
Multi-Resource Real-Time Reader/Writer Locks for
Multiprocessors ∗

Bryan C. Ward and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
A fine-grained locking protocol permits multiple locks to be held
simultaneously. In the case of real-time multiprocessor systems,
prior work on such protocols has considered only mutex con-
straints. This unacceptably limits concurrency in systems in which
some resource accesses are read-only. To remedy this situation,
a variant of a recently proposed fine-grained protocol called the
real-time nested locking protocol (RNLP) is presented that en-
ables concurrent reads. Like the original RNLP, this reader/writer
version is a “pluggable” protocol that has different variants for
different schedulers and analysis assumptions. Several such vari-
ants are presented that are asymptotically optimal with respect to
priority-inversion blocking. Experimental evaluation of the pro-
posed protocol are presented that consider both schedulability and
implementation-related overheads. These evaluations demonstrate
that the RNLP (both the mutex and the proposed reader/writer
variant) provides improved schedulability over existing coarse-
grained locking protocols, and is practically implementable.

1 Introduction
To exploit the performance benefits of multicore machines,
which are becoming ever more ubiquitous, applications
must be efficiently parallelized. This requires (among other
things) efficient techniques for synchronizing accesses to
shared resources by different tasks. For such techniques
to be deemed “efficient,” they should permit synchroniz-
ing tasks to execute concurrently where possible, as tasks
executing sequentially do not benefit from the availability
of multiple processors. Moreover, concurrent accesses of
multiple resources by the same task should be supported,
as such functionality is widely employed in practice.

When locks are used to support resource sharing, two
principal approaches exist: coarse-grained and fine-grained
locking. Under coarse-grained locking, resources that may
be accessed concurrently via operations that conflict are
grouped into a single lockable entity, and a single-resource
locking protocol is used. This approach, also called group
locking [1], clearly limits concurrency. In contrast, under
fine-grained locking, different resources are locked indi-
vidually. This enables concurrent accesses of separate re-
sources, but issues such as deadlock become problematic.

Perhaps because of such issues, the first fine-grained
locking protocol for multiprocessor real-time systems was

∗Work supported by NSF grants CNS 1016954, CNS 1115284, CNS
1218693, and CNS 1239135; and ARO grant W911NF-09-1-0535.

proposed only recently, in the form of the real-time nested
locking protocol (RNLP) of Ward and Anderson [11]. The
RNLP is actually a “pluggable” protocol that has differ-
ent variants for different schedulers and analysis assump-
tions. Most of these variants are asymptotically optimal
with respect to worst-case priority-inversion blocking, or
pi-blocking (see Sec. 2). Unfortunately, from the perspec-
tive of enabling concurrency, the RNLP has a serious short-
coming: it treats all resources as mutex resources that can
be accessed by only one task at a time. This unacceptably
limits concurrency if some accesses are read-only.

Contributions. To address this shortcoming, we present
a reader/writer variant of the RNLP (the R/W RNLP for
short) that allows read-only accesses to execute concur-
rently. The design of the R/W RNLP breaks new ground in
several ways. For example, it is the first fine-grained mul-
tiprocessor real-time locking protocol that allows tasks to
hold read locks and write locks simultaneously on differ-
ent resources, and the first to allow read locks to be up-
graded to write locks. As in work on the original RNLP,
we judge the efficacy of a locking protocol in terms worst-
case pi-blocking and present protocol variants for various
implementation and analysis assumptions. The presented
variants are asymptotically optimal in terms of worst-case
pi-blocking for the systems for which they are designed. To
make the R/W RNLP easier to understand, we focus on a
variant in which tasks block by spinning (busy waiting) in
the main body of the paper. Other variants in which blocked
tasks instead suspend are considered in Appendix B.

To demonstrate the performance gains provided by the
R/W RNLP, We present the results of a schedulability study
in which it was compared to other alternatives. This is the
first schedulability study to apply fine-grained analysis to
the RNLP or the R/W RNLP. This study suggests that the
improved parallelism afforded by fine-grained locking via
the RNLP or R/W RNLP can be reflected in analysis to
improve schedulability. We also implemented a spin-based
variant of the R/W RNLP and measured its lock and unlock
overheads, which we found to be quite small. These results
suggest that the R/W RNLP is practically implementable.

Algorithmic and analytical challenges. The R/W RNLP
was obtained by employing the concept of reader and
writer “phases,” as used in phase-fair reader/writer (R/W)
locks [3, 4, 5], within the context of the RNLP [11], which
provides only mutex sharing. The RNLP orders conflicting
resource requests on a FIFO basis, i.e., earlier requests are



Rr
1

Rr
2 Rw

3

Rw
4

Rr
1

Rr
2 Rw

3

?

Rw
4

Rr
1

Rr
2 Rw

3

?
`a `b `a `b `a `b

Rr
1 Request Resource`bWaiting for Held by

Figure 1: Illustration of the R/W ordering dilemma. The left and
right side of the figure depict alternative places to insert a new
write request Rw

4 into the wait-for graph depicted in the middle.

satisfied first. Thus, when abstractly considering behavior
under the RNLP as a dynamically changing wait-for graph,
an important stability property emerges: once a resource re-
quest is issued, its outgoing edge set, i.e., the set of requests
upon which it is waiting, is stable.

Phase-fair locks expressly violate this stability property.
In order to enable O(1) worst-case pi-blocking for read re-
quests (which is obviously asymptotically optimal), phase-
fair locks allow later-requested reads to “cut ahead” of
earlier-requested writes. This is accomplished by alternat-
ing read and write phases; in a read (write) phase, the man-
aged resource is accessed by all (one) issued read requests
(write request). (Note that this is with respect to a single re-
source: prior work on phase-fair locks has not addressed the
fine-grained sharing of multiple resources.) Because reads
can “cut ahead” of writes, the outgoing edge set of write re-
quests in the wait-for graph is not stable—in fact, it is not
stable for any asymptotically optimal R/W locking protocol.

Dealing with this lack of stability was one of the main
challenges we faced in designing the R/W RNLP since we
desired optimal reader pi-blocking. One issue that arises
on account of instability is what we call the R/W order-
ing dilemma. Consider a read request Rr1 that is waiting
to access two resources, `a, which is read locked by re-
quest Rr2, and `b, which is write locked by request Rw3 ,
as in Fig. 1 (n.b., notation will be defined more rigorously
in Sec. 2). Subsequently, a write request Rw4 is issued for
the read-locked resource `a. Which request should be sat-
isfied first, the waiting read Rr1 or the waiting write Rw4
(i.e., where shouldRw4 be inserted into the wait-for graph)?
Phase-fair logic suggests thatRw4 be satisfied first (left side
of Fig. 1), as the resource for which it is currently waiting
is read locked (i.e., in a read phase, so a write phase should
be next.). However, this is problematic because it increases
the blocking bound of the read requestRr1, which is already
blocked by another writer (Rw3 ). Alternatively, if the read
Rr1 is satisfied next (right side of Fig. 1), then the write re-
quest Rw4 may be blocked by two read requests, leading to
longer pi-blocking bounds than under a phase-fair lock.

Because we desire O(1) pi-blocking for read requests,
we have no choice but to sometimes let read requests “cut
ahead” of write requests when resolving the R/W order-
ing dilemma, as in phase-fair locks. As noted above, this
“cutting ahead” inserts edges into the wait-for graph that
are not in accordance with respect to FIFO request order-
ing. This has an effect that is not just localized but system-

wide: in the wait-for graph, entire paths, representing tran-
sitive blocking relationships, may be inconsistent with FIFO
ordering. The resulting transitive early-on-late pi-blocking
can be difficult to properly handle and analyze.

Organization. After some preliminaries (Sec. 2), we show
how the above challenges can be addressed by presenting
and analyzing the R/W RNLP (Sec. 3). We then present our
experimental evaluation and conclude (Secs. 4-5).

2 Background
We consider a system with m processors and n sporadic
tasks T1, . . . , Tn. Each task Ti releases a sequence of jobs.
We denote an arbitrary job of Ti as Ji. Jobs of Ti are re-
leased with a minimum separation of pi time units. Each
such job executes for an execution requirement of at most
ei time units and should complete before a specified rel-
ative deadline di time units after its release. We consider
time to be continuous. A job is said to be pending after be-
ing released until it completes execution.

Resource model. We consider a system with q shared re-
sources (excluding processors), `1, . . . , `q , such as shared
memory objects. When a job requires access to one or more
resources, it issues a request to a locking protocol. (Note
that multiple resources may be included in one request.) For
notational simplicity, we assume that Ji issues at most one
request, which we denote Ri.1 A request is said to be sat-
isfied when access is granted to all requested resources and
completed when the job releases all requested resources. A
satisfied request is said to hold its requested resources. The
time between a request being issued and being satisfied is
acquisition delay. The time between the satisfaction of a re-
quest and its completion is a critical section. If a job must
wait for a resource, it can do so by either spinning or sus-
pending. A pending job that is not suspended is ready.

Each resource indicated in a request is requested for
either reading or writing. We say that a resource is read
(write) locked if it is held by a request that reads (writes)
it. We assume that each resource `a is subject to a
reader/writer sharing constraint: writes of `a are mutually
exclusive, but arbitrarily many reads of `a can be executed
concurrently. Such a read is not allowed to modify `a. Two
requests conflict if they include a common resource that is
written by at least one of them.

Scheduling. We consider clustered-scheduled systems, in
which them processors are grouped intom/c clusters, each
of size c. Tasks are statically assigned to clusters, and within
each cluster, jobs are scheduled from a single ready queue.
A task can migrate among the processors within its cluster.
Partitioned and global scheduling are special cases of clus-
tered scheduling, in which c = 1 and c = m, respectively.

We assume a job-level fixed priority scheduling algo-
rithm, in which each job has a constant base priority, but
different jobs of the same task may have differing base
priorities. In the locking protocols we develop, resource-

1This assumption can be relaxed to allow for multiple requests per job
at the expense of more verbose notation.



holding jobs may have their base priority elevated to a
higher effective priority, which the scheduling algorithm
uses to schedule the job. Elevating the effective priority of
a job is often necessary to ensure resource-holding jobs are
scheduled. This can be accomplished through one of a num-
ber of mechanisms, such as non-preemptivity or priority do-
nation [5], as will be discussed in more detail later.

Blocking. We evaluate the blocking of the presented lock-
ing protocols on the basis of their worst-case priority-
inversion blocking (pi-blocking) [5]. We give here defini-
tions concerning blocking for the case in which waiting is
realized by spinning; alternate definitions for suspension-
based waiting will be given later.
Def. 1. A job Ji incurs pi-blocking at time t if Ji is ready
but not scheduled and fewer than c higher-priority jobs are
ready in Ti’s cluster.

For example, if a high-priority job Jh is released, but a
low-priority job executing non-preemptively is preventing
Jh from being scheduled, then Jh is pi-blocked. A job may
also be blocked while waiting for a resource:
Def. 2. A job Ji incurs s-blocking at time t if Ji is spinning
(and thus scheduled) waiting for a resource.

For example, if Ji is spinning while waiting for `a, which
is held by Jk, then Ji is s-blocked.

Analysis assumptions. Similarly to [3, 5, 11], for asymp-
totic analysis, we assume that m and n (the number of pro-
cessors and tasks, respectively) are variables, and all other
parameters are constants. Examples of such constants in-
clude critical section lengths as well as the number of crit-
ical sections per job. Additionally, we assume that locking
protocol invocations take zero time and all other overheads
are negligible (such overheads can be easily factored into
the final analysis [3, Chaps. 3,7]).

3 R/W RNLP
The aim of this paper is to extend the original mutex
RNLP [11] to enable fine-grained reader/writer (R/W) shar-
ing. Specifically, our goal is to enable non-conflicting re-
quests to be satisfied concurrently, to the extent possible.
We also desire the following additional properties.
• R/W mixing. Some resources may be read and others

written in one critical section. Such critical sections
can be satisfied concurrently if they do not conflict.

• R-to-W upgrading. A job that has acquired a resource
for reading may upgrade its read to a write. For ex-
ample, a job may read a resource, and based upon the
value read, decide that it needs to write that resource.

• Incremental locking. The resources accessed by a job
within a single critical section may be requested via a
sequence of requests. For example, a job may request
`a, read its value, and then execute some conditional
code that requests `b.

We call the protocol we obtain the R/W RNLP. In de-
scribing the R/W RNLP, we initially assume for simplicity
that the properties above are not supported, that is:

Assumption 1. All resources accessed within a single crit-
ical section are requested via a single request, these re-
sources are either all read or all written, and no read request
may be upgraded.

We later explain how to support R/W mixing in Sec. 3.5,
R-to-W upgrading in Sec. 3.6, and incremental locking in
Sec. 3.7. Until we get to these later subsections (i.e., while
Assumption 1 is in place), we use the following notation.
We denote the set of resources that are needed in Ri’s crit-
ical section as Ni. By Assumption 1, each request can be
categorized as either a read request or a write request, and
each critical section as either a read critical section or a
write critical section. For notational clarity, we often anno-
tate read (write) requests asRri (Rwi ). We denote the longest
read (write) critical section length as Lrmax (Lwmax), and we
let Lmax = max(Lrmax, L

w
max).

3.1 R/W RNLP Architecture

Like the original mutex RNLP, the R/W RNLP has two
components, a request satisfaction mechanism (RSM) and
a progress mechanism. The RSM orders the satisfaction of
resource requests. To ensure a bounded duration of block-
ing, the progress mechanism may elevate the effective pri-
ority of a resource-holding job to ensure it is scheduled.
The choice of progress mechanism depends upon how wait-
ing is realized (spinning or suspending). When the RSM is
paired with an appropriate progress mechanism, the result-
ing protocol optimally supports fine-grained resource shar-
ing under many different analysis and implementation as-
sumptions.

Before describing the RSM, we abstractly characterize
the progress mechanism by stating two needed properties.

P1 A resource-holding job is always scheduled.

P2 At mostm jobs may have incomplete resource requests
at any time, at most c from each cluster.

Non-preemptive spinning fulfills these requirements:

S1 A job with an incomplete request executes non-
preemptively (both while spinning and within its criti-
cal section).

From this rule we have the following lemma.

Lemma 1. Rule S1 implies Properties P1 and P2.
For ease of exposition, we assume this simple progress

mechanism for now. In Appendix B, we specify appropriate
progress mechanisms for non-spin-based implementations.

3.2 RSM

In the RSM, two queues are used per resource `a, a queue
for readers, Qra, and a queue for writers, Qwa , as depicted in
Fig. 2. We assume that each read (write) request is enqueued
atomically in the read (write) queue of each resource it re-
quests. The timestamp of the issuance of each request Ri
is recorded and denoted ts(Ri). All writer queues are order
by these timestamps, resulting in FIFO queueing. We de-
note the earliest timestamped incomplete write request for
`a (i.e., the head of Qwa ) as E(Qwa ). Similar to phase-fair



Qr
a

`1

Rw
x

Qr
q Qw

q

`q

Rw
x

Rw
j

Qw
a

Figure 2: Queue structure in the R/W RSM. For each resource `a ∈
{`1, . . . , `q}, there is a read queue Qr

a and a write queue Qw
a .

locks [4], the queue from which requests are satisfied (Qra
or Qwa ) alternates. The techniques that govern such alterna-
tion, however, are quite different from traditional phase-fair
locks due to the R/W ordering dilemma.

Example. As we explain the rules of the RSM, we will
reference relevant parts of the example schedule in Fig. 3,
which will later be explained in its entirety. In this run-
ning example, there are five tasks and a processor for each
task, such that all pending jobs are scheduled. Addition-
ally, these tasks share three resources, `a, `b, and `c. At
time t = 2, when Rw2 is issued, ts(Rw2 ) = 2 is es-
tablished. Also, since Rw2 requires all three resources and
since it is the only write request waiting for any resource,
E(Qwa ) = E(Qwb ) = E(Qwc ) = Rw2 .

Before describing the techniques that govern when re-
quests should be satisfied, we define relevant notation. We
say that two resources `a and `b are read shared, denoted
`a ∼ `b,2 if both `a and `b could be requested together as
part of a single read request (i.e., for some Rri , {`a, `b} ⊆
Ni). We call the set of all resources that are read shared with
`a the read set of `a, denoted S(`a) = {`b| `b ∼ `a}.
Example (cont’d) In Fig. 3, for Rr5, N5 = {`a, `b}. Thus,
`a ∼ `b (and `b ∼ `a). Since Rr5 is the only request for
multiple resources, S(`a) = {`a, `b} and S(`c) = {`c}.

To avoid transitive early-on-late blocking, a write request
may be forced to request additional resources besides those
needed in its critical section. To reflect this, we let Di de-
note the set of resources that Ri must actually request. For
a read request Rri , Di is simply Ni. However, for a write
request Rwi , Di =

⋃
`a∈Ni

S(`a). While forcing write re-
quests to acquire more resources than actually needed re-
duces concurrency, it does not affect asymptotic optimality.
As we shall see, this expansion rule enables us to avoid tran-
sitive early-on-late blocking. Additionally, we shall show
later that this expansion of write requests can be relaxed to
enable additional concurrency on average.

Example (cont’d). SupposeRw2 in Fig. 3 only needsN2 =
{`a, `c} in its critical section. Because `a ∼ `b and `a ∈
N2,Rw2 actually requests D2 = {`a, `b, `c}.
General rules. The first few rules of the RSM are com-
mon to both readers and writers and describe the necessary
actions that must be taken when a job either issues a request
or completes a critical section.

G1 When Ji issues Ri at time t, the timestamp of the re-
quest is recorded: ts(Ri) := t.

2Read sharing is reflexive and symmetric.

T3

T2

T1

0 5 10

write
`b

read

read

write

write

read
T4

Rw
1

Rw
2

Rr
3

Rr
4

Rr
5

release `a read locked

`b read locked

read
`a

Non-critical section

Non-entitled waiting

Entitled waiting

`a, `b

`a, `b

`c

`c

`a, `b, `c

T5

deadline

(a) Schedule in the running example.

time queue states
Qr

a Qw
a Qr

b Qw
b Qr

c Qw
c

[0, 2) ∅ ∅ ∅ ∅ ∅ ∅
[2, 7) ∅ {Rw

2 } ∅ {Rw
2 } ∅ {Rw

2 }
[7, 8) ∅ {Rw

2 } {Rr
5} {Rw

2 } ∅ {Rw
2 }

[8, 10) ∅ ∅ {Rr
5} ∅ ∅ ∅

[10, 12] ∅ ∅ ∅ ∅ ∅ ∅

(b) Queue states over time corresponding to the schedule in (a).

Figure 3: Illustration of the running example.

G2 WhenRi is satisfied, it is dequeued from either Qra (if
it is a read request) or Qwa (if it is a write request) for
each `a ∈ Di.

G3 WhenRi completes, it unlocks all resources in Di.
G4 Each request issuance or completion occurs atomi-

cally. Therefore, there is a total order on timestamps,
and a request cannot be issued at the same time that a
critical section completes.

Example (cont’d). At time t = 8, when Rr3 completes its
critical section, D3 = {`c} is unlocked. This allows Rw2
to be satisfied (as explained later), and therefore Rw2 is de-
queued from Qwa , Qwb , and Qwc .

The remaining read- and write-specific rules rely on the
concept of entitlement, which we use to resolve the R/W or-
dering dilemma. Intuitively, a request becomes entitled once
it is the next request to be satisfied (w.r.t. the resources for
which it is waiting), and remains entitled until it is satis-
fied. While a request is entitled, it blocks all conflicting re-
quests. Entitlement is defined differently for read and write
requests. We begin with read requests, which are entitled if
they are blocked only by satisfied (and not entitled) writes.
Def. 3. An unsatisfied read request Rri becomes entitled
when there exists `a ∈ Di that is write locked, and for
each resource `a ∈ Di, E(Qwa ) is not entitled (see Def. 4).
(Note that E(Qwa ) = ∅ could hold. In this case, we con-
sider E(Qwa ) to be a “null” request that is not entitled.) Rri
remains entitled until it is satisfied.

Of course, if a newly issued read request does not con-
flict with satisfied or entitled incomplete requests, then it is
satisfied immediately (see Rule R1 below) and Def. 3 does



Rr
5

Rw
2

`a `b

(a) Reader entitlement.

Rw
2

Rr
4Rr

3

`a `b `c

Rr
5

(b) Writer entitlement.

Figure 4: Illustrations of the wait-for graphs of entitled read and
write requests. Inset (a) corresponds to Rr

5 at time t = 8, and (b)
corresponds to Rw

2 at time t = 7 in Fig. 3. Note that in inset (b),
Rr

5 is blocked by at least one satisfied write request, and in (b) Rw
2

is blocked by at least one satisfied write request.

not apply (only unsatisfied requests can be entitled).

Example (cont’d). At time t = 8, Rr5 is blocked by Rw2 ,
which holds `a, `b, and `c, as depicted in Fig. 4(a). By
Def. 3, Rr5 becomes entitled at time t = 8 because `a and
`b are write locked and E(Qwa ) = E(Qwb ) = ∅.

Next we consider the writer case. Intuitively, an entitled
write is the head of all relevant write queues and not blocked
by any entitled reads (but possibly satisfied reads).
Def. 4. An unsatisfied write request Rwi becomes entitled
when for each `a ∈ Di, Rwi = E(Qwa ), no read request in
Qra is entitled (see Def. 3), and `a is not write locked. Rwi
remains entitled until it is satisfied.

Observe that an entitled write requestRwi is only blocked
by satisfied but incomplete read requests since according to
Def. 4 no resource in Di is write locked.

Example (cont’d). At time t = 7,Rr4 holds `c, and blocks
Rw2 , which is waiting for `a, `b, and `c, as depicted in
Fig. 4(b). Because Rw2 is the earliest timestamped writer
waiting for any of the resources, and none is write locked,
Rw2 becomes entitled. Note that, although Rw2 is entitled,
it is still blocked. Prior to t = 5, Rw3 was not be entitled
because `a and `b were write locked byRw1 .

An entitled request (read or write) may be blocked by
multiple requests, each holding different resources. We let
B(Ri, t) be the set of satisfied requests that conflict with
an entitled request Ri at time t (i.e., the set of requests that
blockRi at time t). Note that since read requests do not con-
flict with each other, B(Rri , t) only contains write requests.
Analogously, as pointed out above, an entitled write is only
blocked by read requests, and thus B(Rwi , t) only consists
of read requests. This matches the phase-fair intuition that
reads concede to writes, and writes concede to reads.

Example (cont’d). At time t ∈ [6, 8), Rw2 is blocked by
Rr3, thus B(Rw2 , t) = {Rr3}. Earlier, at time t ∈ [5, 6), Rw2
is blocked by bothRr3 andRr4, so B(Rw2 , t) = {Rr3,Rr4}.
Reader rules. We next define reader-specific rules, which
utilize the previously given definition of entitlement. These
rules define the behavior of the RSM, when a read request
is issued and satisfied, respectively.

R1 When Rri is issued, for each `a ∈ Di, Rri is enqueued

in Qra. If Rri does not conflict with any entitled or sat-
isfied write requests, then it is satisfied immediately.

R2 An entitled read requestRri is satisfied at the first time
instant t such that B(Rri , t) = ∅.

Example (cont’d). At time t = 3, Rr3 is issued and it is
satisfied immediately by Rule R1. Rr3 is allowed to “cut
ahead” of Rw2 in this case because Rw2 is not entitled, and
`c is unlocked. Further, at time t = 10, Rr5 is satisfied by
Rule R2. This is becauseRr5 is entitled, andRw2 completed
it critical section and unlocked `a and `b.

Writer rules. The writer rules parallel the reader rules.
W1 WhenRwi is issued, for each `a ∈ Di,Rwi is enqueued

in timestamp order in the write queue Qwa . IfRwi does
not conflict with any entitled or satisfied requests (read
or write), then it is satisfied immediately.

W2 An entitled write request Rwi is satisfied at the first
time instant t such that B(Rwi , t) = ∅.

Full example. At time t = 1, a write requestRw1 is issued
for `a and `b, which is immediately satisfied (by Rule W1).
At time t = 2, another write request,Rw2 is issued for `a, `b,
and `c and is enqueued in Qwa , Qwb , and Qwc (by Rule W1).
Rr3 is issued and satisfied immediately at time t = 3 by
Rule R1, as previously described. Similarly, at time t = 4,
Rr4 is issued and satisfied immediately (by Rule R1). Note
that at time t = 4, both Rr3 and Rr4 have read locked `b,
demonstrating reader parallelism. Further, at time t = 4, `a
and `b are write locked while `c is read locked, a level of
concurrency only possible with fine-grained locking. When
Rw1 completes at time t = 5,Rw2 becomes entitled. At time
t = 7, R5 is issued for `b and `c, but it is not satisfied be-
causeRw2 is entitled to both resources. AfterRr3 completes
at time t = 8, Rw2 is satisfied (by Rule W2). Finally, after
Rw2 completes at time t = 10,Rr5 is satisfied (by Rule R2).

This concludes the definition and introduction of the
R/W RNLP. To summarize, the R/W RNLP implements
phase-fairness, where reads concede to writes and writes
concede to reads. To resolve the R/W ordering dilemma,
we have introduced the concept of entitled blocking. Intu-
itively, an entitled request is “next in line” with regard to
the requested resources and only blocked by satisfied, but
incomplete requests of the opposite kind.

3.3 Analysis

We now present blocking analysis for the R/W RNLP. Our
analysis uses the following two corollaries, which follow
from Lemmas 5 and 6, respectively, proved in Appendix A.
Corollary 1. Suppose that the request Rwi becomes enti-
tled at time te and satisfied at time ts. Then, no new requests
may be added to B(Rwi , t) at any time time t ∈ [te, ts).

Example (cont’d). This corollary is demonstrated at time
t = 7 in Fig. 5, when Rr5 is issued. Because Rw2 is entitled
at that time,Rr5 is forced to block until afterRw2 completes,
even though the resources it requested are available.
Corollary 2. Suppose that the requestRri becomes entitled
at time te and satisfied at time ts. Then, no new requests



may be added to B(Rri , t) at any time t ∈ [te, ts).
While Cor. 2 is not depicted in Fig. 5, it is similar Cor. 1.

Next, we show that worst-case acquisition delay is O(1) for
readers and O(m) for writers. The following lemmas are
used in establishing these results.

Lemma 2. A write requestRwi experiences acquisition de-
lay of at most Lrmax time units after becoming entitled.
Proof. Suppose that Rwi becomes entitled at time te and
satisfied at ts. By Cor. 1, new requests are not added to
B(Rwi , t) at any t ∈ [te, ts). Moreover, by Def. 4, each
request in B(Rwi , t) is a read. By Prop. P1, every request in
B(Rwi , te) is scheduled, and therefore will complete in at
most Lrmax time units. Thus, by time te + Lrmax, Rwi will
not be blocked, and by Rule W2, will be satisfied.

The following lemma is essential to show that transitive
early-on-late blocking does not adversely effect the worst-
case blocking bounds.

Lemma 3. If Rwi is the earliest timestamped write request
among all incomplete write requests, then Rwi is either sat-
isfied or entitled.
Proof. Suppose not. Then, by Def. 4, for some resource `a ∈
Di, either (i) Rwi 6= E(Qwa ), (ii) some request Rrx ∈ Qra
is entitled, or (iii) `a is write locked. By Rule W1, (i) and
(iii) are not possible since the write queues are timestamp
ordered, and Rwi is the earliest incomplete write. For (ii),
assume Rrx is entitled and `a ∈ Di ∩ Dx. Then, by Def. 3,
Rrx is blocked by a satisfied write request Rwh . Recall that
Rwh must request all resources in the read sets of resources
in Nh. Further, `a must be in at least one of these read sets.
Thus, `a ∈ Dh ∩ Di, and Rwh and Rwi conflict. Thus, since
ts(Rwi ) < ts(Rwh ),Rwh cannot be satisfied.

Theorem 1. The worst-case acquisition delay of a read re-
questRri is at most Lwmax + Lrmax time units.
Proof. We first show that if Rri is issued at time ti, then
it must become entitled or satisfied by time ti + Lrmax.
Suppose not. Then, throughout the interval [ti, ti + Lrmax),
Rri is blocked by a non-empty set W of conflicting enti-
tled write requests, for otherwise, Rri would become enti-
tled (by Def. 3) or satisfied (by Rule R1). By Prop. P1 and
Lemma 2, each write request Rwx ∈ W will be satisfied by
time ti+Lrmax. Once all such write requests are satisfied, by
Def. 3,Rri will become entitled or satisfied, a contradiction.

If Rri becomes satisfied by time ti + Lrmax, then its ac-
quisition delay is at most Lrmax time units. Consider now
the other possibility, i.e., thatRri becomes entitled by some
time te ≤ ti + Lrmax. In this case, we show that Rri is sat-
isfied by time te + Lwmax, from which an acquisition delay
of at most Lrmax + Lwmax time units follows. By Cor. 2,
the number of resource-holding write requests blockingRri
monotonically decreases until Rri is satisfied. By Prop. P1,
each such blocking request completes in at most Lwmax time
units. Thus,Rri is satisfied by time te + Lwmax.

Theorem 2. The worst-case acquisition delay of a write re-
questRwi is at most (m− 1)(Lrmax + Lwmax) time units.

Proof. Suppose that the write request Rwi is issued at time
ti and not satisfied immediately. Let Rwx be the incomplete
write request with the earliest timestamp at ti (Rwx could
be Rwi ). By Lemma 3, Rwx is either entitled or satisfied
at ti. Suppose the latter is true, i.e., Rwx is satisfied at ti.
Then, by Prop. P1, Rwx completes its critical section by
time ti + Lwmax. By Prop. P2, there are at most m − 1 in-
complete write requests with timestamps earlier than that
of Rwi at ti. Thus, by time ti + Lwmax, there are at most
m− 2 such requests. By Lemmas 2 and 3, the one with the
earliest timestamp is satisfied by time ti + Lwmax + Lrmax,
and thus, by Prop. P1, completes its critical section by time
ti + Lwmax + Lrmax + Lwmax. Continuing inductively, all
earlier-timestamped write requests complete their critical
sections by time ti + Lwmax + (m − 2)(Lrmax + Lwmax).
At that time, Rwi has the earliest timestamp. Hence, by
Lemma 2, it is satisfied by time ti+Lwmax+(m−2)(Lwmax+
Lrmax) + Lrmax, i.e., Rwi ’s acquisition delay is at most
(m− 1)(Lrmax + Lwmax) time units.

The remaining possibility to consider is that Rwx is en-
titled at ti. In this case, by Def. 4, Rwx is blocked by some
read requestRrh. Thus, by Prop. P2, there are at most m−2
incomplete write requests with timestamps earlier than that
ofRwi at ti. Reasoning as above, it follows thatRwi ’s acqui-
sition delay is at most (m−2)(Lrmax+L

w
max)+L

r
max time

units. (Note that the blocking ofRwx due toRrh is accounted
for in this reasoning by Lemma 2.)

For the case when waiting is realized by spinning
(Rule S1), the worst-case acquisition delay for either reads
or writes is the worst-case s-blocking (recall Def. 2). How-
ever, non-preemptive spinning can cause other jobs, even
non-resource-using jobs, to be pi-blocked (recall Def. 1)
upon release. For example, if a high-priority job Jh is re-
leased that has sufficient priority to be scheduled, but a low-
priority job Jl is spinning non-preemptively, then Jh is pi-
blocked. The worst-case pi-blocking can easily be shown to
be O(m) through analysis similar to single-resource spin-
based mutex or reader-writer locks [3, 4].3

In the remainder of this section, we describe additional
optimizations that can be incorporated into the R/W RNLP
to improve average-case parallelism, and thus responsive-
ness in many cases. These optimizations do not effect the
worst-case blocking bounds. We present them indepen-
dently for ease of exposition, but note that they can be
combined in a real implementation. We note that improved
average-case responsiveness these optimizations provide re-
sult in larger safety margins, which are significant in safety-
critical systems. While these systems have been proved cor-
rect, these proofs are built upon hardware models and sys-
tem assumptions that may perhaps be incorrect, and thus
larger safety margins are desirable in practice.

3.4 Requesting Fewer Resources

Requiring write requests to lock an expanded set of re-
sources enabled us to establish Lemma 3. This lemma can

3More exact bounds depend upon the scheduler configuration (e.g., par-
titioned vs. global).



instead be established by utilizing placeholders, which al-
low for increased parallelism. Specifically, we require a
write request Rwi to enqueue a placeholder Rpi in the
queues of all non-needed resources that we earlier required
Rwi to request in Sec. 3.2. In this case, the RSM func-
tions as previously described with the following exceptions.
A placeholder is never entitled or satisfied. Instead, each
placeholderRpi is removed from the write queue in which it
is enqueued whenRwi becomes entitled or satisfied. There-
fore, untilRwi becomes entitled, its associated placeholders
prevent later-issued write requests from becoming entitled
or satisfied, thereby ensuring that Lemma 3 is not violated.

Using placeholders, allows for additional concurrency.
However, this parallelism is not reflected in the worst-case
blocking bounds under our analysis assumptions. In future
work, it may be possible to reflect the improved concur-
rency via more fine-grained blocking analysis, similar to
that presented in [3, Chaps. 5,6].

3.5 R/W Mixing

Next we show that concurrency can be improved by relax-
ing Assumption 1 to allow jobs to issue mixed requests that
read some resources and write others.

First, we extend our notation. We denote the set of re-
sources that Ri needs read (write) access to as N r

i (Nw
i )

and we let Ni = N r
i ∪ Nw

i . If Nw
i = ∅, then we say Ri is

a read request, otherwise we say that Ri is a write request.
With this notation, a mixed request is a write request Rwi
with N r

i 6= ∅ and Nw
i 6= ∅. We also adapt our definition of

the read shared relation, ∼. Given two resources `a and `b,
we say that `b is read shared with `a, if for some potential
requestRi, `a ∈ Ni, and `b ∈ N r

i .4
Next we describe how the rules of the RSM support

mixed requests with only a minor modification. Intuitively,
a mixed request is treated almost exactly like an exclusively
write request, though there are three key differences. First,
an entitled mixed request can be satisfied if all resources
for which it requires read access are either unlocked or read
locked. Second, when a mixed request is satisfied, resources
for which read-only access is needed are read locked, not
write locked, which allows read requests to be satisfied con-
currently. Third, with respect to writer entitlement (Def. 4),
blocked write requests treat a resource that is read locked
by a mixed request as if it were write locked.

3.6 R-to-W Upgrading

We call a read request that can be upgraded to a write
request, as previously described, an upgradeable request,
which we denote asRui . Intuitively, we treat an upgradeable
request as a write request that can optimistically execute
read-only code while its needed resources are read-locked
to determine if write access is necessary. Since the block-
ing bounds of a write request assume that it will be blocked
by other read requests, the optimistic execution of the read-
only section essentially executes for free. Thus, an upgrade-
able request has the same worst-case blocking bounds as a

4The read sharing relation may not be symmetric with mixed requests.

write request, but may offer additional concurrency if the
write segment of the critical section is not required.

To support this behavior in the RSM, we treatRui as two
separate requests, a read request,5 Rur

i and a write request
Ruw
i , which can cancel each other if necessary.6 When Rui

is issued,Rur
i is enqueued as a read request andRuw

i is en-
queued as a write request. If Ruw

i is satisfied before Rur
i ,

then Rur
i is canceled and removed from all read queues.

If Rur
i is satisfied first, it executes its critical section, and

upon completion or realization that upgrading is not neces-
sary,Ruw

i is canceled and removed from all write queues in
which it is enqueued. If Rui must be upgraded, then when
the read-only segment of its critical section completes, all
resources are unlocked. Later, when Ruw

i is satisfied, the
job can execute the write segment of its critical section.
Note that the state of any read objects may change between
Rur
i completing and Ruw

i being satisfied. Thus, Ruw
i may

need to re-read some data. If this behavior is unacceptable
for a given application, a write request should instead be
issued for all resources that could potentially be written.

3.7 Incremental locking

Next, we show how the RSM can be adapted to allow jobs
to incrementally request resources they use within a criti-
cal section, as described earlier. We assume that it is known
a priori the set of all resources that could possibly be re-
quested in this incremental fashion. While this assumption
may seem limiting, such information is necessary for many
real-time locking protocols, such as the well-known priority
ceiling protocol (PCP) [9].

To support this functionality, we initially treat Ri as if
it were a request for all of the resources for which it could
potentially lock incrementally. From Cors. 1 and 2, afterRi
becomes entitled, no conflicting request can be satisfied be-
fore Ri. Thus, if Ri only initially requires access to some
subset s ⊆ Di, it can be granted access as soon as it is en-
titled and each resource `a ∈ s is not locked by a conflict-
ing request. If Ri later needs some additional resource(s)
s′ ⊆ Di \ s, then it waits until each `a ∈ s′ is not locked
by a conflicting request. However, because Ri is entitled
to all resources in Di, the total duration of acquisition de-
lay across all incremental requests is at most the worst-case
acquisition delay previously proven in Theorems 1 and 2.

Note that entitlement serves a similar purpose as prior-
ity ceilings [9], since it prevents later-issued requests from
acquiring resources that may be incrementally requested.

4 Evaluation
To evaluate the practicality of the R/W RNLP, we imple-
mented the spin-based variant (without the optimizations in
Secs. 3.4–3.7), and conducted a schedulability study.

Implementation. We implemented the R/W RNLP in
user-space on top of LITMUSRT [8]. Our implementation
was designed for a partitioned scheduler; the partitioned

5We assume the worst-case execution time of the read-only segment of
the upgradeable request finishes in Lr

max time.
6With respect to Prop. P2, an upgradeable request is only one request.



Procedure Median (µs) Worst (µs)
read lock 0.106 0.168
read unlock 0.048 0.124
write lock 0.478 0.626
write unlock 0.129 0.215

Table 1: Lock and unlock overheads for read and write requests.
Note that the worst-case overhead reported is the 99th percentile,
to filter the effects of interrupts and other spurious behavior.

earliest-deadline-first (EDF) scheduler was used in our eval-
uations. The implementation itself uses a novel combination
of spin-based and wait-free techniques to achieve low over-
head, and is of independent interest. We do not describe it
in detail here due to space constraints, but will do so in a
future companion paper.

We evaluated our implementation on a 2.67Ghz quad-
core Intel Core i7-920 processor. We measured the over-
head of the lock and unlock procedures used in the imple-
mentation, where such overhead is defined to be the total
procedure runtime minus any time spent busy waiting for
other requests to complete. In total, we measured the over-
heads for 18 task system configurations, similar to those
presented in the schedulability study below. These task sys-
tems were chosen to ascertain how the implementation be-
haved under high contention, and under different ratios of
read to write requests. Each task set was executed for two
minutes. The largest median- and worst-case overheads ob-
served across all task sets are reported in Tbl. 1. These over-
heads are sufficiently small to demonstrate that the R/W
RNLP can be practically implemented. Furthermore, read
requests have smaller overheads than writes, which is desir-
able for a R/W locking protocol that is best used when reads
are more common than writes.

Schedulability. Next, we present a preliminary evaluation
of the R/W RNLP on the basis of HRT schedulability, as-
sessed by randomly generating task systems and determin-
ing the fraction that are schedulable. These experiments are
intended to show the effects that blocking bounds have on
schedulability, and do not include overheads. A full exper-
imental evaluation incorporating overheads is beyond the
scope of this paper and is deferred to future work.

We randomly generated implicit-deadline task systems
using a similar experimental design as previous studies
(e.g., [5]). We assume that tasks are partitioned onto m = 4
processors, and scheduled in EDF order. We generated task
systems with a total system utilization in {0.1, 0.2 . . . , 4.0}.
Per-task utilizations in a given task system were chosen to
be medium or heavy, which correspond to uniformly dis-
tributed utilizations in the range [0.1, 0.4] or [0.5, 0.9], re-
spectively. The periods of all tasks were chosen uniformly
from either [3, 33]ms (short) or [50, 250]ms (long). All
tasks were assumed to access shared resources, but only
Pr ∈ {50, 70, 90}% of the tasks issue read requests. Each
read (write) request was configured to accesses Nr ∈
{1, 2, 4} (resp., Nw ∈ {1, 2, 4}) of 50 resources, k times
per job. Read and write critical sections lengths for each job
were exponentially distributed with a mean of either 10µs
(small) or 1000µs (long).

For each generated task set, we evaluated HRT schedula-
bility using four different locking protocols, OMLP mutex
group locks [5], the RNLP [11], Phase Fair (PF) R/W group
locks [4, 5], and the R/W RNLP presented herein. Block-
ing bounds under each protocol were evaluated using fine-
grained analysis similar to that in [3]. For the RNLP and the
R/W RNLP, additional optimizations were also included,
which are based on evaluating possible transitive blocking
relationships.7 In future work, we plan to explore linear-
programming-based blocking analysis techniques, similar
to those recently presented by Brandenburg [2].

While our experiments generated hundreds of graphs,
here we present in Fig. 5 a small selection that depict rele-
vant trends.8 In Fig. 5, the curves denoted NOLOCK depict
schedulability assuming no resource requests.
Obs. 1. In all observed cases, schedulability under the fine-
grained locking protocols, the RNLP and the R/W RNLP,
was no worse than schedulability using the corresponding
coarse-grained locking protocols, the OMLP and phase-fair
R/W locks, respectively.

This observation is supported by insets (a) and (b) of
Fig. 5. In inset (a), the R/W RNLP is roughly the same as
phase-fair R/W locks, while the RNLP significantly outper-
forms the OMLP. However, in many cases, such as in inset
(b), the fine-grained RNLP and R/W RNLP offer improved
schedulability over their coarse-grained counterparts.
Obs. 2. For read-dominated workloads, i.e., those with
larger Pr, phase-fair R/W locks, and the R/W RNLP per-
form comparatively better. The R/W RNLP performs com-
paratively better than phase-fair locks when Nr is small.

This observation is supported by inset (a) of Fig. 5, in
which read critical sections are large and write critical sec-
tions are small, and 90% of tasks issue read requests. Addi-
tionally, in inset (b), in which Nr = 1, schedulability under
the R/W RNLP is better than under phase-fair locks. Note
that the gap between phase-fair locks and the R/W RNLP
is smaller for larger Nr on account of write requests being
forced to request unneeded resources.
Obs. 3. In some cases in which there are a comparatively
large number of write requests, the RNLP offers slightly
improved schedulability over the R/W RNLP.

This observation is supported by inset (c) of Fig. 5, in
which 50% of tasks issue write requests. However, the dif-
ference in schedulability is relatively small, due to the fact
that both protocols benefit from blocking analysis that con-
siders only feasible transitive blocking relationships.

These schedulability results, in conjunction with our
measured overheads, demonstrate that fine-grained mutex
and R/W locks are practically implementable, and offer im-
proved schedulability over coarse-grained alternatives.

7Tighter analysis than that employed here is possible using an
exponential-time algorithm. While this may be feasible for some task
systems, it is too expensive in schedulability studies, which evaluate the
schedulability of tens of thousands of task systems.

8Additional graphs can be found in an online appendix available at
http://www.cs.unc.edu/˜bcw.



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T 

Sc
he

du
la

bi
lit

y

RNLP
OMLP
RW-RNLP
PF
NOLOCK

(a) Pr = 90%, Nr = 2, Nw = 4,large read
and small write critical sections.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T 

Sc
he

du
la

bi
lit

y

RNLP
OMLP
RW-RNLP
PF
NOLOCK

(b) Pr = 50%, Nr = 1, Nw = 2, large read
and small write critical sections.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

HR
T 

Sc
he

du
la

bi
lit

y

RNLP
OMLP
RW-RNLP
PF
NOLOCK

(c) Pr = 50%, Nr = 2, Nw = 4, large read
and write critical sections.

Figure 5: Schedulability results.

5 Conclusions
We have presented the R/W RNLP, which is the first fine-
grained real-time multiprocessor locking protocol that sup-
ports reader/writer sharing. Having to support two differ-
ent operations on resources—reads and writes—introduces
considerable difficulty in designing an asymptotically opti-
mal locking protocol. The R/W RNLP resolves the R/W or-
dering dilemma using the concept of entitled waiting. The
R/W RNLP also prevents transitive early-on-late blocking
that would increase worst-case pi-blocking bounds.

We implemented the R/W RNLP and measured
lock/unlock overheads, which were small. We also pre-
sented the first schedulability study of fine-grained locking
under the RNLP and the R/W RNLP. These results suggest
that these fine-grained locking protocols are useful in real
systems.

The R/W RNLP provides the algorithmic foundation on
which we plan build the first (to our knowledge) lock-based
software transactional memory (STM) [10] for real-time
systems. While non-blocking (i.e., retry-based) STM has
been the focus of much recent work, both in the real-time
systems (e.g., [7]), and in throughput-oriented systems (e.g.,
[6]), we believe that a lock-based approach may be prefer-
able in multiprocessor real-time systems due to the unpre-
dictability of retries. In future work we plan to explore ap-
plying the R/W RNLP to realize lock-based real-time STM
for multiprocessor systems.

Acknowledgment: We thank Björn Brandenburg for insightful
discussions, which helped identify some of the complexities that
phase-fair behavior introduces to fine-grained locking protocols.

References
[1] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A

flexible real-time locking protocol for multiprocessors. In
RTCSA ’07.

[2] B. Brandenburg. Improved analysis and evaluation of real-
time semaphore protocols for P-FP scheduling. In RTAS ’13.

[3] B. Brandenburg. Scheduling and Locking in Multiproces-
sor Real-Time Operating Systems. PhD thesis, University of
North Carolina, Chapel Hill, NC, 2011.

[4] B. Brandenburg and J. Anderson. Spin-based reader-writer
synchronization for multiprocessor real-time systems. Real-
Time Systems Journal, 46:25–87, Sep. 2010.

[5] B. Brandenburg and J. Anderson. The OMLP family of opti-

mal multiprocessor real-time locking protocols. Design Au-
tomation for Embedded Systems, pages 1–66, 2012.

[6] A. Dragojević and T. Harris. STM in the small: Trading gen-
erality for performance in software transactional memory. In
EuroSys ’12.

[7] M. El-Shambakey and Binoy Ravindran. STM concurrency
control for embedded real-time software with tighter time
bounds. In DAC ’12.

[8] LITMUSRT Project. http://www.litmus-rt.org/.
[9] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance

protocols: an approach to real-time synchronization. IEEE
Trans. on Computers, 39(9):1175–1185, Sep. 1990.

[10] N. Shavit and D. Touitou. Software transactional memory.
In PODC ’95.

[11] B. Ward and J. Anderson. Supporting nested locking in mul-
tiprocessor real-time systems. In ECRTS ’12.

Appendix A: Entitlement Analysis
Let I be an invocation of the locking protocol (read or write
issuance or read or write completion) at time tI , and let
t−I = limε→0 tI − ε be the time instant immediately prior
to that invocation. We say that I entitles (satisfies) a request
Ri if Ri becomes entitled (satisfied) as a result of I (i.e.,
Ri is entitled (satisfied) after I but not before I).

Lemma 4. The following properties of satisfaction and en-
titlement hold.
E1 If I satisfies Rri , then I is either a read issuance or a

write completion.

E2 If I satisfies Rwi , then I is either a write issuance, a
read completion, or a write completion.

E3 If I satisfies Rri and I is the issuance of read request
Rrx, thenRri = Rrx.

E4 If I satisfies Rwi and I is the issuance of write request
Rwx , thenRwi = Rwx .

E5 If I satisfies Rwi and I is the completion of a conflict-
ing read request Rrx, then at time t−I , Rwi is entitled,
and B(Rwi , t−I ) = {Rrx}.

E6 If I satisfiesRri and I is the completion of a conflicting
write request Rwx , then at time t−I , Rri is entitled, and
B(Rri , t−I ) = {Rwx }.

E7 If I satisfies Rwi and I is the completion of a con-
flicting write request Rwx , then at time t−I , for each



`a ∈ Dwi , Rwi = E(Qwa ) and no read request in Qra
is entitled, and for each resource `a ∈ Di, `a is either
locked byRwx , or unlocked.

E8 If I entitles Rri , then I is a read issuance or a read
completion.

E9 If I entitles Rwi , then I is a write issuance or a write
completion.

E10 If Rwi and Rrx conflict, then they are not simultane-
ously entitled.

Proof. We prove the stated properties in succession.

Prop. E1. If I is a write issuance, then it releases no re-
sources for whichRri is waiting, and hence cannot causeRri
to become satisfied. On the other hand, if I is a read com-
pletion and Rri is not entitled prior to I , then by Rule R2,
I cannot cause Rri to become satisfied. If I is a read com-
pletion and Rri is entitled (and hence blocked) prior to I ,
then B(Rri , t−I ) contains at least one write request; I can-
not cause this write request to complete, thus following I ,
Rri remains entitled (and hence blocked).

Prop. E2. Like the first case considered above, I cannot
causeRwi to be become satisfied if it is a read issuance.

Prop. E3. If I is the issuance of read request Rri , then it
does not unlock any resources, and hence cannot cause any
previously issued request to become satisfied. However, by
Rule R1, I may causeRri itself to become satisfied.

Prop. E4. Follows similarly to Prop. E3.

Prop. E5. By Rule W2, if I satisfies Rwi , then prior to I ,
Rwi must have been entitled, and Rrx must have been the
only request that blockedRwi .

Prop. E6. Follows similarly to Prop. E5 (using Rule R2).

Prop. E7. By Rule W2, if I satisfies Rwi , then it must be
entitled. However, because Rwx is satisfied at time t−I and
conflicts with Rwi , Rwi is not entitled at time t−I by Def. 4.
For Rwi to be satisfied at time tI , by Rule W2, it must be-
come entitled at time tI . By Def. 4, for Rwi to be entitled
at time tI , after Rwx unlocks all resources in Dx, for each
`a ∈ Di, Rwi = E(Qwa ), no read request in Qra is entitled,
and `a is not write locked. Furthermore, since Rwi is satis-
fied at time tI , all resources in Di are unlocked after Rwx
completes. The claim follows.

Prop. E8. By Def. 3, if Rri is unsatisfied and not entitled
prior to I , i.e., at time t−I , then it is blocked at t−I by an enti-
tled write request, Rwx . Thus, by Def. 4, the following hold
at time t−I : Rwx is at the head of each write queue in which
it is enqueued; no resource for whichRwx is waiting is write
locked; andRwx is not blocked by any entitled read request.
Recall that entitled requests are, by definition, unsatisfied.
Thus,Rwx must be blocked by at least one satisfied read re-
quest at t−I . Now, if I is a write issuance, then Rwx clearly
remains entitled at tI , and hence Rri is not entitled at tI .
On the other hand, if I is a write completion, then it may
cause certain entitled reads to become satisfied; however, it
will not cause the satisfied read that blocksRwx to complete.

Thus, as before,Rwx remains entitled at tI , and henceRri is
not entitled at tI .

Prop. E9. Follows similarly to Prop. E8.

Prop. E10. Defs. 3 and 4 preclude conflicting read and
write requests from both becoming entitled due to separate
invocations of the locking protocol. Props. E8 and E9 pre-
clude such requests from both becoming entitled due to the
same invocation of the locking protocol.

Next we show that once a write request Rwi is entitled,
no conflicting request Rx can be satisfied before it, which
implicitly bounds how long it remains entitled.

Lemma 5. If a write requestRwi is entitled before and after
I andRx ∈ B(Rwi , tI), thenRx ∈ B(Rwi , t−I ).
Proof. Suppose not. Then the mentioned request Rx (read
or write) is satisfied by I , and by the definition of
B(Rwi , tI),Rx conflicts withRwi .

Assume that Rrx is a read request. Then, by Prop. E1,
I is a read issuance or a write completion. If I is a read
issuance, then by Prop. E3, Rrx is issued at tI ; however, by
Rule R1, I cannot then satisfy Rrx because Rwi is entitled.
If I is a write completion, then by Prop. E6, Rrx is entitled
at t−I ; however, by Prop. E10, this implies that Rwi is not
entitled at t−I , contradicting the lemma statement.

Now assume that Rwx is a write request. Then, by
Prop. E2, I is a write issuance, read completion, or write
completion. If I is a write issuance or read completion, then
we can derive a contradiction via reasoning similar to that
above (but using Prop. E4, Rule W1, and Prop. E5 together
with Prop. E10). So, suppose that I is a write completion.
By the statement of the lemma, it follows that Rwi and Rwi
conflict and share some resource `c. Moreover, by Prop. E7,
Rwx = E(Qwc ) holds at t−I . However, by Def. 4, this contra-
dicts the assumption thatRwi is entitled at t−I .

Similar to Lemma 5, we next show that once a read re-
quest Rri becomes entitled, no conflicting request can be
satisfied before it.

Lemma 6. If a read request Rri is entitled before and after
I andRwx ∈ B(Rwi , tI), thenRwx ∈ B(Rwi , t−I ).
Proof. Suppose not. Then, the mentioned write request Rwx
is satisfied by I , and by the definition of B(Rwi , tI), Rwx
conflicts with Rwi . Thus, by Prop. E2, I is either a write is-
suance, read completion, or write completion. If I is a write
issuance, then by Prop. E4, I is the issuance of Rwx itself;
however, by Rule W1, I cannot satisfy Rwx , because Rri is
entitled prior to I . If I is a read (resp., write) completion,
then by Prop. E5 (resp., Prop. E7), Rwx is entitled at t−I ;
however, by Prop. E10, this contradicts the assumption that
Rri is entitled at t−I .



T3

T2

T1

0 5 10

release

deadline

scheduled on CPU 0

scheduled on CPU 1

executing critical section

suspended waiting

both s-oblivious and 
s-aware pi-blocking

only s-aware pi-blocking

Figure 6: Illustration adapted from [5] of the difference between
s-oblivious and s-aware analysis. In this example, three EDF-
scheduled jobs share a single resource `a on two processors. Dur-
ing [2, 4), J3 is blocked, but there are m jobs with higher priority,
thus J3 is not s-oblivious pi-blocked. However, because J1 is also
suspended, J3 is s-aware pi-blocked.

Appendix B: Suspension-based R/W RNLP
Before presenting the suspension-based variant of the R/W
RNLP, we begin by explaining how we analyze the pi-
blocking caused by suspension-based locking protocols. In
recent work, Brandenburg and Anderson [5] gave two al-
ternate definitions of pi-blocking for suspension-based sys-
tems, suspension aware (s-aware) and suspension oblivious
(s-oblivious).
Def. 5. Under s-aware (s-oblivious) schedulability analy-
sis, a job Ji incurs s-aware (s-oblivious) pi-blocking at time
t if Ji is pending but not scheduled and fewer than c higher-
priority jobs are ready (pending) in Ti’s cluster.

The difference between s-oblivious and s-aware pi-
blocking is demonstrated in Fig. 6. S-oblivious pi-blocking
analysis is motivated by the fact that most multiprocessor
schedulability tests do explicitly account for task suspen-
sions. Instead, the suspensions of the highest priority jobs
are analytically considered computation. This is modeled
by adding the worst-case blocking term bi to ei. While this
assumption is safe (it will not cause the task system to be
incorrectly deemed schedulable), it can be pessimistic.

For systems for which there exist schedulability tests that
explicitly incorporate suspension, (i.e., s-aware schedulabil-
ity tests), locking protocols can be analyzed under s-aware
pi-blocking analysis. However, the vast majority of existing
schedulability tests are not s-aware, as suspensions are no-
toriously difficult to analyze. Furthermore, there are many
open problems concerning locking protocols that are opti-
mal under s-aware analysis. Most relevant to this work is
that no known R/W locking protocol is optimal under s-
aware analysis, even for single-resource requests. However,
recent experimental work has shown optimal s-oblivious
locking protocols to be competitive with s-aware ones, even
on systems for which there exists s-aware schedulability
analysis [3]. For these reasons, we assume s-oblivious anal-
ysis for all of our suspension-based results.

Progress mechanism for the suspension-based RSM.
For suspension-based locks, we use priority donation [5],
as the progress mechanism, instead of Rule S1. Below, we

show that priority donation implies Properties P1 and P2,
and can therefore be used with the RSM.

Intuitively, priority donation works by forcing high-
priority jobs, upon release, to donate their priority to low-
priority jobs with incomplete resource requests. Unlike pri-
ority inheritance, donation forms a static donation relation-
ship that persists until the donee completes its critical sec-
tion, or until an even higher priority job donates its priority
to the donee instead. Priority donation therefore ensures that
all resource-holding jobs are scheduled, and that the acqui-
sition delay is bounded. With this understanding of dona-
tion, we prove that donation satisfies Prop. P1 and P2 via
reference to the formal definition of donation [5].

Lemma 7. Priority donation implies Properties P1 and P2.
Proof. Prop. P1 exactly matches Prop. P1 of [5]. Prop. P2
follows directly from Lemma 3 in [5].

From Prop. P2 of [5], the worst-case duration of s-
oblivious pi-blocking caused by priority donation, which
effects all tasks in the system, is the worst-case acquisition
delay plus the maximum critical section length. Therefore,
from Theorems 1 and 2, the worst-case duration of priority
donation is Lwmax + (m− 1)(Lrmax + Lwmax) = O(m).


