
Supporting Soft Real-Time DAG-based Systems on Multiprocessors with
No Utilization Loss∗

Cong Liu and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

In work on globally-scheduled real-time multiprocessor
systems, analysis is lacking for supporting real-time appli-
cations developed using general processing graph models.
In this paper, it is shown that bounded deadline tardiness
can be ensured for such applications on a multiprocessor
with no utilization loss. This result is general: it is applica-
ble to periodic, sporadic, and rate-based directed-acyclic-
graph (DAG) models and allows sophisticated notions of
precedence to be supported (particularly, notions allowed
by the processing graph method). This paper is the first to
show that bounded tardiness can be ensured for globally-
scheduled DAG-based applications without utilization loss.

1 Introduction

In many real-time systems, applications are defined using
processing graphs [2,4], where vertices represent sequential
code segments and edges represent precedence constraints.
For example, signal-processing algorithms are often speci-
fied using dataflow graphs [4]. With the advent of multicore
technologies, it is inevitable that such applications will be
deployed on multiprocessors. Motivated by this, we con-
sider in this paper multiprocessor implementations of sys-
tems specified as DAGs.

If all deadlines in such a system are viewed as hard,
and tasks execute sporadically (or periodically), then DAG-
based systems can be easily supported by assigning a com-
mon period to all tasks in a DAG and by adjusting job re-
leases so that successive tasks execute in sequence. Fig. 1
shows an example of scheduling a DAG T1 on a two-
processor system consisting of four sporadic tasks, T 1

1 , T 2
1 ,

T 3
1 , and T 4

1 . (DAG-based systems are formerly defined in
Sec. 2. It suffices to know here that the kth job of T 1

1 , T 2
1

(or T 3
1), and T 4

1 , respectively, must execute in sequence.)

∗Work supported by AT&T and IBM Corps.; NSF grants CNS 0834270
and CNS 0834132; ARO grant W911NF-09-1-0535; and AFOSR grant FA
9550-09-1-0549.

Job release Job deadline

1
1T
2

1T
3

1T

(a) Schedule with WCET.

0 4 8 12 16 20 24

1
1T
2

1T
3

1T

(b) Runtime schedule with AET.

0 4 8 12 16 20 24

1
1T
2

1T
3

1T

(c) Runtime early-releasing schedule with AET.

0 4 8 12 16 20 24

1
1T
2

1T
3

1T
4

1T

Job release Job deadline

2
1T

1
1T

3
1T

4
1T

1T

Figure 1. Example DAG.

As seen in this example, the timing guarantees provided by
the sporadic model ensure that any DAG executes correctly
as long as no deadlines are missed.

However, if all deadlines in a multiprocessor sporadic
task system must be viewed as hard, then significant pro-
cessing capacity must be sacrificed, due to either inher-
ent schedulability-related utilization loss—which is un-
avoidable under most scheduling schemes—or high run-
time overheads—which typically arise in optimal schemes
that avoid schedulability-related loss. In systems where less
stringent notions of real-time correctness suffice, such loss
can be avoided by viewing deadlines as soft. In this paper,
such systems are our focus; the notion of soft real-time cor-
rectness we consider is that deadline tardiness is bounded.

Bounded deadline tardiness is a notion that has been
studied extensively in the context of global scheduling al-
gorithms, and such algorithms are our focus as well. Un-
der global scheduling, tasks are scheduled from a single run
queue and may migrate across processors (in contrast, un-
der partitioning schemes, tasks are statically bound to pro-
cessors). It has been shown in recent work that a variety of
global scheduling algorithms can ensure bounded deadline
tardiness in sporadic task systems with no utilization loss on
multiprocessors, including algorithms that are less costly to
implement than optimal algorithms [3, 7].1 Unfortunately,
if deadlines can be missed, then DAGs are not as easy to
support as ordinary sporadic tasks. For example, if the first

1Technically, bounded tardiness can only be ensured for task systems
that do not over-utilize the underlying platform. In all claims in this paper
concerning bounded tardiness, a non-over-utilized system is assumed.

job of T 1
1 in Fig. 1 were to miss its deadline, then its execu-

tion might overlap that of the first jobs of T 2
1 and T 3

1 . This
violates the requirement that instances of successive DAG
vertices must execute in sequence.

Regarding the state of the art on globally-scheduled real-
time multiprocessor systems, analysis is lacking for sup-
porting real-time applications developed using DAG-based
formalisms. In this paper, we address this lack of support
by presenting scheduling techniques and analysis that can
be applied to support DAG-based systems on multiproces-
sors with no utilization loss, assuming that bounded dead-
line tardiness is the timing guarantee that must be ensured.
Our results can be applied to systems with rather sophisti-
cated precedence constraints. To illustrate this, we consider
a particularly expressive DAG-based formalism, the pro-
cessing graph method (PGM) [6], which was the focus of
prior uniprocessor-based research [4]. We show that PGM-
specified systems can be scheduled with bounded tardiness
on multiprocessors with no utilization loss.

Related work. To our knowledge, DAGs have not been
considered before in the context of global real-time schedul-
ing algorithms. However, the issue of scheduling PGM
graphs on a uniprocessor was extensively considered by
Goddard in his dissertation [4]. (In fact, his work in-
spired the research in this paper.) Goddard presented tech-
niques for mapping PGM nodes to tasks in the rate-based-
execution (RBE) task model [5], as well as conditions for
verifying the schedulability of the resulting task set under a
rate-based, earliest-deadline-first (EDF) scheduler.

The scheduling of DAGs in distributed systems (which
must be scheduled by partitioning approaches) has also
been considered. An overview of such work (which we omit
here due to space constraints) can be found in [10].

Recently, we showed that bounded tardiness can be en-
sured for sporadic task systems with pipeline-based prece-
dence constraints under the global earliest-deadline-first
(GEDF) scheduling algorithm provided certain conditions
hold [8–11]. However, these results only apply to pipelines
and require utilization constraints that can be pessimistic.

Contributions. In this paper, we show that sophisticated
notions of acyclic precedence constraints can be supported
under GEDF on multiprocessors without utilization loss,
provided bounded deadline tardiness is acceptable. The
types of precedence constraints we consider are those al-
lowed by PGM and studied previously in the uniprocessor
case by Goddard [4]. Since any acyclic PGM graph has a
natural representation as a DAG-based rate-based (RB) task
system, such systems are our major focus. We specifically
show that, when any such system is scheduled by GEDF,
each task’s maximum tardiness is bounded. We show this
by transforming any such system into an ordinary sporadic
system (with sporadic job releases and without precedence
constraints) and by exploiting the fact the latter has bounded

PGM	

graph	
 G	

DAG-­‐based	
 RB	
 task	

system	

τRB	

1	

τ	

Ordinary	
 sporadic	

task	
 system	

via	

transforma;on	

represented	

by	

Figure 2. Roadmap.

tardiness under GEDF. Note that, although we focus specif-
ically on GEDF in this paper, our results can be applied to
any global scheduling algorithm that can ensure bounded
tardiness with no utilization loss for ordinary sporadic task
systems. Moreover, due to the fact that our RB task model
is a generalization of the periodic and sporadic task models
(see Sec. 2), our results are general enough to be applicable
to periodic and sporadic DAG systems.

Roadmap. In this paper, we primarily deal with PGM
graphs, DAG-based RB task systems, and ordinary sporadic
task systems. For clarity, we let G denote a PGM graph, τ
denote an ordinary sporadic task system, and τRB denote a
DAG-based RB task system, as shown in Fig. 2.

The rest of this paper is organized as follows. We first
present needed definitions in Sec. 2. Then, in Sec. 3, we
present our main result. In Sec. 4, we demonstrate the utility
of this result via a case study, and in Sec. 5, we conclude.

2 Preliminaries

In this section, we present an overview of the RB task model
(where precedence constraints do not arise) and then de-
scribe our DAG-based extension of it. We also present an
overview of PGM. For a complete description of the PGM,
please see [6].

RB task model. The RB task model is a general task
model in which each task is specified by four parameters:
(x, y, d, e). The pair (x, y) represents the maximum execu-
tion rate of an RB task: x is the maximum number of invo-
cations of the task in any interval [j · y, (j + 1) · y) (j ≥ 0)
of length y; such an invocation is called a job of the task.
x and y are assumed to be non-negative integers. Addition-
ally, d is the task’s relative deadline, and e is its worst-case
execution time. The utilization of an RB task is e · x

y
. It is

required that e · x
y
≤ 1, for otherwise, the system may be-

come overloaded and tasks may have unbounded response
times. The widely-studied sporadic task model is a special
case of the RB task model. In the sporadic task model, a
task is released no sooner than every p time units, where p
is the task’s period. In the RB task model, the notion of a
“rate” is much more general.

Note that the RB task model used in this paper is simi-

Job release Job deadline

1
1T
2

1T
3

1T

(a) Schedule with WCET.

0 4 8 12 16 20 24

(a) Sporadic releases.

0 4 8 12 16 20 24

(b) Rate-based releases.

0 4 8 12 16 20 24

T1
1

T1
2 T1

3

T1
4

1
1T
2

1T
3

1T
4

1T

Job release Job deadline
T1

T1

T1

Figure 3. Sporadic and RB releases.

lar to the RBE task model [5], except that (i) the RBE task
model assumes that x is the number of executions expected
to be requested in any interval of length y, and (ii) the RBE
task model specifies a minimum separation between con-
secutive job deadlines of the same task (our RB model does
not require such a minimum separation). Despite these dif-
ferences, the overall (multiprocessor) scheduling strategy
we obtain is similar to that presented previously by God-
dard for the uniprocessor case [4]. We elaborate on this
point further in Sec. 5.

Example. Fig. 3 shows job release times and deadlines for
a task T1(1, 4, 4, e). In inset (a), jobs are released sporadi-
cally, once every four time units in this case. Inset (b) shows
a possible job-release pattern that is not sporadic. As seen,
the second job is released at time 7 while the third job is
released at time 9. The separation time between these jobs
is less than seen in the sporadic schedule.

DAG-based RB task model. The DAG-based RB task
model extends the RB task model by allowing precedence
constraints to exist among tasks/jobs. The exact manner in
which such constraints arise is motivated by those seen in
acyclic PGM specifications, as we shall see.

A DAG-based RB task system is comprised of a set
τRB = {T1, ..., Tn} of n independent DAG-based RB tasks,
which we assume are to be scheduled on m ≥ 2 identical
processors. A z-node DAG-based RB task, Tl, consists of z
connected RB tasks (or nodes), T 1

l , ...T
z
l , which may have

different execution rates. (If z = 1, then Tl is an ordinary
RB task.) Each DAG Tl has a source node T 1

l . Between
any two connected nodes is an edge. A node can have out-
going or incoming edges. A source node, however, can only
have outgoing edges. We assume that any DAG Tl is fully-
connected, i.e., any node Thl (h > 1) is reachable from the
source node T 1

l . As before, an RB task Thl is released at
most xhl times in any interval [j · yhl , (j + 1) · yhl) (j ≥ 0),
with each such invocation called a job. The jth job of Thl in
DAG Tl, denoted Thl,j , is released at time rRB(Thl,j) and has
a deadline at time dRB(Thl,j). (We will later denote job re-
lease times and deadlines using different notation for other

task systems.) The relative deadline of Thl , denoted dhl , is
yhl /x

h
l . Thus, for any job Thl,j ,

dRB(Thl,j) = rRB(Thl,j) + dhl . (1)

The utilization of each RB task Thl in Tl, denoted uhl ,

is ehl ·
xhl
yhl

. The utilization of the task system τRB is

Usum(τRB) =
∑
Ti∈τRB

∑
T j
i ∈Ti

uji . We define the depth of
a task to be the number of edges on the longest path between
this task and the source task of the corresponding DAG.

Example Fig. 4(a) shows an example DAG-based RB task
system with one DAG T1 containing four tasks. T 1

1 is the
source node. T 2

1 and T 3
1 are depth-1 tasks while T 4

1 is a
depth-2 task. T 1

1 has two outgoing edges to T 2
1 and T 3

1 ,
and T 4

1 has two incoming edges from T 2
1 and T 3

1 . For this
system, the total utilization is u11 + u21 + u31 + u41 = 1/2 +
1/3 + 2/3 + 1/2 = 2.

Consecutively-released jobs of the same task must exe-
cute in sequence (this is the precedence constraint enforced
by the RB task model). Also, precedence constraints exist
among tasks/jobs within a DAG. Edges represent potential
precedence constraints among connected tasks. If there is
an edge from task T kl to task Thl in the DAG Tl, then T kl is
called a predecessor task of Thl . We let pred(Thl) denote
the set of all predecessor tasks of Thl .

A job Thl,j may be restricted from beginning execution
until certain jobs of tasks in pred(Thl) have completed.
We denote the set of such predecessor jobs as pred(Thl,j).
Defining pred(Thl,j) precisely requires that job precedence
constraints be specified. However, for a general DAG-based
RB task system, this is not so straightforward. This is be-
cause RB tasks may execute at different rates, and their job
release times are not specifically defined (only maximum
rates are specified). However, the release time of a job can
clearly be no earlier than the release time of any of its pre-
decessor jobs. That is, for any job Thl,j and one of its prede-
cessor jobs, Twl,v, we have

rRB(Thl,j) ≥ rRB(Twl,v). (2)

As we shall see later, under PGM, job precedence con-
straints can be explicitly determined. We therefore defer
further consideration of such constraints until PGM is in-
troduced.2

If a job Thl,j completes at time t, then its tardiness is de-
fined as max(0, t − dRB(Thl,j)). A DAG’s tardiness is the
maximum of the tardiness of any job of any of its tasks.

2Simplifications of the DAG-based RB task model exist in which pe-
riodic/sporadic execution is assumed and job precedence constraints are
straightforward to determine. An example was seen earlier in Fig. 1.

0 4 8 12 16

(a) (b)

(1,4,4,2)

(4,12,3,2)

(2,12,6,3)

(4,12,3,1)

0 4 8 12 16 20 24 28

(b)

T1
1

T1
2

T1
3

T1
4

0 4 8 12 16

T1
1

T1
2

T1
3

T1
4

20

release deadline

1
1,1T

2
4,1T

1
2,1T 1

3,1T

2
2,1T 2

3,1T

3
1,1T 3

2,1T 3
3,1T 3

4,1T

4
1,1T 4

2,1T

2
1,1T

precedence

missed
deadlines2

1T

1
1T

3
1T

4
1T

1T
1

1T

2
1T

3
1T

4
1T 4

1,1T

Figure 4. GEDF schedule of the example system.

We require uhl ≤ 1 and Usum(τRB) ≤ m; otherwise, tardi-
ness can grow unboundedly. Note that, when a job of a task
misses its deadline, the release time of the next job of that
task is not altered. Despite this, it is still required that a job
cannot execute in parallel with any of its predecessor jobs
or the prior job of the same task.

Under GEDF, released jobs are prioritized by their dead-
lines. We assume that jobs are ordered by deadline as fol-
lows: Twi,v ≺ T ca,b iff dRB(Twi,v) < dRB(T ca,b) or dRB(Twi,v) =

dRB(T ca,b) ∧ (i = a) ∧ (w < c) or dRB(Twi,v) = dRB(T ca,b) ∧
(i < a). Twi,v has higher priority than T ca,b iff Twi,v ≺ T ca,b.
Example. Fig. 4(b) shows a two-processor GEDF sched-
ule of the example DAG-based RB task system shown in
Fig. 4(a). Regarding the release pattern, note that each
task T k1 releases at most xk1 jobs within any time inter-
val [j · yk1 , (j + 1) · yk1) (j ≥ 0). Regarding job prece-
dence constraints, it is assumed in this example that T 1

1,1 =
pred(T 2

1,1) = pred(T 2
1,2) = pred(T 3

1,1) = pred(T 3
1,2),

T 1
1,2 = pred(T 2

1,3) = pred(T 3
1,3), T 1

1,3 = pred(T 2
1,4) =

pred(T 3
1,4), pred(T 4

1,1) = {T 2
1,2, T

3
1,2}, and pred(T 4

1,2) =
{T 2

1,4, T
3
1,4}. As seen in the schedule, jobs T 3

1,4 and T 4
1,2

miss their deadlines by one time unit. Moreover, T 4
1,2 can

only start execution at time 15 although it is released at time
11. This is because one of its predecessor jobs, T 3

1,4, com-
pletes at time 15. This causes T 4

1,2 to miss its deadline.

PGM specifications. Like a DAG-based RB task system,
an acyclic PGM graph [6] consists of a set of DAGs, each
with a distinct source node. Each directed edge in a PGM
graph is a typed first-in-first-out (FIFO) queue, and (as be-
fore) all nodes in a DAG are assumed to be reachable from
the DAG’s source node. A producing node transports a cer-
tain number of tokens (i.e., some amount of data) to a con-
suming node, as indicated by the data type of the queue.
Tokens are appended to the tail of the queue by the produc-
ing node and read from the head by the consuming node.
A queue is specified by three attributes: a produce amount,

threshold, and consume amount. The produce amount spec-
ifies the number of tokens appended to the queue when the
producing node completes execution. The threshold amount
specifies the minimum number of tokens required to be
present in the queue in order for the consuming node to pro-
cess any received data. The consume amount is the number
of tokens dequeued when processing data. The only restric-
tion on queue attributes is that they must be non-negative
integral values and the consume amount must be at most
the threshold. In the PGM framework, a node is eligible
for execution when the number of tokens on each of its in-
put queues is over that queue’s threshold. Overlapping ex-
ecutions of the same node are disallowed. For any queue
connecting nodes Gj and Gk in a PGM graph G, we let
ρk←j denote its produce amount, ϕk←j denote its thresh-
old, and ck←j denote the consume amount. In the PGM
framework, it is often assumed that each source node exe-
cutes according to a rate-based pattern. Note that, even if all
source nodes execute according to a periodic/sporadic pat-
tern, non-source nodes may still execute following a rate-
based pattern.

Example. Fig. 5 shows an example PGM graph G1 con-
taining four nodes. As an example of the notation, each
invocation of G1

1 appends four tokens to the queue shared
withG2

1. G2
1 may execute, consuming three tokens, when at

least seven tokens are in this queue.

3 Supporting PGM-Specified Systems on
Multiprocessors

In this section, we present our proposed approach for sup-
porting PGM-specified systems on multiprocessors. We
first show that any PGM graph G can be represented by a
DAG-based RB task system τRB by mapping PGM nodes to
RB tasks. We then show that τRB can be transformed to an

ordinary sporadic task system τ , for which tardiness bounds
can be derived. A summary of the terms defined so far, as
well as some additional terms defined later, is presented in
Table 1.

m Number of processors
n Number of tasks
Usum(τ) Total utilization of a task system τ
(xi, yi) Execution rate of an RB task Ti, in-

dicating that there are at most xi
job releases within any time inter-
val [j · yi, (j + 1) · yi) (j ≥ 0)

ρk←j Produce amount of the queue con-
necting any two nodes Gj and Gk

in a PGM graph G
ϕk←j Threshold of the queue connecting

any two nodesGj andGk in a PGM
graph G

ck←j Consume amount of the queue con-
necting any two nodes Gj and Gk

in a PGM graph G
pred(Thl) Set of predecessor tasks of task Thl
pred(Thl,j) Set of predecessor jobs of job Thl,j
Fmax(pred(Thl,j)) Latest completion time among all

predecessor jobs of Thl,j
tf (Thl,j) Completion time of Thl,j
ε(Thl,j) Early-release time of Thl,j

Table 1. Summary of notation.

3.1 Representing PGM Graphs by DAG-
based RB Task Systems

In this section, our goal is to implement G by a task system
τRB, where G consists of a set of n acyclic PGM graphs
{G1, G2, ..., Gn}. By computing node execution rates (as
defined below) based on the producer/consumer relation-
ships that exist in any graph Gl in G, we can implement
each node in Gl by an RB task in τRB.

Definition 1. [4] An execution rate is a pair of non-negative
integers (x, y). An execution rate specification for any node
Gil in Gl, (xil, y

i
l), is valid if Gil releases at most xi jobs in

any time interval [j ·yil , (j+1)·yil) (j ≥ 0). An execution of
a node in Gl is valid iff: (1) the task executes only when it
is eligible for execution and no two executions of the same
node overlap, (2) each input queue has its tokens atomically
consumed after each output queue has its tokens atomically
produced, and (3) tokens are produced at most once on an
output queue during each node execution. An execution of
G is valid iff all of the nodes in the execution sequence have
valid executions and no data loss occurs.

We define τRB to have the same structure as G, i.e., each

312
1 =←c

412
1 =←ρ

712
1 =←ϕ

313
1 =←c

413
1 =←ρ

513
1 =←ϕ

G1

224
1 =←c

124
1 =←ρ

324
1 =←ϕ

434
1 =←c

234
1 =←ρ

634
1 =←ϕ

1
1G

4
1G

3
1G2

1G

Figure 5. Example PGM graph.

graph Gl in G is implemented by a DAG-based RB task Tl
in τRB. Moreover, each nodeGil inGl is implemented by an
RB task T il in Tl, and these tasks are connected via edges
just like the corresponding nodes in Gl. We assume that the
source node of Gl is governed by an RB specification and
non-source nodes execute according to the corresponding
specifications in Gl (i.e., produce, threshold, and consume
attributes of queues in Gl).3

As shown in [4], it is possible to compute an execu-
tion rate for every task in τRB. Although the focus of [4]
is uniprocessor platforms, this result is independent of the
hardware platform. Thus, we first apply the same method to
compute an execution rate for every task in τRB, as stated in
the following lemma (proved in [4]).4

Lemma 1. [4] For any task T ki in τRB that has at least one
incoming edge, let ν denote the set of predecessor tasks of
T ki . For any node Tui in ν, let Rui = (xui , y

u
i) be a valid

execution rate. The execution rate Rki = (xki , y
k
i) for T ki is

valid if

yki = lcm

{
ck←vi · yvi

gcd(ρk←vi · xvi , ck←vi)
|v ∈ ν

}
,

xki = yki ·
ρk←vi

ck←vi

· x
v
i

yvi
, where T vi ∈ ν.5

By Lemma 1, we can compute an execution rate (xki , y
k
i)

for every task T ki in τRB. Thus, each such task T ki can be
specified by parameters (xki , y

k
i , d

k
i , e

k
i), where

dki = yki /x
k
i . (3)

Example. Consider again the example PGM graph shown
in Fig. 5. Fig. 6 shows the corresponding DAG-based
RB task system. The rate of each task is computed ac-
cording to Lemma 1, assuming that the source node G1

1

3Given the close connection between τRB and G, we can henceforth
associate tokens, queue attributes, etc., with edges in every DAG-based
RB task in τRB, just like in G.

4Note that in Def. 1 and Lemma 1, Goddard actually assumed that each
Gi

l releases exactly xi jobs in any time interval [t+ j ·yi, t+(j+1) ·yi)
(j ≥ 0). However, we verified that this definition and lemma generalize to
the case where Gi releases at most xi jobs in any such interval.

5It is shown in [4] that Def. 1 and Lemma 1 ensure that all tasks in ν
with valid execution rates have the same x/y value.

T1
1

T1
2 T1

3

T1

(4,12,3,e1
2)

(1,4,4,2)

(1,3,3,2)

(2,12,6,3)

(4,12,3,1)

2
1T

1
1T

3
1T

4
1T

1T

),4,4,1(1
1e

),3,12,4(2
1e),3,12,4(3

1e

),6,12,2(4
1e

Figure 6. RB counterpart of the PGM graph in
Fig. 5.

has an execution rate of (1, 4). For instance, y21 =
3 · 4

gcd(4 · 1, 3)
= 12 and x21 = 12 · 4 · 1

3 · 4
= 4. Also,

y41 = lcm

{
2 · 12

gcd(4, 2)
,

4 · 12

gcd(8, 4)

}
= lcm{12, 12} = 12

and x41 = 12 · 1

2
· 4

12
= 2. Fig. 7 shows an extended

snapshot sequence showing releases of nodes T 1
1 and T 2

1 .
As seen, T 2

1 releases at most four jobs within any interval
[j · 12, (j + 1) · 12) (j ≥ 0).

In order to completely define τRB, we need to determine
job precedence constraints in τRB. This is dealt with in the
following lemma. In τRB, any job T ki,j’s predecessor jobs
are those that need to complete execution in order for T ki,j
to be eligible to execute.

Lemma 2. For any Twi ∈ pred(T ki), Twi,v is a predecessor

job of T ki,j iff v =

⌈
(j − 1) · ck←wi + ϕk←wi

ρk←wi

⌉
.

Proof. If Twi,v is a predecessor job of T ki,j , then when Twi,v
completes, the number of tokens in the queue between
Twi and T ki should be at least ϕk←wi in order for T ki,j
to be able to execute. That is, v · ρk←wi − (j − 1) ·
ck←wi ≥ ϕk←wi must hold. By rearrangement, we have

v ≥ (j − 1) · ck←wi + ϕk←wi

ρk←wi

. Since v must be an integer,

we have v =

⌈
(j − 1) · ck←wi + ϕk←wi

ρk←wi

⌉
.

Example Consider the example shown in Fig. 7. We can
define job precedence constraints according to Lemma 2.
For instance, the predecessor job of T 2

1,3 is T 1
1,v , where v =⌈

2 · 3 + 7

4

⌉
= 4, and the predecessor job of T 2

1,4 is also

T 1
1,4 because

⌈
3 · 3 + 7

4

⌉
= 4.

3.2 Transforming τRB to τ

We now show that τRB can be transformed to an ordinary
sporadic system τ without utilization loss. The transforma-

tion process ensures that all precedence constraints in τRB

are met. Later, in Sec. 3.3, we show that this process ensures
that tardiness is bounded for τRB when GEDF is used.

We transform τRB to τ by redefining job releases appro-
priately. First, we must eliminate precedence constraints
among tasks within the same DAG. We can do this by re-
defining job releases so that such constraints are automati-
cally satisfied. By doing so, a DAG can be transformed into
a set of independent RB tasks. Second, an RB task may re-
lease jobs arbitrarily close together, which is disallowed in
the sporadic task model. Therefore, in order to transform
τRB to τ , we also need to re-define job release times to en-
force a minimum inter-arrival time.

For any job Thl,j where j > 1 and h > 1, its original
release time, rRB(Thl,j), is redefined to be

r(Thl,j) = max
(
rRB(Thl,j), Fmax(pred(Thl,j)),

r(Thl,j−1) + dhl
)
, (4)

where Fmax(pred(Thl,j)) denotes the latest completion time
among all predecessor jobs of Thl,j .

Given that a source task has no predecessors, the release
of any job T 1

l,j (j > 1) of such a task is redefined to be

r(T 1
l,j) = max

(
rRB(T 1

l,j), r(T
1
l,j−1) + d1l

)
. (5)

For the first job Thl,1 (h > 1) of any non-source task, its
release time is redefined to be

r(Thl,1) = max
(
rRB(Thl,1), Fmax(pred(Thl,1))

)
. (6)

Finally, for the first job T 1
l,1 of any source task, its release

time is redefined to be

r(T 1
l,1) = rRB(T 1

l,1). (7)

After redefining job releases according to (4)–(7), Thl,j’s
redefined deadline, denoted d(Thl,j), is given by

d(Thl,j) = r(Thl,j) + dhl . (8)

Note that these definitions imply that each task’s utiliza-
tion remains unchanged.

Example. Consider the same example as shown in Fig. 6.
Fig. 8 shows the redefined job releases of task T 2

1 . As seen,
according to (4) and (6), r(T 2

1,1) = rRB(T 2
1,1), r(T 2

1,2) =
r(T 2

1,1) + d21, r(T 2
1,3) = r(T 2

1,2) + d21, and r(T 2
1,4) =

rRB(T 2
1,4).

Note that the release time of any job Thl,j with predeces-
sor jobs is redefined to be at least Fmax(pred(Thl,j)). Thus,
its start time is at leastFmax(pred(Thl,j)). Hence, the GEDF
schedule preserves the precedence constraints enforced by
the DAG-based RB model. Note also that, since the release

0 4 8 12 16 20 24

0

Queue
length

Sequence of
releases

28

Job release of Job release of

4

8
5

9 10
7

4

8
5

9
6

10
7

4
6

T1
1

312
1 =←c

412
1 =←ρ

712
1 =←ϕ

T1
2

1
1T

2
1T

1
1T 2

1T

Figure 7. Extended snapshot sequence of releases.

Rate-based

job release

Redefined

sporadic release

2

1T

3

1T
0 4 8 12 16

(d) Improve job response time by further early-releasing

1

1T
2

1T
3

1T
0 4 8 12 16 20 24

(e) Further early-release every job at the eligible time

1

1T
2

1T
3

1T
0 4 8 12 16 20 24

1

1T
2

1T
3

1T

(a) Rate-based schedule.

0 4 8 12 16 20

Job release Job deadline
New periodic

release

New periodic

deadline

1

1T
2

1T
3

1T

(a) Rate-based schedule with early-releasing.

0 4 8 12 16 20

1

1T
2

1T
3

1T
0 4 8 12 16

2

1T

0 4 8 12

RB job

release

Redefined

sporadic release

2

1,1T 2

2,1T
2

3,1T 2

4,1T

Figure 8. Redefining job releases according
to (4) – (7).

time of each Thl,j (j > 1) is redefined to be at least that of
Thl,j−1 plus dhl , Tl executes as a sporadic task with phl = dhl .
By transforming every task in τRB to an independent spo-
radic task according to (4)–(7), we obtain τ . Note that (8)
potentially causes job deadlines to move to later points in
time.6 The following lemma establishes an upper bound
on the gap between the original deadline and the redefined
deadline of any job of any source task. (Actually, it is not
necessary to so aggressively shift releases to later points in
time; this issue is dealt with in Sec. 3.4.)

Lemma 3. For any job T 1
i,j , r(T

1
i,j)− rRB(T 1

i,j) < 2 · y1i .

Proof. (All jobs considered in this proof are assumed to be
jobs of T 1

i .) It suffices to prove that for any job T 1
i,u with

k · y1i ≤ rRB(T 1
i,u) < (k + 1) · y1i , where k ≥ −1, we have

r(T 1
i,u) < k · y1i + 2 · y1i . We prove this by induction on k.

For conciseness, we make the base case vacuous by starting
with k = −1 (the base case then holds trivially since no job
is released within time interval [−y1i , 0)).

For the induction step, let us assume that

r(T 1
i,c) < j · y1i + 2 · y1i (9)

holds for any job T 1
i,c with j · y1i ≤ rRB(T 1

i,c) < (j + 1) · y1i
6Note that the method so far yields a non-work-conserving scheduler

since the release time of some job may be delayed to a later point of time.

(j ≥ 0). Then we want to prove that for any job T 1
i,v with

(j + 1) · y1i ≤ rRB(T 1
i,v) < (j + 2) · y1i , (10)

we have r(T 1
i,v) < (j + 1) · y1i + 2 · y1i .

Let χ denote the set of jobs with RB release times within
[(j + 1) · y1i , rRB(T 1

i,v)]. We consider three cases.

Case 1. χ is empty. In this case, rRB(T 1
i,v) is the first RB

release within [(j+1)·y1i , (j+2)·y1i). According to (5), ei-
ther r(T 1

i,v) = rRB(T 1
i,v) or r(T 1

i,v) = r(T 1
i,v−1) +d1i where

T 1
i,v−1 is the last job of T 1

i with j · y1i ≤ rRB(T 1
i,v−1) <

(j + 1) · y1i . If r(T 1
i,v) = rRB(T 1

i,v), then r(T 1
i,v) =

rRB(T 1
i,v)

by (10)
< j ·y1i + 2 ·y1i . If r(T 1

i,v) = r(T 1
i,v−1) +d1i ,

then by (9), we have r(T 1
i,v−1) < j · y1i + 2 · y1i . Thus,

r(T 1
i,v) = r(T 1

i,v−1) + d1i < j · y1i + 2 · y1i + d1i
by (3)

≤
(j + 1) · y1i + 2 · y1i .

Case 2. χ is non-empty and there exists at least one job
T 1
i,v′ in χ such that r(T 1

i,v′) = rRB(T 1
i,v′). According to (5)

and the fact that at most x1i jobs could be released within χ
(since [(j+1)·y1i , rRB(T 1

i,v)] ∈ [(j+1)·y1i , (j+2)·y1i)), the
release time of T 1

i,v could be delayed by at most (x1i −1) ·d1i
time units. By (3), (x1i − 1) · d1i < y1i . Thus, r(T 1

i,v) <

rRB(T 1
i,v)+y1i

by (10)
< (j+2) ·y1i +y1i = (j+1) ·y1i +2 ·y1i .

Case 3. χ is non-empty and there exists no job in χ such
that r(T 1

i,v′) = rRB(T 1
i,v′). In this case, for the first-released

job T 1
i,v′ in χ, we have r(T 1

i,v′) = r(T 1
i,v′−1) + d1i . Note

that T 1
i,v′−1 exists, for otherwise, we would have r(T 1

i,v′) =

rRB(T 1
i,v′). Due to the fact that at most x1i − 1 jobs could be

released within χ, we have r(T 1
i,v) ≤ r(T 1

i,v′−1) + x1i · d1i .

Thus, we have r(T 1
i,v) ≤ r(T 1

i,v′−1) + x1i · d1i
by (3) and (9)

<

j · y1i + 2 · y1i + y1i = (j + 1) · y1i + 2 · y1i .

3.3 Tardiness Bound for τRB

Given a DAG-based RB task system, τRB, by applying the
strategy presented above, we obtain a task system τ con-

taining only independent sporadic tasks. We can then apply
the tardiness bound derived for ordinary sporadic task sys-
tems in [3] (or any other such bound), as stated below. Let
tf (Thl,j) denote the completion time of Thl,j in τ .

Theorem 1. [3] In any GEDF schedule for the sporadic
task system τ on m processors, if Usum(τ) ≤ m, then the
tardiness of any job Thl,j , with respect to its redefined dead-
line d(Thl,j), is at most ∆, where ∆ is an expression depend-
ing on system parameters specified in [3] (omitted here due
to space constraints), i.e.,

tf (Thl,j)− d(Thl,j) ≤ ∆. (11)

However, Theorem 1 only gives a tardiness bound for
any job Thl,j with respect to its redefined deadline, d(Thl,j).
Thl,j can have higher tardiness with respect to its original
deadline, dRB(Thl,j). Therefore, we must bound the ac-
tual tardiness any job Thl,j may experience with respect to
its original deadline. The following theorem gives such a
bound. Let ymaxl = max(y1l , y

2
l , ..., y

z
l), where z is the

number of nodes in Tl. Before stating the theorem, we first
prove a lemma that is used in its proof.

Lemma 4. For any two jobs Thl,j and Thl,k of Thl in τRB,
where j < k, i · yhl ≤ rRB(Thl,j) < (i+ 1) · yhl (i ≥ 0), and
(i + w) · yhl ≤ rRB(Thl,k) < (i + w + 1) · yhl (w ≥ 0), we
have rRB(Thl,k)− rRB(Thl,j) > (k − j) · dhl − 2 · yhl .

Proof. (All jobs considered in this proof are assumed to be
jobs of Thl .) Note that k− j− 1 denotes the number of jobs
other than Thl,j and Thl,k released in [rRB(Thl,j), r

RB(Thl,k)].
Depending on the number of such jobs, we have two cases.

Case 1. k − j − 1 ≤ 2 · xhl − 2. Given the case condition,
k − j ≤ 2 · xhl − 1 holds. Thus, we have (k − j) · dhl −

2 · yhl ≤ (2 · xhl − 1) · dhl − 2 · yhl
by (3)
< 0. Since k > j,

rRB(Thl,k)− rRB(Thl,j) ≥ 0 > (k − j) · dhl − 2 · yhl .

Case 2. k − j − 1 > 2 · xhl − 2. In this case, more than
2 · (xhl − 1) jobs other than Thl,j and Thl,k are released in
[rRB(Thl,j), r

RB(Thl,k)]. By the statement of the lemma, at
most xhl jobs can be released in [rRB(Thl,j), (i + 1) · yhl) or
[(i+ w) · yhl , rRB(Thl,k)], respectively. Thus,

λ ≥ (k − j − 1)− 2 · (xhl − 1), (12)

where λ is the number of jobs other than Thl,j and Thl,k re-
leased in [(i+ 1) · yhl), (i+ w) · yhl).

Note that the length of the time interval [(i+1) ·yhl), (i+
w) · yhl) really depends on the number of jobs released
within this interval, due to that fact that at most xhl jobs
are released within any interval [(i + 1) · yhl), (i + 2) · yhl)
of length yhl . For instance, if k jobs are released within

[(i+1)·yhl), (i+w)·yhl), where 1 ≤ k < xhl , then its length
is at least yhl . If xhl ≤ k < 2xhl jobs are released within this
interval, then its length is at least 2 · yhl . In general, by (12),
the length of the time interval [(i+1)·yhl), (i+w)·yhl) is (i+

w) ·yhl −(i+1) ·yhl ≥
⌈

(k − j − 1)− 2 · (xhl − 1)

xhl

⌉
·yhl ≥

(k − j − 1)− 2 · (xhl − 1)

xhl
· yhl =

(k − j)− 2 · xhl + 1

xhl
·

yhl = (k − j) · dhl − 2 · yhl + dhl .
Given (from the statement of the lemma) that

rRB(Thl,j) < (i + 1) · yhl and rRB(Thl,k) ≥ (i + w) · yhl , we
have rRB(Thl,k)− rRB(Thl,j) > (i+ w) · yhl − (i+ 1) · yhl ≥
(k − j) · dhl − 2 · yhl + dhl > (k − j) · dhl − 2 · yhl .

Theorem 2. In any GEDF schedule for τRB on m proces-
sors, if Usum(τRB) ≤ m, then the tardiness of any job Thl,j
of a task Thl at depth k, with respect to its original deadline,
dRB(Thl,j), is at most (k + 1) ·∆ + 3(k + 1) · ymaxl , i.e.,

tf (Thl,j)− dRB(Thl,j) ≤ (k + 1) ·∆ + 3(k + 1) · ymaxl . (13)

Proof. This theorem can be proved by induction on task
depth. In the base case, by Theorem 1 and the fact that
T 1
i has no predecessors, its tardiness with respect to its

newly-defined deadline, d(T 1
i,j), is at most ∆. By Lemma 3,

r(T 1
i,j) − rRB(T 1

i,j) < 2 · y1i . Thus, with respect to its
original deadline, dRB(T 1

i,j), T 1
i,j has a tardiness bound of

∆ + 2 · y1i < ∆ + 3 · ymaxi .
For the induction step, let us assume (13) holds for any

task Twi at depth at most k − 1, k ≥ 1. Then, the tardiness
of any job Twi,v of Twi is at most k ·∆ + 3k · ymaxi , i.e.,

tf (Twi,v)− dRB(Twi,v) ≤ k ·∆ + 3k · ymaxi . (14)

We want to prove that for any job Thi,j of any task Thi at
depth k, tf (Thi,j)−dRB(Thi,j) ≤ (k+1)·∆+3(k+1)·ymaxi .
According to (4) and (6), there are three cases to consider
regarding Thi,j’s newly-defined release time r(Thl,j), as illus-
trated in Fig. 9.

Case 1. r(Thi,j) = rRB(Thi,j). By Theorem 1, we know that
tf (Thi,j)−d(Thi,j) ≤ ∆. Given that d(Thi,j) = dRB(Thi,j), we
have tf (Thi,j)−dRB(Thi,j) ≤ ∆ < (k+1)·∆+3(k+1)·ymaxi .

Case 2. r(Thi,j) = Fmax(pred(Thi,j)). Let Twi,v be the pre-
decessor of Thl,j that has the latest completion time among
all predecessors of Thi,j (Twi,v exists because the depth of Thl
is at least one). Thus, we have

r(Thi,j) = Fmax(pred(Thi,j)) = tf (Twi,v). (15)

Therefore,

Original job

release

h

iT(a) Case 1.

New job release

)(

)(

,

,

h

ji

RB

h

ji

Tr

Tr



j

h

iT
(b) Case 2.

)(

)(

,

,

w

jif

h

ji

Tt

Tr



j

w

iT
j

h

iT

(c) Case 3.1.

j

i

h

qi

h

ji

pqjTr

Tr

)()(

)(

,

,

.
q

q

)(

)(

,

,

w

qif

h

qi

Tt

Tr



)(,

h

ji

RB Tr

(d) Case 3.2.

h

iT
j

.
q

)(

)(

,

,

h

qi

RB

h

qi

Tr

Tr



)(

)()(

)(

,

,

,

h

ji

RB

i

h

qi

h

ji

Tr

pqjTr

Tr





w

iT

Figure 9. Three cases in Theorem 2.

tf (Thi,j)− dRB(Thi,j)
{by (1)}

= tf (Thi,j)− rRB(Thi,j)− dhi
= tf (Thi,j)− r(Thi,j) + r(Thi,j)− rRB(Thi,j)− dhi
{by (8)}

= tf (Thi,j)− d(Thi,j) + dhi + r(Thi,j)− rRB(Thi,j)− dhi
{by (11)}

≤ ∆ + dhi + r(Thi,j)− rRB(Thi,j)− dhi
= ∆ + r(Thi,j)− rRB(Thi,j)
{by (2) and (15)}

≤ ∆ + tf (Twi,v)− rRB(Twi,v)
{by (1)}

= ∆ + tf (Twi,v)− dRB(Twi,v) + dwi
{by (14)}

≤ ∆ + k ·∆ + 3k · ymaxi + dwi
{by (3)}

< (k + 1) ·∆ + 3(k + 1) · ymaxi .

Case 3. j > 1 ∧ r(Thi,j) = r(Thi,j−1) + dhi . Let Thi,q (q <
j) denote the last job of Thi released before Thi,j such that
r(Thi,q) = rRB(Thi,q) or r(Thi,q) = Fmax(pred(Thi,q)). Thi,q

exists because according to (6) and (7), there exists at least
one job, Thi,1, such that r(Thi,1) = rRB(Thi,1) or r(Thi,1) =

Fmax(pred(Thi,1)). Depending on the value of r(Thi,q), we
have two subcases.

Case 3.1. r(Thi,q) = rRB(Thi,q). By the definition of Thi,q , the
release time of any job Thi,k, where q < k ≤ j, is redefined
to be r(Thi,k) = r(Thi,k−1) + dhi . Thus, we have

r(Thi,j) = r(Thi,q) + (j − q) · dhi . (16)

Therefore, we have

tf (Thi,j)− dRB(Thi,j)
{by (1)}

= tf (Thi,j)− rRB(Thi,j)− dhi
= tf (Thi,j)− r(Thi,j) + r(Thi,j)− rRB(Thi,j)− dhi
{by (8)}

= tf (Thi,j)− d(Thi,j) + dhi + r(Thi,j)− rRB(Thi,j)− dhi
{by (11)}

≤ ∆ + dhi + r(Thi,j)− rRB(Thi,j)− dhi
= ∆ + r(Thi,j)− rRB(Thi,j)
{by (16) and Lemma 4}

< ∆ + (r(Thi,q) + (j − q) · dhi)− (rRB(Thi,q)
+(j − q) · dhi − 2 · yhi)
{by the case condition}

= ∆ + 2 · yhi
< (k + 1) ·∆ + 3(k + 1) · ymaxi .

Case 3.2. r(Thi,q) = Fmax(pred(Thi,q)). Let Twi,v
denote a predecessor job of Thi,q with tf (Twi,v) =
Fmax(pred(Thi,q)) = r(Thi,q). We have

tf (Thi,j)− dRB(Thi,j)
{similarly to the derivation in Case 3.1}

< ∆ + (r(Thi,q) + (j − q) · dhi)− (rRB(Thi,q)
+(j − q) · dhi − 2 · yhi)

= ∆ + r(Thi,q)− rRB(Thi,q) + 2 · yhi
{by the case condition and (2)}

≤ ∆ + tf (Twi,v)− rRB(Twi,v) + 2 · yhi
{by (1)}

= ∆ + tf (Twi,v)− dRB(Twi,v) + dwi + 2 · yhi
{by (14)}

≤ ∆ + k ·∆ + 3k · ymaxi + dwi + 2 · yhi
{by (3)}

≤ (k + 1) ·∆ + 3(k + 1) · ymaxi .

3.4 Improving Job Response Times by
Early-Releasing

By forcing RB releases to be sporadic, we essentially delay
job releases. However, excessive release delays are actually
unnecessary and actual response times can be improved by

0 4 8 12 16

(b)

T1
2

T1
3

T1
4

20

release deadline precedence

T1
1

0 4 8 12 16

(b)

T1
2

T1
3

T1
4

20

T1
1

0 4 8 12 16

(b)

T1
2

T1
3

T1
4

20

T1
1

0 4 8 12 16

(b)

T1
1

T1
2

T1
3

T1
4

20

1
1,1T

2
4,1T

1
2,1T

2
2,1T 2

3,1T

3
1,1T 3

2,1T 3
3,1T 3

4,1T

4
1,1T 4

2,1T

2
1,1T

1
1,1T 1

2,1T

1
3,1T

2
1,1T

3
1,1T 3

3,1T
3
4,1T

4
2,1T

3
2,1T

1
2,1T

0 4 8 12 16

1
1,1T

0 4 8 12 16

0 4 8 12 16

2
2,1T 2

3,1T

1
3,1T

1
2,1T1

1,1T 1
3,1T

2
1,1T 2

2,1T 2
3,1T

release deadline redefined
release

early
release

(a)

(b)

(c)

1
1T

2
1T

1
1T

2
1T

1
1T

2
1T

missed deadlines

Figure 10. Early-releasing example.

applying a technique called “early-releasing,” which allows
jobs to execute before their specified release times. The
earliest time at which job Thl,j may execute is defined by its
early-release time ε(Thl,j), where ε(Thl,j) ≤ r(Thl,j). For any
job Thl,j , its early-releasing time can be defined as

ε(Thl,j) =

{
rRB(Thl,j) if h = 1

Fmax(pred(Thl,j)) if h > 1.

An unfinished job Thl,j is eligible for execution at time
t if Thl,j−1 has completed by t (if j > 1) and t ≥ ε(Thl,j).
As shown in [10], the tardiness bound in Theorem 1 con-
tinues to hold if early-releasing is allowed. Intuitively, this
is reflective of the fact that schedulability mainly hinges on
the proper spacing of consecutive job deadlines of a task,
instead of its releases. This same intuition underlies the de-
velopment of the uniprocessor RBE model [5].

Example. Consider a DAG-based RB task system sched-
uled on two processors under GEDF consisting of two tasks:
T 1
1 (1, 4, 4, 2) and T 2

1 (1, 4, 4, 2), where pred(T 2
1) = T 1

1

1

2T

1T

1

1

1
1

2
61

1

2

2

1
2

1

2

2

Figure 11. Case study.

Previous approach Our approach

Processors needed 6 3

Max. bound of T1 0 102ms

Max. bound of T2 0 272 ms

Max. observed tardiness 0 10 ms

Table 2. Case study results.

and pred(T 2
2,j) = T 1

1,j for any j > 0. Fig. 10(a) shows
the original RB releases before time 12. Fig. 10(b) shows
the redefined releases according to (4)–(7), as well as the
GEDF schedule. As seen in the schedule, T 2

1,2 completes at
time 10 and misses its original deadline, which is at time 8.
Fig. 10(c) shows early releases as defined above and the cor-
responding GEDF schedule. As seen, most jobs’ response
times are improved. For instance, T 2

1,2 now completes at
time 8 and meets its original deadline.

4 Case Study

In this section, we present a case study that demonstrates
the utility of our results. Due to space constraints, we only
study a simple DAG-based system with two sporadic DAGs,
as shown in Fig 11. Each sporadic DAG contains a number
of sporadic tasks, with a common period of 10ms. Node la-
bels in Fig. 11 give the execution cost (in ms) of each task.
The total utilization of this system is 3.0. Prior to our work,
the only existing approach that could be applied to success-
fully schedule a DAG-based system under GEDF on multi-
processors is to ensure that every job meets its deadline, so
that DAG-based precedence constraints can automatically
be satisfied (as seen in Fig. 1).

Table 2 shows a comparison of our approach and this pre-
vious approach, where in the latter case, a GEDF schedula-
bility test by Baker [1] was used to ensure that deadlines

are not missed. In this table, the number of required pro-
cessors, theoretical tardiness bounds (computed using The-
orems 1 and 2), and the maximum observed tardiness are
shown. The latter was determined by simulating the sched-
ule until it repeats. As seen, although our approach requires
a higher tardiness bound, we only need three processors to
correctly schedule this system under GEDF with bounded
tardiness, which is only half of the processors required by
the other approach. Moreover, the maximum observed tar-
diness arising under our approach is low.

5 Conclusion

We have shown that DAG-based systems with sophisticated
notions of acyclic precedence constraints can be supported
under GEDF on multiprocessors with no utilization loss
provided bounded deadline tardiness is acceptable. Our re-
sults also imply that any global scheduling algorithm that
can ensure bounded tardiness with no utilization loss for or-
dinary sporadic task systems can ensure the same for any
DAG-based task system. Our results are general enough to
be applicable to periodic/sporadic DAG-based systems as
well.

Our overall scheduling strategy is similar to that pre-
sented previously by Goddard for the uniprocessor case [4].
However, several differences do exist. First, under the RBE
task model used in [4], a rate is specified by parameters
x and y, where x is the number of executions expected
to be requested in any interval of length y; contrastingly,
in our RB task model, x is the maximum number of exe-
cutions in an interval of length y. However, Goddard as-
sumes that the source node of a PGM graph executes ac-
cording to a deterministic rate-based pattern (i.e., exactly
x executions in any interval y), so this difference becomes
immaterial. Second, the RBE task model specifies a min-
imum separation between consecutive job deadlines of the
same task. Although our RB task model does not require
such a minimum separation, we ultimately redefine releases
and deadlines to enforce a minimum separation (Sec. 3.2),
and early-release jobs to obtain a work-conserving sched-
uler (Sec. 3.4). Third, in the uniprocessor case, DAG-
based precedence constraints can be more easily eliminated
than in the multiprocessor case. In [4], DAG-based prece-
dence constraints are met by keeping the job ready queue
in EDF order and breaking deadline ties on a FIFO basis.
We instead redefine job releases to eliminate all DAG-based
precedence constraints (see (4)–(7)). Finally, after map-
ping PGM graphs to rate-based tasks, Goddard derives a
schedulability condition for the resulting system. We in-
stead further transform rate-based tasks into sporadic tasks
and derive a schedulability condition for the sporadic task
system. Despite these differences, our approach can be seen

as a multiprocessor counterpart of that in [4] for scheduling
acyclic PGM graphs.

In future work, we would like to investigate support for
cyclic graph-based systems on multiprocessors. Also, as the
case study in Sec. 4 suggests, tardiness can be lessened by
using more processors. Intermediate choices between the
two extremes of having no tardiness and using the fewest
processors warrant further study. Finally, it would be in-
teresting to generalize our DAG-based task model to allow
multiple sources per DAG.

Acknowledgement: We are grateful to Steve Goddard for
his feedback on earlier drafts of this paper.

References

[1] T. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. In Proc. of the 24th Real-Time Sys.
Symp., pp. 120-129, 2003.

[2] S. Chakraborty, T. Erlebach, and L. Thiele. On the complex-
ity of scheduling conditional real-time code. In Lecture in
Computer Science, Vol. 2125, pp. 38-49, 2001.

[3] U. Devi and J. Anderson. Tardiness bounds under global
EDF scheduling on a multiprocessor. In Proc. of the 26th
IEEE Int’l Real-Time Sys. Symp., pp. 330-341, 2005.

[4] S. Goddard. On the Management of Latency in the synthe-
sis of real-time signal processing systems from processing
graphs. PhD thesis, The University of North Carolina at
Chapel Hill, 1998.

[5] K. Jeffay and S. Goddard. A theory of rate-based execution.
In Proc. of the 20th IEEE Int’l Real-Time Sys. Symp., pp.
304-314, 1999.

[6] Naval Research Laboratory. Processing Graph Method Spec-
ification, prepared by the Naval Research Laboratory for
use by the Navy Standard Signal Processing Program Office
(PMS-412). 1987.

[7] H. Leontyev and J. Anderson. Tardiness bounds for FIFO
scheduling on multiprocessors. In Proc. of the 19th Euromi-
cro Conf. on Real-Time Sys., pp. 71-80, 2007.

[8] C. Liu and J. Anderson. Scheduling suspendable, pipelined
tasks with non-preemptive sections in soft real-time multi-
processor systems. In Proc. of the 16th IEEE Real-Time and
Embedded Tech. and Apps. Symp., pp. 23-32, 2010.

[9] C. Liu and J. Anderson. Supporting pipelines in soft real-
time multiprocessor systems. In Proc. of the 21st Euromicro
Conf. on Real-Time Sys., pp. 269-278, 2009.

[10] C. Liu and J. Anderson. Supporting sporadic pipelined tasks
with early-releasing in soft real-time multiprocessor systems.
In Proc. of the 15th IEEE Int’l Conf. on Embedded and Real-
Time Computing Sys. and Apps., pp. 284-293, 2009.

[11] C. Liu and J. Anderson. Task scheduling with self-
suspensions in soft real-time multiprocessor systems. In
Proc. of the 30th Real-Time Sys. Symp., pp. 425-436, 2009.

