
Beating G-EDF at its Own Game: New Results on G-EDF-like
Schedulers∗

Jeremy P. Erickson and James H. Anderson

University of North Carolina at Chapel Hill

Abstract

The global earliest-deadline-first (G-EDF) schedul-
ing algorithm is useful for both hard real-time and soft
real-time systems. Under G-EDF, each job is priori-
tized based on a priority point that is a fixed time after
its release, namely its deadline. By considering other
such priority points, we define and examine a class of
“G-EDF-like” scheduling algorithms and demonstrate
that G-EDF is suboptimal in this class for hard real-
time task systems. We also provide experimental evi-
dence that soft real-time performance can be substan-
tially improved by choosing priority points other than
deadlines. We further provide a sufficient polynomial-
time algorithm for determining priority points that will
guarantee given response-time bounds, if possible.

1 Introduction

The earliest-deadline first (EDF) scheduling algo-
rithm has been studied widely. Liu and Layland [1]
demonstrated that, on uniprocessors, it is an optimal
algorithm capable of scheduling any feasible set of jobs.
Multiprocessor extensions have also been studied ex-
tensively, in particular in the form of the global EDF
(G-EDF) scheduling algorithm, which on m proces-
sors always executes the jobs with the m soonest dead-
lines. Researchers have studied the use of G-EDF for
both hard real-time (HRT) systems, where correctness
requires meeting all deadlines [2], and soft real-time
(SRT) systems, where missing deadlines by a bounded
amount is acceptable [3, 4, 5].

Although G-EDF is known to be suboptimal on mul-
tiprocessors, it is attractive for several reasons. Opti-

∗Work supported by Northrop Grumman Corporation, NSF
grants CNS 0834270, CNS 0834132, and CNS 1016954; ARO
grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549; and
AFRL grant FA8750-11-1-0033.

mal algorithms, such as the Pfair family of algorithms
[6], cause tasks to experience frequent preemptions and
migrations, and the resulting overheads can be pro-
hibitive. In contrast, experimental research has demon-
strated that the overheads caused by G-EDF are rea-
sonable when it is used on a moderate number of pro-
cessors [7]. Furthermore, unlike optimal algorithms,
G-EDF is a job-level static-priority (JLSP) algorithm,
and such algorithms are the target of most known
work on real-time synchronization algorithms. Several
promising non-optimal schedulers such as the earliest-
deadline-until-zero-laxity (EDZL) algorithm [8, 9] are
also not JLSP and thus cannot be used with these syn-
chronization algorithms.

In [10], Leontyev and Anderson observed that
scheduling priorities for most schedulers can be mod-
eled by giving each job a priority point (PP) in time,
with the scheduler always picking the job with the ear-
liest PP (with appropriate tie-breaking). For example,
fixed-priority task systems can be modeled by assigning
all jobs of each task a single PP near the beginning of
the schedule. G-EDF can be modeled by defining the
absolute deadline of a job as its PP. In [11], response
times are analyzed for many schedulers, including a
class of G-EDF-like (GEL) schedulers, in which the
PP of each job is defined as some per-task constant
after the job’s release. However, the response times
provided were not intended to be tight. Furthermore,
no comparison of differing GEL schedulers is provided.

In this paper, we demonstrate that G-EDF is sub-
optimal for HRT scheduling within the class of GEL
schedulers, i.e., there exist task systems schedulable
using some GEL scheduler, but not using G-EDF. For
SRT scheduling, G-EDF is “optimal” in the sense that
bounded tardiness can be ensured with no utilization
loss. However, smaller tardiness can be achieved by
using a different GEL scheduler. We demonstrate ex-
perimentally that a particular GEL scheduler, in which
each job’s PP is the earliest point where it may reach

1

zero laxity, is typically superior to G-EDF for SRT
scheduling, both in terms of analytically-derived tar-
diness bounds and actual runtime tardiness.

In the results described so far, PP definitions are
assumed to be given. In the last part of the paper, we
turn our attention to the problem of finding a good allo-
cation of PP offsets to tasks. We provide a polynomial-
time algorithm to determine whether it is possible to
define such offsets to ensure particular response-time
bounds using existing analysis. This algorithm is ap-
plicable to both HRT and SRT systems, as well as sys-
tems with a mix of HRT and SRT tasks.

The main conclusion to be drawn from our work
is that HRT schedulability and SRT tardiness bounds
and behavior can be improved while only slightly mod-
ifying the existing runtime implementation of G-EDF
and maintaining its JLSP property. All prior imple-
mentation work on arbitrary-deadline G-EDF and all
theoretical work assuming JLSP scheduling continue to
apply when such modifications are made.

Because our work involves shortening the dead-
line used by the scheduler, it superficially resembles
the work of Lee et al. [12], in which the deadlines
of some tasks are shortened at design time to create
“contention-free slots” that allow the priorities of some
jobs to be lowered during runtime, increasing system
schedulability. However, in their work, the actual dead-
lines by which jobs must complete are altered, which
is not true of our work. Furthermore, their work re-
quires modifying G-EDF in a manner that adds addi-
tional runtime overhead and removes the JLSP prop-
erty, while our work does not.

In Sec. 2, we describe the task model under consid-
eration and define basic terms. In Sec. 3, we demon-
strate that G-EDF is suboptimal for HRT scheduling
in the class of GEL schedulers and can be improved
upon for SRT scheduling as well. In Sec. 4, we provide
a polynomial-time algorithm for assigning PP offsets to
tasks in order to ensure specific response-time bounds.

2 Task Model

We consider a system τ of n arbitrary-deadline spo-
radic tasks τi = (Ti, Ci, Di) running on m processors,
where Ti is the minimum separation time between sub-
sequent releases of jobs of τi, Ci is the worst-case ex-
ecution time of any job of τi, and Di is the relative
deadline of each job of τi. We use Ui = Ci/Ti to de-
note the utilization of τi. We consider continuous time.
Also, we assume that n > m. If this is not the case,
then each task can be assigned its own processor, and
no job of τi will have response time exceeding Ci.

If a job of τi has absolute deadline d and has ex-
ecuted for δ time units at time t, then its laxity is
(d − t) − (Ci − δ). If such a job completes execu-
tion at time t, then its tardiness is max{0, t− d}. For
HRT scheduling, the tardiness of all jobs must be zero,
whereas for SRT scheduling, a bound must exist on the
tardiness of all jobs. Note that if a job reaches a zero-
laxity point, then it must be continuously scheduled
until its completion, or it may miss a deadline.

When analyzing GEL schedules, we use Yi to de-
note the relative PP for task τi (e.g., for G-EDF,
Yi = Di). In order to be able to apply the results
in Sec. 3.2, we require that for all i, Yi ≥ 0. We let
~Y = 〈Y1, Y2, . . . , Yn〉.

3 Inferiority of G-EDF

In this section, we demonstrate that G-EDF is infe-
rior to other GEL schedulers. In Sec. 3.1, we provide
an example of an implicit-deadline sporadic task sys-
tem that is HRT-schedulable using a GEL algorithm,
but not using G-EDF. In Sec 3.2, we provide experi-
mental evidence that substantial improvement in SRT
tardiness is possible compared to G-EDF within the
GEL class.

3.1 Hard Real-Time

Within the class of GEL schedulers, G-EDF is sub-
optimal for HRT systems even for implicit-deadline sys-
tems in which, for all i, Di = Ti. Consider the sys-
tem of n = 3 tasks, τ1 = (2, 1, 2), τ2 = (2, 1, 2), and
τ3 = (3, 3, 3), executing on m = 2 processors. Fig. 1
depicts the G-EDF schedule, as well as the GEL sched-
ule with Y1 = 2, Y2 = 2, and Y3 = 0, when job releases
are periodic.

Observe that in the G-EDF schedule (Fig. 1(a)) the
first job of τ3 misses its deadline by one time unit.
Therefore, τ is not schedulable using G-EDF. However,
τ is schedulable using a GEL scheduler with Y1 = 2,
Y2 = 2, and Y3 = 0, as indicated by Fig. 1(b). In or-
der to prove that τ is schedulable for all sporadic task
release patterns, rather than just for the periodic sys-
tem depicted in Fig. 1(b), we begin by observing that
each job J of τ3 is “tardy” from the perspective of the
scheduler (i.e., it has already reached its PP) from the
moment it is released. Therefore, J must be sched-
uled whenever it has been released but has not com-
pleted, unless some job of τ1 or τ2 is also past its PP.
In the worst case, τ3 will take up one processor, leav-
ing one processor free for the execution of τ1 and τ2.
Because U1 = 1/2 and U2 = 1/2, the Liu and Layland
bound for uniprocessor EDF [1] ensures that τ1 and τ2

2

(a) G-EDF Schedule.

(b) GEL schedule with Y1 = 2, Y2 = 2, Y3 = 0.

Figure 1: Example HRT task system when releases are
periodic.

are schedulable on this remaining processor, and will
therefore never execute past their PPs. If τ3 releases
sporadically or finishes before its full worst-case exe-
cution time, an extra processor may be available for
scheduling τ1 and τ2, but the presence of this extra
processor does not jeopardize the ability of τ1 and τ2
to meet their deadlines.

We have thus demonstrated that even for a sim-
ple implicit-deadline task system on two processors,
whether periodic or sporadic, it is possible for the sys-
tem to be schedulable using a GEL scheduler, but not
using G-EDF. Therefore, the deadline is not the opti-
mal place for the PP on a multiprocessor, even though
[1] demonstrated that on a uniprocessor the deadline
is the optimal place for the PP.

Intuitively, the reason G-EDF fails is that in this
particular system τ3 has a zero-laxity point at its re-
lease, but the standard G-EDF scheduler fails to ac-
count for it. While an EDZL scheduler would correctly
schedule τ , it adds additional overhead compared to G-
EDF, due to the need to track when a zero-laxity point
occurs. EDZL also changes the priority of a job during
its execution, so it does not have the JLSP property.
By simply moving the PP for Y3 back to reflect this
zero-laxity point, we achieve the benefit of EDZL with-
out incurring additional overhead or sacrificing JLSP.

3.2 Soft Real-Time

Unlike in the case of HRT, G-EDF can schedule
any feasible set of SRT tasks. However, here we show
that better GEL schedulers exist in the sense of creat-
ing smaller tardiness, both with respect to analytical
bounds (with current analysis) and with respect to ob-

served tardiness. Our SRT results extend prior work in
[5], which analyzes the tardiness of arbitrary-deadline
G-EDF. We summarize that work here, both so that
we can explain the better analytical bounds possible
for non-G-EDF GEL algorithms, and because we build
on these results in Sec. 4. We begin by observing that
all GEL algorithms can be analyzed as G-EDF with
arbitrary deadlines by letting Di = Yi. The approach
in [5] involves defining ~x = 〈x1, x2, . . . , xn〉 such that
no job of task τi has a tardiness greater than xi + Ci.
This implies that the response time of such a job is at
most xi + Ci + Di, so in our analysis, where Di = Yi,
the response time of such a job is at most

xi + Ci + Yi. (1)

In order for a system to have bounded response
times, both

∀i, Ui ≤ 1 (2)

and ∑
τi∈τ

Ui ≤ m (3)

must hold. [5] demonstrates that these conditions
are sufficient for bounded tardiness, and therefore for
bounded response time.

Example. We will repeatedly consider a system θ of
n = 3 tasks θ1 = (10, 9, 10), θ2 = (10, 9, 10), θ3 =
(100, 20, 90) running on m = 2 processors, to illustrate
important ideas. Note that θ satisfies (2) and (3).

We now review how to derive ~x so that (1) holds.1

To simplify the analysis, we assume that, for each τi,
Yi ≤ Ti. Analysis for tasks for which Yi > Ti is similar
to the Yi = Ti case.

In order to analyze the response time of a job Jk
(from task τk) with absolute PP yk, only jobs with
PPs at or before yk are considered, because the priority
definition ensures that other jobs will not interfere with
Jk. We inductively assume that no job of any τi with
PP before yk has response time exceeding Yi +xi +Ci,
and then show that Jk has response time at most Yk +
xk +Ck. We examine the last idle interval at or before
yk, here denoted as [t0, t), during which at least one
CPU is idle. (We let t = 0 if there is no such interval.)
A generic example schedule is depicted in 2(a).

We account for the work remaining for each task at
time t. Each task τi will conform to one of three cases.

Case 1. In the simplest case, τi is not executing just
before t, even though a processor is idle. Therefore,
all jobs of τi that have not completed before t must

1Our intent here is to review the basic ideas from the analysis
in [5]. For more details, please see [5].

3

be released after t. Examples of such tasks are high-
lighted in Fig. 2(b). We must therefore account for
all jobs released at or after t and due at or before yk.
The worst-case release pattern for an example task is
depicted in Fig. 2(c). For any task for which Yi = Ti,
the contributed work over [t, yk) can be upper-bounded
by b(yk − t)/TicCi ≤ Ui(yk − t), However, this is not
true if Yi < Ti, as depicted in Fig. 2(c), in which τi
has three job releases (released after t and with PPs no
later than yk) even though [t, yk) is shorter than 3Ti
time units. Therefore, for each task τj we define

Sj = max

{
0, Cj

(
1− Yj

Tj

)}
, (4)

so that the work released by τi is upper-bounded by

Ui(yk − t) + Si. (5)

Case 2. It is also possible that τi runs at the end of
[t0, t), but not throughout [t0, t). In this case, we define
t1 as the earliest time such that τi is running through-
out [t1, t). This situation is depicted in Fig. 2(d). The
analysis is the same as in Case 1, except that the re-
leases of τi must be after t1, rather than after t. How-
ever, because t− t1 of this work is performed before t,
the same upper bound,

Ui(yk − t) + Si, (6)

from Case 1, applies.

Case 3. Finally, τi may be running throughout an
entire idle interval. In this case, we consider the job
J running at time t0. If J has its PP at or after t0,
then the situation depicted in Fig. 2(e) applies. In that
case, the remaining work of τi from t0 onward is upper-
bounded by the remaining work of J (at most Ci), plus
the work released after t0+Ti−Yi. Because t−t0 work
must be completed in [t0, t), the remaining work after
t is upper-bounded by Ui(yk − t) + Ci.

2 Alternatively,
if J has its PP before t0, then the situation depicted
in Fig. 2(f) occurs. Because ∀j, Yj ≥ 0, J cannot be
preempted. Suppose J has Ci−δ units of execution left
at t0, for some non-negative δ. Then, it must complete
at time t0 + Ci − δ, and it must have a PP no earlier
than xi + Ci units prior to its completion (by the in-
ductive assumption stated earlier). Because successor
jobs cannot be released earlier than Ti − Yi units after
that PP, they must be released no earlier than time
t0 − δ − xi + Ti − Yi. Because δ ≥ 0, and t − t0 work
will be performed in [t0, t), the remaining work at time
t will be at most

Ci + Ui(yk − t+ xi).
3 (7)

2In [5], the authors used a slightly less tight bound.
3As above, in [5] the authors used a slightly less tight bound.

(a) Example schedule depicting t0, t, yk.

(b) Tasks not running at end of [t0, t).

(c) Worst-case release pattern for τi = (4, 1, 2) when Yi =
2.

(d) Task running at end of, but not for entire, idle interval.

(e) Task running for entire idle interval, J not past PP at
t0.

(f) Task running for entire idle interval, J past PP at t0.

(g) Possible competing work schedules after yk.

Figure 2: Response-time analysis.

4

In the above expression, Ci accounts for the work re-
quired by J , overestimating by δ, while Ui(yk−t)+xiUi
accounts for the work from all subsequent jobs (released
after t0 − δ − xi + Ti − Yi), underestimating by Uiδ
(so that our overestimation of J ’s work compensates).
Observe that (7) is sufficient to upper-bound the re-
maining work even if J had its PP at or after t0.

Case 3 can apply to at most m− 1 tasks over [t0, t),
because some CPU must be idle throughout [t0, t).
Therefore, in light of (5), (6), and (7), we define

L(~x) =
∑

m−1 largest

xiUi + Ci − Si (8)

and

S(τ) =
∑
τi∈τ

Si, (9)

so that the remaining work at t is at most L(~x)+S(τ)+∑
τi∈τ Ui(yk − t). Then, because m(yk − t) units of

work are completed in [t, yk) (see Fig. 2(a)), at most
L(~x) + S(τ) units of work remain at yk. In the worst
case, Jk requires Ck units of execution, so the remain-
ing jobs contribute at most L(~x) +S(τ)−Ck. Observe
that m processors are available to execute this compet-
ing work, all competing work is available after yk, and
Jk (or a predecessor) will execute after yk whenever a
processor is idle. Therefore, the situation is as depicted
in Fig. 2(g), where the worst case is on the left. Thus,
we can define

xk =
L(~x) + S(τ)− Ck

m
(10)

so that (1) holds.

Observe that xk is a component of ~x and therefore
appears on both the right-hand and the left-hand sides
of (10). As a result, we define a minimum compliant
vector as an ~x that satisfies (10) for all k.

The minimum compliant vector can be computed in
polynomial time, based on the observation that L(~x)
and S(τ) are the same for all tasks, so we can denote

s = L(~x) + S(τ) (11)

and observe that, by (10) and (11), for all i,

xiUi + Ci − Si =
s− Ci
m

· Ui + Ci − Si, (12)

which is a linear equation with respect to s. Because
L(~x) is defined as the m−1 largest such values and S(τ)
is a constant, L(~x)+S(τ) is a piecewise linear function
with respect to s. By finding its fixed point, we can
then use (10) and (11) to compute each xi value.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

m
ill

is
e
c
o
n
d
s

s

x1,2U1,2 + C1,2 - S1,2

x3U3 + C3 - S3

L(x)+S(τ)

s

Figure 3: Compliant vector computation for θ.

Example. This situation is depicted for θ in Fig. 3,
where we can see that s = 20 is the fixed point. Thus,

x1 =
20− 9

2
= 5.5,

x2 =
20− 9

2
= 5.5,

x3 =
20− 20

2
= 0.

Adding Ci for each task, we find that θ1 and θ2
have tardiness bounds of 5.5 + 9 = 14.5, and θ3 has a
tardiness bound of 0 + 20 = 20.

(1) provides a response-time bound for τi. There-
fore, a tardiness bound for τi is given by

max{0, Yi + xi + Ci −Di}. (13)

By (13), we can reduce the tardiness bound for task
τi by decreasing Yi. However, by doing so we increase
the value of Si by (4), and therefore the value of S(τ)
by (9), affecting all tasks by (10) and (13). Thus, by
decreasing Yi we typically decrease the tardiness bound
for τi, but typically increase the tardiness bounds for
all other tasks in the system.

Example. Suppose we attempt to decrease the tar-
diness bound for θ1 by using Y1 = 5 (while still using
Y2 = 10 and Y3 = 90). Then, by (4), S1 = 9(1− 5

10) =
4.5. Therefore, S(τ) = 4.5 + 0 + 2 = 6.5. Applying
the algorithm of [5], we obtain x1 = 8, x2 = 8, and
x3 = 2.5, so by (13) we have tardiness bounds of 12,
17, and 22.5. Although we were successful in lowering
the tardiness bound for θ1, we decreased it by only 2.5
time units, and increased the tardiness bounds for both
θ2 and θ3.

Having shown how to reinterpret prior analysis to
apply to arbitrary GEL schedulers, we now show that

5

the maximum tardiness bound and observed tardiness
can be decreased through a simple modification to G-
EDF. Our approach to reducing tardiness is inspired
by the EDZL scheduling algorithm. In EDZL, a task
acquires the highest priority when it reaches a zero-
laxity point. For our GEL algorithm, we attempt to
achieve a similar benefit while statically allocating pri-
orities to jobs. We assign PPs at the earliest time each
job could achieve zero laxity, i.e., Yi = Di − Ci (as-
suming that Di ≥ Ci). While we do not claim op-

timality for this choice of ~Y , we provide experimen-
tal evidence demonstrating that it does typically im-
prove maximum tardiness bounds and observed tardi-
ness compared to G-EDF. These experiments provide
strong evidence that G-EDF can be improved upon.
In particular, the tardiness-bound experiments demon-
strate that the work in Sec. 4 is also likely to improve
upon G-EDF.4

To validate our improvements, we generated
implicit-deadline task sets based on the experimen-
tal design from prior studies (e.g., [13]). We gener-
ated task utilizations using either a uniform or a bi-
modal distribution. For task sets with uniformly dis-
tributed utilizations, we used either a light distribu-
tion with values randomly chosen from [0.001, 0.1], a
medium distribution with values randomly chosen from
[0.1, 0.4], or a heavy distribution with values randomly
chosen from [0.5, 0.9]. For tasks sets with bimodally
distributed utilizations, values were chosen uniformly
from either [0.001, 0.5] or [0.5, 0.9], with respective
probabilities of 8/9 and 1/9 for light distributions, 6/9
and 3/9 for medium distributions, and 4/9 and 5/9 for
heavy distributions. We generated integral task peri-
ods using a uniform distribution from [3ms, 33ms] for
short periods, [10ms, 100ms] for moderate periods, or
[50ms, 250ms] for long periods. Each experiment was
run with either m = 2, m = 4, or m = 6 CPUs. By
[7] we do not need to consider significantly larger num-
bers of CPUs, as clustered scheduling will outperform
global scheduling for such systems in practice.

We ran two experiments for each possible combi-
nation of utilization distribution, period distribution,
and processor count: one to determine the effect of
our EDZL-inspired modification on tardiness bounds,
and one to determine its effect on observed tardiness.
For each experiment, we generated 1000 task sets. For
each task set τ , we generated tasks until generating one
that would cause

∑
τi∈τ Ui to exceed m. For observed-

4This is true because the experiments demonstrate that, for
each task set, a ~Y exists providing a lower maximum tardiness
bound than G-EDF. The algorithm in Sec. 4 is guaranteed to
find such a ~Y if the designer specifies compatible response-time
bounds.

tardiness experiments, we restricted task worst-case ex-
ecution times to be integers.

For each task set, we computed “maximum tardi-
ness” metrics g for G-EDF and h for the GEL scheduler
with Yi = Di−Ci. In the tardiness-bound experiments,
g and h were defined as the maximum tardiness bounds
computed using the methods described here.5 In the
observed-tardiness experiments, we defined g and h as
the maximum tardiness experienced by any job during
the first 100 seconds of execution, when all job releases
are periodic and all jobs run for their full worst-case
execution times. For each experiment, we computed ḡ,
the mean g value over all task sets, and h̄, the mean h
value over all task sets. The relative improvement for
an experiment is defined as (ḡ − h̄)/ḡ.

Results of our experiments are shown in Fig. 4.
Tardiness-bound experiments often showed an im-
provement of about 30%, and observed-tardiness ex-
periments sometimes showed an improvement exceed-
ing 99%. These results demonstrate that G-EDF can
be significantly improved upon within the class of GEL
schedulers, both in terms of bounds achievable by the
designer and actual observed tardiness.

4 Algorithm for Meeting Desired
Response-Time Bounds

In Sec. 3.2 above, we described a method to produce
either response-time bounds (1) or tardiness bounds
(13) for GEL schedulers given task system parameters

and a ~Y . However, in practice, a system designer is
likely to have a desired set of response-time bounds,
and requires a ~Y to achieve those bounds. For HRT
systems, these response-time bounds are simply rela-
tive deadlines. For SRT systems, these response-time
bounds indicate relative deadlines plus an additional
term for acceptable tardiness. In either case, we will
denote the response-time bound for task τi as Ri. We
define ~R = 〈R1, R2, . . . , Rn〉. We provide a polynomial-
time algorithm that determines whether the bounds
specified by ~R can be achieved for task system τ (us-

ing compliant-vector analysis), and if so, returns a ~Y
sufficient for achieving those bounds. Because individ-
ual Ri values can indicate either HRT or SRT require-
ments, both requirements can be mixed in the same
system.

In Sec. 4.1, we provide theoretical foundations nec-
essary to understand our algorithm, and in Sec. 4.2, we
describe the algorithm itself.

5Because our task systems were implicit-deadline, an improve-
ment mentioned in [4] was possible in the G-EDF case. However,
we wanted our results to represent arbitrary-deadline systems, so
we used the best method known for arbitrary-deadline systems.

6

 0
 10
 20
 30
 40
 50

Short,m
=2

Short,m
=4

Short,m
=6

M
oderate,m

=2

M
oderate,m

=4

M
oderate,m

=6

Long,m
=2

Long,m
=4

Long,m
=6

Im
p
ro

v
e
m

e
n
t

(%
)

Period Distribution, CPU Count

Utilization Distribution
Light-Uniform

Medium-Uniform
Heavy-Uniform
Light-Bimodal

Medium-Bimodal
Heavy-Bimodal

(a) Relative Improvement in Tardiness Bounds.

-20

 0

 20

 40

 60

 80

 100

Short,m
=2

Short,m
=4

Short,m
=6

M
oderate,m

=2

M
oderate,m

=4

M
oderate,m

=6

Long,m
=2

Long,m
=4

Long,m
=6

Im
p

ro
v
e

m
e
n

t
(%

)

Period Distribution, CPU Count

(b) Relative Improvement for Observed Tardiness.

Figure 4: Improvement by using Yi = Di−Ci instead of Yi = Di for representative implicit-deadline task systems.

4.1 Theoretical Foundations

Observe that for each τi, by (1),

Ri = Yi + xi + Ci. (14)

Prior analysis provides insight into the computation of
xi. In the present analysis, Ri and Ci are constants,
and our goal is to calculate Yi. Therefore, we rearrange
(14) as follows:

Yi = Ri − xi − Ci. (15)

Because by (4) Si depends on Yi, Si now depends on
xi. Therefore, we rename it as Si(xi) to reflect this
dependency. We now have:

Si(xi) = {By (4) and (15)}

max

{
0, Ci

(
1− Ri − xi − Ci

Ti

)}
(16)

= {Rearranging}
max{0, Ci − (Ri − Ci)Ui + xiUi}. (17)

Because Si(xi) now depends on xi, by (9), S(τ) now
depends on ~x, whereas in Sec. 3.2, S(τ) was based only

on task system parameters and ~Y . We therefore re-
name S(τ) to S(~x) by defining

S(~x) =
∑
τi∈τ

Si(xi). (18)

We also update the definition of L(~x) from (8) to reflect
the same change

L(~x) =
∑

m−1 largest

xiUi + Ci − Si(xi) (19)

and modify (10) to use for each τi the constraint

xi =
L(~x) + S(~x)− Ci

m
. (20)

We say that a vector conforming to (17)–(20) is a

minimal compliant vector with respect to τ and ~R.

Property 1. ~x is a minimal compliant vector with re-
spect to τ and ~R iff the corresponding ~Y (defined by
(15)), τ , and ~x satisfy (4), (8), (9), and (10).

Prop. 1 holds by our construction of (17)–(20). How-

ever, despite Prop. 1, it is possible that the ~Y defined
by (15) has some Yi < 0, and therefore violates the
conditions of the proof sketched in Sec. 3.2. Therefore,
we define a ~Y as valid iff for all i, Yi ≥ 0.

7

Property 2. ~x is a minimal compliant vector with re-
spect to τ and ~R, and the corresponding ~Y defined by
(15) is valid, iff ~x is a minimum compliant vector with

respect to τ and ~Y .

Prop. 2 holds by Prop. 1, because the validity of ~Y
is necessary and sufficient to ensure that the analysis in
Sec. 3.2 applies. By Prop. 2 and (14), we have Prop. 3
and Prop. 4.

Property 3. If ~x is a minimal compliant vector with
respect to τ and ~R, and the corresponding ~Y defined by
(15) is valid, then ~Y satisfies response-time bounds ~R.

Property 4. If there is a ~Y satisfying response-time
bounds ~R using compliant-vector analysis, then the cor-
responding ~x implied by (15) is a minimal compliant

vector with respect to τ and ~R.

We now work our way to Thm. 1, which provides
the mathematical foundation for our algorithm to de-
termine whether a valid ~Y satisfying response-time
bounds ~R can be computed and, if so, to compute it.

Lemma 1. There is a real number s such that

s = L(~x) + S(~x), (21)

and for each τi

xi =
s− Ci
m

, (22)

iff ~x is a minimal compliant vector with respect to τ
and ~R.

Proof. Suppose ~x is a minimal compliant vector with
respect to τ and ~R. Define s such that (21) holds.
Then, by (20), (22) holds.

Suppose there is some s such that (21) and (22)
hold. Then, by (21), (20) holds. (17)–(19) are true
by definition, so ~x is a minimal compliant vector with
respect to τ and ~R.

Our algorithm will attempt to determine such a
value of s. To do so, we define a few functions.

~v(s) = ~x such that (22) holds (23)

L(s) = L(~v(s)) (24)

S(s) = S(~v(s)) (25)

M(s) = L(s) + S(s)− s (26)

Most of our analysis will apply to ~v(s) in place of ~x.
For convenience, we rewrite (15)–(20) with this substi-
tution.

Yi = Ri − vi(s)− Ci (27)

Si(vi(s)) = max

{
0, Ci

(
1− Ri − vi(s)− Ci

Ti

)}
(28)

= max{0, Ci − (Ri − Ci)Ui + vi(s)Ui} (29)

S(~v(s)) =
∑
τi∈τ

Si(vi(s)) (30)

L(~v(s)) =
∑

m−1 largest

~v(s)Ui + Ci − Si(vi) (31)

vi(s) =
L(~v(s)) + S(~v(s))− Ci

m
. (32)

Furthermore, we rewrite Lem. 1 with the same
change in notation, as Cor. 1.

Corollary 1. There is a real number s such that

s = L(~v(s)) + S(~v(s)) (33)

iff ~v(s) is a minimal compliant vector with respect to τ
and R.

The following lemma utilizes these notations to char-
acterize the desired minimal compliant vector.

Lemma 2. M(s) = 0 iff ~v(s) is a minimal compliant

vector with respect to τ and ~R.

Proof. Suppose M(s) = 0. Then by (24)–(26), s =
L(~v(s)) + S(~v(s)), so (33) holds. Therefore, by Cor. 1,
~v(s) is a minimal compliant vector with respect to τ

and ~R.
Suppose ~v(s) is a minimal compliant vector with re-

spect to τ and ~R. Then by Cor. 1, (33) holds. There-
fore, by (24)–(26), M(s) = 0.

In the following, we concern ourselves with an inter-
val [smin, smax], where

smin = max
τi∈τ

(Ci), (34)

smax = min
τi∈τ

(Ci +m(Ri − Ci)). (35)

These definitions will allow us to prove Thm. 1, which
demonstrates that s must fall in [smin, smax] in order

to meet the response-time bounds specified by ~R.
The next two lemmas are proved in an appendix.

Lemma 3. s < smin implies M(s) > 0.

Lemma 4. There exists an i such that Ri−vi(s)−Ci <
0 iff s > smax.

Theorem 1. There exists a valid ~Y satisfying
response-time bounds ~R for task system τ (us-
ing compliant-vector analysis) iff there is an s in
[smin, smax] such that M(s) = 0.

8

Proof. Suppose there is an s in [smin, smax] such that
M(s) = 0. Then by Lem. 2, ~v(s) is a minimal com-

pliant vector with respect to τ and ~R. Let ~Y be as in
(27). Because s ≤ smax, by (27) and Lem. 4, for all i,

Yi ≥ 0. Therefore, Prop. 3 ensures that ~Y will satisfy
response-time bounds ~R.

Suppose there exists a valid ~Y satisfying response-
time bounds ~R (using compliant-vector analysis).
Then, by Prop. 4, there is a minimal compliant vector ~x
with respect to τ and ~R that satisfies (15). By Lem. 1,
(22), and (23), there exists an s such that ~x = ~v(s), and
by Lem. 2, M(s) = 0. Therefore, by Lem. 3, s ≥ smin.

By the validity of ~Y , (27), and Lem. 4, s ≤ smax.

We prove two theorems in the appendix that demon-
strate the flexibility of our algorithm. Here we list and
briefly describe them.

Applied inductively, the first result demonstrates
that a system designer can safely use conservatively
large Ri values, and this will not compromise the abil-
ity to obtain a valid ~Y .

Theorem 2. Suppose there exists a valid ~Y satisfying
response-time bounds ~R using compliant-vector anal-
ysis. Consider ~R′ such that there is an i such that
R′i > Ri, but for all j 6= i, R′j = Rj. Then, there exists

a valid ~Y ′ satisfying response-time bounds ~R.

The second result demonstrates that using this ap-
proach, the maximum useful choice of Yi is Ti, and
using larger Yi values will unnecessarily increase Ri
bounds. Therefore, when the algorithm returns some
Yi > Ti, the designer can decrease Ri and continue to
meet all other bounds.

Theorem 3. If valid ~Y satisfies response-time bounds
~R, and for some i, Yi > Ti, then valid ~Y ′ such that
Y ′i = Ti and, for j 6= i, Y ′j = Yj, satisfies response-

time bounds ~R′ such that R′i = Ri − (Yi − Ti) and, for
j 6= i, R′j = Rj.

4.2 Algorithm

We now present an algorithm that will determine
whether it is possible to meet response-time bounds
~R, and if so, to compute the ~Y necessary to do so.
This algorithm works by tracking the value of M(s)
to determine the smallest s in [smin, smax] such that
M(s) = 0. It is similar to an algorithm provided in [5]
in that both algorithms track the value of a piecewise
linear function to find the desired value. First, denote
(for each i)

hi = m(Ri − Ci − Ti) + Ci. (36)

Then, by (22), (23), (29) and (36),

Si(vi(s)) =

{
0 if s < hi

Ci − (Ri − Ci)Ui + s−Ci

m · Ui if s ≥ hi.
(37)

For convenience, we denote

li(s) = vi(s)Ui + Ci − Si(vi(s)). (38)

Therefore, by (22), (23), (37), and (38),

li(s) =

{
s−Ci

m · Ui + Ci if s < hi

(Ri − Ci)Ui if s ≥ hi.
(39)

By (25), (30), and (37), S(s) changes slope at each hi,
or O(n) times in total. By (24), (31), (38), and (39),
L(s) may change slope in either of two conditions.

• L(s) may change slope at an hi value. This may
occur once per task, or O(n) times in total.

• L(s) may change slope when li(s) = lj(s) for some
i 6= j (due to the “m−1 largest” condition in (31)).
This may occur at most O(n2) times in total, and
each i, j pair can be checked in constant time.

Like the algorithm in [5], our algorithm works by
sorting the list of points where the slope may change,
and examining the linear component between two con-
sectuive points. Therefore, it still has complexity
O(n2 log n + mn2), because we add only O(n) addi-
tional points where the slope can change.

Example. To demonstrate our algorithm, we will
consider an attempt to schedule θ with a mix of re-
quirements. θ1 will be scheduled as an SRT task where
a maximum tardiness of 19 is acceptable, θ2 will be
scheduled as an SRT task where arbitrary tardiness is
acceptable, and θ3 will be scheduled as an HRT task.
By Thm. 2, the designer can select a conservatively
large value to meet the requirement for θ2. Therefore,
we will use R1 = 29, R2 = 99, and R3 = 90. By (34),
smin = 20, and by (35), smax = 49.

We graph each Si(vi(s)) and li(s) from s = 0 to s =
50, along with the resulting L(s)+S(s) and s, in Fig. 5.
(Observe that by (26), M(s) = 0 iff L(s) + S(s) = s.)
The fixed point of L(s) + S(s) occurs at s = 20, which
is within the range [smin, smax], so a valid solution does
exist. Specifically, by (15), (22), and (23),

Y1 = 29− 20− 9

2
− 9 = 14.5

Y2 = 99− 20− 9

2
− 9 = 84.5

Y3 = 90− 20− 20

2
− 20 = 70

9

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

m
ill

is
e
c
o
n
d
s

s

S1(v1(s))
S2(v2(s))
S3(v3(s))

l1(s)
l2(s)
l3(s)

L(s)+S(s)
s

Figure 5: Functions used by our algorithm on θ.

Because Y1 > T1 and Y2 > T2, by Thm. 3 (applied
twice), (22), and (23), we can set Y ′1 = 10 and Y ′2 = 10
to obtain

R′1 = 29− (14.5− 10) = 24.5

R′2 = 99− (84.5− 10) = 24.5

R′3 = 90 = 90,

which are better than specified.

5 Conclusion

We have demonstrated that G-EDF can be improved
upon within the class of GEL schedulers, whether sup-
porting HRT, SRT, or mixed workloads. In the case
of HRT scheduling, we have provided proof that there
are task systems schedulable with GEL schedulers, but
not with G-EDF. In the case of SRT scheduling, we
have provided experimental evidence that maximum
tardiness can be reduced, both in terms of tardiness
bounds and in terms of observed tardiness. Notably,
we achieved these improvements without sacrificing the
JLSP property of G-EDF, and thus existing work on
real-time synchronization can be used with our propos-
als. Future work could explore whether other practical
JLSP schedulers are possible that improve upon GEL
schedulers.

We have also provided an algorithm to determine
PPs for GEL schedulers to ensure meeting specific
response-time bounds. Future work could explore the
possibility of gaining benefit from allowing Yi < 0 or
taking advantage of Yi > Ti. Furthermore, specific
proposals, such as the Yi = Di−Ci algorithm explored
in Sec. 3.2, could be explored in an HRT context, and
schedulabilty tests beyond the response-time bounds
provided here could be explored.

References

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment,” Journal of the ACM, vol. 20, pp. 46–61, Jan-
uary 1973.

[2] M. Bertogna and S. Baruah, “Tests for global EDF
schedulability analysis,” Journal of Systems Architec-
ture, to appear.

[3] U. C. Devi and J. H. Anderson, “Tardiness bounds un-
der global EDF scheduling on a multiprocessor,” The
Journal of Real-Time Systems, vol. 38, no. 2, pp. 133–
189, 2008.

[4] J. P. Erickson, U. Devi, and S. K. Baruah, “Improved
tardiness bounds for global EDF,” in ECRTS, 2010,
pp. 14–23.

[5] J. P. Erickson, N. Guan, and S. K. Baruah, “Tardiness
bounds for global EDF with deadlines different from
periods,” in OPODIS, 2010, pp. 286–301.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel, “Proportionate progress: A notion of fairness
in resource allocation,” Algorithmica, vol. 15, pp. 600–
625, 1996.

[7] A. Bastoni, B. B. Brandenburg, and J. H. Anderson,
“An empirical comparison of global, partitioned, and
clustered multiprocessor EDF schedulers,” in RTSS,
2010, pp. 14–24.

[8] H. Cho, B. Ravindran, and E. D. Jensen, “Efficient
real-time scheduling algorithms for multiprocessor sys-
tems,” IEICE Trans. Communications, vol. 85, pp.
807–813, 2002.

[9] T. Baker, M. Cirinei, and M. Bertogna, “EDZL
scheduling analysis,” Real-Time Systems, vol. 40, pp.
264–289, 2008.

[10] H. Leontyev and J. H. Anderson, “Generalized tar-
diness bounds for global multiprocessor scheduling,”
The Journal of Real-Time Systems, vol. 44, no. 1, pp.
26–71, February 2010.

[11] H. Leontyev, S. Chakraborty, and J. H. Anderson,
“Multiprocessor extensions to real-time calculus,” in
RTSS, 2009, pp. 410–421.

[12] J. Lee, A. Easwaran, and I. Shin, “Maximizing
contention-free executions in multiprocessor schedul-
ing,” in RTAS, 2011, pp. 235–244.

[13] A. Bastoni, B. B. Brandenburg, and J. H. Anderson,
“Is semi-partitioned scheduling practical?” in ECRTS,
2011, to appear.

10

Appendix

Here we prove several lemmas and theorems stated
in Sec. 4.1.

Lemma 3. s < smin implies M(s) > 0.

Proof. Let j be such that Cj = smin, which must be
possible by (34). Let τ ′ be the set of the m−2 tasks τi
(i 6= j) with the largest values of vi(s)Ui+Ci. Suppose
s < smin. Then,

s < Cj . (40)

Therefore,

M(s) = {By (26)}
L(s) + S(s)− s

= {By (22)–(25), (29), and (31)}∑
m−1 largest

(
s− Ci
m

Ui + Ci − Si
(
s− Ci
m

))

+
∑
τi∈τ

Si

(
s− Ci
m

)
− s

≥ {Because each Si(
s−Ci

m) ≥ 0, by (29); note

that each Si(s− Ci/m) appearing in the

L(s) summation also appears in the S(s)

summation}∑
m−1 largest

(
s− Ci
m

Ui + Ci

)
− s

≥ {By definition of “largest”; recall that τ ′

includes m− 2 tasks}
s− Cj
m

Uj + Cj

+
∑
τi∈τ ′

(
s− Ci
m

Ui + Ci

)
− s

= {Rearranging}
m− Uj
m

Cj +
∑
τi∈τ ′

(
m− Ui
m

Ci

)

−
m−

(
Uj +

∑
τi∈τ ′ Ui

)
m

s

> {Because for all i, m−Ui

m Ci > 0}

m− Uj
m

Cj −
m−

(
Uj +

∑
τi∈τ ′ Ui

)
m

s

> {By (40)}
0.

Lemma 4. There exists an i such that Ri−vi(s)−Ci <
0 iff s > smax.

Proof. Suppose s > smax. Then by (35) there is an i
such that

s > Ci +m(Ri − Ci). (41)

Therefore,

Ri − vi(s)− Ci = {By (22) and (23)}

Ri −
s− Ci
m

− Ci

< {By (41)}

Ri −
Ci +m(Ri − Ci)− Ci

m
− Ci

= {Simplifying}
0.

Suppose there is an i such that Ri − vi(s) − Ci < 0.
Then, by (22) and (23),

Ri −
s− Ci
m

− Ci < 0

⇒ s

m
> Ri +

Ci
m
− Ci

⇒s > Ci +m(Ri − Ci).

Therefore, by (35), s > smax.

In both of the following theorems, we define an ~R′,
and denote all operations and variables with respect
to τ and ~R′ with a prime: M ′(s), S′(v′i(s)), s

′
min, etc.

Observe from (22) and (23) that

v′i(s) = vi(s) =
s− Ci
m

. (42)

Theorem 2. Suppose there exists a valid ~Y satisfying
response-time bounds ~R using compliant-vector anal-
ysis. Consider ~R′ such that there is an i such that
R′i > Ri, but for all j 6= i, R′j = Rj. Then, there exists

a valid ~Y ′ satisfying response-time bounds ~R.

Proof. By (27) and (29)–(32), any increase to some Ri
can potentially decrease Yi or some Yj only by increas-
ing L(~v(s)), which can occur if Si(vi(s)) decreases. For
j 6= i, by (29) and (42), S′j(v

′
j(s)) = Sj(vj(s)). For i,

S′i(v
′
i(s)) = {By (29)}

max{0, Ci − (R′i − Ci)Ui + v′i(s)Ui}
≤ {Because R′i > Ri and by (42)}

max{0, Ci − (Ri − Ci)Ui + vi(s)Ui}
= (By (29)}
Si(vi(s))

. We will use the above results to show that M ′(s) ≤
M(s).

M ′(s) = {By (24)–(26), (30), and (31)}

11

∑
m−1 largest

(v′k(s)Uk + Ck − S′k(v′k(s)))

+
∑
τk∈τ

S′k(v′k(s))− s

≤ {Because S′k(v′k(s)) ≤ Sk(vk(s)) and by (42);

note that each S′k(v′k(s)) appearing in the

L(s) summation also appears in the S(s)

summation}∑
m−1 largest

(vi(s)Uk + Ck − Sk(vk(s)))

+
∑
τk∈τ

Sk(vk(s))− s

= {By (24)–(26), (30), and (31)}
M(s)

By Thm. 1, M(s) = 0, so M ′(s) ≤ 0. Observe that
L′(s) and S′(s) are piecewise linear with respect to s
by (22)–(25) and (29)–(31). Therefore, by (26), M ′(s)
is piecewise linear and therefore continuous. Let ε > 0.
Then, by Lem. 3, M ′(s′min−ε) > 0. Therefore, because
ε is arbitrary, by the Intermediate Value Theorem there
must exist s′ ∈ [s′min, s] such that M ′(s′) = 0.

By (35), smax ≤ s′max. Therefore, s ∈ [s′min, s
′
max].

By Thm. 1, there exists a valid ~Y ′ satisfying response-
time bounds ~R′.

Theorem 3. If valid ~Y satisfies response-time bounds
~R, and for some i, Yi > Ti, then valid ~Y ′ such that
Y ′i = Ti and, for j 6= i, Y ′j = Yj, satisfies response-

time bounds ~R′ such that R′i = Ri − (Yi − Ti) and, for
j 6= i, R′j = Rj.

Proof. By Thm 1, there exists an s in [smin, smax] such
that M(s) = 0; thus, by Lem. 2, ~v(s) is a minimal

compliant vector with respect to τ and ~R. Let ~Y be as
in (27).

Si(vi(s)) = {By (27) and (28)}

max

{
0, Ci

(
1− Yi

Ti

)}
= {Because Yi > Ti}

0

Let R′i = Ri − (Yi − Ti), so that by (27),

R′i − vi(s)− Ci = Ti. (43)

We now have

S′i(v
′
i(s)) = {By (42)}

S′i(vi(s))

= {By (28) and (43)}
0,

and therefore Si(vi(s)) = S′i(v
′
i(s)). By (27), (29)

and (30)–(32), changing R′i therefore has no effect on
S(~v(s)) or L(~v(s). Therefore, it also has no effect on Rj
or Yj for j 6= i. Furthermore, we defined Y ′i = Ti > 0,

so the resulting ~Y ′ must be valid.

12

