
Multiprocessor Schedulability Analysis for Self-Suspending Task Systems∗

Cong Liu and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

In many real-time systems, tasks may experience suspen-
sion delays. The problem of analyzing task systems with
such suspensions on multiprocessors has been relatively unex-
plored and is thought to be difficult (as it is on uniprocessors).
In this paper, hard/soft multiprocessor schedulability tests
for arbitrary-deadline sporadic self-suspending task systems
are presented for both global EDF and global fixed-priority
scheduling. The presented analysis shows that suspensions
surprisingly have a rather limited impact on schedulability.
In experiments presented herein, the proposed schedulabil-
ity tests proved to be superior to prior tests. Moreover, for
arbitrary-deadline ordinary sporadic task systems with no
suspensions, the proposed analysis for fixed-priority schedul-
ing improves upon prior analysis.

1 Introduction
In many real-time systems, self-suspension delays may oc-
cur when tasks block to access shared resources or perform
operations on external devices. A simple approach for han-
dling such suspension delays is to integrate them into per-
task worst-case-execution-time requirements. However, un-
less suspension delays are short, such an approach is pes-
simistic and may cause significant capacity loss. A poten-
tially better alternative is to explicitly consider suspensions in
the task model and the corresponding schedulability analysis.

It has been shown that precisely analyzing systems
with suspensions is difficult, even for very restricted self-
suspending task models on uniprocessors [18]. However,
uniprocessor analysis that is correct in a sufficiency sense has
been proposed (see [16] for an overview). Such analysis can
be applied on a pre-processor basis to deal with suspensions
under partitioning approaches. In contrast, for global schedul-
ing, other than treating suspensions as computation, no known
global hard-real-time (HRT) schedulability analysis exists for
self-suspending task systems. Such approaches are the main
focus of this paper.

We focus specifically on two global schedulers: global
EDF (GEDF) and global fixed-priority (GFP) scheduling. We
analyze these schedulers assuming the scheduled workload is
an arbitrary-deadline sporadic self-suspending (SSS) task sys-
tem. We consider systems where job deadlines are specified
as either hard—in which case they should always be met—
or soft—in which case misses can occur, provided the extent
of violation is constrained by user-specified deadline tardi-

∗Work supported by NSF grants CNS 0834270, CNS 0834132, and
CNS 1016954; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-
1-0549; and AFRL grant FA8750-11-1-0033.

ness thresholds. Mixed hard and soft timing requirements are
also allowed. Our analysis involves extending prior multi-
processor analysis for GEDF and GFP scheduling to account
for suspensions. Our results show that, although suspensions
have some negative impact on schedulability, such impact is
surprisingly limited. A summary of prior related work and
our specific contributions is given next.

Overview of related work. For soft-real-time (SRT) SSS
task systems, an analysis approach has been proposed in [15]
that does not require adding suspension delays to execution
times; under it, bounded deadline tardiness can be ensured
provided certain utilization constraints are met.1 An overview
of work on scheduling SSS task systems on uniprocessors
(which we omit here due to space constraints) can be found
in [15]. While (as noted earlier) such work can be applied
under partitioning approaches, such approaches suffer from
bin-packing-related capacity loss.

Much work has been done on analyzing schedulability for
ordinary sporadic task systems (i.e., without suspensions) on
multiprocessors. Of this prior work, GEDF schedulability
analysis techniques presented by Barauh [4] and by Leontyev
and Anderson [14], and also GFP schedulability analysis tech-
niques presented by Bertogna and Cirinei [7] and by Guan
et al. [11] are of greatest relevance to us, as our work builds
upon these prior efforts.

GEDF schedulability analysis techniques. In [4], Baruah
designed a GEDF schedulability test based upon several prior
tests [1, 3, 8], with the goal of overcoming several of their de-
ficiencies. These prior tests [1, 3, 8] are based on examining a
“worst-case” scenario in which each of the n tasks in the sys-
tem carries work into a certain interval that must be consid-
ered; this results in over-estimation of the cumulative carry-
in work (as defined later). To reduce such over-estimation,
in [4], Baruah extended the analyzed interval to an earlier
time instant such that the number of tasks with carry-in work
can be bounded by min(n,m − 1), where m is the number
of processors. Based upon [4], Leontyev and Anderson [14]
proposed a schedulability test for checking that arbitrary pre-
defined tardiness thresholds are not violated under both GEDF
and non-preemptive GEDF.

GFP schedulability analysis techniques. Based upon
response-time analysis (RTA) [12], several schedulability
tests for GFP scheduling were proposed in early work on or-
dinary sporadic task systems [10, 17]. Bertogna and Cirinei
[7] later improved upon this work by deriving a more pre-

1Note that the SRT guarantee considered in [15] is different from the
one considered in this paper. The approach presented in [15] cannot check
whether user-predefined deadline tardiness thresholds (as defined in Sec. 2)
can be met.

1

cise upper bound of the workload and interference (as de-
fined later) for each task in the system. However, they still
assumed that all n tasks in the system have carry-in work
with respect to the time interval that must be analyzed. In
[11], Guan et al. refined this analysis by applying Baruah’s
idea of extending the analyzed interval to RTA. This allows
the number of tasks with carry-in work to be bounded by
min(n,m − 1). Moreover, Guan et al. further extended the
analysis, based upon a prior RTA technique [13] designed
for supporting arbitrary-deadline sporadic task systems on
uniprocessors, to handle arbitrary-deadline fixed-priority task
systems on multiprocessors [11]. To our knowledge, [11]
is the only prior work to consider multiprocessor RTA tech-
niques for arbitrary-deadline task systems.
Our contributions. The common approach of treating all
suspensions as computation for analyzing SSS task systems
on multiprocessors (or uniprocessors)—which we denoted
“SC” for short—is pessimistic. In order to support SSS task
systems in a more efficient way, we present global multipro-
cessor schedulability analysis techniques for general SSS task
models under both GEDF and GFP (note that they can also be
applied to uniprocessors). The major insights underlying our
analysis are as follows.

• The insight that schedulability is much less impacted
by suspensions than computation, which is seen in prior
uniprocessor analysis [16], carries over to the multipro-
cessor case. For any job, suspensions of jobs with higher
priorities do not contribute to its competing work (while
computation does). This insight suggests that treating
suspensions as computation is rather pessimistic. As
demonstrated by experiments presented herein, our anal-
ysis results significantly improve upon SC.

• The negative impact brought by suspensions is mainly
caused by forcing the number of tasks with carry-in work
to be n (as shown in Secs. 3 and 4).2 Interestingly, as
demonstrated by the presented experiments, schedulabil-
ity under our HRT analysis for SSS task systems is close
to that obtained by applying the analysis in [7], which
assumes all n tasks have carry-in work, to an otherwise
equivalent task system with no suspensions.

• Under GFP, arbitrary-deadline task systems (including
both ordinary and self-suspending ones) can be analyzed
efficiently by applying an interval analysis framework
that is more suitable for the arbitrary-deadline case (prior
work [11] used the same interval analysis framework
for both constrained-deadline and arbitrary-deadline task
systems). As discussed in Sec. 4, our analysis has much
better runtime performance (> 10× faster) than that pro-
posed in [11].

To the best of our knowledge, this paper is the first to ad-
dress suspension-related schedulability issues in both HRT

2Due to this reason, Baruah’s idea of interval extension, which is very
effective for ordinary task systems, is less helpful for SSS task systems.

Table 1: Contributions.

Self-
Suspensions

Arbitrary-
Deadline

Non-zero
Tardiness

Thresholds
GEDF Fixed-

Priority

[4] √
[14] √ √ √
[7] √
[11] √ √

Our Work √ √ √ √ √

Property

Analysis

and SRT (with pre-defined tardiness thresholds) multiproces-
sor systems.

Table 1 summarizes differences between our results and
previous analysis. First, in contrast to [4, 7, 11, 14], our
techniques can be applied to SSS task systems. Second,
in contrast to [4, 7, 14], we consider arbitrary relative dead-
lines under GFP. Third, in contrast to [4, 7, 11], we consider
non-zero deadline tardiness thresholds under both GEDF and
GFP. Fourth, our proposed GFP schedulability analysis for
arbitrary-deadline task systems is different from that in [11]
and the resulting test has better runtime performance than that
in [11]. Fifth, our techniques can be applied in settings where
job priorities are specified using deadlines and timeliness re-
quirements are specified using tardiness thresholds.

2 System Model
We consider the problem of scheduling an SSS task system
τ = {T1, ..., Tn} of n independent SSS tasks on m ≥ 2 iden-
tical processors. Each task is released repeatedly, with each
such invocation called a job. Jobs alternate between compu-
tation and suspension phases. We assume that each job of any
task Ti executes for at most ei time units (across all of its
computation phases) and suspends for at most si time units
(across all of its suspension phases). We place no restrictions
on how these phases interleave (a job can even begin or end
with a suspension phase). Note that if si = 0, then Ti is
an ordinary sporadic task. Associated with each task Ti are
a period pi, which specifies the minimum time between two
consecutive job releases of Ti, and a relative deadline di. For
any task Ti, we require ei + si ≤ min(di, pi). The kth job
of Ti, denoted Ti,k, is released at time ri,k and has a dead-
line at time di,k = ri,k + di. The utilization of a task Ti is
defined as ui = ei/pi, and the utilization of the task system
τ as usum =

∑
Ti∈τ ui. An SSS task system τ is said to

be a constrained system if, for each task Ti ∈ τ , di ≤ pi,
an implicit-deadline system if, for each Ti, di = pi, and an
arbitrary-deadline system if, for each Ti, the relation between
di and pi is not constrained (e.g., di > pi is possible). In this
paper, we consider arbitrary-deadline SSS task systems.

Successive jobs of the same task are required to execute in
sequence. If a job Ti,k completes at time t (that is, its last
phase, be it a computation or suspension phase, completes
at t), then its response time is t − ri,k and its tardiness is
max(0, t − di,k). A task’s response time (tardiness) is the
maximum of the response time (tardiness) of any of its jobs.
Note that, when a job of a task misses its deadline, the release

2

to tr td td+λl

no idleness
within [to, tr)

ξl

ΘTl,j ’s computation and
suspension phases

Figure 1: Notation. A job Tl,j of task Tl becomes ready at tr
and misses its deadline at td by more than λl. to is the earliest
time instant at or before tr such that there is no idleness in
[to, tr).

time of the next job of that task is not altered.
In this paper, we establish unified HRT/SRT schedulabil-

ity tests for arbitrary-deadline SSS task systems under both
GEDF (Sec. 3) and GFP (Sec. 4). Under GEDF, released jobs
are prioritized by their deadlines and any ties are broken by
task identifier. Under GFP, tasks are assigned fixed priorities;
a job has the same priority as the task to which it belongs.

For any task Ti, a pre-defined tardiness threshold is set,
denoted λi. Throughout the paper, we assume that ei, si, di,
pi, and λi for any task Ti ∈ τ are non-negative integers and
all time values are integral. Thus, a job that executes at time
point t executes during the entire time interval [t, t+ 1).

For simplicity, we henceforth assume that each job of any
task Ti executes for exactly ei time units. As shown in [15],
any response-time bound derived for an SSS task system by
considering only schedules meeting this assumption applies
to other schedules as well. (This property was shown in [15]
for GEDF, but it applies to GFP as well.) For any job Ti,k, we
let si,k denote its total suspension time, where si,k ≤ si.

A common case for real-time workloads is that both self-
suspending tasks and computational tasks (which do not sus-
pend) co-exist. To reflect this, we let τs (τe) denote the set
of self-suspending (computational) tasks in τ . Also, we let ns
(ne) denote the number of self-suspending (computational)
tasks in τ .

3 GEDF Schedulability Test
In this section, we present a GEDF schedulability test for SSS
task systems. Our goal is to identify sufficient conditions for
ensuring that each task Ti cannot miss any deadlines by more
than its pre-defined tardiness threshold, λi. These conditions
must be checked for each of the n tasks in τ .

Let S be a GEDF schedule of τ such that a job Tl,j of task
Tl is the first job in S to miss its deadline at td = dl,j by
more than its pre-defined tardiness threshold λl, as shown in
Fig. 1. Under GEDF, jobs with lower priorities than Tl,j do
not affect the scheduling of Tl,j and jobs with higher priori-
ties than Tl,j , so we will henceforth discard from S all jobs
with priorities lower than Tl,j . To avoid distracting “bound-
ary cases,” we henceforth assume that the schedule being ana-
lyzed is prepended with a schedule in which no deadlines are
missed that is long enough to ensure that all predecessor jobs
referenced in the proof exist (this applies to Sec. 4 as well).

Tl,j ’s computation and suspension phases

Intervals in which all m processors are occupied by jobs other
than Tl,j, and the total length must be greater than (td+λl-tr-el-sl,j)

tr td td+λl

Figure 2: Necessary condition for Tl,j to miss its deadline by
more than λl.

Definition 1. A job is said to be completed if it has finished
its last phase (be it suspension or computation). fi,k denotes
the completion time of job Ti,k. The ready time of job Ti,k is
defined to be max(ri,k, fi,k−1). A task Ti is active at time t
if there exists a job Ti,k such that ri,k ≤ t < fi,k.

Definition 2. tr denotes the time when Tl,j becomes ready,
i.e., tr = max(rl,j , fl,j−1).

Definition 3. to denotes the earliest time instant at or before
tr such that there is no idleness in [to, tr).

In order for Tl,j to miss its deadline at td by more than
λl, Tl,j must execute its computation and suspension phases
for strictly fewer than el + sl,j time units over [tr, td + λl).
Thus, it is necessary that all m processors must execute jobs
other than Tl,j for strictly more than td + λl − tr − el − sl,j
time units over [tr, td + λl), as illustrated in Fig. 2. (Note
that in the worst case, suspensions of other jobs may overlap
suspensions of Tl,j , in which case no job is executing while
Tl,j is suspending.) For conciseness, let

ξl = td + λl − to. (1)

Definition 4. Let Θ denote a subset of the set of intervals
within [tr, td + λl), where Tl,j does not execute or suspend,
such that the cumulative length of Θ is exactly td + λl − tr −
el − sl,j + 1 over [tr, td + λl). As seen in Fig. 1, Θ may not
be contiguous.

For each task Ti, letW (Ti) denote the contribution of Ti to
the work done in S during [to, tr)∪Θ. By Def. 3, in order for
Tl,j to miss its deadline, it is necessary that the total amount
of work that executes over [to, tr) ∪Θ satisfies∑

Ti∈τ
W (Ti) > m · (ξl − el − sl,j). (2)

Condition (2) is a necessary condition for Tl,j to miss its
deadline by more than λl. Thus, in order to show that τ
is GEDF-schedulable, it suffices to demonstrate that Condi-
tion (2) cannot be satisfied for any task Tl for any possible
values of ξl and sl,j .

We now construct a schedulability test using Condition (2)
as follows. In Sec. 3.1, we first derive an upper bound for
the term

∑
Ti∈τ W (Ti) in the LHS of Condition (2). Then, in

Sec. 3.2, we compute possible values of the termm ·(ξl−el−

3

sl,j) in the RHS of Condition (2). Later, a schedulability test
based upon Condition (2) and these values will be derived in
Sec. 3.3.

3.1 Upper-Bounding
∑
Ti∈τ W (Ti)

In this section, we derive an upper bound on
∑
Ti∈τ W (Ti),

by first upper-boundingW (Ti) for each task Ti and then sum-
ming these per-task upper bounds.

Definition 5. A task Ti has a carry-in job if there is a job of
Ti that arrives before to that has not completed by to.

In the following, we compute upper bounds on W (Ti). If
Ti has no carry-in job, then let Wnc(Ti) denote this upper
bound; otherwise, let Wc(Ti) denote the upper bound. Since
Tl,j is the first job that misses its deadline by more than its
corresponding tardiness threshold, we have

fl,j−1 ≤ dl,j−1 + λl ≤ td − pl + λl. (3)

Lemma 1. tr − t0 ≤ max(ξl − λl − dl, ξl − pl).

Proof. tr − to
{by Def. 2}

= max(rl,j , fl,j−1) − to
{by (3)}
≤

max(td − dl, td − pl + λl) − to = max(td − dl − to, td −
pl + λl − to)

{by (1)}
= max(ξl − λl − dl, ξl − pl).

If a task Ti has no carry-in job, then the total amount of
work that must execute over [to, tr) ∪ Θ is generated by jobs
of Ti arriving in, and having deadlines within, the interval
[to, td]. The following lemma, which was originally proved
for ordinary sporadic task systems [6], applies to SSS task
systems as well. Its proof is given in Appendix A.

Lemma 2. The maximum cumulative execution requirement
by jobs of Ti that both arrive in, and have deadlines within,
any interval of length t is given by demand bound function

DBF (Ti, t) = max(0, (
⌊
t−di
pi

⌋
+ 1) · ei).

The lemma below computes Wnc(Ti) using DBF.

Lemma 3.

Wnc(Ti) =


min

(
DBF (Ti, ξl − λl),

ξl − el − sl,j + 1
)

if i 6= l

min
(
DBF (Tl, ξl − λl)− el,

max(ξl − λl − dl, ξl − pl)
)

if i = l

Proof. Depending on the relationship between i and l, there
are two cases to consider.

Case i 6= l. The total amount of work contributed by Ti
that must execute over [to, tr) ∪ Θ cannot exceed the total
length of the intervals in [to, tr)∪Θ, which by (1) and Def. 4
is at most ξl − el − sl,j + 1. Furthermore, the total work that
needs to be bounded must have releases and deadlines within
the interval [to, td], which by (1) is of length ξl − λl. By
Lemma 2, this total work is at most DBF (Ti, ξl − λl).

Case i = l. Since Tl,j does not execute over [to, tr) ∪ Θ,
the total work is at most DBF (Tl, ξl − λl) − el. Also, this
contribution cannot exceed the length of the interval [to, tr),
which by Lemma 1 is at most max(ξl−λl− dl, ξl− pl).

We now consider the case where Ti has a carry-in job.

Definition 6. For any interval of length t, let ∆(Ti, t) =(⌈
t
pi

⌉
− 1
)
· ei +min

(
ei, t−

⌈
t
pi

⌉
· pi + pi

)
.

∆(Ti, t) is defined for computing carry-in workloads.
Def. 6 improves upon a similar definition for computing
carry-in workloads under GEDF proposed in [14] by deriv-
ing a more precise upper bound of the workload.

The following lemma, which computes Wc(Ti), is proved
similarly to Lemma 3. Its proof is given in Appendix A.

Lemma 4.

Wc(Ti) =


min(∆(Ti, ξl − λl + λi),

ξl − el − sl,j + 1) if i 6= l

min(∆(Ti, ξl)− ei,

max(ξl − λl − dl, ξl − pl). if i = l

Upper-bounding
∑
Ti∈τ W (Ti). By Def. 3, either to = 0,

in which case no task has a carry-in job, or some proces-
sor is idle in [to − 1, to), in which at most m − 1 compu-
tational tasks are active at to − 1. Thus, at most min(m −
1, ne) computational tasks can have a carry-in job. How-
ever, since suspensions do not occupy any processor, each
self-suspending task may be active at to − 1 and have a
job that is suspended at to. Consequently, there are at
most ns self-suspending tasks and min(m − 1, ne) compu-
tational tasks that contribute Wc(Ti) work, and the remain-
ing max(0, ne−m+ 1) computational tasks must contribute
Wnc(Ti). Let δmin(m−1,ne)

Ti∈τe denote the min(m − 1, ne)
greatest values of max(0,Wc(Ti) −Wnc(Ti)) for any com-
putational task Ti. Then,

∑
Ti∈τ W (Ti) can be bounded

by
∑
Ti∈τs max(Wnc(Ti),Wc(Ti)) +

∑
Tj∈τe Wnc(Tj) +

δ
min(m−1,ne)
Tk∈τe .

The time complexity for computingWc(Ti),Wnc(Ti), and
Wc(Ti)−Wnc(Ti) is O(n). Also, as noted in [4], by using a
linear-time selection technique from [9], the time complexity
for computing δmin(m−1,ne)

Tk∈τe is O(n). Thus, the time com-
plexity to upper-bound

∑
Ti∈τ W (Ti) as above is O(n).

3.2 Finding Values of ξl and sl,j

So far we have upper-bounded the LHS of Condition (2).
Recall that our goal is to test Condition (2) for a violation
for all possible values of ξl and sl,j . The following theo-
rem shows that the range of possible values of ξl that need
to be tested can be limited. Let esum be the sum of the ex-
ecution costs for all tasks in τ . For conciseness, let φ =
m · (el + sl,j)− λl · usum +

∑
Ti∈τ λi · ui + esum.

Theorem 1. If Condition (2) is satisfied for Tl, then it is sat-
isfied for some ξl satisfying

min(dl + λl, pl) ≤ ξl <
φ

m− usum
. (4)

Proof. By Lemmas 2 and 3, Wnc(Ti) ≤
⌊
ξl−λl

pi

⌋
· ei + ei

holds. By Lemma 4 and Def. 6, Wc(Ti) ≤
⌊
ξl−λl+λi

pi

⌋
· ei +

4

ei holds. Thus, the LHS of Condition (2) is no greater than∑
Ti∈τ

(⌊
ξl−λl+λi

pi

⌋
· ei + ei

)
. Assuming Condition (2) is

satisfied, we have∑
Ti∈τ W (Ti) > m · (ξl − el − sl,j)

⇒ {upper-bounding
∑
Ti∈τ W (Ti) as above}∑

Ti∈τ

(⌊
ξl−λl+λi

pi

⌋
· ei + ei

)
> m · (ξl − el − sl,j)

⇒ {removing the floor and rearranging}
m · (el + sl,j)− λl · usum +

∑
Ti∈τ λi · ui + esum

> (m− usum) · ξl
⇒ ξl <

φ

m− usum
.

Moreover, we have ξl
{by (1)}

= td − to + λl
{by Def. 3}
≥ td −

tr + λl
{by Def. 2}

= td −max(rl,j , fl,j−1) + λl
{by (3)}
≥ td −

max(td − dl, td − pl + λl) + λl = min(dl, pl − λl) + λl =
min(dl + λl, pl).

Possible values for sl,j . By Lemmas 3 and 4,
∑
Ti∈τ W (Ti),

which is the LHS of Condition (2), depends on the value of
sl,j non-monotonically. Moreover, by Theorem 1, ξl also de-
pends on the value of sl,j . Thus, it is necessary to test all
possible values of sl,j , which are {0, 1, 2, ..., sl}.

3.3 Schedulability Test

Theorem 2. Task system τ is GEDF-schedulable on m pro-
cessors if for all tasks Tl and all values of ξl satisfying (4),∑

Ti∈τ max
(
Wnc(Ti),Wc(Ti)

)
+
∑
Tj∈τe Wnc(Tj)

+δ
min(m−1,ne)
Tk∈τe

)
≤ m · (ξl − el − sl,j) (5)

holds for every value of sl,j ∈ {0, 1, 2, ..., sl}.

By Theorem 1, we can test Condition (5) in time psudo-
polynomial in the task parameters, for all task systems τ pro-
vided usum < m.

4 GFP Schedulability Test
In the previous section, we derived a multiprocessor schedu-
lability test for SSS task systems scheduled under GEDF. Un-
der GEDF, all tasks may contribute to the competitive work
for our job of interest Tl,j . Intuitively, schedulability could
be improved under a GFP algorithm, in which case, a task
could only be interfered with by tasks with higher priorities.
In this section, based upon response-time analysis (RTA), we
derive a fixed-priority multiprocessor schedulability test for
HRT and SRT (i.e., each task Ti can have a predefined tardi-
ness threshold λi) arbitrary-deadline SSS task systems.

Under GFP, a task cannot be interfered with by tasks with
lower priorities. Assume that tasks are ordered by decreasing
priority, i.e., i < k iff Ti has a higher priority than Tk.

Definition 7. Let Tl,j be the maximal job of Tl, i.e., Tl,j either
has the largest response time among all jobs of Tl or it is the
first job of Tl that has a response time exceeding dl + λl.

to tr td td+λlrl,j tf
L

ζl

Figure 3: Notation. The maximal job Tl,j of task Tl becomes
ready at tr. to > 0 is the earliest time instant before tr such
that at any time instant t ∈ [to, tr) all processors are occupied
by tasks with equal or higher priority than Tl,j .

We assume l > m since under GFP, any task Ti where
i ≤ m has a response time bound of ei + si. We further
assume that for any task Ti where i < l, its largest response
time does not exceed di + λi. Our analysis focuses on the job
Tl,j , as defined above.

Definition 8. tf is the completion time of Tl,j , tr is its ready
time (i.e., tr = max(rl,j , fl,j−1)), and td is its deadline.

As in Sec. 3, we extend the analyzed interval from tr to an
earlier time instant to as defined below.

Definition 9. to denotes the earliest time instant at or before
tr such that at any time instant t ∈ [to, tr) all processors are
occupied by tasks with equal3 or higher priority than Tl, as
illustrated in Fig. 3.

For conciseness, let τhp ⊆ τ denote the set of tasks that
have equal or higher priority than the analyzed task Tl, and let

L = tf − to (6)

and ζl = tr − to. (7)

Two parameters are important to RTA: the workload and
the interference, as defined below.
Workload. The workload of an SSS task Ti in the interval
[to, tf) is the amount of computation that Ti requires to ex-
ecute in [to, tf). Note that suspensions do not contribute to
the workload since they do not occupy any processor. Let
ω(Ti, L) denote an upper bound of the workload of each task
Ti ∈ τhp in the interval [to, tf) of length L. Let ωnc(Ti, L)
denote the workload bound if Ti does not have a carry-in job
(see Def. 5), and let ωc(Ti, L) denote the workload bound if
Ti has a carry-in job. ωnc(Ti, L) and ωc(Ti, L) can be com-
puted as shown in the following lemmas.

Lemma 5.

ωnc(Ti, L) =
(⌊L− ei

pi

⌋
+ 1
)
· ei. (8)

Proof. Since Ti does not have a carry-in job, only jobs that
are released within [to, tf) can contribute to ωnc(Ti, L). The
scenario for the worst-case workload to happen is shown in
Fig. 4, where job Ti,k, which is the last job of Ti that is re-
leased before tf , executes continuously within [ri,k, ri,k+ei)

3Note that any job Tl,k of Tl where k < j may delay Tl,j from executing
and thus can be considered to have higher priority than Tl,j .

5

to tf

pipi ei

ri,kL

to tf

pipi ei

ri,k
L

di,h

λi
pi

ei,h
ri,h

pipi

Figure 4: Computing ωnc(Ti, L).

such that ri,k + ei = tf (recall that according to our task
model, Ti,k may suspend for zero time within [ri,k, tf)), and
jobs of Ti are released periodically. (Note that if i = l, then
this worst-case scenario still gives a safe upper bound on the
workload since in this case Tl,j could be the job Ti,k.) Be-
sides Ti,k, there are at most

⌊
L−ei
pi

⌋
jobs of Ti released within

[to, tf).

The following lemma, which computes ωc(Ti, L), is
proved similarly to Lemma 5. Its proof is given in Ap-
pendix A. (Note that ∆(Ti, t) is defined in Def. 6.)

Lemma 6.

ωc(Ti, L) = ∆(Ti, L− ei + di + λi) (9)

It is important to point out that neither ωnc(Ti, L) nor
ωc(Ti, L) depends on ζl (as defined in (7)). For any given in-
terval [to, tf) of lengthL, we get the same result of ωnc(Ti, L)
and ωc(Ti, L), regardless of the value of ζl. This observation
enables us to greatly reduce the time complexity to derive the
response time bound, as shown later.
Interference. The interference Il(Ti, L) of a specific task Ti
on Tl over [to, tf) is the part of the workload of Ti that has
higher priority than Tl,j and can delay Tl,j from executing its
computation phases. Note that if i 6= l, then Ti cannot in-
terfere with Tl while Ti or Tl is suspending. If i = l, then
suspensions of job Tl,k where k < j, may delay Tl,j from ex-
ecuting. However, by Def. 9, all processors are occupied by
tasks with equal or higher priority than Tl at any time instant
t ∈ [to, tr). Thus, whenever suspensions of any such job
Tl,k delay Tl,j from executing within [to, tr), such suspen-
sions must be overlapped with computation from some other
task with higher priority than Tl. Therefore, it suffices for
us to compute the interference using workload as derived in
(8) and (9). (Intuitively, this portion of the schedule, i.e., the
schedule within [to, tr), would be the same even if Tl did not
suspend, since Tl has the lowest priority among the tasks be-
ing considered.)

As we did for the workload, we also define two expressions
for Il(Ti, L). We use Incl (Ti, L) to denote a bound on the
interference of Ti to Tl during [to, tf) if Ti does not have a
carry-in job, and use Icl (Ti, L) if Ti has a carry-in job.

By the definitions of workload and interference, within
[to, tf), if i 6= l, then task Ti cannot interfere with Tl by
more than Ti’s workload in this interval. Thus, we have
Incl (Ti, L) ≤ ωnc(Ti, L) and Icl (Ti, L) ≤ ωc(Ti, L). The
other case is i = l. In this case, since Tl,j cannot inter-
fere with itself, we have Incl (Ti, L) ≤ ωnc(Ti, L) − ei and
Icl (Ti, L) ≤ ωc(Ti, L) − ei. Moreover, because Ti cannot

interfere with Tl while Tl,j is executing and suspending for a
total of el + sl,j time units in [to, tf), Il(Ti, L) cannot exceed
L− el − sl,j . Therefore, we have4

Incl (Ti, L) ={
min(ωnc(Ti, L), L− el − sl,j + 1), if i 6= l

min(ωnc(Ti, L)− ei, L− el − sl,j + 1), if i = l
(10)

and
Icl (Ti, L) ={

min(ωc(Ti, L), L− el − sl,j + 1), if i 6= l

min(ωc(Ti, L)− ei, L− el − sl,j + 1), if i = l.
(11)

Now we define the total interference bound on Tl within
any interval [to, to+Z) of arbitrary length Z, denoted Ωl(Z),
which is given by

∑
Ti∈τhp

Il(Ti, Z). The total interference
bound on Tl within the interval [to, tf) is thus given by Ωl(L).
Upper-bounding Ωl(L). By Def. 9, at most min(m −
1, nehp) computational tasks in τhp have carry-in jobs, where
nehp denotes the number of computational tasks in τhp. Due
to suspensions, however, all self-suspending tasks in τhp may
have carry-in jobs that suspend at to. Let τehp denote the
set of computational tasks in τhp, and let τshp denote the set

of self-suspending tasks in τhp. Let β
min(m−1,ne

hp)

Ti∈τe
hp

denote
the min(m − 1, nehp) greatest values of max(0, Icl (Ti, L) −
Incl (Ti, L)) for any computational task Ti ∈ τehp. Thus, we
have

Ωl(L) =
∑

Ti∈τshp

max(Icl (Ti, L), Incl (Ti, L))

+
∑

Ti∈τehp

Incl (Ti, L) + β
min(m−1,ne

hp)

Ti∈τehp
. (12)

Similar to the discussion in Sec. 3.1, Ωl(L) can also be
computed in linear time.

Schedulability test. We now derive an upper bound on the
response time of task Tl in an SSS task system τ scheduled
using fixed priorities, as stated in Theorem 3. Before stating
the theorem, we first present two lemmas, which are used to
prove the theorem. Lemma 7 is intuitive since it states that the
total interference of tasks with equal or higher priority than Tl
must be large enough to prevent Tl,j from being finished at
to+H if to+H < tf holds (recall that tf is defined to be the
completion time of Tl,j).

Lemma 7. For job Tl,j and any interval [to, to+H) of length
H , if H < tf − to, then⌊Ωl(H)

m

⌋
> H − el − sl,j . (13)

4The upper bounds of Incl (Ti, L) and Icl (Ti, L) (as shown next) are set
to be L − el − sl,j + 1 instead of L − el − sl,j in order to guarantee that
the response time bound we get from the schedulability test presented later is
valid. A formal explanation of this issue can be found in [7].

6

Proof. Ωl(H) denotes the total interference bound on Tl
within the interval [to, to +H).

If tr ≥ to + H , then by Def. 9, all processors must be
occupied by tasks in τhp during the interval [to, to+H), which
implies that tasks in τhp generate a total workload of at least
m · H within [to, to + H) that can interefere with Tl. Thus,
(7) holds since Ωl(H) ≥ m ·H ≥ m · (H − el − sl,j + 1),
which is equivalent to the lemma.

The other possibility is tr < to + H . In this case, given
(from the statement of the lemma) thatH < tf−to, job Tl,j is
not yet completed at time to +H . Thus, only at strictly fewer
than el + sl,j time points within the interval [to, to +H) was
Tl,j able to execute its computation and suspension phases
(for otherwise it would have completed by to + H). In order
for Tl,j to execute its computation and suspension phases for
strictly fewer than el + sl,j time points within [to, to + H),
tasks in τhp must generate a total workload of at least m ·
(H − el− sl,j + 1) within [to, to +H) that can interfere with
Tl. Thus, Ωl(H) ≥ m · (H − el − sl,j + 1) holds.

Lemma 8. tr − rl,j ≤ κl, where κl = λl − pl + dl if λl >
pl − dl, and κl = 0, otherwise.

Proof. By Def. 7, we have

fl,j−1 ≤ dl,j−1 + λl. (14)

If λl > pl − dl, then we have tr − rl,j
{by Def. 8}

=

max(rl,j , fl,j−1) − rl,j = max(0, fl,j−1 − rl,j)
{by (14)}
≤

max(0, dl,j−1+λl−rl,j) = max(0, rl,j−1+dl+λl−rl,j) ≤
max(0, dl + λl − pl) = λl − pl + dl.

If λl ≤ pl − dl, then fl,j−1 ≤ dl,j−1 + λl = rl,j−1 + dl +
λl ≤ rl,j − pl + dl + λl ≤ rl,j , which implies that job Tl,j−1
completes by rl,j . Thus, by Def. 8, we have tr−rl,j = 0.

Theorem 3. Let ψl be the set of minimum solutions of (15) for
L below for each value of sl,j ∈ {0, 1, 2, ..., sl} by performing
a fixed-point iteration on the RHS of (15) starting with L =
el + sl,j:

L =
⌊Ωl(L)

m

⌋
+ el + sl,j . (15)

Then ψmaxl + κl upper-bounds Tl’s response time, where
ψmaxl is the maximum value in ψl.

Proof. We first prove by contradiction that ψmaxl + κl − ζl is
an upper bound of Tl’s response time. Assume that the actual
worst-case response time of Tl is given by R, where

R > ψmaxl + κl − ζl. (16)

By Defs. 7 and 8, we have

R = tf − rl,j . (17)

Thus, we have ψmaxl

{by (16)}
< R + ζl − κl

{by (17)}
= tf −

rl,j + ζl − κl
{by (7)}

= tf − to + tr − rl,j − κl
{by Lemma 8}

≤

tf − to + κl − κl = tf − to. Hence, by Lemma 7, (13) holds
with H = ψmaxl , which contradicts the assumption of ψmaxl

being a solution of (15). Therefore, ψmaxl +κl−ζl is an upper
bound of Tl’s response time.

By (7) and Def. 9, ζl ≥ 0 holds. Moreover, by (8) and
(9)-(12), Ωl(L) is independent of ζl, which implies that ψmaxl

is independent of ζl. Thus, the maximum value for the term
ψmaxl + κl − ζl, which is given by ψmaxl + κl when setting
ζl = 0, is an upper bound of Tl’s response time.

Note that by (10)-(12), Ωl(L) depends on sl,j . Therefore,
the minimum solution of (15) also depends on sl,j . Thus, it is
necessary to test each possible value of sl,j ∈ {0, 1, 2, ..., sl}
to find a corresponding minimum solution of (15). By the
definition of ψmaxl , ψmaxl can then be safely used to upper-
bound Tl’s response time. Moreover, for every task Ti ∈ τ ,
ψmaxi ≤ di +λi−κi must hold in order for τ to be schedula-
ble; otherwise, some jobs of Ti may have missed their dead-
lines by more than the corresponding tardiness thresholds.
The following corollary immediately follows.

Corollary 1. Task system τ is GFP-schedulable upon m pro-
cessors if, by repeating the iteration stated in Theorem 3 for
all tasks Ti ∈ τ , ψmaxi ≤ di + λi − κi holds.

Comparing with [11]. In [11], an RTA technique, which
we refer to as “GY” for short, was proposed to handle or-
dinary arbitrary-deadline sporadic task systems (without sus-
pensions). In GY, the methodology used for the constrained-
deadline case is extended for dealing with the arbitrary-
deadline case by recursively solving an RTA equation. This
recursive process could iterate many times depending on task
parameters, and may not terminate in some rare cases. On the
other hand, due to the fact that our analysis used a more suit-
able interval analysis framework for arbitrary-deadline task
systems5 (which applies to constrained-deadline task systems
as well), for any task in an ordinary sporadic task systems
(without suspensions), its response-time bound can be found
by solving the RTA equation (15) only once. As shown by ex-
periments presented in Sec. 5, our analysis has better runtime
performance than GY.

5 Experiments

In this section, we describe experiments conducted using
randomly-generated task sets to evaluate the performance of
the proposed schedulability tests. In these experiments, sev-
eral aspects of our analysis were investigated. In the follow-
ing, we denote our GEDF and GFP schedulability tests as
“Our-EDF” and “Our-FP,” respectively.

5Specifically, we analyzed the ready time tr of our job of interest Tl,j ,
instead of its release time rl,j as done in [11]. In this way, when computing
workload and interference, we already considered the case where job Tl,k
where k < j might complete beyond rl,j if dl > pl holds. On the contrary,
in GY, the analyzed interval is extended to include all prior jobs that may
complete beyond rl,j and an RTA equation is recursively solved to find the
response-time bound.

7

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

GY
Bar

FB-Par

(a) HRT: short suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

GY
Bar

FB-Par

(b) HRT: moderate suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

GY
Bar

FB-Par

(c) HRT: long suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

LA

(d) SRT: short suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

LA

(e) SRT: moderate suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

LA

(f) SRT: long suspensions

Figure 5: HRT and SRT results. ui ∈ [0.01, 0.3], di ∈ [max(0.7 · pi, ei + si), pi].

HRT effectiveness. We evaluated the effectiveness of the
proposed techniques for HRT SSS task systems by comparing
Our-EDF and Our-FP to SC combined with the tests proposed
in [4] and [11], which we denoted “Bar” and (as noted earlier)
“GY,” respectively. That is, after transforming all SSS tasks
into ordinary sporadic tasks (without suspensions) using SC,
we applied Bar and GY, which are the best known schedula-
bility tests for GEDF and GFP, respectively. In [4], Bar was
shown to overcome a major deficiency (i.e., theO(n) carry-in
work) of prior GEDF analysis. In [11], GY was shown to be
superior to all prior analysis for ordinary task systems avail-
able at that time. Moreover, since partitioning approaches
have been shown to be generally superior to global approaches
on multiprocessors [2], we compared our test to SC combined
with the partitioning approach proposed in [5], which we de-
noted “FB-Par”. FB-Par is considered to be the best partition-
ing approach for constrained-deadline sporadic task systems.

SRT effectiveness. We evaluated the effectiveness of the pro-
posed techniques for SRT SSS task systems with predefined
tardiness threshold by comparing them to SC combined with
the test proposed in [14], which we denoted “LA.” LA is the
only prior schedulability test for SRT ordinary task systems
with pre-defined tardiness thresholds.

Impact of carry-in work. To demonstrate that the main neg-
ative impact of suspensions is O(n) carry-in work, we com-
pared the HRT schedulability for SSS task systems using our
analysis to that obtained by applying the analysis proposed
in [7], which we denoted “BC,” to an otherwise equivalent
task system with no suspensions. In [7], BC was shown to
be superior to all prior analysis assuming O(n) carry-in work
available at that time.

Runtime performance. Finally, we evaluated the effective-
ness and the runtime performance of Our-FP for ordinary
arbitrary-deadline sporadic task systems (with no suspen-
sions) by comparing it to GY.

In our experiments, SSS task sets were generated based
upon the methodology proposed by Baker in [2]. Integral
task periods were distributed uniformly over [10ms,100ms].

Per-task utilizations were uniformly distributed in [0.01, 0.3].
Task execution costs were calculated from periods and uti-
lizations. For any task Ti in any generated task set, di/pi
was varied within [1,2] for the arbitrary-deadline case and
within [max(0.7, ei+sipi

), 1] for the constrained-deadline case,
and the tardiness threshold λi was varied uniformly within
[0, 2 ·pi] for SRT tasks. The suspension length for any task Ti
was generated by varying si/ei as follows: 0.5 (short suspen-
sion length), 1 (moderate suspension length), and 1.5 (long
suspension length). Task sets were generated for m = 4 pro-
cessors, as follows. A cap on overall utilization was system-
atically varied within [1, 1.1, 1.2, ..., 3.9, 4]. For each combi-
nation of utilization cap and suspension length, we generated
1,000 SSS task sets. Each such SSS task set was generated by
creating SSS tasks until total utilization exceeded the corre-
sponding utilization cap, and by then reducing the last task’s
utilization so that the total utilization equalled the utilization
cap. For GFP scheduling, priorities were assigned on a global
deadline-monotonic basis. In all figures presented in this sec-
tion, the x-axis denotes the utilization cap and the y-axis de-
notes the fraction of generated task sets that were schedulable.

Fig. 5 shows HRT and SRT schedulability results for
constrained-deadline SSS task sets achieved by using Our-
EDF, Our-FP, Bar, GY, and FB-Par. As seen, for both the
HRT and the SRT cases, Our-EDF and Our-FP improve upon
the other tested alternatives. Notably, Our-EDF and Our-FP
consistently yield better schedulability results than the par-
titioning approach FB-Par. This is due to the fact that, af-
ter treating suspensions as computation, FB-Par suffers from
bin-packing-related utilization loss. Moreover, as the suspen-
sion length increases, such performance improvement also in-
creases. This is because treating suspension as computation
becomes more pessimistic as the suspension length increases.
This result also confirms our insight that a task’s suspensions
do not negatively impact the schedulability of other tasks as
much as computation does.

Fig. 6 shows HRT schedulability results for constrained-
deadline SSS task sets achieved by using Our-FP and by
applying BC to otherwise equivalent task sets with no sus-

8

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

BC
Our-FP-S
Our-FP-M

Figure 6: HRT results compared with BC.

pensions. In Fig. 6, “Our-FP-S” (“Our-FP-M”) represents
schedulability results achieved by Our-FP for the task sets
(which are originally generated for BC with no suspensions)
after adding suspensions by setting si

ei
= 0.2 (siei = 0.5). It

can be seen that Our-FP yields schedulability results that are
very close to that achieved by BC. For task sets with si

ei
= 0.2,

Our-FP and BC achieved almost idential schedulability re-
sults. This also confirms our insight that the negative im-
pact brought by suspensions is mainly caused by forcingO(n)
carry-in work.

Fig. 7 shows HRT schedulability results for arbitrary-
deadline ordinary task systems (with no suspensions)
achieved by using Our-FP and GY. In this experiment, for
each choice of the utilization cap, 10,000 task sets are gener-
ated. As seen, Our-FP slightly improves upon GY. Moreover,
Fig. 7 also shows the total time for running this entire exper-
iment for Our-FP and GY. As seen, Our-FP runs much faster
(> 10×) than GY, due to the fact that Our-FP can find any
task’s response time by solving the RTA equation only once.

6 Conclusion
We have presented hard/soft multiprocessor schedulability
tests for arbitrary-deadline SSS task systems under both
GEDF and GFP scheduling. The presented analysis shows
that suspensions actually have limited impact on schedulabil-
ity, which is due to O(n) carry-in work. In experiments pre-
sented herein, both HRT and SRT schedulability tests based
on this new analysis proved to be superior to prior tests. More-
over, our fixed-priority schedulability test can be efficiently
applied to arbitrary-deadline sporadic task systems. In fu-
ture work, it would be interesting to investigate more precise
and practical suspension patterns. That is, instead of assum-
ing that each task’s suspensions are simply upper-bounded
and will not be interfered with by other tasks’ suspensions,
it would be interesting to allow a task’s suspension lengths
to be affected by other tasks’ suspensions (e.g., due to con-
tention when multiple tasks simultaneously access the same
shared resource).

References
[1] T. Baker. An analysis of EDF schedulability on a multiprocessor. IEEE

TPDS, (16)8: 760-768, 2005.

[2] T. Baker. A comparison of global and partitioned EDF schedulability
tests for multiprocessors. In Technical Report TR-051101, Florida State
University, 2005.

[3] T. Baker. Multiprocessor EDF and deadline monotonic schedulability
analysis. In Proc. of the 24th RTSS, pp. 120-129, 2003.

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

Our-FP
GY

Our-FP running time: 67(s)
GY running time: 946(s)

Figure 7: HRT results compared with GY.

[4] S. Baruah. Techniques for multiprocessor global schedulability analy-
sis. In Proc. of the 28th RTSS, pp. 119-128, 2007.

[5] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of
sporadic task systems. In Proc. of the 26th RTSS, pp. 321-329, 2005.

[6] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Proc. of the 11th RTSS, pp.
182-190, 1990.

[7] M. Bertogna and M. Cirinei. Response-time analysis for globally
scheduled symmetric multiprocessor platforms. In Proc. of the 28th
RTSS, pp. 149-160, 2007.

[8] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analy-
sis of EDF on multiprocessor platforms. In Proc. of the 24th RTSS, pp.
120-129, 2003.

[9] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Trarjan. Time
bounds for selection. JCSS, (4): 448-461, 1973.

[10] A. Burns and A. Wellings. Real-time systems and programming lan-
guages. Addison-Wesley, 3rd edition, 2001.

[11] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds for
fixed priority multiprocessor scheduling. In Proc. of the 30th RTSS, pp.
387-397, 2009.

[12] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, (29)5: 390-395, 1986.

[13] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbi-
trary deadlines. In Proc. of the 11th RTSS, pp. 201-209, 1990.

[14] H. Leontyev and J. Anderson. A unified hard/soft real-time schedula-
bility test for global EDF multiprocessor scheduling. In Proc. of the
29th RTSS, pp. 375-384, 2008.

[15] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft
real-time multiprocessor systems. In Proc. of the 30th RTSS, pp. 425-
436, 2009.

[16] J. Liu. Real-time systems. Prentice Hall, 2000.

[17] L. Lundberg. Multiprocessor scheduling of age constraint processes. In
Proc. of the 5th RTCSA, pp. 42-47, 1998.

[18] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling
independent hard real-time tasks with self-suspensions. In Proc. of the
25th RTSS, pp. 47-56, 2004.

Appendix A

A.1 Proof for Lemma 2
Proof. Because we restrict attention to jobs of Ti that have re-
leases and deadlines within the considered interval of length
t, and suspensions do not occupy any processor, the required
total work of Ti can be bounded by considering the scenario
in which some job Ti,k of Ti has a deadline at the end of the
interval and jobs are released periodically. There are at most⌊
t−di
pi

⌋
jobs that are released and have deadlines within the

interval other than Ti,k. Thus, the maximum cumulative exe-
cution requirement by jobs of Ti is given by DBF (Ti, t) =
max(0, (

⌊
t−di
pi

⌋
+ 1) · ei).

9

di,k

pi pi pi

to td

λi
pipipi
di

Figure 8: Computing Wc(Ti).

A.2 Proof for Lemma 4.
Proof. The total work of Ti in this case can be upper-bounded
by considering the scenario in which some job of Ti has a
deadline at td and jobs of Ti are released periodically, as il-
lustrated in Fig. 8. Depending on the relationship between i
and l, we have two cases to consider.

Case i 6= l. Let Ti,k be the first job such that ri,k < to and

di,k + λi > to, (18)

i.e., Ti,k is the first job of Ti (potentially tardy) that may exe-
cute during [to, td) and is released before to (note that if Ti,k
does not exist then Ti would have no carry-in job). Since jobs
are released periodically,

td − di,k = x · pi (19)

holds for some integer x.
The demand for jobs of Ti in this case is thus bounded by

the demand due to x jobs that have deadlines at or before td
and are released at or after ri,k+pi, plus the demand imposed
by the job Ti,k, which cannot exceed the smaller of ei and the
length of the interval [to, di,k + λi), which by (19) is td − x ·
pi + λi − to

{by (1)}
= ξl − λl + λi − x · pi. Thus, we have

Wc(Ti) = x · ei +min(ei, ξl − λl + λi − x · pi). (20)

To find x, by (19), we have x =
td−di,k
pi

{by (18)}
<

td−to+λi

pi

{by (1)}
= ξl−λl+λi

pi
. For conciseness, let π = ξl −

λl + λi. Thus, x < π
pi

holds. If π mod pi = 0, then
x ≤ π

pi
− 1 =

⌈
π
pi

⌉
− 1, otherwise, x ≤

⌊
π
pi

⌋
=
⌈
π
pi

⌉
− 1.

Thus, a general expression for x can be given by x ≤
⌈
π
pi

⌉
−1.

By (20), the maximum value for Wc(Ti) can be obtained
when x =

⌈
π
pi

⌉
− 1. Setting this expression for x into (20),

we have Wc(Ti) =
(⌈

π
pi

⌉
− 1
)
· ei +min

(
ei, π−

⌈
π
pi

⌉
· pi +

pi
) {by Def. 6}

= ∆(Ti, π)
{by the def. of π}

= ∆(Ti, ξl − λl + λi).
Moreover, this total demand cannot exceed the total length

of the intervals in [to, tr) ∪ Θ, which by (1) and Def. 4 is at
most ξl − el − sl,j + 1.

Case i = l. Repeating the reasoning from the previous
case, we find that the total demand of jobs of Tl with deadlines
at most td is at most ∆(Ti, ξl). Since Tl,j does not execute
within [to, tr) ∪ Θ, we subtract ei from ∆(Ti, ξl). Also, this
contribution cannot exceed the length of the interval [to, tr),
which by Lemma 1 is max(ξl − λl − dl, ξl − pl).

A.3 Proof for Lemma 6
Proof. The scenario for the worst-case workload to happen is
shown in Fig. 9, where job Ti,k, which is the last job of Ti that

to tf

pipi ei

ri,k
L

to tf

pipi ei

ri,k
L

di,h

λi
pi

ei,h
ri,h

pipi

Figure 9: Computing ωc(Ti, L).

is released before tf , executes continuously within [ri,k, ri,k+
ei) such that

ri,k + ei = tf (21)
(recall that Ti,k may suspend for zero time within [ri,k, tf)),
and jobs are released periodically. (Note that if i = l, then
this worst-case scenario still gives a safe upper bound on the
workload since Tl,j could be the job Ti,k.)

Let Ti,h be the first job such that ri,h < to and

di,h + λi > to, (22)

i.e., Ti,h is the first job of Ti (potentially tardy) that may exe-
cute during [to, tf) and is released before to (note that if Ti,h
does not exist, then Ti would not have a carry-in job). Besides
Ti,k and Ti,h, jobs of Ti that are released within [ri,h+pi, ri,k)
can contribute to ωc(Ti, L). Let y denote the number of jobs
of Ti released in [ri,h, ri,k). There are thus y − 1 jobs of Ti
that are released within [ri,h + pi, ri,k). Since jobs of Ti are
released periodically, we have

ri,k − ri,h = y · pi. (23)

Moreover, work contributed by Ti,h cannot exceed the
smaller of ei and the length of the interval [to, di,h +λi). The
length of the interval [to, di,h+λi) is given by di,h+λi−to =

ri,h + di + λi − to
{by (23)}

= ri,k − y · pi + di + λi −
to
{by (6) and (21)}

= (L − ei + di + λi) − y · pi. Thus, the
work contributed by Ti,h is given by min(ei, (L− ei + di +
λi)− y · pi).

By summing the contributions of Ti,h, Ti,k, and jobs of Ti
that are released within [ri,h + pi, ri,k), we have

ωc(Ti, L) = min(ei, (L− ei + di + λi)− y · pi) + ei

+ (y − 1) · ei
= min(ei, (L− ei + di + λi)− y · pi) + y · ei

(24)

To find y, by (23), we have y =
ri,k−ri,h

pi
=

ri,k−di,h+di
pi

{by (22)}
<

ri,k−to+λi+di
pi

{by (6)and(21)}
=

L−ei+λi+di
pi

. For conciseness, let σ = L−ei+λi+di. Thus,
y < σ

pi
holds. If σ mod pi = 0, then y ≤ σ

pi
− 1 =

⌈
σ
pi

⌉
− 1,

otherwise, y ≤
⌊
σ
pi

⌋
=
⌈
σ
pi

⌉
− 1. Thus, a general expression

for y can be given by y ≤
⌈
σ
pi

⌉
− 1.

By (24), the maximum value for ωc(Ti, L) can be obtained
when y =

⌈
σ
pi

⌉
− 1. Setting this expression for y into (24),

we get ωc(Ti, L) = min
(
ei, σ −

⌈
σ
pi

⌉
· pi + pi

)
+
(⌈

σ
pi

⌉
−

1
)
· ei

{by Def. 6}
= ∆(Ti, σ)

{by the def. of σ}
= ∆(Ti, L − ei +

di + λi).

10

