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Abstract
This paper describes GPUSync, which is a framework for
managing graphics processing units (GPUs) in multi-GPU
multicore real-time systems. GPUSync was designed with
flexibility, predictability, and parallelism in mind. Specif-
ically, it can be applied under either static- or dynamic-
priority CPU scheduling; can allocate CPUs/GPUs on a
partitioned, clustered, or global basis; provides flexible
mechanisms for allocating GPUs to tasks; enables task state
to be migrated among different GPUs, with the potential of
breaking such state into smaller “chunks”; provides migra-
tion cost predictors that determine when migrations can be
effective; enables a single GPU’s different engines to be ac-
cessed in parallel; properly supports GPU-related interrupt
and worker threads according to the sporadic task model,
even when GPU drivers are closed-source; and provides
budget policing to the extent possible, given that GPU ac-
cess is non-preemptive. No prior real-time GPU manage-
ment framework provides a comparable range of features.

1 Introduction
Graphics processing units (GPUs) are commonly used to-
day to accelerate intensive general-purpose computations,
a practice termed GPGPU. The breadth of application do-
mains that can benefit from GPGPU includes many where
real-time constraints exist. In automotive systems, for ex-
ample, GPUs have been used to perform eye tracking [18],
pedestrian detection [26], navigation [11], and obstacle
avoidance [25]. If a single platform consolidates such fea-
tures, then it may require a multicore system with multiple
GPUs. Such systems are the focus of this paper.

Although multiple tasks can share GPUs, stock operat-
ing system (OS) drivers from GPU manufacturers offer lit-
tle in terms of scheduling policies. Contention for GPU re-
sources is often resolved through undisclosed closed-source
arbitration policies. These arbitration policies typically have
no regard for task priority and may exhibit behaviors detri-
mental to multitasking on host CPUs [10]. Furthermore, a
single task can dominate GPU resources by issuing many or
long-running operations. Allocation methods are needed that
eliminate or ameliorate these problems.

Such methods must address issues in three fundamental
categories: allocation, budgeting, and integration. Alloca-
tion issues include task-to-GPU assignment, the scheduling
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of GPU memory transfers, and the scheduling of GPU com-
putations. Budgeting issues arise when tasks utilize more
GPU resources than allocated. Integration issues relate to
the technical challenges of integrating GPU hardware (and
closed-source software) into a real-time system.

In resolving such issues, careful attention should be paid
to managing GPU-related parallelism. For example, modern
GPUs can send data, receive data, and perform computa-
tions simultaneously. Ideally, these three operations should
be allowed to overlap in time to maximize performance. Ad-
ditionally, data transmissions result in increased traffic on
shared buses used in parallel by other tasks. One must care-
fully manage bus traffic or all computations in a system
(even non-GPU-related ones) may be slowed [21].

If a system has multiple GPUs, then parallelism-related
issues arise when allocating GPUs. It may be desirable to
use a clustered or global GPU organization in order to avoid
the utilization loss common to partitioned approaches. How-
ever, a GPU-using task may develop memory-based affinity
for a particular GPU as it executes. In such cases, program
state (data) is stored in GPU memory and accessed by the
task each time it executes on that particular GPU. This state
must be migrated each time the task uses a GPU different
from the one it used previously. Such migrations increase
bus traffic and thus affect system-wide performance and pre-
dictability. As explained in greater detail later, prior work
on real-time GPU management has only partially addressed
these parallelism-related issues. Furthermore, issues unique
to multi-GPU systems have received little attention.
Contributions. In this paper, we present a real-time GPU
management framework called GPUSync that addresses the
above issues. While GPU management is often viewed as a
scheduling problem (e.g., see [2, 6, 14, 13, 15]), we instead
view it as a synchronization problem.1 Indeed, GPUSync is
the culmination of several years of research by us on vari-
ous aspects of synchronization-based GPU management [7,
8, 9, 10]. GPUSync extends this prior work in many ways,
most notably by significantly enhancing the parallel control
of GPU-related resources, by allowing GPU state to be mi-
grated, by providing support for GPU budget enforcement,
and by allowing the overall system to be configurable for use
under different scheduling policies, prioritization schemes,
etc. As in our prior work, we consider GPU management
under job-level-static-priority (JLSP) schedulers, such as
the rate-monotonic (RM) and earliest-deadline-first (EDF)
schedulers, where the allocation of both CPUs and GPUs

1Although scheduling-based approaches may use synchronization for
thread-safety and event-signaling, our approach is explicitly designed, im-
plemented, and analyzed from the perspective of real-time synchronization.



may be on a partitioned, clustered, or global basis.
Regarding parallelism, GPUSync extends our prior work

by enabling simultaneous two-way data transmission and
GPU computation. In the case of non-partitioned GPU ap-
proaches, we also provide support for predictable and effi-
cient GPU-to-GPU (peer-to-peer, or P2P) state migration, as
well as self-tuning heuristics that attempt to determine when
migrations can be effective.

Because GPU accesses are non-preemptive, it is not pos-
sible to completely isolate tasks from the effects of budget
overruns by other tasks. In GPUSync, such isolation is pro-
vided to the extent possible by monitoring execution bud-
gets and utilizing various methods that penalize overrunning
tasks by reducing their future allocations. Although it is not
always possible to immediately take a GPU away from an
overrunning task, GPUSync can notify a task of an over-
run through signals. User code may leverage exception han-
dling language features to gracefully relinquish a GPU in
response to these signals. In a multi-GPU system, the effects
of overruns are further mitigated by having multiple GPUs
that tasks can utilize (this is yet another instance of replicated
hardware ameliorating the effects of erroneous behaviors).

In our prior work, we showed how to support GPU-
related interrupt handling in accordance with the sporadic
task model [9]. GPUSync improves upon this earlier work
by also properly managing user-space helper threads, which
are utilized in the latest closed-source GPGPU runtimes. Our
support for GPU-related interrupt handling is applicable to
closed-source drivers. This is advantageous since closed-
source drivers often offer better performance and support
newer hardware than open-source alternatives.

To assess the efficacy of GPUSync, we implemented it
in LITMUSRT, a Linux-based real-time OS jointly devel-
oped by UNC and MPI.2 Using this implementation, we
conducted experiments that show that a synchronization-
based approach can successfully meet the resource alloca-
tion needs of a real-time GPGPU system. We further show
that execution behaviors can be predicted to promote task
affinity in multi-GPU systems.

Organization. In the rest of the paper, we provide needed
background (Sec. 2), describe GPUSync (Sec. 3), compare
it to relevant prior work (Sec. 4), present our experimental
results (Sec. 5), and conclude (Sec. 6). Due to space limita-
tions, we limit attention to GPU technologies from NVIDIA,
whose CUDA [1] platform is widely accepted as a leading
GPGPU solution. However, the design of GPUSync does
not rely upon specific NVIDIA technology.

2 Background
We begin by describing relevant aspects of GPGPU tech-
nology and challenges it poses to OS-level resource
management. We then explain our reasoning for purs-
ing a synchronization-based framework for realizing GPU-
enabled real-time systems.

2Source code for LITMUSRT and GPUSync is available at www.
litmus-rt.org.
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Figure 1: Example high-level architecture. On some multicore
chips the I/O hub may be integrated.

GPU hardware. GPUs may be “discrete” or “integrated.”
Discrete GPUs are those that plug into a host system as a
daughter card. Integrated GPUs are on the same chip as sys-
tem CPUs. In both cases, GPUs interface to the host sys-
tem as I/O devices and are managed by OS drivers. Discrete
GPUs differ from integrated GPUs in three ways: (i) they
are much more computationally capable; (ii) they have local
high-speed memory (integrated GPUs use system memory);
and (iii) they operate most efficiently upon local memory,
which requires copying data to and from system memory. We
focus our attention on discrete GPUs for their performance
characteristics and interesting challenges posed by memory
management. However, our management techniques are still
applicable to integrated GPUs, except that there is no need
for GPU memory management.

Our GPUs of interest each have an execution engine (EE)
and one or two DMA copy engines (CEs). The execution
engine consists of many parallel processors and performs
computations, similar to a CPU. The copy engines transmit
data between system memory and GPU memory. GPUs com-
monly have only one copy engine, and thus cannot send and
receive data at the same time. However, high-end GPUs may
have an additional independent copy engine, enabling si-
multaneous bi-directional transmissions. The execution and
copy engines perform operations non-preemptively.

Fig. 1 depicts a high-level architecture of a multicore,
multi-GPU system. The copy engines connect to the host
system via a full-duplex PCIe bus. PCIe is a hierarchically
organized packet-switched bus with an I/O hub at its root.
Switches multiplex the bus to allow multiple devices to con-
nect to the I/O hub. Unlike the older PCI bus, where only
one device on a bus may transmit data at a time, PCIe devices
can transmit data simultaneously. Traffic is arbitrated at each
switch using round-robin arbitration at the packet level in
case of contention.3 The structure depicted in Fig. 1 may be
replicated in large-scale NUMA platforms, with CPUs and
I/O hubs connected by high-speed interconnects. However,
only devices that share an I/O hub may communicate directly
with each other as peers.
GPGPU operations and state migration. GPGPU pro-
grams execute on CPUs and invoke a sequence of GPU op-

3The PCIe specification allows for other arbitration schemes, but these
appear to be rarely implemented [20].



Figure 2: GPGPU program execution sequence.

erations. There are two types of GPU operations. Kernel op-
erations are programs executed by the GPU execution en-
gine. Memory copy operations are data transfers to or from
a GPU’s local memory; these are processed by the copy en-
gines. A general execution sequence for a GPGPU program
scheduled alone is depicted in Fig. 2. Observe that a program
running on a CPU initiates GPU operations—the GPU does
not initiate them independently. At time t1, the GPGPU pro-
gram selects a GPU to use. At time t2, the program transmits
input data for the GPU kernel from system memory to GPU
memory. The memory copy is processed by one of the GPU’s
copy engines. The program waits (it may elect to either busy-
wait or suspend) until the copy operation completes at time
t3. A kernel that operates on the input data is executed at time
t4—computational results are stored in GPU memory. The
program copies the kernel output from the GPU at time t5.
Finally, the program no longer requires the GPU at time t6.
We call the duration from time t1 to time t6 a GPU critical
section because the GPGPU program expects its sequence
of operations to be carried out on the same GPU. Recall that
GPU operations on the various engines are non-preemptive.
For example, GPUCE0

cannot be preempted during the in-
terval [t2, t3]. However, the program running on the CPU is
preemptive while waiting, if it busy-waits. There are two im-
portant things to note about this example. First, this is only a
simple execution sequence. Any number of GPU operations
may be issued within the GPU critical section. Second, we
have depicted the input and output memory copies as pro-
cessed by different copy engines—it is actually up to the
GPU to select which copy engine to use.

In addition to memory used for input and output, recur-
rent tasks may maintain state in GPU memory. For exam-
ple, motion-tracking algorithms maintain information about
the movement of objects between video frames. A task has
affinity with the GPU that holds its most recent state. State
must migrate with tasks from one GPU to another.4 The cost
of migration is the time it takes to move state from one GPU
to another. Cost is partly dependent upon the distance be-
tween GPUs and the the method used to copy state between
them. Distance is the number of links to the nearest common
switch or I/O hub of two GPUs. For example, in Fig. 1, the
distance between GPUs 0 and 2 is two (one link to a switch,

4Memory must be pre-allocated on each GPU where a task may run
to facilitate fast migrations. This is a reasonable constraint given that the
memory footprints of real-time GPU applications are typically small (40MB
in [16]) with respect to large GPU memories (2GB and greater).

a second link to a common I/O hub). One may use either
of two methods to migrate state between GPUs. The first is
a two-step process by way of a temporary buffer in system
memory: data is copied to system memory from one GPU
and then back out to another. The other method is a more ef-
ficient single-step approach using P2P communication: data
is copied directly from one GPU to another. P2P-based mi-
grations are more efficient, especially over short distances,
due to proximity and reduced bus contention. However, this
method requires coordination between the GPUs. Regardless
of the method employed, current GPU technology requires
that migrations must be carried out by the user application
and is thus not transparent to the user.

OS concerns. A real-time OS (RTOS) provides timing
guarantees for applications through prescribed resource al-
location algorithms and the enforcement of allocation de-
cisions. How does an RTOS achieve this for GPU-enabled
systems? To answer this we must first consider other ques-
tions, such as: Which GPUs may a task access? Which GPU
is best among multiple GPUs? When may a task access an
assigned GPU? When may a task migrate between GPUs?
How should contention for GPUs be arbitrated? How should
allocation decisions be enforced?

The answers to these questions are not immediately ap-
parent because the realities of GPU technology force us to
use methods different from real-time CPU scheduling. There
are three major differences that relate to allocation, budget-
ing, and integration.

First, allocation. GPUs have local memory that hold state
and kernel input and output data. A task may have to move
all this data between GPUs to support migration at arbitrary
points (between non-preemptive operations) during execu-
tion. This is often prohibitively expensive, and not necessar-
ily starvation-free, if migration decisions are not made care-
fully. This is not the case with modern shared-memory CPUs
where data is always immediately accessible from any CPU
and migration is transparent to the user. However, despite
the cost of migration, opportunities to distribute work across
GPUs may be lost if a scheduler is too migration-averse.

Second, budgeting. GPU operations are non-preemptive.
Non-preemptive GPU scheduling may not be problematic to
implement in and of itself, but it implies that budget policies
must focus on recovery rather than strict enforcement since
overrunning GPU operations cannot be halted. Furthermore,
migration costs may motivate us to allow an overrunning
task to execute to completion, rather than resume execution
on a different GPU at a later time.

Finally, integration. CPU and GPU scheduling is inter-
dependent. A GPU-using task requires CPU time in order
to initiate GPU operations. Also, a GPU may block while
waiting for a CPU to service device interrupts. Computing
resources may be left idle if GPU operation initiation or in-
terrupt servicing is delayed. Likewise, immediately handling
these events may introduce unnecessary priority inversions
and harm real-time schedulability.

Synchronization-based philosophy. In Sec. 1, we posited
that GPU management is best viewed as a synchronization



Figure 3: High-level design of GPUSync.
problem rather than one of scheduling. However, we wish
to make clear that this distinction is somewhat blurred: the
locking protocols we utilize are the GPU schedulers—these
protocols prioritize ready GPU work and grant access ac-
cordingly. Nonetheless, as we shall see, a synchronization-
based approach gives us established techniques to address
problems relating to allocation, budgeting, and integration.

3 GPUSync
We consider a system with m CPUs, partitioned into clus-
ters of c CPUs each, and h GPUs, partitioned into clus-
ters of g GPUs each. Each GPU cluster is wholly assigned
to a single CPU cluster in order to avoid complexities that
arise due to the incomparability of priorities when resources
are shared among CPU clusters.5 We assume that the work-
load to be supported can be modeled as a traditional spo-
radic real-time task system, with jobs (task invocations) be-
ing scheduled by a JLSP scheduler. Furthermore, we assume
that the scheduled system is a soft real-time (SRT) system
for which bounded deadline tardiness is acceptable. While
GPUSync’s design does not inherently preclude use in hard
real-time (HRT) systems, reliance upon closed-source soft-
ware would make a claim of HRT support premature [8].
Thus, we focus on design strategies that improve predictabil-
ity and average-case performance, while maintaining SRT
guarantees. Finally, we assume that tasks can tolerate GPU
migration at job boundaries, and that the per-job execution
times of each task remain relatively consistent, with over-
runs of provisioned bounds being uncommon events.

We now present the design of GPUSync by separately
discussing allocation, budgeting, and integration.

3.1 Allocation

GPUSync utilizes a two-level nested locking structure,
which we discuss at a high level before delving into details.

The high-level design of GPUSync’s allocation mecha-
nisms is illustrated in Fig. 3. There are several components: a
self-tuning execution cost predictor; a GPU allocator, based
upon a real-time k-exclusion locking protocol,6 augmented

5There is a large body of work that explores inter-cluster resource shar-
ing that could be drawn upon for future extensions of GPUSync that allow
the sharing GPU clusters among CPU clusters [5, 22, 23].

6k-exclusion generalizes ordinary mutual exclusion by allowing up to k
tasks to simultaneously hold a lock.

with heuristics; and a set of real-time engine locks, one per
GPU engine, to arbitrate access to GPU engines.

We now describe the general steps followed within
GPUSync to allocate GPU resources. Recall from Sec. 2
that a GPU critical section is a region of code where a GPU-
using task cannot tolerate a migration between GPUs during
a sequence of GPU operations. A job must acquire one of
ρ tokens associated with a particular GPU before entering
a critical section that involves accessing that GPU. We call
a GPU critical section protected by a token a token critical
section. For the sake of simplicity in discussion, we assume
each job has at most one token critical section, even though
GPUSync supports jobs with multiple non-overlapping sec-
tions. As depicted in Fig. 3, a job requests a token from the
GPU allocator in Step A (or time t1 in Fig. 2). Utilizing
the cost predictor in Step B and internal heuristics, the GPU
allocator determines which token (and by extension, which
GPU) should be allocated to the request. The requesting job
is allowed access to the assigned GPU once it receives a to-
ken in Step C. In Step D, the job competes with other token-
holding jobs for GPU engines; access is arbitrated by the
engine locks. A job may only issue GPU operations on its
assigned GPU once its needed engine locks have been ac-
quired in Step E. For example, an engine lock must be ac-
quired at times t2, t4, and t5 in Fig. 2. With the exception
of P2P migrations, a job cannot hold more than one engine
lock at a time.

The general structure of GPUSync is straightforward:
a GPU allocator assigns jobs to GPUs and engine locks
arbitrate engine access. However, many questions remain.
For example, how many tokens can each GPUs have? What
queuing structures should be used to manage token and en-
gine requests? How can we enable GPU migration, yet mini-
mize associated overheads? We now answer such questions,
and provide additional rationale for our design choices.

3.1.1 GPU Allocators

Each cluster of g GPUs is managed by one GPU allocator; as
such, we henceforth consider GPU management only within
a single GPU cluster. We associate ρ tokens (a configurable
parameter) with each GPU. All GPU tokens are pooled and
managed by the GPU allocator using a single k-exclusion
lock, where k = ρ× g.

The GPU allocator’s k-exclusion lock uses a hybrid queu-
ing structure consisting of several fixed-size FIFO queues
FQi and a priority queue PQ, as depicted in Fig. 4. The FIFO
queue FQi is associated with the ith token. Token-requesting
jobs are enqueued in a load-balancing manner until every
FQ is f jobs in length. (We will discuss rules for load bal-
ancing shortly.) The parameter f is configurable. Additional
requests that cannot be placed in an FQ “overflow” into PQ.
Jobs are moved from PQ into an FQ as space becomes avail-
able. A job enqueued in FQi suspends until it is at the head
of FQi, in which case it is granted the ith token.

This structure is similar to that of the Replica-Request
Donation Global Locking Protocol (R2DGLP), a real-time
k-exclusion locking protocol that is asymptotically optimal
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Figure 4: The structure of a GPU allocator lock.

for globally-scheduled systems [27]. Indeed, the GPU allo-
cator lock utilizes the same inheritance rules as the R2DGLP
to ensure bounded blocking times. However, selecting dif-
ferent values for f allows the GPU allocator lock to take on
different analytical properties. The GPU allocator functions
exactly as the R2DGLP when f = dc/ke, as the k-FMLP [9]
when f = ∞, and as a purely priority-based protocol when
f = 1. A system designer may tailor the GPU allocator
to their specific task sets and schedulers. For instance, the
k-FMLP can outperform the R2DGLP for some tasks sets.
The purely priority-based GPU allocator may be used with
a task-level static priority scheduler such as the RM sched-
uler, when request interference on high-priority tasks must
be minimized [4].

The value of ρ directly affects the maximum parallelism
that can be achieved by a GPU since it controls the number
of jobs that may directly compete for a GPU’s engines—
ρ must be at least the number of engines in a GPU if ev-
ery engine is to ever be used in parallel. This implies that
a large value should be used for ρ. However, the value of
ρ also strongly affects GPU migrations. Too great a value
may make the GPU allocator too migration-averse since to-
kens will likely be available for every job’s preferred GPU,
even those that are heavily utilized. Constraining ρ prevents
GPUSync from overloading a GPU and promotes GPU mi-
gration to distribute load. We discuss this process next.

Maintaining GPU affinity. Real-time locking protocols are
rarely designed to make use of online knowledge of critical
section lengths, even though critical sections figure promi-
nently in schedulability analysis and system provisioning.
We augment the GPU allocator lock to incorporate knowl-
edge of token critical section lengths into queueing decisions
to reduce the frequency and cost of GPU migrations without
preventing beneficial migrations.

The cost predictor returns an estimated token critical sec-
tion length for a GPU request by a job J for each FQ where
J’s request may be potentially enqueued. This estimate in-
cludes the cost of migrating task state if J’s task had pre-
viously executed on a different GPU. The total estimated
critical section length for J’s request for a particular FQi

is obtained by adding the execution time and any potential
migration cost for the request to the total estimated waiting
time for the request in that FQi. The latter can be obtained by
summing the estimated execution times and migration costs
of all requests currently enqueued in FQi. When the GPU

allocator selects among several FQs for J’s request, it can
select the FQ that yields that shortest estimated token criti-
cal section length for J . This heuristic is sensitive to GPU
migration costs and results in the desirable behavior of pro-
moting only beneficial GPU migrations.
Cost predictor. To determine an estimated critical section
length, the cost predictor must be able to determine the total
execution time for a particular GPU request including any
potential migration cost. GPUSync’s cost predictor does
this by measuring the accumulated CPU execution time of
the requesting job once it has been allocated a GPU by ac-
quiring a token. Execution delays due to preemption and
blocking due to engine lock acquisition (explained later) are
not included, but CPU suspension durations due to GPU op-
erations (memory copies, GPU kernels) are. When a job re-
leases its GPU token, this measurement gives a total request
execution cost for both CPU and GPU operations and in-
cludes any delays due to migrations. However, this measure-
ment is for only a single observation and provides a poor
basis for predicting future behavior, especially since these
measurements are strongly affected by PCIe bus congestion.
Thus, we use a more refined process to drive a prediction
model based upon statistical process control [17].

Specifically, for each task and GPU migration distance
pair, we maintain an average and standard deviation over
a window of recent observations (we found a window of
twenty was suitable in our implementation). The average
and standard deviation is recomputed after every new obser-
vation unless the observation falls more than two standard
deviations away from the average and at least ten prior ob-
servations have been made. This filtering prevents unusual
observations from overly-influencing future predictions.

One may be concerned that the heuristic nature of
GPUSync’s cost predictor does not lend itself to real-time
predictability. However, the cost predictor has been designed
to not violate analytical worst-case behavior. Predictability is
preserved provided system provisioning does not rely upon
the cost predictor’s optimizations.

3.1.2 Engine Locks

A mutex is associated with each GPU copy and execution
engine, was seen in Fig. 3. For GPUs with two copy engines,
there is some flexibility in how copy engines may be used.
For example, one copy engine may be reserved only for P2P
operations with the remaining copy engine used both for in-
bound and outbound data.

GPUSync can be configured to satisfy engine lock re-
quests in either FIFO or priority order (all GPUs within the
same GPU cluster must use the same engine lock order).
Blocked jobs suspend while waiting for an engine. A job
that holds an engine lock may inherit the effective priority
of any job it blocks. We stress effective priority, because the
blocked job may itself inherit a priority from a job waiting
for a token. In order to reduce worst-case blocking, a job is
allowed to hold at most one engine lock at a time, except
during P2P migrations. Engine locks enable the parallelism
offered by GPUs to be utilized while simultaneously obvi-



ating the need for the (unpredictable) GPU driver to make
resource arbitration decisions.

Engine locks should be held for as little time as possi-
ble in order to prevent excessive blocking times that degrade
overall schedulability. Minimizing the hold time of execu-
tion engine locks requires application-specific solutions to
break kernels into small operations. However, a generic ap-
proach is possible for copy engine locks. Chunking is a tech-
nique where large memory copies are broken up into smaller
copies. The effectiveness of this technique is demonstrated
in [13]. GPUSync supports chunking of both regular and
P2P memory copies by way of a user-space library. Chunk
size is fully configurable. The library also transparently han-
dles copy engine locking.
Bus scheduling concerns. The copy engine locks indirectly
impose a schedule on the PCIe bus if we assume that bus
traffic from non-GPU devices is negligible. This is because
these locks grant permission to send/receive data to/from a
particular GPU to one task at a time. It is true that traffic
of other GPUs will cause bus congestion and slow down a
single memory transmission. However, since the PCIe bus is
packetized, it is shared fluidly among copy engine lock hold-
ers. Thus, we can bound the effect of maximum PCIe bus
congestion and incorporate it into real-time analysis. Deeper
analysis or explicit bus scheduling techniques may be nec-
essary if very strict timing guarantees are required, but such
approaches are beyond the scope of this paper.
Migrations. GPUSync supports both P2P and system
memory migrations, which are handled differently.

For a P2P migration from one GPU to another, a job must
hold copy engine locks for both GPUs. Requests for both
copy engine locks are issued together atomically to avoid
deadlock.7 The job may issue memory copies to carry out
the migration once both engine locks are held. P2P migra-
tion isolates traffic to the PCIe bus: copied data does not tra-
verse the high-speed processor interconnect or system mem-
ory buses—computations utilizing these interconnects are
not disturbed. However, gains from fast P2P migrations may
be offset by higher lock contention: unlikely scenarios exist
where every token holder in a GPU cluster may request the
same copy engine lock simultaneously.

If GPUSync is configured to perform migrations through
system memory, then such migrations are performed conser-
vatively, i.e., they are always assumed to be necessary. Thus,
state data is aggregated with input and output data. State is
always copied off of a GPU after per-job GPU computations
have completed. State is then copied back to the next GPU
used by the corresponding task for its subsequent job if a dif-
ferent GPU is allocated. An advantage of this approach over
P2P migration is that a job never needs to hold two copy
engine locks at once.

3.2 Budgeting

Budget enforcement policies are necessary to ensure that
a task’s resource utilization remains within its provisioned

7GPUSync also grants requests atomically to avoid deadlock if priority-
ordered engine locks are used.

Pseudocode 1 Example of budget signal handling.

. Enabled/disabled on try-block enter/exit.
function BUDGETSIGNALHANDLER()

throw BudgetException();
end function

procedure DOJOB()
t← GetToken();
gpu←MapTokenToGpu(t);
try:

DoGpuWork(gpu); . Main job computation.
catch BudgetException:

CleanUpGpu(gpu); . Gracefully cleans up state.
finally:

FreeToken(t);
end procedure

budget. However, the non-preemptivity of GPU operations
makes budget enforcement problematic. Even if limited pre-
emption is provided by breaking a single GPU request into
multiple non-preemptive regions, data on a GPU may be in
a transient state at a preemption point and thus be too diffi-
cult (or too costly) to migrate to another GPU to resume at a
later time. This motivates us to focus on budget enforcement
based on overrun recovery rather than strict enforcement that
absolutely prevents overruns. GPUSync provides three bud-
get enforcement options: signaled overruns, early budget re-
leasing, and a bandwidth inheritance-based method.
Signaled overruns. Under the signaled overrun policy, jobs
are provisioned with a single budget equal to a maximum
CPU execution time, plus a maximum total GPU operation
time. A job’s budget is drained when it is scheduled on a
CPU or GPU engine. The OS delivers a signal to the job
if it exhausts its budget. The signal triggers the job to ex-
ecute an application-defined signal handler. The handler is
application-defined since appropriate responses may vary at
different points of execution. As depicted in Pseudocode 1,
one way an application may respond to a signal is to unwind
the job’s stack (either by throwing an exception8 or a call
to the standard function longjmp()) and execute clean-up
code before releasing its token lock.
Early releasing. The early releasing policy extends the sig-
naled overrun policy by early-releasing a task’s next job
upon budget exhaustion to continue the execution of the
overrunning job. This refreshes the task’s budget, but its cur-
rent deadline is shifted (postponed) to that of its next job. In
essence, the next job has been sacrificed in order to com-
plete the overrunning one. This policy penalizes an over-
running task by forcing it to consume its own future bud-
get allocations. This prevents the system from being overuti-
lized in the long-term. Under deadline schedulers, deadline
postponement also helps to prevent the system from being
overutilized in the short-term. We note that deadline post-
ponement is challenging to implement since it requires pri-
ority inheritance relations established by locking protocols
to be re-evaluated.

8Throwing exceptions from signal handlers may require special com-
piler options.



Figure 5: Schedule of worker threads and dependencies.

Bandwidth inheritance. As shown in [19], a job that over-
runs its budget while holding a shared resource can nega-
tively affect other jobs, even non-resource-using ones. Band-
width inheritance (BWI) limits the effects of such overruns
to resource-sharing tasks. This is accomplished by draining
the budget of a blocked job whose priority is being inherited
by a scheduled job in place of the scheduled job’s own bud-
get. This can cause a blocked job to be penalized for the over-
run of another, but improves temporal isolation from non-
resource-using tasks. GPUSync allows the early releasing
policy to be applied with the variant of BWI described in [3]
when deadline scheduling is used. However, jobs must be
provisioned with additional budget derived from analytical
blocking bounds. This policy may be desirable in systems
where CPU-only tasks require protection from GPU-using
tasks in order to meet strict timing constraints.

3.3 Integration

Our desire to support closed-source drivers and GPGPU run-
times requires GPUSync to adapt to aspects of software
that has not necessarily been designed with real-time predi-
cability in mind. We have already addressed many of these
aspects through synchronization and budgeting. A remain-
ing issue to resolve is that of worker threads. There are two
types of worker threads: (i) OS kernel-level threads, one per
GPU, that process GPU interrupts, and (ii) GPGPU runtime
user-level threads, g per task, that mediate communication
between application code and the GPU driver. The primary
purpose of the work executed by these threads is notification
delivery. Real-time jobs are dependent upon these notifica-
tions, as illustrated by the schedule in Fig. 5. Here, a job Ji
initiates work on GPUj (the engine irrelevant) and it sus-
pends waiting for an operation to complete; GPUj signals
completion with an interrupt. The interrupt is processed by
interrupt thread Ij , which then notifies the user-space worker
threadWi,j , which in turn notifies Ji. Although these worker
threads actually perform very little work, unbounded priority
inversions can result if they are not properly scheduled.

To enable the real-time scheduling of worker threads, we
map these threads to a particular GPU and register them
with GPUSync before task set execution begins. This pro-
cess can be tricky with closed-source software, but it is
possible—we share the technical details in the online ap-
pendix of this paper.9 When Ji suspends waiting for a GPU
operation to complete, the user-level and interrupt threads
for that GPU become eligible to run and may inherit the pri-

9Available at www.cs.unc.edu/˜anderson/papers.html.

Data/ Auto. Multi Clsd.
Real-Time Budg. Comp. GPU P2P GPU Src.
FP EDF Enfrced Ovlp. Alloc. Migr. Aware Compat.

PTasks x x x x x
TimeGraph x x

RGEM x x x
Gdev x x

GPUSync x x x x x x x x

Table 1: GPUSync vs. notable prior work.

ority of Ji.10 Thus, these threads are scheduled according to
priority when signals need to be delivered, so Ji does not
experience any priority inversions. Also, jobs with priorities
greater than Ji are unaffected.

User-level threads may only inherit priority from a sin-
gle source since each thread is associated exclusively with
a single task. However, the interrupt thread is shared among
the engine lock holders of the interrupt thread’s GPU. Under
GPUSync, and similar to [29], the interrupt thread inherits
the greatest priority among all suspended engine lock hold-
ers of its GPU. This may cause an interrupt to be processed at
too great a priority since the interrupt thread may ultimately
signal a lower-priority engine lock holder. However, this is
unavoidable since we cannot know which of the suspended
engine lock holders will receive the notification generated by
the interrupt a priori.

4 Prior GPU Approaches
Table 1 compares features of other notable GPU manage-
ment frameworks related to GPUSync. PTasks [24], devel-
oped by Rossbach et al., creates a new OS-level infrastruc-
ture for GPU management.

Kato et al. designed and implemented TimeGraph [14],
RGEM [13], and Gdev [15, 12]. TimeGraph is a user-
space/kernel-space real-time GPU scheduler designed for
computer graphics. RGEM is implemented entirely in user-
space and supports real-time GPGPU. Gdev extends many
of the ideas developed in RGEM to the kernel-space.

Other than GPUSync, only TimeGraph and RGEM
are designed for predictable real-time systems. Both Time-
Graph and RGEM schedule GPU operations by fixed
priority, and schedule GPU operations in priority order.
GPUSync can be configured to subsume this functionality.

RGEM addresses schedulability problems caused by long
non-preemptive copies between system and GPU memory
by breaking large copies into smaller chunks, reducing the
duration of priority inversions and thus improving schedula-
bility. This chunking approach is supported by GPUSync.

Gdev allows GPUs to access main system memory di-
rectly and has been shown to be beneficial in supporting
low-latency applications [12]. This is also supported by
closed-source GPGPU runtimes and may be used under
GPUSync. However, direct system memory access is in-
compatible with GPUSync’s copy engine management, so
making use of such features under GPUSync requires re-

10We also schedule worker threads with a base-priority statically lower
than any normal real-time task on idle CPUs. This has the potential to in-
crease performance when a job’s GPU operation has completed, but the job
has yet to block for results.



served or exclusively-allocated GPUs for these tasks (which
appears necessary in Gdev as well).

TimeGraph uses a global OS kernel-space GPU sched-
uler in conjunction with an open-source GPU device driver.
Dependence on an open-source driver can be a limitation
since these drivers lag behind vendor-provided ones with
respect to performance, available features, and support for
the most recent GPUs. RGEM, PTasks, and Gdev sup-
port the overlapping of GPU data transmissions and com-
putation. RGEM utilizes a user-space GPU scheduler, sepa-
rately scheduling the execution and copy engines of a GPU.
PTasks uses data-flow graphs to describe flows of execu-
tion, and this is leveraged to individually schedule execution
and copy engines. Gdev’s design is similar to RGEM, but is
implemented as a kernel-space open-source GPU driver.

All approaches, but RGEM, include budget enforcement.
TimeGraph supports two budgetary methods: posterior and
apriori. Posterior enforcement is similar GPUSync’s early
releasing policy, but it does not include deadline postpone-
ment. A job is scheduled under apriori enforcement if the job
is predicted to not overrun its budget. Being non-real-time,
PTasks and Gdev focus on quality-of-service and fairness.

Excluding GPUSync, only PTasks supports automatic
GPU allocation in multi-GPU systems. PTasks includes a
data-aware GPU scheduler that attempts to greedily sched-
ule GPU computations on the “best” available GPU at the
time of an issued operation, where “best” is defined by GPU
capabilities (such as speed) and affinity. However, data mi-
gration between GPUs must be performed by copying data to
and from system memory. In the field of responsive or real-
time GPGPU, no prior work has supported P2P migrations,
let alone with real-time determinism.

Precursors of GPUSync use a synchronization-based ap-
proach for real-time GPU management in [10], with support
for multiple GPUs added in [7] and [9]. Support for real-time
interrupt handling is also supported in [9], but a GPU could
only be used by one task at a time. GPUSync greatly ex-
pands upon these prior efforts by enabling fine-grained man-
agement of GPU resources and also supports GPGPU run-
times that make use of user-level worker threads, such as in
CUDA 4.2 and later.

5 Evaluation
In this section, we evaluate several performance characteris-
tics in an implementation of GPUSync.

GPUSync was implemented as an extension to
LITMUSRT, a real-time kernel extension to Linux.
GPUSync adds approximately 20,000 lines of code to
LITMUSRT.11 Contributions to this total by category are:
GPU allocator and locking protocols, 35%; scheduler en-
hancements, budgeting, and nested inheritance, 35%; GPU
interrupt and thread management, 20%; miscellaneous in-
frastructural changes, 10%.

Our implementation of GPUSync was run on a test plat-
form much like that in Fig. 1. This platform has two NUMA

11For comparison, the LITMUSRT patch to the Linux 3.0 kernel is
roughly 15,000 lines of code.

“nodes,” each with one Xeon X5060 processor with six
2.67GHz cores and four NVIDIA Quadro K5000 “Kepler”
GPUs, for a total of twelve CPUs and eight GPUs. The
K5000 is a high-end GPU with two copy engines. We used
CUDA 5.0 for our GPGPU runtime environment with the
NVIDIA 304.54 driver.

We present our evaluation in two parts. First, we examine
the effectiveness GPUSync’s budgeting mechanisms, cost
predictor, and affinity-aware GPU allocator. Second, we as-
sess the effectiveness of clustered GPU management and
P2P migrations through the scheduling of real-world com-
puter vision workloads.

5.1 Budgeting, Cost Prediction, and Affinity

We used a mixed task set of CPU-only and GPU-using
implicit-deadline periodic tasks to evaluate budget enforce-
ment and the cost predictor. Numerical code was executed
by tasks on both CPUs and GPUs to simulate real applica-
tions. Task execution time was tightly controlled through the
use of processor cycle counters on both CPUs and GPUs.
GPU-using tasks also transmitted data on the PCIe bus. Task
periods ranged from 10 to 75 milliseconds, reflecting sensor
sampling rates found in advanced vehicle prototypes [11]—
one motivating application we discussed in Sec. 1.

The task set consisted of 28 CPU-only tasks and 34 GPU-
using tasks. Each task was assigned a utilization based upon
the combined processor time (CPU and GPU engines) a
task’s job must receive before completing. Of the CPU-only
tasks, twelve had a utilization of 0.1, eight had a utilization
of 0.2, and two had a utilization of 0.3. Of the GPU-using
tasks, fourteen had a utilization of 0.1, fourteen more had a
utilization of 0.25, and six had a utilization of 0.5. 90% of
each GPU-using task’s utilization was devoted to GPU op-
erations, with 75% of that towards GPU kernels, and the re-
maining 25% towards memory copies. The amount of mem-
ory to copy was determined based upon desired copy time
and worst-case bus congestion bandwidth derived from em-
pirical measurements. Memory copies were evenly split be-
tween input and output data. Task state size was set to twice
the combined size of input and output data. Additionally,
data was transmitted in 2MB chunks.

We configured our system to run as a cluster along
NUMA boundaries. Thus, there were two clusters of six
CPUs and four GPUs apiece. The above task set was evenly
partitioned between the two clusters. The task set was sched-
uled under clustered EDF (C-EDF) and clustered RM (C-
RM) schedulers. Under C-EDF, the GPU allocator was con-
figured to use the R2DGLP as its token lock, and engine
locks were FIFO ordered. Under C-RM, the GPU allocator
was configured to be priority-ordered, and priority-ordered
engine locks were also used. Three tokens (ρ = 3) were al-
located to each GPU in order to allow all GPU engines to be
used simultaneously. P2P migrations were also used. These
configurations were selected because they both offer good
analytical schedulability under their respective C-EDF and
C-RM schedulers.

The task set was scheduled under two execution-behavior
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Figure 6: Allocated execution engine time.

scenarios. Under the first scenario, tasks adhered to their pre-
scribed execution times as closely as possible. Under the sec-
ond scenario, however, eight GPU-using tasks in each cluster
were configured to exhibit aberrant behaviors by executing
for ten times their normal execution time at random moments
(roughly spaced by five seconds for each task). These scenar-
ios were scheduled for 180 seconds under both C-EDF and
C-RM schedulers and measurements were taken.

Budget performance. We analyze the ability of GPUSync
to manage budgets (and penalize overrunning tasks) by ex-
amining the long-term utilization of the execution engines.
Here, we test GPUSync under the no-budget-enforcement
and the early releasing policies described in Sec. 3. We mea-
sure execution engine utilization (kernel time divided by
period) with respect to the hold time of execution engine
locks. This is an effective measure, even if the engine may
idle while the engine lock is held, since all other tasks are
blocked from using the engine.

From the task set described above, we focus our attention
on two GPU-using tasks, T1 and T2. T1 has a period of 15ms
and a utilization of 0.25. T1’s ideal execution-engine utiliza-
tion is 0.169, and it sends and receives 512KB to and from
the GPU. T2 has a period of 75ms, a utilization of 0.1, an
ideal execution-engine utilization of 0.068, and it sends and
receive 1024KB to and from the GPU. We focus on these
tasks because of their short and long periods, respectively.

Fig. 6 depicts the accumulated time tasks T1 and T2 hold
an execution engine lock over the duration of their execution.
Equations characterizing each line are also given. We make
several observations.

Obs. 1. A synchronization-based approach to GPU schedul-
ing is effective at supplying GPU-using tasks with provi-
sioned execution time.

Ideally, the slope of the lines in Fig. 6 should be equal
to the task’s execution-engine utilization. With the exception

of line [3], the slopes of all the lines are very close to the
desired utilization. For example, when T2 is well-behaved
under C-EDF scheduling (line [10]), the slope is 0.065, this
is commensurate with the assigned utilization of 0.068.
Obs. 2. Budget enforcement can penalize aberrant tasks by
allocating less execution time.

This may be observed in lines [3] and [9] for the aberrant
task T1 under both C-RM and C-EDF scheduling in Fig. 6.
As shown by line [3] ([9]), T1’s utilization is 0.12 (0.153)—
30% (10%) less than the provisioned 0.169, for C-RM and
C-EDF, respectively. This loss of utilization is a result of
the early releasing budget policy where any surplus from an
early-released budget is discarded after an overrunning job
completes.
Obs. 3. C-RM and C-EDF can both perform well.

For this particular experiment, we observe that both
C-RM and C-EDF are able to supply the needed GPU ex-
ecution time. This is an important result because it em-
powers system designers to select the scheduler that suits
their needs. This is promising for SRT applications, where
bounded tardiness can be guaranteed even for relatively high
utilization levels.
Cost predictor accuracy. We measured the overheads re-
lated to the cost predictor because of our concern that com-
puting averages and standard deviations can be computation-
ally expensive. However, we found these worries to be un-
founded. Updating the cost predictor estimate took 0.294µs
on average, and 2.335µs in the (observed) worst-case.

We now discuss the accuracy of the cost predictor. Fig. 7
plots cumulative distribution functions (CDFs) for the per-
centage error of the cost predictor for different migration dis-
tances under the aberrant behavior scenario, without budget
enforcement. Migration distance is denoted by d; d = 0 re-
flects no migration, d = 1 denotes migrations to neighboring
GPUs, and d = 2 reflects migrations to distant GPUs.
Obs. 4. The cost predictor is generally accurate at predicat-
ing token hold time, despite aberrant task behavior.

As seen in Fig. 7, under C-EDF (inset (a)), roughly 95%
of all predictions for task T1 have a percentage error of 5%
or less (only one sample exists for T1, d = 2). Accuracy is
even better for T1 under C-RM. This is expected since T1 has
a statically high priority due to its short period, and it is thus
able to avoid more interference from other tasks than under
C-EDF.
Obs. 5. The cost predictor is less accurate for tasks with
longer execution times and periods.

Both insets (a) and (b) of Fig. 7 show that the cost pre-
dictor is less accurate for T2 than T1 in this experiment. This
is because T2 has a longer execution time and period than
most other tasks in the task set. Thus, T2 is more likely to
experience interference from aberrant tasks.
Obs. 6. The cost predictor is moderately less accurate under
C-RM than C-EDF.

This can be seen by comparing insets (a) and (b) of Fig. 7.
For example, about 90% of predictions for T2 with d = 1
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Figure 7: Cumulative distribution functions of percentage error.

under C-EDF (inset (a)) have a percentage error no greater
than 20%. Compare this to C-RM (inset (b)), where only
80% of d = 1 predictions for T2 have the same degree of
accuracy.

Obs. 7. The cost predictor is generally less accurate for
longer migration distances.

A migrating job of a task must acquire additional copy en-
gine locks and do more work than non-migrating jobs. This
introduces variability into token hold times predicted by the
cost predictor. We see that this generally has a negative ef-
fect on the cost predictor. This is clearly demonstrated in
Fig. 7 for C-RM, where each CDF generally upper-bounds
the CDF of the same task at the next migration distance. We
note that this does not always hold under C-EDF. For exam-
ple, predictions for T2 with d = 1 are more accurate than
d = 0. However, as we discuss shortly, this may be due to a
smaller sample size of observations.

Migration frequency. The cost predictors are an important
component of GPUSync, as they influence the behavior of
the migration heuristics. Table 2 gives the total number of
migrations observed under the aberrant scenario, with and
without budget enforcement.

Obs. 8. Affinity-aware GPU assignment helps maintain
affinity.

Under all scenarios, we see that tasks are significantly
more likely to be assigned the GPU with which they have
affinity. For instance, task T1, under C-EDF with no budget
enforcement, maintained affinity 11887 times, migrated to a

C-EDF C-RM
No Budgeting Budgeting No Budgeting Budgeting

Distance T1 T2 T1 T2 T1 T2 T1 T2

0 11887 2382 8866 2374 11255 1826 8586 1915
1 110 11 130 8 374 245 386 142
2 0 4 0 13 368 326 173 340

Total 11997 2397 8996 2395 11997 2397 9145 2397

Table 2: Observed migration counts and distances for T1 and T2.

neighboring GPU 110 times, and never migrated to a distant
GPU. Similar trends are observed for all tasks. Without an
affinity-aware method, migrations would be more frequent
than reassignment since any task would have a 75% chance
(with a GPU-cluster size of four) of being assigned to a dif-
ferent GPU.
Obs. 9. GPUSync is more successful at maintaining affin-
ity under the C-EDF configuration.

Observe in Table 2 that migrations are more frequent un-
der C-RM than C-EDF. Indeed, distant migrations are prac-
tically eliminated under C-EDF. This behavior is attributable
to the decreased cost-predictor accuracy under C-RM (recall
Obs. 6). Inaccurate estimates can cause migrations to seem
faster than waiting for the GPU for which the job has affin-
ity. This observation demonstrates the importance of the cost
predictor with respect to the runtime behavior.

5.2 Real-Time Vision Workloads

We now describe the vision-related experiments mentioned
earlier. In these experiments, we adapted a freely-available
CUDA-based feature tracking program to GPUSync on
LITMUSRT [16]. Feature tracking is an important applica-
tion in automotive systems that sense and monitor the envi-
ronment. The tracker represents a scheduling challenge since
it utilizes both CPUs and GPUs to carry out its computations.
Though feature tracking is only one GPGPU application, its
image-processing operations are emblematic of many others.

We stressed our evaluation platform by applying feature
tracking to thirty independent video streams simultaneously.
Each video stream is handled by one task, with each frame
being processed by one job. The video streams have differ-
ent execution-rate requirements: two high-rate streams run
at 30 frames per second (FPS), ten medium-rate streams run
at 20 FPS, and eighteen low-rate streams run at 10 FPS. The
high- and medium-rate streams operate on video frames with
a resolution of 320x240 pixels. Each job of these streams
has roughly 1MB of combined input and output data and
a state size of about 6.5MB. The low-rate streams process
larger video frames with a resolution of 640x480. A low-rate
stream requires four times as much memory as a higher-rate
stream. Video frames were preloaded into memory in order
to avoid disk latencies (such latencies would be non-existent
with real video cameras). All data was page-locked in sys-
tem memory to facilitate fast and deterministic memory op-
erations.

We tested the same configurations as in the prior experi-
ments, with the addition C-EDF configured with a priority-
ordered GPU allocator and engine locks. The token count
was also reduced to ρ = 2 for all configurations—we found
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Figure 8: Cumulative distribution functions of job response times
as percent of period. Graphs are truncated for visual clarity.

this worked best for this data-heavy workload. The video
streams were scheduled on three different GPU clustering
configurations: eight GPU partitions (g = 1), four small
GPU clusters of two GPUs (g = 2), and two large GPU clus-
ters of four GPUs (g = 4). We tested the clustered configu-
rations with both P2P and system memory migration. Tasks
were partitioned evenly among the CPU and GPU clusters.
Our video-stream workload was scheduled under each con-
figuration for 120 seconds and measurements were taken.

Results. We analyze each GPUSync configuration by in-
specting the response time of each job. We classify a con-
figuration as resulting in an “unschedulable” system if any
task consistently exhibits growth in response time (a sign of
unbounded deadline tardiness).12 We assume a schedulable
system with bounded deadline tardiness, otherwise.

Fig. 8 plots the CDF of job response times under each
configuration, expressed as a percent of period. Unschedula-
ble configurations are denoted by dashed lines. We truncate

12We plan on investigating formal schedulability analysis in future work.

the plots in order to show more detail for shorter response
times. Truncated lines are annotated with the value (in paren-
theses) where the associated CDF reaches 1.0 (i.e., the ob-
served worst-case response time). We make several observa-
tions from these results.

Obs. 10. Priority-ordered queues often provide improved
observed response times.

This trend can be seen by comparing the curves in in-
set (a) to insets (b) and (c). The priority-ordered queues
decrease the average-case blocking experienced by high-
priority requests, i.e., those with urgent deadlines or short
periods under C-EDF and mboxC-RM, repetitively. How-
ever, Wieder and Brandenburg [28] have recently shown that
FIFO-ordered queues often improve schedulability. While
schedulability analysis is outside the scope of this paper,
we believe that GPUSync can be configured to use FIFO-
ordered queues to optimize for schedulability, or priority-
ordered queues to optimize for runtime behavior, highlight-
ing GPUSync’s flexibility.

Obs. 11. Clustered GPU management can outperform a par-
titioned approach.

This can be observed in lines [2] and [4] in inset (a) of
Fig. 8. The CDFs of these clustered GPU configurations with
P2P migration show that a job is more likely to have a shorter
response time than jobs in the other FIFO-ordered configura-
tions. Despite the extra load imposed by memory migrations,
clustered GPU approaches can still outperform a partitioned
GPU approach (line [1]). This is a positive result in light
of the benefits FIFO ordering can have on schedulability—
clustering may provide a viable FIFO-based alternative to a
poorer performing partitioned approach.

Obs. 12. Small GPU clusters may be preferable over large
GPU clusters.

In Fig. 8, we observe that small GPU clusters (lines [2]
and [3]) generally yield shorter response times than large
GPU clusters (lines [4] and [5]) in this experiment. For ex-
ample, in inset (a) of Fig. 8, a cluster size of two with P2P
migrations (line [2]) has the shorter response times than a
cluster size of four (line [4]). This difference is attributable
to the higher cost of migration between distant GPUs in the
larger clusters. In each inset of Fig. 8, a cluster size of two
with system memory migrations (line [3]) has shorter re-
sponse times than a cluster size of four (line [5]), despite an
equal migration distance to system memory. Large clusters
perform poorly due to an increased chance of migration.

Obs. 13. GPU state migration through system memory is
often too costly.

We observe from Fig. 8 that no configuration that used
system memory migration resulted in a schedulable system
in our experiment. Indeed, partitioned GPU management is
preferable to all such system-memory-migration configura-
tions. This is clearly reflected by lines [3] and [5] in each in-
set, where the observed worst-case response times are over
9,000% of task period.



6 Conclusion

In this paper, we presented GPUSync, a lock-based GPU
management framework for real-time multi-GPU systems.
Unlike prior research, GPUSync takes a synchronization-
based approach to GPU scheduling that simultaneously pro-
motes affinity among computational tasks and GPUs, and
fully exposes the parallelism offered by modern GPUs.
While others have approached GPU management from a
scheduling perspective, GPUSync’s synchronization-based
techniques allows it to be “plugged in” to a variety of real-
time schedulers. We reported on our efforts of implementing
GPUSync in LITMUSRT, and have given evidence, through
empirical evaluations, that GPUSync can successfully meet
the resource allocation needs of a real-time GPGPU system.
We further show that execution behaviors can be predicted to
promote task affinity in multi-GPU systems. We also demon-
strated that efficient clustered GPU management, enabled by
peer-to-peer communication between GPUs, can outperform
partitioned approaches in some GPUSync configurations.

This paper has focused on the design and implementa-
tion of GPUSync. In a future paper, we will analytically
model the real-time predicability of GPUSync and examine
the trade-offs of different GPUSync configurations in terms
of schedulability analysis. This work is already underway
and nearing completion.

Considering the broader area of research, GPUSync does
not support systems with different types of GPUs, i.e., het-
erogenous GPUs. A particularly interesting scenario to study
would be the simultaneous support of both integrated and
discrete GPUs. If these GPUs were to be managed in a clus-
tered fashion, then online mechanisms would have to bal-
ance the relatively weak computational power of integrated
GPUs against the data communication cost of discrete GPUs.
Optimizing the solution for power consumption would add
yet another dimension of complexity.
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A Scheduling Closed-Source Threads
At the end of Sec. 3, we discussed several thread depen-
dancies that can exist in today’s GPGPU systems. A GPU-
using real-time task can be dependent upon the timely ex-
ecution of both GPU interrupt handling threads and user-
level threads created by a closed-source GPGPU runtime.
A detailed discussion of our general approach to GPU in-
terrupt thread scheduling is available in [9], with necessary
enhancements to support GPUSync described in Sec. 3 of
this paper. However, we wish to provide more detail on how
user-level threads found in a closed-source GPGPU run-
time can be scheduled with real-time priorities. We limit the
specifics of our discussion to the CUDA GPGPU runtime
from NVIDIA, but we believe out general techniques use
can work with other runtimes as well.

Starting in CUDA 4.2, the CUDA runtime creates one
user-level worker thread for each GPU used by each program
instance (process). NVIDIA does not disclose what compu-
tations their worker threads perform, but through experimen-
tation, we have found that they are responsible for waking
GPU-using threads that suspend while waiting for GPU op-
erations to complete.13 Clearly, these worker threads must
be scheduled with an appropriate priority to avoid priority
inversions. However, applying a scheduling policy to these
tasks is challenging since they are created by closed source
software.

We make no assumption of when the CUDA runtime
creases worker threads. We also assume that we do not know
which worker threads are associated with which GPUs.
However, for our discussion here, let us assume that there
is only one real-time task per process, and it is represented
by the process’s main thread. As described in Sec. 3, the
base priority of a worker thread is statically less than any
normal real-time task in the system. However, the worker
threads within a process may inherit the effective priority of
process’s main thread when the main thread suspends while
holding an engine lock. This effective priority may be the
base priority of the main thread or even a priority inher-
ited through locking protocols. The single threaded sporadic
task model is preserved in this implementation, since a real-
time task may only use one GPU at a time—only one worker
thread may have work to do at any given moment. Thus, no
two worker threads inheriting the same priority will execute
simultaneously.

The scheduling policy of worker threads
in LITMUSRT is controlled through two sys-
tems calls: enable aux rt tasks() and
disable aux rt tasks(). LITMUSRT discovers
and tracks CUDA’s worker threads through these sys-
tem calls that are called by regular real-time tasks.
enable aux rt tasks() may take a combination
of two flags as parameters: CURRENT and FUTURE.
When enable aux rt tasks(CURRENT) is called,
LITMUSRT iterates over the list of all threads within
the process of the thread that issued the system call.

13These worker threads are also used to execute stream callbacks in
CUDA 5.0. (See CUDA’s cudaStreamAddCallback().)

The scheduling policy of all non-real-time threads found
within the process are changed to an “auxiliary real-
time task” policy. Auxiliary real-time tasks follow the
scheduling policy described in the paragraph above.
When enable aux rt tasks(FUTURE) is called,
then any new threads created within the process in
the future automatically assume the auxiliary real-time
task policy. CURRENT and FUTURE may be com-
bined in a single call to enable aux rt tasks().
disable aux rt tasks() also takes
the flags CURRENT and FUTURE.
disable aux rt tasks(CURRENT) restores the
default Linux scheduling policy to all current auxiliary
tasks. disable aux rt tasks(FUTURE) disables the
behavior that automatically applies the auxiliary real-time
task policy to threads created in the future. CURRENT
and FUTURE also may be combined in a single call to
disnable aux rt tasks().

Earlier we assumed that each process only contains one
real-time task, represented by the main thread. This is not
strictly necessary in actuality. LITMUSRT allows more than
one real-time task to execute within a process. This may
be desirable in some real-time applications where a shared
address space aids in efficiency. This is also supported by
our implementation of GPUSync: In a process that con-
tains more than one real-time task, auxiliary threads inherit
the maximum priority of any suspended engine-holding real-
time task within their process. This ensures that no priority
inversions due to auxiliary tasks are unbounded. However, it
remains possible for an auxiliary task to ultimately perform
work for a lower-priority real-time task while the auxiliary
task inherits a higher priority from another. This is a bounded
priority inversion that should be accounted for in schedula-
bility analysis. This may be done using the same techniques
developed for interrupt accounting [9].


