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Abstract—Many embedded platforms consist of a hetero- specialization ofhetwork calculuswhich was proposed by
geneous collection of processing elements, memory modules Cruz in 1991 [5], [6] and has been widely used to analyze
and communication subsystems. These components often im- -, mynication networks since then. Real-time calculus spe

plement different scheduling/arbitration policies, havedifferent - . .
interfaces, and are supplied by different vendors. Hence cializes network calculus to the domain of real-time and em-

compositional techniques for modeling and analyzing such bedded systems by, for example, adding techniques to model
platforms are of interest. In prior work, the real-time calculus different schedulers and mode/state-based informatian, (e

framework has proven to be very effective in this regard.  see [14]). A number of schedulability tests have also been

However, real-ime calculus has heretofore been limited 10  garjyed based upon network calculus. An overview of these
systems with uniprocessor processing elements, which is a .
tests can be found in [18].

serious impediment given the advent of multicore technoldgs. - - .
In this paper, a two-step approach is proposed that allows ta In real-time calculus, timing properties of event streams
power of real-time calculus to be applied in globally-schedled  are represented using upper and lower bounds on the num-

multiprocessor systems: first, assuming that job responséme  per of events that can arrive over any time interval of
bounds are given, determine whether these bounds are met; a specified length. These bounds are given by functions

second, using these bounds, determine the resulting residu I . : . :
processor supply and streams of job completion events using a*(A) and o’ (A), which specify the maximum and min-

formalisms from real-time calculus. For this methodology b ~ imum number of events, respectively, that can arrive at a
be applied in settings where response-time bounds are not processing/communication resource within any time irgerv

specified, such bounds must be determined. Though this is an of length A (or the maximum/minimum number of possible
issue that warrants further investigation, a method is disassed task activations within amyA). The service offered by a

for calculating such bounds that is applicable to a large fariy L T . .
of fixed job-priority schedulers. The utility of the proposed  '€source is similarly specified using function$(A) and

analysis framework is demonstrated using a case study. BH(A), which specify the maximum and minimum number
of serviced events, respectively, within any interval ofgth

A. Given the functionsa® and o! corresponding to an
event stream arriving at a resource, and the sendte
and 5! offered by it, it is possible to compute the timing
properties of the processed stream and remaining progessin
The increasing complexity and heterogeneity of mod-capacity, i.e., functiona®’, o, B, andﬂl/, as illustrated
ern embedded platforms have led to growing interest inn Fig. 1(a), as well as the maximum backlog and delay
compositional modeling and analysis techniques [15]. Inexperienced by the stream. As shown in the same figure,
devising such techniques, the goal is not only to analyzehe computed functionsy*’ and o!' can then serve as
the individual components of a platform in isolation, butinputs to the next resource on which this stream is further
also to compose different analysis results to estimate thprocessed. By repeating this procedure until all resources
timing and performance characteristics of the entire platthe system have been considered, timing properties of the
form. Such analysis should be applicable even if individualfully-processed stream can be determined, as well as the
processing and communication elements implement differerend-to-end event delay and total backlog. This forms the
scheduling/arbitration policies, have different inteda, and  basis for composing the analysis for individual resourtes,
are supplied by different vendors. These complicatingoi@ct derive timing/performance results for the full system.
often cause standard event models (e.g., periodic, smoradi  Similarly, for any resource with tasks being scheduled
etc.) and schedulability-analysis techniques to lead &lpv  according to some scheduling policy, it is also possible to
pessimistic results or to be altogether inapplicable. compute bounds¥*(A) andj3'(A)) on the service available
To overcome this difficulty, a compositional framework to its individual tasks. Fig. 1(b) shows how this is done
— often referred to aseal-time calculus— was proposed for the fixed-priority (FP) andtime-division-multiple-access
by Chakraborty et al. in [3] and then subsequently extendedTDMA) policies. As shown in this figure, for the FP policy,
in a number of papers (e.g., see [4]). Real-time calculus is ¢he remaining service after processing Stream A serves

Keywords-component-based design; multiprocessor schedul-
ing; real-time calculus
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Figure 1. (a) Computing the timing properties of the processed streamgusal-time calculus(b) Scheduling networks for fixed priority and TDMA
schedulers.

as the input (or, is available) to Stream B. On the othemvithin specified bounds. Second, using these event delays,
hand, for the TDMA policy, the total servicg is split ~we compute arrival curves for the processed streamts,
between the services available to the two streams. Similaanda!’, and the remaining-total-service curve; these curves
so calledscheduling network$4] can be constructed for — as in the uniprocessor case — can in turn be used as input
other scheduling policies as well. Various operations an th for other resources, thereby resulting in a compositional
arrival and service curves and 3, as well as procedures framework (as shown in Fig. 1(a)). To apply these results,
for the analysis of scheduling networks on uniprocessorper-stream delay bounds must be given. In settings where
(and partitioned systems) have been implemented in theuch bounds are not given, they must be determined. We
RTC (real-time calculus) toolbox [17], which is a MATLAB- present a simple method for calculating such bounds, but
based library that can be used for modeling and analyzing comprehensive evaluation of its properties is deferred to
distributed real-time systems. future work.
Our contribution. Unfortunately, none of the compositional Prior work. Our work is based upon multiprocessor schedu-
techniques described above can be used when the resoutesility tests by Baruah [1] and Leontyev and Anderson [9].
in question is a multiprocessor that is scheduled using & some aspects, the presented analysis is also similar to
global multiprocessor scheduling algorithm. In particular, results by Bertogna et al. [2], Shin et al. [16], and Zhang
when such algorithms are used, processors may be idiend Burns [19]. The main difference between our work and
even though tasks are available for execution, as taskhese prior efforts is that we consider more general task
must execute sequentially; this situation does not arise oarrival and execution models, viz. those supported by the
uniprocessors and thus is not addressed in uniprocessmgal-time calculus framework. Also, we consider the case
compositional techniques. when one or more processors can be partially available,
There are two reasons why existing compositional techwhich is similar to analysis in [16], where partial availitlyi
niques need to be extended to incorporate such multipras considered in the context of hierarchical schedulingr Ou
cessors. First, multicore chips are becoming increasinglyvork is different from that in [18] and related works listed
common. Second, viewing a multiprocessor system as there in that we are primarily concerned with multiprocesso
collection of independent uniprocessors and applyingipart scheduling and earliest-deadline-first-like algorithidse to
tioning techniques is unnecessarily restrictive and pide$  space constraints, this paper covers only the most eskentia
supporting workloads that fundamentally require globalparts of the new framework. Proofs for some lemmas and
scheduling approaches (such a workload is considered iolaims are omitted here but can be found in [11].

a case study presented later). The rest of the paper is organized as follows. Sec. II
Motivated by these observations, we present in this papegsresents our task model. In Secs. Il and IV, timing char-
an extension of the real-time calculus framework [3], [4] acteristics of processed streams and the remaining supply
that incorporates globally-scheduled multiprocessosian are computed. In Secs. V and VI, the response-time-bound
compatible with the RTC toolbox. The core of our frame-test is presented and its time complexity is discussed. In

work is a pseudo-polynomial-time procedure that, given aSec. VII, we present closed-form expressions for calaugti
collection of arrival curves for input streamg anda!, their  response-time bounds. Sec. VIII presents a case study for ou
execution requirements, and the available resource supplgnalysis, and finally, Sec. IX discusses some directions for
checks that event delays on such a multiprocessor resideture work.



Il. TASK MODEL Also, we assume that there exisis > 0 and v;, where

& = limg s 1 oo ”fk(k), such that

In this paper, we consider a task set= {T1,...,T,}.

Each task has incoming jobs that are processed by a mul- Vi'(k) <€ k+wv; forall k> 1. 3)
tiprocessor consisting afi > 2 unit-speed processors. We
assume that > m. We also assume that all time quantities
are integral.

The j* job of T;, where j > 1, is denotedT; ;.
The arrival (or releasg time of 7} ; is denotedr; ;. The
completion timef T; ; is denotedf; ; and the delay between
its start time and completiorf; ;—r; ;, is called itsresponse  Definition 4. Let u; = R; - &. This quantity denotes the
time As in prior work on real-time calculus, we wish to be average long-term utilization of tagk. We require that <
able to accommodate very general assumptions concerning < 1. Let Uy, = ZTiET U
job executions and arrivals and the available service. MosltE
of the remaining definitions in this section are devoted to A ) - ,
formalizing the assumptions we require. Table | summarize§MAa—+oo (LEJ +1)/A = .- ande; = ™, sou; =

ma

the notation introduced in this section. R & =%—.

(1) is needed in order to prevent tagkfrom overloading
the system. In (2),R; characterizes the long-term arrival
rate of taskT;’s jobs andB; characterizes the degree of
burstiness of the arrival sequence. In (3), the paranwgter
denotes the average worst-case job execution timE .of

xample 3. Under the sporadic task modelR, =

Definition 1. ~j(k) (v;(k)) denotes an upper (lower) bound Definition 5. Let supply, (¢, A) be the total amount of
on the total execution time of arly consecutive jobs of;.  processor time available to tasks inon processor: in
(We assume;(k) = O forall k < 0 andv}'(k) < v'(k+1),  the interval[t,t + A), where A > 0. Let Supply(t, A) =
and similarly for~!(k).) These definitions are equivalent to So7 supply, (t, A) be the cumulative processor supply in
the workload demand curves in [12].

Example 1. Suppose that tasK;'s job execution times MODETLa'\k"'C?TLTION
follow a pattern1,5,2,1,5,2,.... Then, (1) = 5, '
7(2) = 7, 7#(3) = 8, 7i(4) = 13, etc. Also,7}(1) = 1, Input parameters

1oy — 2 ~1(2) — ] ~L(4) — : : :
7i(2) = 3,7(3) =8, 7;(4) =9, etc. o(A) ][ Max. (min.) number of job arrivals of;
Definition 2. Thearrival functiona¥(A) (al(A)) provides (CHGY)) _overA
an upper (lower) bound on the number of jobsIpthat can 75;(1‘3) Max. (min.) execution demand
arrive withinany time interval(z, z + A], wherexz > 0 and (vi(K)) _of any k consecutive jobs of;
A > 0 [4]. (We assumer(A) = 0 for all A < 0.) a;(A) B(A) Min. guaranteed cumulative processor,
denotes the paifa’(A), ol (A)). supply overA

Params. below can be found using RTC Toolbox
Example 2. The widely-studied periodic and sporadic task 7 Long-term avilable processor utilization

Eu?[ﬁels ng subcasest_of _thlljs m_oreI ge}neral task ;ngdlael. L Maximum biackout fime
oth models, consecutive job arrivals’bf are separated by o The number of processors
at leastp; time units, wherep; is theperiod of T;, and each that are always available

job requires at most}*** execution units. Therefore, under ) Pseudosinverse of®
both modelsp'(A) = [ﬂ and~;' (k) = k - ™. T Min. integer s.LA-1(K,) > ~H(K;)
Definition 3. Let A;l(k) _ 1Df{A | Oé?(A) > k}, 6_1 ESBaVe:-age WOertL-0aSe lot; exedCUtlon(glrne
where A > 0. This function characterizes the minimum ;}g Lurs n:ess o elex?cu flz(“)n .etr)nan
length of the time intervalz, > + A] during which jobs i ong-term arrl\;ahra €0 ils JODS
T; j+1,-- -, 15 j+k can be released for someassumindl; ; B Burs’tlness of the a.r-r|val curve
is released at time. We defined;*(0) = 0 and require that Wi Ti's long-term utilization
there existsk; > 1 such that Usum Total utilization
. O, below can be checked using the test in Sec. V
A (KG) > i (KG). (1) 0, | T;'s response-time bound
Output calculated using the input and {©;}
al(A) Max. (min.) number of job completions
We further require that there exisf3;, > 0 and B; > 0, (@' (A)) of T: over A
. ol (A i ¢
whereR; = lima o “3), such that B'(A) Min. guaranteed unused
aj'(A) < R;- A+ B; forall A > 0. @) processor supply oveh




the intervallt,t + A). ¥ and aﬁ', and the remaining processor supfy(A);

Though we desire to make our analysis compatible Withthese, in turn, can serve as inputs to subsequent PEs, yhereb

the real-time calculus framework, which requires that in_resultlng in-a compositional technique.

S . . Second, given a task set = {Ti,..., T,} and a
dividual processor supplies be known, there exist man X . .
. . L . ultiprocessor platform characterized by a cumulativergua
settings in which individual processor supply functions ar

. . anteed processor timi® A), we develop a sufficient test that
not known and a lower bound on the cumulative available” "~ ; ) )

) : . . : verifies whether the maximum job response time of a task
processor time is provided instead. (In uniprocessor reaT € 7, max;(fi; —ri ;). is at mostO;, where
time calculus, the available service is described as the® ' I v
number of incoming events processed by a PE during a time 0; > max(v(j) — A7 (G - 1)). (6)
interval.) Note that if individual processor supply guasss =1
are known, a lower bound on the cumulative guaranteedlt can be shown that the maximum job response time of
supply can be computed easily. T; cannot be less than the right-hand-side of (6). Intuitively
~¥(4) is the maximum execution requirementjo€onsecu-
tive jobsT; 4, ..., Tiarj1 and.A; 1 (j—1) is the minimum
length of the interval where job%; ,11,..., T q4+j—1 are
released.) 19, equals the relative deadline of a job, then the

~ test will check whether the system is hard-real-time schedu
B(A) z max(0,U - (A = otor)), @ Jable, Alternatively, if deadlines are allowed to be missed
whereU € (0,m] ando,; > 0. We let F be the number and ©; includes the maximum allowed deadline tardiness,
of processors that are always available at any time. If althen the test will check soft-real-time schedulabilitycBa
processors have unit speed, thBn= max{y | VA > 0 : test allows workloads to be considered that fundamentally
B(A) >y - A require global scheduling approaches. Unknown response-
time bounds can be calculated by using closed-form expres-
sions given in Sec. VIl to determine initial bounds, and by
then iteratively decreasing these bounds and applying the

task_s N7 on th_e entlr_e platform, and, which is the . presented test to determine whether such decreased bounds
maximum duration of time when all processors are unavaul-are valid

able, are similar to those in the bounded delay model [13].

We require that (5) below holds for otherwise the system [1l. CALCULATING o' AND aﬁ’
would be overloaded and job response times could be
unbounded.

Definition 6. Let B(A) < Supply(t, A) be the guaranteed
total time that all processors can provide to the tasks in
during any time intervalt, t+A), whereA > 0. We assume
that

In the above definition, the paramete[?fs which is the
total long-term fraction of processor time available to the

Let o' (A) (aﬁ/(A)) be the maximum (respectively, min-

imum) number of job completions of tagk over an interval

(xz,xz + Al], wherez > 0. Bounds on these functions can be
We assume that released jobs are placed into a singkomputed as follows.

global ready queue. When choosing a new job to schedulq;heorem 1. If the response time of any job @f is at most

the scheduler selects (and dequeues) the ready job of highes

priority. An unfinished job ispending if it is released. ©:: thena’(A) < min G%@J ;o (A+0; — 75(1)))

A pending job isready if its predecessor (if any) has 4.4 al-/(A) > k(A — O, +4H1)).

completed execution. Note that the jobs of each task execute  * - !

sequentially. Job priorities are determined as follows. Proof: We prove the first inequality, leaving the second

_ o : , one to the reader. Consider an interyal, t2] such that at

Defmmo_n 7. (prioritization rules) Associated with each least one job off’, completes within it ands — ¢, — A. Let

job T;,; is a constant value,;. If xi; < Xkn OF Xij = (N2) be the index of the first (last) job @f; completed

Xe,n A (1 < kV(i=kAj<h)), then the priority off; ; is within (¢1, #]. Then

higher than that of}, ;,, denotedl; ; < T} ». Additionally, ’ '

we assumg < h implies x; ; < x;, for each taskr;.

fin, >t and  f; N, <to. (7

By the condition of the theorem, jdb, ;'s response time
fi.; —mi; is at mosto;. By the definition of response time
and Def. 1,f; j—r; ; is atleasty!(1). From (7), we thus have
rin, >t —0; andr; n, < ta —~(1). Thus, the number

The technical contributions of this paper are twofold. of jobs completed within the intervat;, t2], No — Ny + 1,
First, given per-task bounds on maximum job responsés at most the number of jobs released within the interval
times, we characterize the sequence of job completion gventt; — ©;,t2 — 7}(1)]. By Def. 2, we haveN, — Ny + 1 <
for each taskZ; in terms of the next-stage arrival functions a¥(ts —v1(1) —t1 + ©;) = a¥(A +0; —~L(1)). If job T;

Example 4. Global earliest-deadline-firs&GEDF) priorities
can be defined by setting; ; =, ;+D; for each jobT; ;,
where D; is T;'s relative deadline. Global first-in-first-out
(FIFO) priorities can be defined by setting ; =7; ; [8].



completes at timef; ;, thenl; ;,; cannot complete earlier V. MULTIPROCESSORSCHEDULABILITY TEST
than f; ; +~.(1). Thus, job completions are separated by at
least~}(1) time units, and hence, at mo%7 o) jobs can

be completed within any interval of length.

IV. CALCULATING B/(A)

We now calculate a lower boun8’(A) on processor
time that is available after scheduling tasks. .., T,,. We
first upper-bound the total allocation of jobs Bf over any
interval of lengthA.

Definition 8. Let A(T;,I) be the total amount of time for
which jobs of taskl; execute within the set of intervals

In this section, we present the core analysis of our
framework in the form of a schedulability test (given in
Corollary 1 later in this section) that checks whether a pre-
defined response-time bourtd; is not violated for a task
T;.

As noted earlier, the way jobs are prioritized according
to Def. 7 is similar toGEDF. A number of GEDF schedu-
lability tests have been developed assuming that jobsearriv
periodically or sporadically (e.g., [1], [2], [9]). In thisaper,
we extend techniques from [1] and [9] in order to incorporate
more general job arrivals and execution models.

Similarly to [7], we derive our test by ordering jobs by
their priorities and assuming thdt , is the first job for
which fo, > 744 + O, holds. We further assume that, for
each jobTy, ;, such thatTy, , < Ty 4,

fa,b < Ta,b + 6(1- (9)

We consider an interval that includes the time wiTén
becomes ready and the latest time witgn, is allowed to

Lemma 1. If the response time of any job @f is at most
©;, thenA(T;, [t,t + A)) < min(A, v (o (A + 6;))).

Proof: Consider an intervdk, ¢+ A). The condition of
the lemma implies that all df;'s jobs released at or before
time ¢ — ©; complete by time. Thus, the allocation of;
within [¢,¢ + A), A(T;, [t,t + A)) is upper-bounded by the
maximum execution demand @f’s jobs released within the

interval (t— ©;, t+ A]. By Def. 2, there are at most’ (A +
©,) jobs released withir(t — ©,,t + A}, and by Def. 1,
their total execution demand is at most(a¥(A + ©;)).
We thus haveA(T;, [t,t + A)) < ¥ (a¥(A + ©;)). Also,

complete, which is, , + ©,. This interval is computed for
each value of € [1, K;] (see Def. 3) and (defined later
in this section), which determine its length+ ©,. (The

range ofd depends ork and ¢.) During this interval, we

A(T;, [t,t + A)) cannot exceed the length of the interval consider demand due to competing higher-priority jobs that

[t,t+ A). n

Theorem 2. If the response time df;’s jobs is at most;,
then at least

B'(A) = sup (Z(y)) (8)
0<y<A

time units are available over any interval of length> 0,
where Z(y) = max (O, B(y) — ZT o, min(y, i % (y +
©;))). Additionally, (4) for B’'(A) holds with U =0-
Usum andoly, = (U-0ror+ 37, ¢ (ui- O+ Bi+uv;)) /U

Proof: In this paper, we prove (8); derivations of the

can interfere withl ,. We then perform the following three
steps:
S1: Compute the minimum guaranteed supply over the
interval of interestB(d + ©).
S2: Given a finite upper bound/; (s, 7, m) on the
competing demand and a finite upper bound on the
unfinished work due to jold; , and its predecessors,
E;(k), define a sufficient test for checking whether
Ty's response-time bound is not violated by setting
My, 7,m)+ (m—1)-(E;(k) —1) < B(0+ ©y).
S3: CalculateM; (6, 7,m) and E} (k) as used ir52

coefficientsU’ and o4,; can be found in [11]. Consider an A- StepsS1 and S2

interval [t,t 4+ y), wherey < A. By Defs. 5 and 8, the

supply that is available after scheduling the tasksrim
this interval is

Supply(t,y) — ZA Ti, [t t+y))
TieT
{by Def. 6}

> max <O,B(y) =Y AT [t + y)))

T;eT
{by Lemma 1}

> max<

Additionally, Supply (¢, A) > supOSySA(Supply(t, y)). ®

~ 3" miny, 22

T;eT

i(y+6: ))))

To avoid distracting “boundary cases,” we henceforth
assume that the schedule being analyzed is prepended with a
schedule in which response-time bounds are not violatdd tha
is long enough to ensure that all predecessor jobs refedence
in the proof exist. Since job priorities remain fixed, we also
ignore jobs that have lower priority thaf ,.

We start the derivation by stating the following lemma
and claims. The following lemma specifies the minimum
time between the arrivals of jolig ,_; andTy,,.

—Toq—i = Azl(z)

The next two claims establish a lower bound on the
maximum job response time and an upper bound on the
finish times of certain jobs that can be used in addition to

9).

Lemma 2. (Proved in [11])r,,



Claim 1: O, > ~v§(1). of the interval[re q—r+1,7¢,4 + ©O¢) for eachk € [1, A].

. s —1/-

Proof: By (6), ©¢ > max;>1(7/(j) — A, (7 - 1)) > Proof: To prove the claim, we first show tha} is ready
“(1) — A, (0). By Def. 3, 4,1(0) = 0. n ; -y

e ¢ 1 continuously within[re 4—x+1, fr.q) for eachk € [1,A].

Claim 2: fy, x, < r0.q+ Or — ¥ (K2). BecauseT; is ready within the intervalr, 4, f¢ ), this is

true fork = 1. If & > 1 (in which caseA > 1), then

Proof: By (9), fra—i > T0q + ©0 — v4(j) for eachj € [1,)), by the

frai selection ofA. From this, we have
< rgq-i + Oy Jt.q—j
=Tq—i —Teq+Teq+ O > 10+ 00— (5)
{by Lemma 3 {because, by (6}, > 7 (j) — A, ' (j — 1)}
<1+ 00— A7), (10) > — A7 (G- 1)
By (1), —A, '(K,) < —(K,). Setting this and = K, {by Lemma 2
into (10), we get the required result. ] > Tpg—jtl-

Job T;, can violate its response-time bound for the Thys, the interval$ry i, fr.q—j) and[req— o1, frqjii)s
following reasons. 17y, completes by time , +©, - where consecutive jobs df, are ready, overlap. There-
7¢ (1), thenT , may finish its execution after, , + ©¢ if,  fore, 7, is ready continuously withirir ,_;, fz.,) for each
after timemax(fr,4—1,7¢,), higher-priority jobs deprive it ' ; ¢ (1)), and hence/T; is ready continuously within
of processor time or one or more processors are unavailablg., ., ) for eachk € [2, A]. The claim follows from

Alternatively, T, ,_1 may completeafter time r,, + [Tzéq7k+l,rqu+@0 C [re.q—ks1, fr.q); 10 See this, note that
©¢ — 77 (1), which can happen if the minimum job inter- r, "~ ;, 1@, holds, sincel}, violates its response-time
arrival time forTy is less thany}’(1). In this situationZ;,  pound. u
could violate its response-time bound even if it executes Becausel} , violates its response-time bound, after time
uninterruptedly within[f¢ ;1,74 + ©¢). In this caselli’'s . ‘there are other higher-priority jobs that deprie

response-time bound is violated becalsg 1 completes ot hrocessor time or one or more processors are unavailable.
“late,” namely after timer,, (recall that, by Claim 1,

©¢ > ~¥(1)). However, this implies thafl; is pending Definition 10. Let W(T; ,,¢) denote the remaining execu-
continuously throughout the interval ,—1,7,, +©,), and  tion time for job T; , (if any) after timet. Let W (T},t) =
hence, we can examine the execution of jobs 1 andT;, > 1, <7, W (Tiy. ). It can be shown that

together. In this case, we need to consider the completion
time of job Ty q—2. If fog—2 < 104+ ©r — 7§ (2), then

job T, , may exceed its response-time bound if this job andn Fig. 2, which shows a response-time bound violation for
its predecessof, 1, experience interference from higher- job 7, , where A = 1, W (T, r4,,—x+1) corresponds to the
priority jobs or some processors are unavailable during thexecution demand of joli; , and the unfinished work of
time interval[max(f¢,g—2,7¢,4-1),72,¢ + ©¢). On the other  job 7, ,_; at timery,,.

hand, if fo g—2 > 10, + O, — v} (2), thenT, , can complete .

after time r,, + ©, even if T, executes uninterruptedly Definition 11. Letl'y C [re.q-x+1,70,4 +O¢) be the set of
within [fe.y_2,7¢4 + ©;). Continuing by considering pre- mtervals where no available processor is idle as shown in
decessor jobg} ., in this manner, we will exhaust all Fig. 2. Letl'y = [W,q—Hlva,q*‘_@ff)\F/\' We let|I's| (I'»)
possible reasons for the response-time bound violatiote No denote the total length of the intervalsiin, ([T'x[).

that it is sufficient to consider only joli& ,—1,...,Tr.o-k,  The lemma below is used to establish a lower bound on the

since, by Claim 2.f; g, < 14,4+ 0¢—7; (K¢). ASSUMING o mneting workload within the interv r
, , 1, +O).
that, for job Ty -k, feq—r < 10,4 + O — i (k), we peting ateg—a+1,70,41+00)

define theproblem windowfor jobs T ¢_x+1,...,7¢, as Lemma 3. If the response-time bound fdF, , is violated
[70,q—k+1,72,4 + Or). (This problem window definition is a (as we have assumgdhen|I'y| =174 +O¢ — 70— r41 —
significant difference when comparing our analysis to priorW (T, re,q—x+1) + 1+ i, wherep > 0. (Note that, by(11),
analysis pertaining to periodic or sporadic systems.) x| > 0.) Additionally, T, executes within each instant of
Ty, and |1—‘>\| = W(Tg,Tg,q_k+1) —1—pu.

W(Te,me,q-r+1) < Te,q+Or — o g—rt1. (11)

Definition 9. Let X\ € [1, K] be the smallest integer such
that frq—x < 70,4 + ©O¢ — 7§ (). By Claim 2, such ax Proof: Suppose, contrary to the statement of the lemma,
exists. that the response-time bound foy , is violated and

Claim 3. Ty is ready(i.e., has a ready jopat each instant DAl < 7e,q+ 00— 1o g1 — W(Ty,reg-241) + 1. (12)



Under these conditions, the total length of the intervals in [ 7, [ competing jobs M unavailable time

T\, where at least one available processor is idley is+ L, [ job release

{by (12)} .
@g—?‘g,q_k+1—|1—‘>\| > W(Tg,f‘&q_)\_‘_l)—l. Thus, this "6,

total length is at leastV (T, r¢,q—x+1), @s time is integral. -:
By Claim 3, 7, executes at each time € Ty, and @s -1 H
completes by time , + ©,, which is a contradictionI, |
can be found asTy| = 704 + O — rog-r1 — [Ta| =
W(Tg,?"g’q,)d,l) —1—pu. | |

| T T,

.4

toO\‘) 7 p ! time

The next few definitions are used to set up an extension of Figure 2. Conditions for response-time bound violation Yo« 1.

the problem window to the left so that a greater portion Of:gtal demand over an interval of interest, which has length

;he worklogad cgn_ be considhered. This tec,}hr;]ique is adapte  « — to(A) + Oy, cannot be larger than the total long-term
rom [1], [9] and improves the accuracy of the test. utilization of the tasks i for large values ofy , — to(A).

Definition 12. Let 7,(t) = {T}, | for somey, T}, is ready ~ This also allows us to upper-bound our test's computational
at time¢ and Ty, , < Ty, }. (The subscripp denotes the fact complexity. Henceforth, we omit the last four arguments of
that these jobs have higher or equabpy.) M;.

Definition 13. Let to(k) < r¢,q—r+1 be the earliest instant Definition 16. Let §Z‘ax(k) =[(Hi+ (m—1)- (E;(k) —
such thatvt € [to(k), 7¢,g—k+1), |Tp(t)] > m or fewer than 1)+ U - o4t — O¢ - U) /(U — Usum)| -
|7, (t)| tasks fromr,(t) execute at time. If such an instant

does not exist, then let (k) = r¢.q_x:1. The following theorem will be used to define our schedu-

lability test.

Def. 13 generalizes the well-known concept of idie
instantin uniprocessor scheduling as illustrated in Fig. 2.
The following claim is used to calculate the competing
demand within the interveko(\), re,g—x+1)-

Theorem 3. If the response-time bourd, is violated for
Ty,q (as we have assumgdhen, for some: € [1, K| and
§ € (A (b — 1), 5m2(k)],
Claim 4. No available processor is idle within M () +(m—1)- (B (k)—1) = B(6+60). (14)
[to(A), Te.g—a+1)- Proof: Consider job7;,, k¥ = A, and time instants
Proof: Suppose that an available processor is idle ateq-x+1 and to(A) as defined in Defs. 9 and 13. To
time ¢ € [to(\),7¢.4-x+1). Because the scheduler being establl_sh (14)_ (V\_/|th$ as _defmed later), we sum the processor
analyzed is work-conserving, all tasks ip(¢) execute at allocations within the interval$to(}), 7,4-x+1) UTx and
time ¢ and thus|7,(¢)| < m — 1, which violates Def. 13m F_A. By_ Def. 11 a_nd Cla_|m 4, the_total processor allocation
Our schedulability test for task; is based upon summing (including unavailable time) withirito(A), 77,g-x41) U T'x
the competing demand of tasks in within the interval 1S m - (Te.g-x+1 — to(A)) +m - [T'x| (see Fig. 2; note that
[to(N),7e.4 + O¢), which has length , — to(A) + Oy, and  Trg—2t+1 = Trg here). Also, Lemma 3 implies that the total

the unavailable time within this interval. processor allocation (including unavailable time) withig
o o _ is at leastW (Ty,r¢ q—x+1) — 1 — p1, wherep > 0.
Definition 14. Let £/ (k) be a finite function of: such that The total processor allocation (including unavailablesjm

W(Te,re,g-211) < Ef(A). Let W(t) = 3 p . W(Ti, ). within [to()),req + ©y) is thus at leastn - (rpq_xi1 —
Let M;(6,7,m) be a finite function of§, m, and r such O I ™~ {by Lemma 3 O
that W (to(\)) < M;(req — to(A),7,m). The function ‘0 >>+m'(|9A|+| N o Tm'(”»q*k“‘lo( )+
M;(8,7,m) upper-bounds the competing demand due ta 'j(f“f + O - ”1-”*”1__ ( Z’”vg”lt)t\ +p) +
higher-priority jobs and predecessors®f, over intervals . ( a/wj?"\“) T “1_ m: (”7‘11_’_ ¢ = to(A) = (m—
of lengthd + ©,. (As mentioned earlier at the beginning of ) W(Tpreg-rs1) =1 + (m—1) - p. . .
Sec. V, M;(5,7,m) and E; (k) are calculated in order to Let Resy,([to(A), 72,4 +©¢)) be the amount of time that is
test wh'ethéer ihé responseé—time boundrbfis not violated not available on processarat time instants in the interval
Later, in Sec. V-B, we explain how/; (5, 7,m) and E} (k) [to(A), 7eq + ©y). By Defs. 10 and 14, the allocation of
are calculated.) jobs within[to(A), re,q +©,) is upper-bounded b (to (X))
(recall that we are ignoring lower-priority jobs). Thus,
Definition 15. We require that there exists a constaht >

0 such that, for alb > 0, W(to(A) + > Res([to(A),re.q + Or))
h=1

M; (0, 7,m) < Usum - 6 + Hy. 13 -
(0 rm) : B s o) 400~ (1) - (W(Trrgri) 1),
This requirement is reasonable because the growth rate of th (15)



We next calculate an upper boundResy, ([to(A), r¢,+O0)).
For processoh and the intervalto()), r¢,,+©;), by Def. 5,
Resy, ([to(N), 7e,q + ©Or))
= (re,q—to(A)+0O¢) —supply, (to(A), 7,4 +Or—1to(A))
(16)

Summing (16) for allh, we have

Z Resp, ([to(N), 70,4 + ©0))
h=1

= z’”: ((re.g —to(N) + ©y)

h=1
= supply,, (to(N), re,q — to(A) + ©y))
{by Def. 5}
= m-(re,q—to(A)+6O¢) —Supply(to(A), re.g —to(A) +O)
{by Def. 6}
<m- (T‘g7q —to(A) + @g) — B(T‘gﬂ —to(A) + @g). a7
Setting (17) into (15), we have

W (to(N)+m-(re,g—to(A)+Or) —B(re g—to(A)+6y)
= m - (reg—to(A)+0¢) = (m—1)-(W(Te, reg-r+1)—1).
Rearranging the terms in the above inequality, we have
W(to(A) + (m = 1) - (W(Te, r0.9-241) — 1)

> B(re,q—to(A)+06y).
Setting £} (A\) and M/ (r¢,q — to(A)) as defined in Def. 14
into the inequality above, we get

M (re.q—to(A) + (m —1) - (EF(A) — 1)

> B(re.q—to(A)+6y).

Settingrpq — to(A) = d in the inequality above we get

(14). (Note that, by Def. 9) € [1, K/].) By Def. 13 and
Lemma2y = T‘g7q—t0()\) >0 —Tlg—A4+1 = .Ag_l()\—l).

then the response-time bound By is not violated.

The term(m—1)-(E} (k)—1) in (14) can be large if;, and
O, are large. For large values 6f, and certain schedulers
such asGEDF andFIFO, this term can be replaced with a
smaller term proportional tenax(m — F — 1,0) - E; (k),
where F' is the number of processors that are always
available (see Def. 6). This can be done because, under
GEDF andFIFO, the problem joll} , and its predecessors
cannot be preempted by other jobs after a certain time point
unless the competing demand carried from previous time
instants is sufficiently large (see [11] for details).

B. StepS3 (Calculating M (6) and E} (k))

Note that we did not make any assumptions above about
how jobs are scheduled except that the jobs of each task
execute sequentially and jobs are prioritized as in Def. 7.
Therefore, Corollary 1 is applicable to all fixed job-prigri
scheduling policies (these policies include preemptiué-va
ants of GEDF, FIFO, static-priority policies, and their
various combinations) provided the functiof$; (4) (and
its linear upper bound in Def. 15) anB; (k) are known.

M/ (8) and E (k) can be derived for a particular algorithm
by extending techniques from previously-published papers
on the schedulability of sporadic tasks [1], [9] to incorater
more general arrival and execution patterns.

In the extended version of this paper [11], we derive
E;(k), M;(6), and the constan#, in Def. 15 for a
prioritization scheme in whicly; ; = r; ; +D;, whereD; is
a constant (preemptiv8 EDF and FIFO prioritizations are
subcases).

Given an expression faf,, we can computé;"**(k) in
Def. 16 for any givenk. Given expressions fod)"**(k),

M/ (5), and E (k), we can apply Corollary 1 to check that
each taskl;, € 7 meets its response-time bound. In the
next section, we identify conditions under which the test is
applicable and discuss its time complexity.

VI. COMPUTATIONAL COMPLEXITY OF THE TEST

Our remaining proof obligation is to establish the stated

range foré. By (13) and (14),
Usum -0+ Hp+(m—1)-(E;(k)—1)>B(6+0,). (18)

Applying (4) to (18), we have

> max(0,U - (8 + O — 0t01))

Z ﬁ . (5-'— @[ — Utot)-
Solving the latter inequality fof, we haves < (H,+ (m —
1)-(Ej(k)—1)4+U 010t —O¢-U) /(U — Usum ). Because
d is integral (asr;, andty(k) are integral), by Def. 16,
§ < 6**(k). The theorem follows. |

Corollary 1. (Schedulability Test) If, for taskTy, (14) does
not hold for eachk € [1, K, andé € [A; ' (k—1), 552 (k)],

According to Corollary 1, (14) needs to be checked for
violation for all k € [1, K,] and§ € [A; ' (k—1), 6% (k)].

Theorem 4. The time complexity of the presented test is
pseudo-polynomial if there exists a constansuch that
Usum < c<U.

Proof: We start with estimating the complexity of
checking (14). The values af?(A), v¥(k), A; *(k), and
B(A) can be computed in constant timenif (A) and~} (k)
consist of periodic and aperiodic piecewise-linear pan a
B(A) is also piecewise-linear. These assumptions are used
in prior work on the Real-Time Calculus Toolbox [17] and
are sufficient for practical purposes.

It can be shown, that, under these assumptidfys(d) for
a given value ob can be computed i (n) time, wheren

is the number of tasks [11]. The calculations above need to



be repeated for ak € [1, K] and all integers ifA, ' (k — = max WU 0ot +An+ g, cr Li(Chyi)
1), 6;7*(k)]. By Def. 16,6;**(k) is finite if its denominator T Ther ﬁ—(m—a)-uh—U(m—l)

is nonzero. By (5), we hav€,,., < U. Therefored;***(k) .

is finite if (5) is strict. m andd,=(m—a) Ya—1)+(a—1-0U)- (v/(Kn) +
Chp) + (a — 1) - max (0,7} (Kp — 1) — 1).

)+1 (19)

Checking that (14) is violated for each integral value in
[A, ! (k —1),0%(k)] can be computationally expensive. A

fixed—point iterative technique can instead be applled ao th Proof: Suppose to the contrary that tagk violates

only a (potentially small) subset af4, ' (k — 1),57(k)]  its response-time boun@, = = + v¢(K¢) + Cy. Because
is checked. x>0, Op > vi(k)+C, holds for eachk € [1, K]. In [11],
VIl. CLOSED-FORM EXPRESSIONS FOR we show that under these conditions, for= A and¢§ >

RESPONSETIME BOUNDS A7 (A = 1), where ) is defined in Def. 9, the following

In settings where response-time bounds are not knowr{'OIdS'
they need to be calculated. In this section, we presentdiose A (8)+(m—a) - (E;(k)—1)

form expressions for the response-time bousunder 1) (B C 0.~ (k—1)—1
GEDF-like schedulers. H(a=1)- (37 (k) +Ce+max(0, 7'( )-1)
In prior work [7], [10], it has been shown th&EDF > B(6 +©y) (20)

(and many other schedulers) ensure a maximum responsgettingk = A and the bound fo3 given by (4) into (20),
time bound ofr +p; +¢;"**, wherez > 0, for each sporadic e get

taskT; € 7, if tasks have implicit deadlines, all processors . .
are fully available, and/,,,, < m. In this paper, we adopt Mg (8)+(m—a)-(E;(A\)-1)

a similar approach. We seek response-time bounds of the + (a—1)- (v (A)+C¢+max(0, v/ (A—1)—1))
form ©; = z +~¥(K;) + C;, wherez > 0, K; is as defined > T (6401 — o101)

in Def. 3, andCj, = Dj, — ming,e,(D;). We letC; ), = - o

D; — Dy,. By the selection o,

In the rest of this section, we derive based upon task . .
e o . M (8)+(m—a)-(Ef(A)~1)
parameters and resource availability. The derivation gssc N .
is similar to finding an upper bound ahin Theorem 3. + (a—1)- (7 (A) +Cet+max(0, v (A—1)—1))
In Lemmas 4 and 5 below, we first establish upper bounds >U-(6+2+vHKe) + Co — 01ot)-

on Ej (k) and M} () as functions ofr for the case when i . . .
the response-time bound is a functionzofWe then set the Setting the bounds ofj (A) and M (6) given by Lemmas 4

obtained expressions into the schedulability test andesolv@nd 5 into the inequality above, we have
the resulting inequality for. Usurn -6+ Z Li(Coi)+U(m —1)-z+W
Definition 17. Let Y, = L,(max(0,v}'(K, — 1) — 1) + T.eT
Vi (Ke)+Ce), whereL;(X) = max(0, u;- X + R; - B;) +v;. +(m—a)- (Yo+ug-z—1)
+(a—1)-(v/(N)+Cr+max(0, v/ (A—-1)—1))
> U - (6 + 2 + 7 (Ke) + Co — 01or).-
Becaused > A;'(k — 1) > 0, wherek € [1,K,], and

Definition 18. Let VW be the sum ofn — 1 largest values r,,,, < U, by the statement of the theorem,
u; - (v (i) + Ci).

Lemma 4. (Proved in [11]):If ©, = = + v}/ (K,) + C,
thenE; (k) <Yy +ug - a for k € [1, K.

U(m = 1) -z+W+ Y Li(Cpi)+(m—a)-(Yetugz—1)

Lemma 5. (Proved in [11]):If ©;, = x + y*(K;) + C; Tier
for each taskT; and § > 0, then M;(6) < Usgum - 0 + +(a—1)-(7/(A) +Crtmax(0, 7/ (A-1)—1))
Yorer Li(Cei) +U(m — 1) - 2+ W, whereU(m — 1) is >U- (2 + v (Ky) + Cp — tor).

the sum ofn — 1 largest task utilizations. )
After regrouping the terms, we have

Definition 19. Let ¢ = min(F + 1,m), where F is the w
’ + L; C i)+ —a)-(Yy—1
number of processors that are always available (see Def. 6). Z (Cea)+(m—a)-(Ye-1)

T,eT
_ +(a—1)-(7/(A)+Cr+max(0, 7§ (A—1)—1))
Theorem 5. If U — (m — a) - max(u;) — U(m—1) > 0 and U - (4(K2) + Cr — 010r)

Usum < U, then the maximum response time of any job of Py
T; is at mostr + v¥*(K;) + C;, where >z (U—(m—a) u—U(m-—1)).



Solving the above inequality for, we have

WU -t + AN + Yo e, Li(Cri)
U—(m—a) -u —U(m—1)

whereAy(k) = (m—a)- (Yo —1) + (a—1)- (v}(k) + Ce +
max(0, v} (k—1) —1) = U - (v}(Ke) + C¢). From Def. 19,
we havem —a > 0 anda > 1. Thus, since the function
~#(k) is non-decreasingd,(\) < A, where 4, is defined
in the statement of the theorem, and hence, (21) contradicts
(19). [ |
The result of Theorem 5 is closely related to the results
of [7], [10], in which the maximum deadline tardiness
of sporadic tasks under different schedulers is studied. In
particular, the requirement to hale— (m — a) - max(u;) —
U(m — 1) to be positive is a sufficient condition for maxi-

r <

;o (21)

mum job response times (deadline tardiness) to be bounded.

Tightening the bounds. While we cannot assert that the
presented expressions are tight, they can be used to donstra
an iterative search for tighter response-time bounds, as
mentioned earlier at the end of Sec. Il. For example, one can
calculate initial response-time boun@éo] using Theorem 5
and then try to find tighter bounds of the forty = y-@EO],
wherey < 1. The multipliery can be found by performing a
binary search in which tentative valuesipare tested using
Corollary 1. Note that the multipliey is the same for all
tasks. This method worked well in our experimental study
(presented in the next section) as all tasks were identical.
For non-identical tasks, different multipliers could besds
but we have not yet studied such approaches in any detail.
Further work is also needed on the inherent time complexity
required to compute response-time bounds.
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VIII. M ULTIPROCESSORANALYSIS: A CASE STUDY
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Figure 3. (a) A video-processing applicatiorfb) Experimental setup(c)
Curvesat’ anday’ and the input}.

system, the coded input event stream arrives at a constant

Experimental Setup.In our experiments, we considered a
Our analysis can be used to derive response-time boundariation of the previously-studied system shown in Fig)3(
for workloads that partitioning schemes cannot accommoin which PE1 is a three-processor system running four
date and for workloads that cannot be efficiently analyzeddentical VLD+IQ tasks, T}, T», T3, and T,. Such a task

under the widely-studied periodic and sporadic models.

system could be used in a virtual reality application, where

To illustrate this, we applied our analysis to a part of amultiple video streams need to be processed. The modified
MPEG-2 video decoder application that has been studiedystem is illustrated in Fig. 3(b) and explained in further

previously in [4], [14]. The originally-studied applicati,

detail below. For conciseness, we refer to the systems in

shown in Fig. 3(a), is partitioned and mapped onto twothese two insets as the (a)- and (b)-systems, respectively.
PEs, PE1 and PE2. PE1 runs the VLD (variable-lengthtassess the usefulness of our analysis, we computed output
decoding) and 1Q (inverse quantization) tasks, while PEZurves for the four tasks so that they can be used in further
runs the IDCT (inverse discrete cosine transform) and MCanalysis. We assumed zero scheduling and system overheads
(motion compensation) tasks. The (coded) input bit streanfthe inclusion of such overheads in our analysis is beyond

enters this system and is stored in the input buffer
The macroblocks (frame pieces of si2é x 16 pixels)

the scope of this paper).
The goal of our experiments was to compare different

in B are first processed by PE1 and the correspondingvays of implementing and analyzing the (b)-system. As

partially decoded macroblocks are stored in the buffér

we shall see, the (b)-system can be implemented on three

before being processed by PE2. The resulting stream of fullprocessors if global scheduling is used; in this case, it can

decoded macroblocks is written into a playout buffef

be analyzed using the techniques of this paper but not using

prior to transmission by the output video device. In the @&ov prior global schedulability analysis methods. Moreoveér, i



the system is instead partitioned (allowing uniprocessarr %’ for task 7, in the (b)-system, and the input curve

time calculus to be applied on each processor), then fouwt. (Note that, in the (b)-system, tasks,...,7, have
processors are required. the same input curve, and the completion curves for
In the analysis, we used a trace6of 10°> macroblock pro- 75, ...,T, are the same.) The curves &t in the (a)- and

cessing events obtained in prior work for the VLD+IQ task (b)-systems were obtained using prior results in real-time
during a simulation of the (a)-system using a SimpleScalagalculus pertaining to uniprocessor systems as implerdente
architecture [4], [14]. We obtained(k) as in Def. 1 inthe RTC Toolbox [17]. For the (b)-system, we calculated
by examining a repeating pattern of 19,000 consecutivéhe maximum response time f@; and then applied Theo-
macroblock instruction lengths in the middle of the tracerem 2 to find the supply available to tasks, 73, andT. We

and assuming @00 MHz processor frequency. We found then calculated their inital response-time bou@ffg using

that all macroblock processing times in the trace are undefFheorem 5. Since all three tasks have identical parameters,
~v¥(1) = 164ps, which we set to be the maximum job ex- we calculated tighter bounds by running a binary search as
ecution time (the best-case execution time/i§l) = 2us).  described earlier at the end of Sec. VII. We then computed
The functiona¥(A) in Def. 2 was obtained by examining completion curves using Theorem 1.

macroblock arrival times. We computed;l(k:) in Def. 3 The resulting curves have the same long-term completion

as well as linear bounds fer!(A) and~¥(k) as in (2) and rate in both systems. Taski has the shortest possible

(3) using the RTC Toolbox [17]. maximum response time in both the (a)- and (b)-systems.
In the (b)-system, task&, . . ., T, are scheduled on three However, the large job response times of tagks. .., Ty

fully-available processors. Task; is statically prioritized in the (b)-system cause a larger degree of burstiness in the
over the other tasks. In such a system, tAgkcan process output event streams. Such burstiness is mainly due to the
a time-critical video stream and tasis, 75, and 7, can  fact that multiple jobs of the same task arriving at the same
process low-priority video streams. Tasks, 73, and T} time instant can potentially execute for a significant dorat
are scheduled bBEDF using the supply from two fully- of time, causing jobs of non-executing tasks to wait (or
available processors and that remaining on a third processte queued). Overall, the (b)-system has the advantage of
after accommodating task, . In Fig. 3(b), down arrows are needing onlythree processors to accommodate four video
used to depict the long-term available utilization on eachstreams, at the expense of larger buffers for storing par-
processor. tially decoded macroblocks (for approximatel§ frames).
With partitioned schedulingfour dedicated processors are
Results. To show that existing analysis techniques are i“ap'required.
plicable or are too pessimistic in the given setup, some®fth \we conclude this section with a few comments about the
properties of the input streams and the VLD+IQ task nee¢unning time of the analysis procedures. We have imple-
to be emphasized. First, the arrival curv(A) is bursty, mented these procedures as a set of MATLAB functions
i.e., several macroblocks can arrive at the same time ibstanextending the RTC Toolbox. Though the procedure presented
Second, whilee; = 17.6us, the maximum execution time jn Sec. V has pseudo-polynomial time complexity (like
of a single macroblock i$64.5, so assuming that each job many other schedulability tests presented elsewhere), the
executes for its worst-case execution time would result injme needed to verify response times using Corollary 1
heavy overprovisioning. The long-term per-task utilieati  can be large, especially for complex arrival and execution-
IS u; = R;-e = 0.00396-17.6 = 0.7, whereR; = 0.00396  time patterns. In our experimental study of the (b)-system,
is the long-term arrival rate. Finally, the total utilizati is e found that the required response-time bounds could be

4
U= > iyu = 28. Therefore, the task s€fl},...,Tu}  calculated in a couple of minutes (on a 1.7 GHz single-
cannot be partitioned onto three processors (four proc@ssoprocessor desktop system). Again, these bounds were ob-
are needed, actually), sglobal scheduling is required tained by using Theorem 5, and then refining these bounds

For the (b)-system, the minimum job inter-arrival time is using Corollary 1.
zero. Moreover, the arriving stream cannot be re-shaped so
that the minimum job inter-arrival time is at least= 25us IX. CONCLUDING REMARKS
and the long-term arrival rate to be preserved. Because the In this paper, we have studied a multiprocessor PE, where
worst-case job execution time " = ~}(1) = 164us  (partially available) processors are managed by a global
and the minimum job inter-arrival time is; = 25us, we  scheduling algorithm and jobs are triggered by streams of
havee* /p; = 6.59 > 1. Therefore, the (b)-systemannot  external events. This work is of importance because it allow
be analyzed using prior results for periodic and sporadicworkloads to be analyzed for which existing schedulabil-
task modelswhich requirep; > 0 andej*** /p; < 1. ity analysis methods are completely inapplicable (e.ee, th
Fig. 3(c) depicts the job completion curvg’ (normal-  system cannot be described efficiently using conventional
ized to frames/millisecond assuming 1,584 macroblocks peperiodic/sporadic task models) and for which partitioning
frame) for task7; in the (a)- and (b)-systems, the curve techniques are unnecessarily restrictive.



The research in this paper is part of a broader effort, [6] ——, “A calculus for network delay, Part Il: Network analy
the goal of which is to produce a practical compositional
framework, based on real-time calculus, for analyzing mul-
tiprocessor real-time systems. Towards this goal, thergont

[7]

butions of this paper are as follows. We designed a pseudo-
polynomial-time procedure that can be used to test whether

job response times occur within specified bounds. Given (8]

these bounds, we computed upper and lower bounds on

the number of job completion events over any interval of
length A and a lower bound on the supply available after (9] — A unified hard/soft real-time schedulability tesorf

scheduling all incoming jobs. These bounds can be used as

inputs for other PEs thereby resulting in a compositional

analysis framework.
A number of unresolved issues of practical importanc

remain. Firstefficientmethods are needed for determining
response-time bounds when they are not specified — thig 1]
is probably the most important unresolved issue left by
this paper. As a partial solution, we provided closed-form

expressions for computing response-time bounds, but we do

J10]

not know how pessimistic they are. Second, the schedulabif4 2]
ity test itself could possibly be improved by incorporating
information about lower bounds on job arrivals and exe-
cution times and upper bounds on supply. Third, real-timd3]
interfaces as in [4] need to be derived for the multiprocesso
case to achieve full compatibility with uniprocessor real-
time calculus. Fourth, the inherent pessimism introduced14]

by applying real-time calculus methods on multiprocessors

needs to be assessed.
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