in order to prevent taskTi from overloading
the system. In (2),Ri characterizes the long-term arrival
rate of taskTi’s jobs andBi characterizes the degree of
burstiness of the arrival sequence. In (3), the parameterei
denotes the average worst-case job execution time ofTi.

Definition 4. Let ui = Ri · ei. This quantity denotes the
average long-term utilization of taskTi. We require that0 <
ui ≤ 1. Let Usum =

∑
Ti∈τ ui.

Example 3. Under the sporadic task model,Ri =

lim∆→+∞

(⌊
∆
pi

⌋
+ 1
)
/∆ = 1

pi
and ei = emax

i , so ui =

Ri · ei =
emax

i

pi
.

Definition 5. Let supplyh(t,∆) be the total amount of
processor time available to tasks inτ on processorh in
the interval[t, t + ∆), where∆ ≥ 0. Let Supply(t,∆) =∑m

h=1 supplyh(t,∆) be the cumulative processor supply in

Table I
MODEL NOTATION.

Input parameters
αu
i (∆) Max. (min.) number of job arrivals ofTi

(αl
i(∆)) over∆

γu
i (k) Max. (min.) execution demand

(γl
i(k)) of any k consecutive jobs ofTi

B(∆) Min. guaranteed cumulative processor
supply over∆

Params. below can be found using RTC Toolbox
Û Long-term avilable processor utilization
σtot Maximum blackout time
F The number of processors

that are always available
A−1

i (k) Pseudo-inverse ofαu
i

Ki Min. integer s.t.A−1(Ki) ≥ γu
i (Ki)

ei Ti’s average worst-case job execution time
vi Burstiness of the execution demand
Ri Long-term arrival rate ofTi’s jobs
Bi Burstiness of the arrival curve
ui Ti’s long-term utilization

Usum Total utilization
Θi below can be checked using the test in Sec. V
Θi Ti’s response-time bound
Output calculated using the input and {Θi}

αu′
i(∆) Max. (min.) number of job completions

(αl′
i(∆)) of Ti over∆

B′(∆) Min. guaranteed unused
processor supply over∆



the interval[t, t+∆).

Though we desire to make our analysis compatible with
the real-time calculus framework, which requires that in-
dividual processor supplies be known, there exist many
settings in which individual processor supply functions are
not known and a lower bound on the cumulative available
processor time is provided instead. (In uniprocessor real-
time calculus, the available service is described as the
number of incoming events processed by a PE during a time
interval.) Note that if individual processor supply guarantees
are known, a lower bound on the cumulative guaranteed
supply can be computed easily.

Definition 6. Let B(∆) ≤ Supply(t,∆) be the guaranteed
total time that all processors can provide to the tasks inτ
during any time interval[t, t+∆), where∆ ≥ 0. We assume
that

B(∆) ≥ max(0, Û · (∆− σtot)), (4)

where Û ∈ (0,m] andσtot ≥ 0. We let F be the number
of processors that are always available at any time. If all
processors have unit speed, thenF = max{y | ∀∆ ≥ 0 ::
B(∆) ≥ y ·∆}.

In the above definition, the parameterŝU , which is the
total long-term fraction of processor time available to the
tasks in τ on the entire platform, andσtot, which is the
maximum duration of time when all processors are unavail-
able, are similar to those in the bounded delay model [13].

We require that (5) below holds for otherwise the system
would be overloaded and job response times could be
unbounded.

Usum ≤ Û (5)

We assume that released jobs are placed into a single
global ready queue. When choosing a new job to schedule,
the scheduler selects (and dequeues) the ready job of highest
priority. An unfinished job ispending if it is released.
A pending job is ready if its predecessor (if any) has
completed execution. Note that the jobs of each task execute
sequentially. Job priorities are determined as follows.

Definition 7. (prioritization rules) Associated with each
job Ti,j is a constant valueχi,j . If χi,j < χk,h or χi,j =
χk,h ∧ (i < k ∨ (i = k ∧ j < h)), then the priority ofTi,j is
higher than that ofTk,h, denotedTi,j ≺ Tk,h. Additionally,
we assumej < h impliesχi,j ≤ χi,h for each taskTi.

Example 4. Global earliest-deadline-first (GEDF) priorities
can be defined by settingχi,j = ri,j+Di for each jobTi,j,
whereDi is Ti’s relative deadline. Global first-in-first-out
(FIFO) priorities can be defined by settingχi,j=ri,j [8].

The technical contributions of this paper are twofold.
First, given per-task bounds on maximum job response
times, we characterize the sequence of job completion events
for each taskTi in terms of the next-stage arrival functions

αu
i
′ and αl

i

′
, and the remaining processor supplyB′(∆);

these, in turn, can serve as inputs to subsequent PEs, thereby
resulting in a compositional technique.

Second, given a task setτ = {T1, . . . , Tn} and a
multiprocessor platform characterized by a cumulative guar-
anteed processor timeB(∆), we develop a sufficient test that
verifies whether the maximum job response time of a task
Ti ∈ τ , maxj(fi,j − ri,j), is at mostΘi, where

Θi ≥ max
j≥1

(γu
i (j)−A−1

i (j − 1)). (6)

(It can be shown that the maximum job response time of
Ti cannot be less than the right-hand-side of (6). Intuitively,
γu
i (j) is the maximum execution requirement ofj consecu-

tive jobsTi,a, . . . , Ti,a+j−1 andA−1
i (j−1) is the minimum

length of the interval where jobsTi,a+1, . . . , Ti,a+j−1 are
released.) IfΘi equals the relative deadline of a job, then the
test will check whether the system is hard-real-time schedu-
lable. Alternatively, if deadlines are allowed to be missed
andΘi includes the maximum allowed deadline tardiness,
then the test will check soft-real-time schedulability. Such a
test allows workloads to be considered that fundamentally
require global scheduling approaches. Unknown response-
time bounds can be calculated by using closed-form expres-
sions given in Sec. VII to determine initial bounds, and by
then iteratively decreasing these bounds and applying the
presented test to determine whether such decreased bounds
are valid.

III. C ALCULATING αu
i
′ AND αl

i

′

Let αu
i
′(∆) (αl

i

′
(∆)) be the maximum (respectively, min-

imum) number of job completions of taskTi over an interval
(x, x+∆], wherex ≥ 0. Bounds on these functions can be
computed as follows.

Theorem 1. If the response time of any job ofTi is at most

Θi, thenαu
i
′(∆) ≤ min

(⌈
∆

γl
i
(1)

⌉
, αu

i (∆ + Θi − γl
i(1))

)

andαl
i

′
(∆) ≥ αl

i(∆−Θi + γl
i(1)).

Proof: We prove the first inequality, leaving the second
one to the reader. Consider an interval(t1, t2] such that at
least one job ofTi completes within it andt2− t1 = ∆. Let
N1, (N2) be the index of the first (last) job ofTi completed
within (t1, t2]. Then,

fi,N1
> t1 and fi,N2

≤ t2. (7)

By the condition of the theorem, jobTi,j ’s response time
fi,j − ri,j is at mostΘi. By the definition of response time
and Def. 1,fi,j−ri,j is at leastγl

i(1). From (7), we thus have
ri,N1

> t1 − Θi andri,N2
≤ t2 − γl

i(1). Thus, the number
of jobs completed within the interval(t1, t2], N2 −N1 + 1,
is at most the number of jobs released within the interval
(t1 − Θi, t2 − γl

i(1)]. By Def. 2, we haveN2 − N1 + 1 ≤
αu
i (t2 − γl

i(1)− t1 +Θi) = αu
i (∆+Θi− γl

i(1)). If job Ti,j



completes at timefi,j , thenTi,j+1 cannot complete earlier
thanfi,j + γl

i(1). Thus, job completions are separated by at

leastγl
i(1) time units, and hence, at most

⌈
∆

γl
i(1)

⌉
jobs can

be completed within any interval of length∆.

IV. CALCULATING B′(∆)

We now calculate a lower boundB′(∆) on processor
time that is available after scheduling tasksT1, . . . , Tn. We
first upper-bound the total allocation of jobs ofTi over any
interval of length∆.

Definition 8. Let A(Ti, I) be the total amount of time for
which jobs of taskTi execute within the set of intervalsI.

Lemma 1. If the response time of any job ofTi is at most
Θi, thenA(Ti, [t, t+∆)) ≤ min(∆, γu

i (α
u
i (∆ + Θi))).

Proof: Consider an interval[t, t+∆). The condition of
the lemma implies that all ofTi’s jobs released at or before
time t − Θi complete by timet. Thus, the allocation ofTi

within [t, t+∆), A(Ti, [t, t+∆)) is upper-bounded by the
maximum execution demand ofTi’s jobs released within the
interval(t−Θi, t+∆]. By Def. 2, there are at mostαu

i (∆+
Θi) jobs released within(t − Θi, t + ∆], and by Def. 1,
their total execution demand is at mostγu

i (α
u
i (∆ + Θi)).

We thus haveA(Ti, [t, t + ∆)) ≤ γu
i (α

u
i (∆ + Θi)). Also,

A(Ti, [t, t + ∆)) cannot exceed the length of the interval
[t, t+∆).

Theorem 2. If the response time ofTi’s jobs is at mostΘi,
then at least

B′(∆) = sup
0≤y≤∆

(Z(y)) (8)

time units are available over any interval of length∆ ≥ 0,
whereZ(y) = max

(
0, B(y) −

∑
Ti∈τ min(y, γu

i (α
u
i (y +

Θi))
)
. Additionally, (4) for B′(∆) holds with Û ′ = Û −

Usum andσ′
tot = (Û ·σtot+

∑
Ti∈τ (ui ·Θi+ei ·Bi+vi))/Û

′.

Proof: In this paper, we prove (8); derivations of the
coefficientsÛ ′ andσtot can be found in [11]. Consider an
interval [t, t + y), where y ≤ ∆. By Defs. 5 and 8, the
supply that is available after scheduling the tasks inτ in
this interval is

Supply(t, y)−
∑

Ti∈τ

A(Ti, [t, t+ y))

{by Def. 6}

≥ max

(
0,B(y)−

∑

Ti∈τ

A(Ti, [t, t+ y))

)

{by Lemma 1}

≥ max

(
0,B(y)−

∑

Ti∈τ

min(y, γu
i (α

u
i (y +Θi)))

)
.

Additionally, Supply(t,∆)≥sup0≤y≤∆(Supply(t, y)).

V. M ULTIPROCESSORSCHEDULABILITY TEST

In this section, we present the core analysis of our
framework in the form of a schedulability test (given in
Corollary 1 later in this section) that checks whether a pre-
defined response-time boundΘi is not violated for a task
Ti.

As noted earlier, the way jobs are prioritized according
to Def. 7 is similar toGEDF. A number ofGEDF schedu-
lability tests have been developed assuming that jobs arrive
periodically or sporadically (e.g., [1], [2], [9]). In thispaper,
we extend techniques from [1] and [9] in order to incorporate
more general job arrivals and execution models.

Similarly to [7], we derive our test by ordering jobs by
their priorities and assuming thatT`,q is the first job for
which f`,q > r`,q + Θ` holds. We further assume that, for
each jobTa,b such thatTa,b ≺ T`,q,

fa,b ≤ ra,b +Θa. (9)

We consider an interval that includes the time whenT`,q

becomes ready and the latest time whenT`,q is allowed to
complete, which isr`,q +Θ`. This interval is computed for
each value ofk ∈ [1,K`] (see Def. 3) andδ (defined later
in this section), which determine its length,δ + Θ`. (The
range ofδ depends onk and `.) During this interval, we
consider demand due to competing higher-priority jobs that
can interfere withT`,q. We then perform the following three
steps:

S1: Compute the minimum guaranteed supply over the
interval of interest,B(δ +Θ`).
S2: Given a finite upper boundM∗

` (δ, τ,m) on the
competing demand and a finite upper bound on the
unfinished work due to jobT`,q and its predecessors,
E∗

` (k), define a sufficient test for checking whether
T`’s response-time bound is not violated by setting
M∗

` (δ, τ,m) + (m− 1) · (E∗
` (k)− 1) < B(δ +Θ`).

S3: CalculateM∗
` (δ, τ,m) andE∗

` (k) as used inS2.

A. StepsS1 and S2

To avoid distracting “boundary cases,” we henceforth
assume that the schedule being analyzed is prepended with a
schedule in which response-time bounds are not violated that
is long enough to ensure that all predecessor jobs referenced
in the proof exist. Since job priorities remain fixed, we also
ignore jobs that have lower priority thanT`,q.

We start the derivation by stating the following lemma
and claims. The following lemma specifies the minimum
time between the arrivals of jobsT`,q−i andT`,q.

Lemma 2. (Proved in [11])r`,q − r`,q−i ≥ A−1
` (i).

The next two claims establish a lower bound on the
maximum job response time and an upper bound on the
finish times of certain jobs that can be used in addition to
(9).



Claim 1: Θ` ≥ γu
` (1).

Proof: By (6), Θ` ≥ maxj≥1(γ
u
` (j) −A−1

` (j − 1)) ≥
γu
` (1)−A−1

` (0). By Def. 3,A−1
` (0) = 0.

Claim 2: f`,q−K`
≤ r`,q +Θ` − γu

` (K`).

Proof: By (9),

f`,q−i

≤ r`,q−i +Θ`

= r`,q−i − r`,q + r`,q +Θ`

{by Lemma 2}

≤ r`,q +Θ` −A−1
` (i). (10)

By (1), −A−1
` (K`) ≤ −γu

` (K`). Setting this andi = K`

into (10), we get the required result.

Job T`,q can violate its response-time bound for the
following reasons. IfT`,q−1 completes by timer`,q +Θ` −
γu
` (1), thenT`,q may finish its execution afterr`,q +Θ` if,

after timemax(f`,q−1, r`,q), higher-priority jobs deprive it
of processor time or one or more processors are unavailable.

Alternatively, T`,q−1 may completeafter time r`,q +
Θ` − γu

` (1), which can happen if the minimum job inter-
arrival time forT` is less thanγu

` (1). In this situation,T`,q

could violate its response-time bound even if it executes
uninterruptedly within[f`,q−1, r`,q +Θ`). In this case,T`’s
response-time bound is violated becauseT`,q−1 completes
“late,” namely after timer`,q (recall that, by Claim 1,
Θ` ≥ γu

` (1)). However, this implies thatT` is pending
continuously throughout the interval[r`,q−1, r`,q +Θ`), and
hence, we can examine the execution of jobsT`,q−1 andT`,q

together. In this case, we need to consider the completion
time of job T`,q−2. If f`,q−2 ≤ r`,q + Θ` − γu

` (2), then
job T`,q may exceed its response-time bound if this job and
its predecessor,T`,q−1, experience interference from higher-
priority jobs or some processors are unavailable during the
time interval[max(f`,q−2, r`,q−1), r`,q +Θ`). On the other
hand, iff`,q−2 > r`,q +Θ`− γu

` (2), thenT`,q can complete
after time r`,q + Θ` even if T` executes uninterruptedly
within [f`,q−2, r`,q + Θ`). Continuing by considering pre-
decessor jobsT`,q−k in this manner, we will exhaust all
possible reasons for the response-time bound violation. Note
that it is sufficient to consider only jobsT`,q−1, . . . , T`,q−K`

since, by Claim 2,f`,q−K`
≤ r`,q+Θ`−γu

` (K`). Assuming
that, for job T`,q−k, f`,q−k ≤ r`,q + Θ` − γu

` (k), we
define theproblem windowfor jobs T`,q−k+1, . . . , T`,q as
[r`,q−k+1, r`,q +Θ`). (This problem window definition is a
significant difference when comparing our analysis to prior
analysis pertaining to periodic or sporadic systems.)

Definition 9. Let λ ∈ [1,K`] be the smallest integer such
that f`,q−λ ≤ r`,q + Θ` − γu

` (λ). By Claim 2, such aλ
exists.

Claim 3. T` is ready(i.e., has a ready job) at each instant

of the interval[r`,q−k+1, r`,q +Θ`) for eachk ∈ [1, λ].

Proof: To prove the claim, we first show thatT` is ready
continuously within [r`,q−k+1, f`,q) for each k ∈ [1, λ].
BecauseT` is ready within the interval[r`,q, f`,q), this is
true for k = 1. If k > 1 (in which caseλ > 1), then
f`,q−j > r`,q + Θ` − γu

` (j) for each j ∈ [1, λ), by the
selection ofλ. From this, we have

f`,q−j

> r`,q +Θ` − γu
` (j)

{because, by (6),Θ` ≥ γu
` (j)−A−1

` (j − 1)}

≥ r`,q −A−1
` (j − 1)

{by Lemma 2}

≥ r`,q−j+1.

Thus, the intervals[r`,q−j , f`,q−j) and [r`,q−j+1, f`,q−j+1),
where consecutive jobs ofT` are ready, overlap. There-
fore, T` is ready continuously within[r`,q−j , f`,q) for each
j ∈ [1, λ), and hence,T` is ready continuously within
[r`,q−k+1, f`,q) for eachk ∈ [2, λ]. The claim follows from
[r`,q−k+1, r`,q+Θ`) ⊂ [r`,q−k+1, f`,q); to see this, note that
f`,q > r`,q +Θ` holds, sinceT`,q violates its response-time
bound.

BecauseT`,q violates its response-time bound, after time
r`,q−λ+1, there are other higher-priority jobs that depriveT`

of processor time or one or more processors are unavailable.

Definition 10. Let W (Ti,y, t) denote the remaining execu-
tion time for jobTi,y (if any) after timet. Let W (Ti, t) =∑

Ti,y�T`,q
W (Ti,y, t). It can be shown that

W (T`, r`,q−λ+1) ≤ r`,q +Θ` − r`,q−λ+1. (11)

In Fig. 2, which shows a response-time bound violation for
job T`,q whereλ = 1, W (T`, r`,q−λ+1) corresponds to the
execution demand of jobT`,q and the unfinished work of
job T`,q−1 at timer`,q.

Definition 11. Let Γλ ⊆ [r`,q−λ+1, r`,q +Θ`) be the set of
intervals where no available processor is idle as shown in
Fig. 2. LetΓλ = [r`,q−λ+1, r`,q+Θ`)\Γλ. We let |Γλ| (Γλ)
denote the total length of the intervals inΓλ, (|Γλ|).

The lemma below is used to establish a lower bound on the
competing workload within the interval[r`,q−λ+1, r`,q+Θ`).

Lemma 3. If the response-time bound forT`,q is violated
(as we have assumed), then |Γλ| = r`,q +Θ` − r`,q−λ+1 −
W (T`, r`,q−λ+1)+ 1+µ, whereµ ≥ 0. (Note that, by(11),
|Γλ| > 0.) Additionally, T` executes within each instant of
Γλ, and |Γλ| = W (T`, r`,q−λ+1)− 1− µ.

Proof: Suppose, contrary to the statement of the lemma,
that the response-time bound forT`,q is violated and

|Γλ| < r`,q +Θ` − r`,q−λ+1 −W (T`, r`,q−λ+1) + 1. (12)



Under these conditions, the total length of the intervals in
Γλ, where at least one available processor is idle, isr`,q +

Θ`−r`,q−λ+1−|Γλ|
{by (12)}

> W (T`, r`,q−λ+1)−1. Thus, this
total length is at leastW (T`, r`,q−λ+1), as time is integral.
By Claim 3, T` executes at each timet ∈ Γλ, and thus
completes by timer`,q +Θ`, which is a contradiction.|Γλ|
can be found as|Γλ| = r`,q + Θ` − r`,q−λ+1 − |Γλ| =
W (T`, r`,q−λ+1)− 1− µ.

The next few definitions are used to set up an extension of
the problem window to the left so that a greater portion of
the workload can be considered. This technique is adapted
from [1], [9] and improves the accuracy of the test.

Definition 12. Let τp(t) = {Th | for somey, Th,y is ready
at time t andTh,y � T`,q}. (The subscriptp denotes the fact
that these jobs have higher or equal priority.)

Definition 13. Let t0(k) ≤ r`,q−k+1 be the earliest instant
such that∀t ∈ [t0(k), r`,q−k+1), |τp(t)| ≥ m or fewer than
|τp(t)| tasks fromτp(t) execute at timet. If such an instant
does not exist, then lett0(k) = r`,q−k+1.

Def. 13 generalizes the well-known concept of anidle
instant in uniprocessor scheduling as illustrated in Fig. 2.
The following claim is used to calculate the competing
demand within the interval[t0(λ), r`,q−λ+1).

Claim 4. No available processor is idle within
[t0(λ), r`,q−λ+1).

Proof: Suppose that an available processor is idle at
time t ∈ [t0(λ), r`,q−λ+1). Because the scheduler being
analyzed is work-conserving, all tasks inτp(t) execute at
time t and thus|τp(t)| ≤ m− 1, which violates Def. 13.

Our schedulability test for taskT` is based upon summing
the competing demand of tasks inτ within the interval
[t0(λ), r`,q +Θ`), which has lengthr`,q − t0(λ) + Θ`, and
the unavailable time within this interval.

Definition 14. Let E∗
` (k) be a finite function ofk such that

W (T`, r`,q−λ+1) ≤ E∗
` (λ). Let W (t) =

∑
Ti∈τ W (Ti, t).

Let M∗
` (δ, τ,m) be a finite function ofδ, m, and τ such

that W (t0(λ)) ≤ M∗
` (r`,q − t0(λ), τ,m). The function

M∗
` (δ, τ,m) upper-bounds the competing demand due to

higher-priority jobs and predecessors ofT`,q over intervals
of lengthδ +Θ`. (As mentioned earlier at the beginning of
Sec. V,M∗

` (δ, τ,m) andE∗
` (k) are calculated in order to

test whether the response-time bound ofT` is not violated.
Later, in Sec. V-B, we explain howM∗

` (δ, τ,m) andE∗
` (k)

are calculated.)

Definition 15. We require that there exists a constantH` ≥
0 such that, for allδ ≥ 0,

M∗
` (δ, τ,m) ≤ Usum · δ +H`. (13)

This requirement is reasonable because the growth rate of the

timet (0 l)
Ql

job release

rl,q

Gl

Tl,qTl,qTl,q

m-1
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Tl,q
competing jobs unavailable time

r +l,q Ql

Figure 2. Conditions for response-time bound violation forλ = 1.

total demand over an interval of interest, which has length
r`,q − t0(λ) + Θ`, cannot be larger than the total long-term
utilization of the tasks inτ for large values ofr`,q − t0(λ).
This also allows us to upper-bound our test’s computational
complexity. Henceforth, we omit the last four arguments of
M∗

` .

Definition 16. Let δmax
` (k) =

⌊
(H` + (m − 1) · (E∗

` (k) −

1) + Û · σtot −Θ` · Û)/(Û − Usum)
⌋
.

The following theorem will be used to define our schedu-
lability test.

Theorem 3. If the response-time boundΘ` is violated for
T`,q (as we have assumed), then, for somek ∈ [1,K`] and
δ ∈ [A−1

` (k − 1), δmax
` (k)],

M∗
` (δ)+(m−1) · (E∗

` (k)−1) ≥ B(δ+Θ`). (14)

Proof: Consider jobT`,q, k = λ, and time instants
r`,q−λ+1 and t0(λ) as defined in Defs. 9 and 13. To
establish (14) (withδ as defined later), we sum the processor
allocations within the intervals[t0(λ), r`,q−λ+1) ∪ Γλ and
Γλ. By Def. 11 and Claim 4, the total processor allocation
(including unavailable time) within[t0(λ), r`,q−λ+1) ∪ Γλ

is m · (r`,q−λ+1 − t0(λ)) + m · |Γλ| (see Fig. 2; note that
r`,q−λ+1 = r`,q here). Also, Lemma 3 implies that the total
processor allocation (including unavailable time) withinΓλ

is at leastW (T`, r`,q−λ+1)− 1− µ, whereµ ≥ 0.
The total processor allocation (including unavailable time)

within [t0(λ), r`,q + Θ`) is thus at leastm · (r`,q−λ+1 −

t0(λ))+m · |Γλ|+ |Γλ|
{by Lemma 3}

= m · (r`,q−λ+1− t0(λ))+
m · (r`,q + Θ` − r`,q−λ+1 − W (T`, r`,q−λ+1) + 1 + µ) +
W (T`, r`,q−λ+1)− 1− µ = m · (r`,q +Θ` − t0(λ))− (m−
1) · (W (T`, r`,q−λ+1)− 1) + (m− 1) · µ.

Let Resh([t0(λ), r`,q+Θ`)) be the amount of time that is
not available on processorh at time instants in the interval
[t0(λ), r`,q + Θ`). By Defs. 10 and 14, the allocation of
jobs within [t0(λ), r`,q+Θ`) is upper-bounded byW (t0(λ))
(recall that we are ignoring lower-priority jobs). Thus,

W (t0(λ)) +

m∑

h=1

Res([t0(λ), r`,q +Θ`))

≥ m·(r`,q−t0(λ)+Θ`)−(m−1) · (W (T`, r`,q−λ+1)−1).
(15)



We next calculate an upper bound onResh([t0(λ), r`,q+Θ`)).
For processorh and the interval[t0(λ), r`,q+Θ`), by Def. 5,

Resh([t0(λ), r`,q +Θ`))

= (r`,q−t0(λ)+Θ`)−supplyh(t0(λ), r`,q+Θ`−t0(λ))

(16)

Summing (16) for allh, we have
m∑

h=1

Resh([t0(λ), r`,q +Θ`))

=

m∑

h=1

(
(r`,q − t0(λ) + Θ`)

− supplyh(t0(λ), r`,q − t0(λ) + Θ`)
)

{by Def. 5}

= m·(r`,q−t0(λ)+Θ`)−Supply(t0(λ), r`,q−t0(λ)+Θ`)

{by Def. 6}

≤ m · (r`,q − t0(λ) + Θ`)− B(r`,q − t0(λ) + Θ`). (17)

Setting (17) into (15), we have

W (t0(λ))+m·(r`,q−t0(λ)+Θ`)−B(r`,q−t0(λ)+Θ`)

≥ m · (r`,q−t0(λ)+Θ`)−(m−1)·(W (T`, r`,q−λ+1)−1).

Rearranging the terms in the above inequality, we have

W (t0(λ)) + (m− 1) · (W (T`, r`,q−λ+1)− 1)

≥ B(r`,q−t0(λ)+Θ`).

SettingE∗
` (λ) andM∗

` (r`,q − t0(λ)) as defined in Def. 14
into the inequality above, we get

M∗
` (r`,q−t0(λ)) + (m− 1) · (E∗

` (λ)− 1)

≥ B(r`,q−t0(λ)+Θ`).

Setting r`,q − t0(λ) = δ in the inequality above we get
(14). (Note that, by Def. 9,λ ∈ [1,K`].) By Def. 13 and
Lemma 2,δ = r`,q−t0(λ) ≥ r`,q−r`,q−λ+1 ≥ A−1

` (λ−1).
Our remaining proof obligation is to establish the stated

range forδ. By (13) and (14),

Usum ·δ+H`+(m−1)·(E∗
` (k)−1)≥B(δ+Θ`). (18)

Applying (4) to (18), we have

Usum · δ +H` + (m− 1) · (E∗
` (k)− 1)

≥ max(0, Û · (δ +Θ` − σtot))

≥ Û · (δ +Θ` − σtot).

Solving the latter inequality forδ, we haveδ ≤ (H`+(m−
1) · (E∗

` (k)− 1)+ Û · σtot −Θ` · Û)/(Û −Usum). Because
δ is integral (asr`,q and t0(k) are integral), by Def. 16,
δ ≤ δmax

` (k). The theorem follows.

Corollary 1. (Schedulability Test) If, for taskT`, (14) does
not hold for eachk ∈ [1,K`] andδ ∈ [A−1

` (k−1), δmax
` (k)],

then the response-time bound forT` is not violated.

The term(m−1)·(E∗
` (k)−1) in (14) can be large ifu` and

Θ` are large. For large values ofΘ` and certain schedulers
such asGEDF andFIFO, this term can be replaced with a
smaller term proportional tomax(m − F − 1, 0) · E∗

` (k),
where F is the number of processors that are always
available (see Def. 6). This can be done because, under
GEDF andFIFO, the problem jobT`,q and its predecessors
cannot be preempted by other jobs after a certain time point
unless the competing demand carried from previous time
instants is sufficiently large (see [11] for details).

B. StepS3 (CalculatingM∗
` (δ) andE∗

` (k))

Note that we did not make any assumptions above about
how jobs are scheduled except that the jobs of each task
execute sequentially and jobs are prioritized as in Def. 7.
Therefore, Corollary 1 is applicable to all fixed job-priority
scheduling policies (these policies include preemptive vari-
ants of GEDF, FIFO, static-priority policies, and their
various combinations) provided the functionsM∗

` (δ) (and
its linear upper bound in Def. 15) andE∗

` (k) are known.
M∗

` (δ) andE∗
` (k) can be derived for a particular algorithm

by extending techniques from previously-published papers
on the schedulability of sporadic tasks [1], [9] to incorporate
more general arrival and execution patterns.

In the extended version of this paper [11], we derive
E∗

` (k), M∗
` (δ), and the constantH` in Def. 15 for a

prioritization scheme in whichχi,j = ri,j+Di, whereDi is
a constant (preemptiveGEDF andFIFO prioritizations are
subcases).

Given an expression forH`, we can computeδmax
` (k) in

Def. 16 for any givenk. Given expressions forδmax
` (k),

M∗
` (δ), andE∗

` (k), we can apply Corollary 1 to check that
each taskT` ∈ τ meets its response-time bound. In the
next section, we identify conditions under which the test is
applicable and discuss its time complexity.

VI. COMPUTATIONAL COMPLEXITY OF THE TEST

According to Corollary 1, (14) needs to be checked for
violation for all k ∈ [1,K`] andδ ∈ [A−1

` (k−1), δmax
` (k)].

Theorem 4. The time complexity of the presented test is
pseudo-polynomial if there exists a constantc such that
Usum ≤ c < Û .

Proof: We start with estimating the complexity of
checking (14). The values ofαu

i (∆), γu
i (k), A

−1
i (k), and

B(∆) can be computed in constant time ifαu
i (∆) andγu

i (k)
consist of periodic and aperiodic piecewise-linear parts and
B(∆) is also piecewise-linear. These assumptions are used
in prior work on the Real-Time Calculus Toolbox [17] and
are sufficient for practical purposes.

It can be shown, that, under these assumptions,M∗
` (δ) for

a given value ofδ can be computed inO(n) time, wheren
is the number of tasks [11]. The calculations above need to



be repeated for allk ∈ [1,K`] and all integers in[A−1
` (k−

1), δmax
` (k)]. By Def. 16,δmax

` (k) is finite if its denominator
is nonzero. By (5), we haveUsum ≤ Û . Therefore,δmax

` (k)
is finite if (5) is strict.

Checking that (14) is violated for each integral value in
[A−1

` (k− 1), δmax
` (k)] can be computationally expensive. A

fixed-point iterative technique can instead be applied so that
only a (potentially small) subset of[A−1

` (k − 1), δmax
` (k)]

is checked.

VII. C LOSED-FORM EXPRESSIONS FOR

RESPONSE-TIME BOUNDS

In settings where response-time bounds are not known,
they need to be calculated. In this section, we present closed-
form expressions for the response-time boundsΘi under
GEDF-like schedulers.

In prior work [7], [10], it has been shown thatGEDF
(and many other schedulers) ensure a maximum response-
time bound ofx+pi+emax

i , wherex ≥ 0, for each sporadic
taskTi ∈ τ , if tasks have implicit deadlines, all processors
are fully available, andUsum ≤ m. In this paper, we adopt
a similar approach. We seek response-time bounds of the
form Θi = x+ γu

i (Ki)+Ci, wherex > 0, Ki is as defined
in Def. 3, andCh = Dh − minTi∈τ (Di). We let Ci,h =
Di −Dh.

In the rest of this section, we derivex based upon task
parameters and resource availability. The derivation process
is similar to finding an upper bound onδ in Theorem 3.
In Lemmas 4 and 5 below, we first establish upper bounds
on E∗

` (k) andM∗
` (δ) as functions ofx for the case when

the response-time bound is a function ofx. We then set the
obtained expressions into the schedulability test and solve
the resulting inequality forx.

Definition 17. Let Y` = L`(max(0, γu
` (K` − 1) − 1) +

γu
` (K`)+C`), whereLi(X) = max(0, ui ·X+Ri ·Bi)+vi.

Lemma 4. (Proved in [11]): If Θ` = x + γu
` (K`) + C`,

thenE∗
` (k) ≤ Y` + u` · x for k ∈ [1,K`].

Definition 18. Let W be the sum ofm − 1 largest values
ui · (γ

u
i (Ki) + Ci).

Lemma 5. (Proved in [11]): If Θi = x + γu
i (Ki) + Ci

for each taskTi and δ ≥ 0, then M∗
` (δ) ≤ Usum · δ +∑

Ti∈τ Li(C`,i) + U(m − 1) · x +W , whereU(m − 1) is
the sum ofm− 1 largest task utilizations.

Definition 19. Let a = min(F + 1,m), whereF is the
number of processors that are always available (see Def. 6).

Theorem 5. If Û − (m− a) ·max(ui)−U(m− 1) > 0 and
Usum ≤ Û , then the maximum response time of any job of
Ti is at mostx+ γu

i (Ki) + Ci, where

x = max
Th∈τ

(
W+Û ·σtot+Ah+

∑
Ti∈τ Li(Ch,i)

Û−(m−a)·uh−U(m−1)

)
+1 (19)

and Ah = (m − a) · (Yh − 1) + (a − 1 − Û) · (γu
h (Kh) +

Ch) + (a− 1) ·max(0, γu
h(Kh − 1)− 1).

Proof: Suppose to the contrary that taskT` violates
its response-time boundΘ` = x + γu

` (K`) + C`. Because
x > 0, Θ` > γu

` (k)+C` holds for eachk ∈ [1,K`]. In [11],
we show that under these conditions, fork = λ and δ ≥
A−1

` (λ − 1), whereλ is defined in Def. 9, the following
holds.

M∗
` (δ)+(m−a)·(E∗

` (k)−1)

+(a−1)·(γu
` (k)+C`+max(0, γu

` (k−1)−1))

≥ B(δ +Θ`) (20)

Settingk = λ and the bound forB given by (4) into (20),
we get

M∗
` (δ)+(m−a)·(E∗

` (λ)−1)

+ (a−1)·(γu
` (λ)+C`+max(0, γu

` (λ−1)−1))

≥ Û · (δ +Θ` − σtot).

By the selection ofΘ`,

M∗
` (δ)+(m−a)·(E∗

` (λ)−1)

+ (a−1)·(γu
` (λ)+C`+max(0, γu

` (λ−1)−1))

≥ Û · (δ + x+ γu
` (K`) + C` − σtot).

Setting the bounds onE∗
` (λ) andM∗

` (δ) given by Lemmas 4
and 5 into the inequality above, we have

Usum·δ+
∑

Ti∈τ

Li(C`,i)+U(m− 1)·x+W

+(m−a)·(Y`+u` ·x−1)

+(a−1)·(γu
` (λ)+C`+max(0, γu

` (λ−1)−1))

≥ Û · (δ + x+ γu
` (K`) + C` − σtot).

Becauseδ ≥ A−1
` (k − 1) ≥ 0, wherek ∈ [1,K`], and

Usum ≤ Û , by the statement of the theorem,

U(m− 1) ·x+W+
∑

Ti∈τ

Li(C`,i)+(m−a)·(Y`+u` ·x−1)

+(a−1)·(γu
` (λ)+C`+max(0, γu

` (λ−1)−1))

≥ Û · (x+ γu
` (K`) + C` − σtot).

After regrouping the terms, we have

W+
∑

Ti∈τ

Li(C`,i)+(m−a)·(Y`−1)

+(a−1)·(γu
` (λ)+C`+max(0, γu

` (λ−1)−1))

−Û · (γu
` (K`) + C` − σtot)

≥ x · (Û − (m− a) · u` − U(m− 1)).



Solving the above inequality forx, we have

x ≤
W + Û · σtot +A`(λ) +

∑
Ti∈τ Li(C`,i)

Û − (m− a) · u` − U(m− 1)
, (21)

whereA`(k) = (m− a) · (Y`− 1)+ (a− 1) · (γu
` (k)+C`+

max(0, γu
` (k− 1)− 1)− Û · (γu

` (K`) +C`). From Def. 19,
we havem − a ≥ 0 and a ≥ 1. Thus, since the function
γu
` (k) is non-decreasing,A`(λ) ≤ A`, whereA` is defined

in the statement of the theorem, and hence, (21) contradicts
(19).

The result of Theorem 5 is closely related to the results
of [7], [10], in which the maximum deadline tardiness
of sporadic tasks under different schedulers is studied. In
particular, the requirement to havêU − (m−a) ·max(ui)−
U(m− 1) to be positive is a sufficient condition for maxi-
mum job response times (deadline tardiness) to be bounded.

Tightening the bounds. While we cannot assert that the
presented expressions are tight, they can be used to constrain
an iterative search for tighter response-time bounds, as
mentioned earlier at the end of Sec. II. For example, one can
calculate initial response-time boundsΘ[0]

i using Theorem 5
and then try to find tighter bounds of the formΘi = y ·Θ

[0]
i ,

wherey < 1. The multipliery can be found by performing a
binary search in which tentative values ofy are tested using
Corollary 1. Note that the multipliery is the same for all
tasks. This method worked well in our experimental study
(presented in the next section) as all tasks were identical.
For non-identical tasks, different multipliers could be used,
but we have not yet studied such approaches in any detail.
Further work is also needed on the inherent time complexity
required to compute response-time bounds.

VIII. M ULTIPROCESSORANALYSIS: A CASE STUDY

Our analysis can be used to derive response-time bounds
for workloads that partitioning schemes cannot accommo-
date and for workloads that cannot be efficiently analyzed
under the widely-studied periodic and sporadic models.

To illustrate this, we applied our analysis to a part of a
MPEG-2 video decoder application that has been studied
previously in [4], [14]. The originally-studied application,
shown in Fig. 3(a), is partitioned and mapped onto two
PEs, PE1 and PE2. PE1 runs the VLD (variable-length
decoding) and IQ (inverse quantization) tasks, while PE2
runs the IDCT (inverse discrete cosine transform) and MC
(motion compensation) tasks. The (coded) input bit stream
enters this system and is stored in the input bufferB.
The macroblocks (frame pieces of size16 × 16 pixels)
in B are first processed by PE1 and the corresponding
partially decoded macroblocks are stored in the bufferB′

before being processed by PE2. The resulting stream of fully
decoded macroblocks is written into a playout bufferB′′

prior to transmission by the output video device. In the above
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system, the coded input event stream arrives at a constant
bit-rate.

Experimental Setup. In our experiments, we considered a
variation of the previously-studied system shown in Fig. 3(a)
in which PE1 is a three-processor system running four
identical VLD+IQ tasks,T1, T2, T3, andT4. Such a task
system could be used in a virtual reality application, where
multiple video streams need to be processed. The modified
system is illustrated in Fig. 3(b) and explained in further
detail below. For conciseness, we refer to the systems in
these two insets as the (a)- and (b)-systems, respectively.To
assess the usefulness of our analysis, we computed output
curves for the four tasks so that they can be used in further
analysis. We assumed zero scheduling and system overheads
(the inclusion of such overheads in our analysis is beyond
the scope of this paper).

The goal of our experiments was to compare different
ways of implementing and analyzing the (b)-system. As
we shall see, the (b)-system can be implemented on three
processors if global scheduling is used; in this case, it can
be analyzed using the techniques of this paper but not using
prior global schedulability analysis methods. Moreover, if



the system is instead partitioned (allowing uniprocessor real-
time calculus to be applied on each processor), then four
processors are required.

In the analysis, we used a trace of6×105 macroblock pro-
cessing events obtained in prior work for the VLD+IQ task
during a simulation of the (a)-system using a SimpleScalar
architecture [4], [14]. We obtainedγu

i (k) as in Def. 1
by examining a repeating pattern of 19,000 consecutive
macroblock instruction lengths in the middle of the trace
and assuming a500 MHz processor frequency. We found
that all macroblock processing times in the trace are under
γu
i (1) = 164µs, which we set to be the maximum job ex-

ecution time (the best-case execution time isγl
i(1) = 2µs).

The functionαu
i (∆) in Def. 2 was obtained by examining

macroblock arrival times. We computedA−1
i (k) in Def. 3

as well as linear bounds forαu
i (∆) andγu

i (k) as in (2) and
(3) using the RTC Toolbox [17].

In the (b)-system, tasksT1, . . . , T4, are scheduled on three
fully-available processors. TaskT1 is statically prioritized
over the other tasks. In such a system, taskT1 can process
a time-critical video stream and tasksT2, T3, andT4 can
process low-priority video streams. TasksT2, T3, and T4

are scheduled byGEDF using the supply from two fully-
available processors and that remaining on a third processor
after accommodating taskT1. In Fig. 3(b), down arrows are
used to depict the long-term available utilization on each
processor.

Results.To show that existing analysis techniques are inap-
plicable or are too pessimistic in the given setup, some of the
properties of the input streams and the VLD+IQ task need
to be emphasized. First, the arrival curveαu

i (∆) is bursty,
i.e., several macroblocks can arrive at the same time instant.
Second, whileei = 17.6µs, the maximum execution time
of a single macroblock is164µs, so assuming that each job
executes for its worst-case execution time would result in
heavy overprovisioning. The long-term per-task utilization
is ui = Ri · ei = 0.00396 · 17.6 = 0.7, whereRi = 0.00396
is the long-term arrival rate. Finally, the total utilization is
U =

∑4
i=1 ui = 2.8. Therefore, the task set{T1, . . . , T4}

cannot be partitioned onto three processors (four processors
are needed, actually), soglobal scheduling is required.

For the (b)-system, the minimum job inter-arrival time is
zero. Moreover, the arriving stream cannot be re-shaped so
that the minimum job inter-arrival time is at leastpi = 25µs
and the long-term arrival rate to be preserved. Because the
worst-case job execution time isemax

i = γu
i (1) = 164µs

and the minimum job inter-arrival time ispi = 25µs, we
haveemax

i /pi = 6.59 > 1. Therefore, the (b)-systemcannot
be analyzed using prior results for periodic and sporadic
task models, which requirepi > 0 andemax

i /pi ≤ 1.
Fig. 3(c) depicts the job completion curveαu

1
′ (normal-

ized to frames/millisecond assuming 1,584 macroblocks per
frame) for taskT1 in the (a)- and (b)-systems, the curve

αu
2
′ for task T2 in the (b)-system, and the input curve

αu
1 . (Note that, in the (b)-system, tasksT1, . . . , T4 have

the same input curveαu
1 , and the completion curves for

T2, . . . , T4 are the same.) The curves forT1 in the (a)- and
(b)-systems were obtained using prior results in real-time
calculus pertaining to uniprocessor systems as implemented
in the RTC Toolbox [17]. For the (b)-system, we calculated
the maximum response time forT1 and then applied Theo-
rem 2 to find the supply available to tasksT2, T3, andT4. We
then calculated their inital response-time boundsΘ

[0]
i using

Theorem 5. Since all three tasks have identical parameters,
we calculated tighter bounds by running a binary search as
described earlier at the end of Sec. VII. We then computed
completion curves using Theorem 1.

The resulting curves have the same long-term completion
rate in both systems. TaskT1 has the shortest possible
maximum response time in both the (a)- and (b)-systems.
However, the large job response times of tasksT2, . . . , T4

in the (b)-system cause a larger degree of burstiness in the
output event streams. Such burstiness is mainly due to the
fact that multiple jobs of the same task arriving at the same
time instant can potentially execute for a significant duration
of time, causing jobs of non-executing tasks to wait (or
be queued). Overall, the (b)-system has the advantage of
needing onlythree processors to accommodate four video
streams, at the expense of larger buffers for storing par-
tially decoded macroblocks (for approximately50 frames).
With partitioned scheduling,four dedicated processors are
required.

We conclude this section with a few comments about the
running time of the analysis procedures. We have imple-
mented these procedures as a set of MATLAB functions
extending the RTC Toolbox. Though the procedure presented
in Sec. V has pseudo-polynomial time complexity (like
many other schedulability tests presented elsewhere), the
time needed to verify response times using Corollary 1
can be large, especially for complex arrival and execution-
time patterns. In our experimental study of the (b)-system,
we found that the required response-time bounds could be
calculated in a couple of minutes (on a 1.7 GHz single-
processor desktop system). Again, these bounds were ob-
tained by using Theorem 5, and then refining these bounds
using Corollary 1.

IX. CONCLUDING REMARKS

In this paper, we have studied a multiprocessor PE, where
(partially available) processors are managed by a global
scheduling algorithm and jobs are triggered by streams of
external events. This work is of importance because it allows
workloads to be analyzed for which existing schedulabil-
ity analysis methods are completely inapplicable (e.g., the
system cannot be described efficiently using conventional
periodic/sporadic task models) and for which partitioning
techniques are unnecessarily restrictive.



The research in this paper is part of a broader effort,
the goal of which is to produce a practical compositional
framework, based on real-time calculus, for analyzing mul-
tiprocessor real-time systems. Towards this goal, the contri-
butions of this paper are as follows. We designed a pseudo-
polynomial-time procedure that can be used to test whether
job response times occur within specified bounds. Given
these bounds, we computed upper and lower bounds on
the number of job completion events over any interval of
length∆ and a lower bound on the supply available after
scheduling all incoming jobs. These bounds can be used as
inputs for other PEs thereby resulting in a compositional
analysis framework.

A number of unresolved issues of practical importance
remain. First,efficientmethods are needed for determining
response-time bounds when they are not specified — this
is probably the most important unresolved issue left by
this paper. As a partial solution, we provided closed-form
expressions for computing response-time bounds, but we do
not know how pessimistic they are. Second, the schedulabil-
ity test itself could possibly be improved by incorporating
information about lower bounds on job arrivals and exe-
cution times and upper bounds on supply. Third, real-time
interfaces as in [4] need to be derived for the multiprocessor
case to achieve full compatibility with uniprocessor real-
time calculus. Fourth, the inherent pessimism introduced
by applying real-time calculus methods on multiprocessors
needs to be assessed.
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