
Independence Thresholds: Balancing Tractability and Practicality in
Soft Real-Time Stochastic Analysis∗

Rui Liu+, Alex F. Mills++, and James H. Anderson+

+Department of Computer Science, University of North Carolina at Chapel Hill
++Department of Operations and Decision Technologies, Indiana University Kelley School of Business

Abstract
The issue of stochastic response-time analysis is considered
in the context of soft real-time multiprocessor schedulers. For
such analysis to yield tractable, closed-form results, it is in-
evitably necessary to assume that execution times are proba-
bilistically independent. However, stochastic dependencies
among tasks are often common in actual systems. To en-
able closed-form analysis results to be applied to such sys-
tems, the concept of an independence threshold is introduced.
Such a threshold is a “tunable” per-task parameter that can
be adjusted to control the extent of dependency in task ex-
ecution times as assumed in analysis; such thresholds can
even be applied in settings where explicit dependencies exist
among tasks through resource sharing. A method is presented
for setting independence thresholds in which measured task
execution times are subjected to known statistical indepen-
dence tests. This method is applied in a case study involving
MPEG decoding. In this case study, the usage of indepen-
dence thresholds enabled up to a 3.5-fold reduction in provi-
sioned task execution times compared to a worst-case provi-
sioning without compromising analysis assumptions.

1 Introduction
The multicore revolution has led to considerable scheduling-
related work pertaining to multiprocessor real-time systems.
The vast majority of such work has focused on ensuring hard
real-time (HRT) deadline constraints. Unfortunately, apply-
ing such work in practice has proven to be somewhat prob-
lematic due to various complexities that arise in multicore-
based systems. For example, cross-core interactions through
shared hardware such as buses, caches, and memory con-
trollers can be difficult to handle efficiently. In contrast, such
complexities are much less of a concern when supporting soft
real-time (SRT) applications for which less stringent timing
guarantees are needed. Thus, focusing on the SRT case may
yield more immediate practical benefits.

One major difference between HRT and SRT applications
is that the former must necessarily be provisioned on a worst-
case basis, while for the latter, an average- or near-average-
∗Work supported by NSF grants CNS 1016954, CNS 1115284, CNS

1218693, and CNS 1239135.

case provisioning may likely be more suitable. Unfortunately,
obtaining tractable, closed-form schedulability-analysis re-
sults in the latter case almost always entails assuming that
execution times are probabilistically independent,1 and such
assumptions are often violated in practice. Thus, we have
the following dilemma: while shifting focus from the HRT
case to the SRT case obviates many of the complexities af-
fecting multicore-based real-time systems, such a shift intro-
duces new analysis limitations related to independence as-
sumptions. In this paper, we address this dilemma by pre-
senting a new approach for easing such limitations.

Related work. Before describing our main contributions,
we first present a brief review of prior work on SRT multi-
processor scheduling and stochastic schedulability analysis.
Due to space limitations, this overview emphasizes research
of direct relevance to the work presented herein.

Edgar and Burns [10] were perhaps the first to apply
statistical analysis to the determination of task execution
times. Their work, which focused on worst-case execution
times (WCETs), was later refined by Burns et al. [6] and
by Bernat et al. [2], who proposed the idea of probabilis-
tic worst-case execution times (pWCETs), for which inde-
pendence can be assumed. These authors also showed that
pWCETs can be empirically determined. In contrast to this
prior work, which focuses on worst-case provisionings for
HRT systems, our main focus here is enabling average- or
near-average-case provisionings for SRT systems. Many later
studies were conducted involving the estimation of pWCETs
(e.g., [8, 12]). Additionally, Maxim et al. [15] presented
uniprocessor fixed-priority response-time analysis for tasks
provisioned via pWCETs that have probabilistically deter-
mined minimum inter-arrival times.

Our work builds directly upon prior work of Mills and An-
derson [16, 17], who presented stochastic analysis for bound-
ing expected task response times. Their work built upon prior
work on global multiprocessor schedulers that showed that a
variety of such schedulers are capable of ensuring bounded
deadline tardiness (and hence bounded response times) with-

1Throughout this paper, the term independence is used to refer to prob-
abilistic independence. We emphasize this because this term usually has a
different meaning in the real-time scheduling literature.



out schedulability-related utilization loss [9, 14]. In this prior
tardiness-related work, WCETs were used. This leads to
a worst-case system provisioning, which is problematic for
many SRT systems due to the pessimism involved. Mills and
Anderson showed that by encapsulating each real-time task
within a deterministically provisioned server that is ensured
bounded tardiness, expected task tardiness can be upper-
bounded by the sum of two terms: a deterministic compo-
nent pertaining to server tardiness, and a stochastic compo-
nent pertaining to the task’s execution using its server’s bud-
get allocations, which can be provisioned based on the en-
capsulated task’s average execution time [17]. The analysis
yielding this result does not require actual execution-time dis-
tributions; rather, a task’s execution time is characterized by
specifying a mean and standard deviation, both of which can
be determined through measurement. While this work was
motivated by prior work on global scheduling, it can be ap-
plied in any context where server response times are bounded.
A similar server-based approach was later used by Palopoli
et al. [18] in work that focused on computing deadline-miss
probabilities.

As with most stochastic analysis, that of Mills and An-
derson requires independence assumptions. To provide some
leeway in this regard, they allow the jobs (i.e., invocations)
of the same task to be grouped into windows, with one or
more jobs per window, and provide response-time bounds
on a per-window basis. Dependencies are allowed within
such windows, but not across windows. Highly dependent
jobs can be dealt with by defining such windows to be large,
but since response times are bounded on a per-window ba-
sis, such bounds become large as well. As discussed next,
we present an alternative way of dealing with dependencies
in this paper that does not suffer from this shortcoming.

Independence thresholds. When applying stochastic anal-
ysis with independence assumptions to predict the behavior of
an actual system, one is essentially making a “bet” that such
assumptions are not egregiously violated in practice. Apply-
ing the concept of an “independence threshold” as proposed
herein increases the odds that such a bet will pay off. An in-
dependence threshold is nothing more than a per-task deter-
ministic execution-cost parameter. A task’s actual execution
cost is modeled in analysis as the sum of two costs: a random
cost that is bounded from above by the deterministic inde-
pendence threshold (for which independence is not assumed)
and an additional random cost for which independence is as-
sumed. Such a modeling approach has two benefits. First,
system designers can control the extent of any assumed in-
dependence. Second, if extreme worst-case behavior is rare,
then it may be possible to set a task’s independence thresh-
old close to a much lower average-case value without com-
promising analysis assumptions. Thus, a wasteful worst-case
system provisioning can be potentially avoided.

This concept is illustrated in Fig. 1, which shows a se-
quence of measured execution times for a task and three pos-

Ta
sk

 E
xe

cu
tio

n 
Ti

m
es

 (m
s)

 

0

1

2

3

4

5

6

7

A = 0 ms 

B = 3 ms 

C = 7 ms 

Task Execution Samples 

Figure 1: Three different independence thresholds.

sible independence thresholds for that task. By setting the
threshold to A = 0 ms, the system designer is assuming that
all execution times for this task are independent. At the other
extreme, a setting ofC = 7 ms corresponds to a deterministic
worst-case provisioning for this task (provided the measure-
ment process revealed the true worst case), so no indepen-
dence is required. Between these two extremes, a setting of
B = 3 ms requires independence to be assumed only for the
portion of this task’s execution time that exceeds 3 ms. These
three choices represent three different levels of confidence the
system designer may have concerning the independence of
task execution times.

Contributions. Our contributions are fourfold. First, we
introduce the notion of an independence threshold as a sim-
ple and elegant way of balancing the conflicting desires of
having tractable stochastic response-time analysis and being
able to provision systems without resorting to worst-case or
near-worst-case assumptions. Second, we show how to inte-
grate such thresholds in the server-based stochastic analysis
of Mills and Anderson [17]; such an integration can even be
adapted to allow explicit resource sharing among tasks (i.e.,
critical sections). To our knowledge, the issue of resource
sharing in the context of stochastically provisioned SRT sys-
tems has not been considered before. Third, while an inde-
pendence threshold can be viewed as a tunable design pa-
rameter, we present a measurement process, based on known
statistical independence tests, that can be applied to set such
thresholds so that observed runtime dependencies are effec-
tively eliminated. Fourth, we present a case study involving
MPEG decoding tasks in which these results were applied. In
this case study, the usage of independence thresholds enabled
up to a 3.5-fold reduction in provisioned task execution times
without compromising analysis assumptions.

Organization. After providing needed background (Sec. 2),
we more formally introduce the concept of an independence
threshold (Sec. 3), present the above-mentioned response-
time analysis, measurement process, and experimental results
(Secs. 4–6), and then conclude (Sec. 7).



2 Background
In this section, we introduce the task-system model and
scheduling scheme we use. The majority of this section is
adapted from [17].

2.1 Stochastic Sporadic Tasks

We consider a system τ = {τ1, τ2, . . . , τn} consisting of n
tasks scheduled on m processors. A task is a possibly infinite
sequence of jobs. Jobs are demands for processing time. Jobs
of the same task must execute sequentially and in FIFO order.
Each task τi ∈ τ is a sporadic task specified with a period pi
and a relative deadline di, where di ≤ pi. The jth job of τi,
τi,j , has a release time ri,j , absolute deadline di,j = ri,j +di,
and execution time Xi,j , which is a random variable. If τi,j
completes execution at time t, then its response time is t−ri,j ,
and its tardiness is max{0, t − di,j}. (If a job is tardy, then
the release time of its successor is unaltered.) For now, we
assume that tasks share no resources other than the processors
upon which they are scheduled; however, we eliminate this
assumption later in Sec. 3.

2.2 Simple Sporadic Servers

The scheduling scheme considered in this paper involves a
server abstraction. Each task τi ∈ τ runs on a unique simple
sporadic server Ti, which carefully controls the amount of
time that τi is allowed to execute.

Let T = {T1, T2, . . . , Tn} be a system of simple sporadic
servers. Each such server Ti has period pi and execution bud-
get bi. Permissible values of bi are specified later in Cor. 1 in
Sec. 3. The budget of Ti is replenished whenever Ti is eligible
and backlogged. Ti is eligible if and only if it has never had
its budget replenished or at least pi time units have elapsed
since its last replenishment (recall that pi is also the period
of τi). Ti is backlogged if and only if there is pending work
of τi. We call Ti,j the jth instance of Ti. The replenishment
time of Ti,j is denoted by Ri,j . The deadline of Ti,j , denoted
Di,j , is the earliest time at which Ti,j+1 could be replenished,
which is Di,j = Ri,j + pi (i.e., server deadlines are implicit).

The budget of Ti is consumed whenever it has the highest
priority according to the scheduling algorithm in use. For ex-
ample, if the global earliest-deadline-first (GEDF) scheduler
is used, then the budget of Ti is consumed whenever it has
one of the m earliest deadlines.

Note that server Ti always has a fixed budget bi, while τi’s
execution times are random variables {Xi,j , j = 1, 2, . . .}.
The manner in which the server Ti schedules its contained
task τi is explained next.

2.3 Scheduling Example

Fig. 2(b) shows an example with two sporadic stochastic
tasks: τ1, with period 5 and execution cost drawn from some
distribution with mean 2; and τ2, with period 3 and execu-
tion cost drawn from some distribution with mean 0.75. Job
τ1,1 is released at time 0 and has execution cost 4, job τ1,2 is

1,1

1T

0

2,1 3,1

4 8 12

0 4 8 12

2T

0 4 8 12

0 4 8 12

2

1

1,2 2,2

Execution Suspension

(a)

(b)

Figure 2: Example servers and sporadic stochastic tasks on a
uniprocessor. (a) For servers T1 and T2, ↑ denotes replenishment
time and ↓ denotes deadline; the budget is shaded for each server.
T1 and T2 are scheduled using EDF. (b) For the sporadic stochastic
tasks τ1 and τ2, ↑ denotes release time and ↓ denotes deadline; ac-
tual execution times are shaded, and suspensions are shown in white.

released at time 6.3 and has execution cost 1.5, and job τ1,3
is released at time 11.3 and has execution cost 2. Job τ2,1 is
released at time 0 and has execution cost 0.8, and job τ2,2 is
released at time 3 and has execution cost 1.7. The schedule is
not shown after time 13.

Fig. 2(a) shows budget changes for two servers, scheduled
via the uniprocessor earliest-deadline-first (EDF) scheduler.
T1 corresponds to τ1. It has period 5 (the same as τ1), and
budget 3. T2 corresponds to τ2. It has period 3 and budget
1. We can verify that T is schedulable by EDF on a unipro-
cessor because 3/5 + 1/3 ≤ 1. We will use the example
given in Fig. 2 to illustrate some important properties of the
considered scheduling approach.

Initial replenishment. Both servers are replenished at time
0 since they are both eligible (having never been replenished
before) and backlogged (since both τ1 and τ2 release jobs at
that time). The deadlines are set to 5 (for T1) and 3 (for T2).

Consumption rule. Budgets are consumed according to
how the server instances of T are scheduled. In the example,
T is scheduled using EDF on a uniprocessor. For example,
T2 begins consuming its budget first at time 0 because T2,1
has a higher priority (earlier deadline) than T1,1.



Idleness. T is scheduled without regard for idleness in τ .
Although τ2,1 finishes executing at time 0.8, T2 continues its
consumption, even though this means that the processor is
idle. This prevents server instances from experiencing self-
suspensions (which can complicate schedulability analysis).

Task suspensions and resumptions. At time 4, the budget
of T1,1 has been consumed, so τ1,1 suspends its execution.
At time 5, T1 is eligible, so its budget is replenished, even
though τ1,2 has not yet been released. τ1,1 resumes executing
and continues executing until time 6, when it completes.

Replenishment rule. A server’s budget is replenished only
when it is eligible and backlogged. Thus, its next replenish-
ment may be after its next deadline. For example, T1 becomes
eligible for replenishment at time 10 but is not replenished
until time 11.3 because no job of τ1 can execute until then.

The server scheme described above is used in this paper
because of its simplicity. However, our results are also appli-
cable under a variety of other server schemes that use more
complex budget management rules.

3 Independence Thresholds
The independence threshold of task τi is a non-negative fixed
parameter hi. For a job τi,j of τi, the portion of its execution
time exceeding hi is denoted by Yi,j = max{0, Xi,j − hi}.
In order to apply the response-time analysis of Mills and An-
derson [17], we assume the existence of a sequence of non-
negative independent and identically distributed (i.i.d.) ran-
dom variables Ei,j , where j = 1, 2, . . . , with mean ei and
variance σ2

i , where P(Ei,j ≥ Yi,j) = 1. Moreover, we as-
sume that, for any l 6= i, Ei,j and El,k are independent. Note
that these independence assumptions apply only to the Ei,j
random variables and do not require either the actual job ex-
ecution times or the Yi,j random variables to be independent
of one another. An illustration of our notation is given in
Fig. 3. As discussed later in Sec. 5.2, we upper-bound the
Yi,j random variables by the Ei,j random variables because
the former may fail to be independent, due to the fact there
are two cases in the expression max{0, Xi,j − hi}.

In applying the response-time analysis reviewed below, we
use Ei,j + hi as the execution time of τi,j instead of Xi,j .
Thus, τi,j’s execution time consists of a deterministic part hi
and a stochastic partEi,j . In general, analysis pessimism will
be reduced if hi can be set as low as possible. The desire to
support the existence of independent Ei,j random variables
is the key determining factor when selecting an appropriate
value for hi. Later, in Sec. 5, we describe a measurement
process that can be used to set hi and determine ei and σ2

i ,
which are needed in the response-time analysis.

4 Response-Time Analysis
Suppose that a scheduling algorithm A (such as GEDF) is
used to schedule the server system T that ensures bounded
tardiness, i.e., for each server Ti, there exists a constant

(a) Xi,j > hi (b) Xi,j ≤ hi 

hi hi 

Ei,j Ei,j 
Yi,j 

Xi,j 
(actual 
exec. 
time) 

Xi,j 
(actual 
exec. 
time) 

Yi,j = 0 

Figure 3: Depiction of our notation for the cases (a) Xi,j > hi and
(b) Xi,j ≤ hi.

Bi(T,A) such that any arbitrary instance Ti,j has tardiness
at most Bi(T,A). Also, let Zi,1, Zi,2, . . . be i.i.d. random
variables, where Zi,j upper bounds the execution time of job
τi,j , and Zi,j and Zl,k are independent for any l 6= i. Then,
the expected response time of each stochastic sporadic task
τi can be bounded by using Cor. 2 in [17]. Letting Zi denote
the mean of the sequence Zi,1, Zi,2, . . . and letting Var(Zi)
denote its variance, this corollary is as follows, with minor
modifications due to notational differences.

Corollary 1. If there exists a set of budgets {bi, b2, . . . , bn}
such that bi > Zi for all τi ∈ τ , and T is scheduled on a mul-
tiprocessor platform with algorithm A as described above,
then the expected response time of any job τi,j is less than(

Var(Zi)

2bi(bi − Zi)
+ 3

)
pi +Bi(T,A). (1)

Moreover, the q-quantile of the response-time distribution is
less than(

Var(Zi)

2bi(bi − Zi)(1− q)
+ 3

)
pi +Bi(T,A). (2)

The quantile result is important because it allows a system
designer to determine a bound that will hold any desired per-
centage of time (e.g., the 0.9-quantile is a threshold that will
be met in at least 90% of cases). From a practical standpoint,
this allows the more conservative user to introduce additional
pessimism by specifying a higher quantile.

In both (1) and (2), the first summand accounts for tardi-
ness that arises due to task τi’s stochastically varying execu-
tion times; the second summand, Bi(T,A), is due to the (de-
terministically bounded) tardiness experienced by the server
Ti. Note that we cannot replace Zi,j by Xi,j because inde-
pendence is not assumed of the Xi,j variables. However, we
can replace it by Ei,j + hi because the Ei,j variables do sat-
isfy the given independence assumptions, hi is a constant,
and Ei,j + hi ≥ Xi,j . Given that hi is a constant, it follows
that Zi = ei + hi, and Var(Zi) = σ2

i . Using these substi-
tutions, we can bound the expected response time of any job
of task τi using (1), and we can bound the q-quantile of the
response-time distribution using (2).



Allowing job windowing. Cor. 1 is derived from an ex-
pected response-time bound obtained for a more general task
model considered in [17] in which each task’s jobs are par-
titioned into fixed-length windows that may contain multiple
jobs each, and response times are bounded on a per-window
basis; Cor. 1 considers the special case where each window
includes exactly one job. As noted in Sec. 1, the window-
based model used in [17] allows dependencies among jobs
within windows (but not across windows). This gives us two
methods for potentially dealing with dependencies: the usage
of independence thresholds as proposed here, and the usage
of job windows as proposed in [17]. Both methods can in
fact be used together, though we do not state a counterpart of
Cor. 1 for this possibility due to space constraints. In Sec. 6,
we experimentally evaluate both methods.

Allowing resource sharing. The introduction of lock-
based resource sharing can cause dependencies in two ways.
First, jobs may experience blocking times when they wait
to access shared resources. Second, information exchanged
through such resources may cause execution-time variations,
e.g., by influencing the code paths a job takes. Under
suspension-oblivious blocking analysis [5] (wherein block-
ing time is analytically viewed as computation time), depen-
dencies due to blocking can be eliminated by always provi-
sioning critical sections (CSs) and the blocking times they
induce on a worst-case basis. In actual systems, care is of-
ten taken to ensure that CS lengths are short, in which case
accounting for them on a worst-case basis should have only
minor impact. Execution-time variations outside of CSs can
be dealt with by applying the idea of an independence thresh-
old to the non-CS portion of a task’s execution, but properly
setting such a threshold becomes more complicated in this
case, as discussed in Sec. 5.4. The general idea of dealing
with CS-related costs on a worst-case basis and non-CS ex-
ecution times stochastically is not limited to using indepen-
dence thresholds. For example, the same idea can be applied
when job windowing is used. We revisit the issue of resource
sharing later in the context of our experiments.

5 Measurement Framework
An independence threshold is a tunable parameter that can
be set to any non-negative value. However, for the analysis
described in the prior section to be valid, the independence
assumptions given in Sec. 3 should be respected. In this sec-
tion, we explain how to use known statistical tests to ensure
that these assumptions are respected (at least, to the extent
possible using known tests). For simplicity, we assume here
that the windowing technique mentioned in the prior section
is not being used (or more precisely, each window includes
exactly one job) and that critical sections do not exist. How-
ever, the methods discussed here can be easily extended to
properly set independence thresholds when jobs are grouped
into windows (in which case, a task’s independence threshold
would be set by considering per-window execution times) and

can be adapted to apply when critical sections exist (though
the latter can introduce some technical challenges with re-
spect to measurement, as discussed in Sec. 5.4).

We assume that independence thresholds are set by apply-
ing statistical tests to measured task execution times. The
statistical tests used in this section are hypothesis tests. Each
tries to reject a certain null hypothesis H0 and has an associ-
ated significance level, which is a fixed probability of wrongly
rejecting H0, if it is in fact true. We need tests for validating
both independence and the property of being identically dis-
tributed. We consider these issues separately.

5.1 Testing for Independence

The fundamental idea of probabilistic independence between
two random variables is that if information about the realized
value of one random variable is known, then this knowledge
should not change the distribution of the other random vari-
able (in other words, knowing the value of one random vari-
able is not “useful” in predicting the value of the other ran-
dom variable). It is desirable that tests for independence be
“distribution-free”: such tests can be applied to reason about
data for which the underlying distribution is unknown. For a
sequence of random variables, we can perform a distribution-
free test for independence by applying the runs test, which
has two variants, as discussed next. For both variants, the null
hypothesisH0 states that the values in the tested sequence are
independent of one another. This hypothesis is tested by ex-
ploiting certain statistical properties of runs.

Runs of “above and below the mean.” Consider a se-
quence of observations from two complementary and fixed-
probability events a and b. That is, P(a) and P(b) are fixed
for all observations and P(a) +P(b) = 1. A run is defined as
an unbroken (sub)sequence of the same event. For example,
in the sequence

a a a a b b a a b b a a a b a b a a a,

there are nine runs: five runs of a, namely, a a a a, a a, a a a,
a, and a a a, and four runs of b, namely, b b, b b, b, and b. As
discussed in [3], for a sequence of a’s and b’s that is drawn
independently, the total number of a-runs and b-runs follows
a known distribution, which motivates defining a test statistic
for randomness based on the number of runs. Specifically,
let na be the number of a’s, nb be the number of b’s, and R
denote the total number of runs in the sequence under consid-
eration. For example, in the sequence above, na = 5, nb = 4,
and R = 9. Following [3], if the sequence consists of inde-
pendent variables, then R approximately follows a Normal
distribution with mean µR and variance σ2

R, given by

µR =
2nanb
na + nb

+ 1 and σ2
R =

2nanb(2nanb − na − nb)
(na + nb)2(na + nb − 1)

.



Knowing this, to test the hypothesis that the variables in the
sequence are independent, we can compute the test statistic

Robserved − µR√
σ2
R

,

where Robserved is the number of observed runs in the tested
sequence. Using a standard Normal table, we can use this test
statistic to compute a P -value. Generally speaking, in statis-
tical tests, a P -value is the probability of observing such a
test statistic if the null hypothesis is true (in this case, if the
variables are independent). The choice of 0.05 is commonly
used as a significance level, meaning the assumption of inde-
pendence will be rejected if the P -value is less than 0.05.

The runs test can be generalized to apply to a sequence of
more than two events. For example, suppose that we draw 16
integers from the range {0, 1, . . . , 9} and get the sequence

3 8 2 0 1 2 3 4 5 4 6 2 9 1 3 4,

which has mean 3.5625. We can replace each digit in this
sequence by a “+” if its value is at least the mean and a “-” if
its value is less than the mean. This transforms the sequence
to the “binary” sequence

−+−−−−−+ + + +−+−−+ .

From here, we can treat the binary sequence as observations
of constant events and follow the testing procedure discussed
above. Due to its simplicity, this approach has been applied
previously to test the independence of sample data [19].

Runs of “ups and downs.” Another widely adopted runs-
based independence test involves redefining the definition of
a run to be “an unbroken sequence of increasing or decreasing
observations” [3]. Under this alternative definition, there are
two events that are observed from a sample: a value is greater
than its predecessor (an “up”), and a value is at most its pre-
decessor (a “down”). An unbroken sequence of increasing
values is an “up-run,” and an unbroken sequence of decreas-
ing values is a “down-run.” Let R denote the total number of
up-runs and down-runs. Similarly to before, R can be used
to define a test statistic for independence. From [3], if the
sample size is n, thenR approximately follows a Normal dis-
tribution with mean µR and variance σ2

R, which are given by

µR = (2n− 1)/3 and σ2
R = (16n− 29)/90.

As before, we can calculate the test statistic Robserved−µR√
σ2
R

in or-

der to determine a P -value, and a low P -value (generally less
than 0.05) results in rejecting the independence assumption.

Although they have different definitions of a run, both runs
tests use “the number of runs” to test for independence. In
general, “too few runs” indicates a tendency for high and low
values to cluster, while “too many runs” indicates a tendency
for high and low values to alternate. These two different

approaches have different underlying assumptions (and have
been misapplied in the literature). For the “above/below” runs
test, the probability that a value in a sample is at most the
mean of the sample is fixed across the sample. However, in
the “up/down” runs test, the probability that a sample value is
greater than or at most the previous value is not fixed. Thus,
when applying these two tests, caution is needed to choose
the right form of the mean and variance of the number of
runs. In general, the up/down runs test is the preferable vari-
ant due to its more sophisticated usage of data. This test has
been used previously to test for independence in task execu-
tion times [8].

Rank von Neumann ratio test. A more sophisticated ver-
sion of the runs test takes into account the magnitude of the
differences, rather than just the direction (i.e., up/down), by
examining the rank of each value (where rank 1 is the small-
est value and rank n is the largest value). This so-called rank
von Neumann ratio test has more power to detect dependence
than the runs tests, making it ideal for small samples, but its
P -value cannot be determined using the standard Normal dis-
tribution [1]. For this reason, we do not implement it in this
paper, although we discuss the issue of power later.

5.2 Applying Independence Tests to Determine Indepen-
dence Thresholds

When applying independence thresholds to Cor. 1, it would
be desirable to define a job τi,j’s execution time as

hi + Yi,j , (3)

where Yi,j is max{0, Xi,j − hi} (recall Sec. 3). Any de-
pendence among such execution times would arise due to the
second summand (as the first summand is a constant). Un-
fortunately, any independence assumption would likely be
rejected when defining execution times in this way. In par-
ticular, the second summand in (3) may be 0 for many jobs,
and the ordering of these 0’s among non-zero values may not
appear random. However, as discussed in Sec. 4, we only
need to find a sequence of random variables Ei,j , which up-
per bounds Yi,j . To accomplish this, our measurement frame-
work involves subjecting the subsequence of the sequence
Yi,1, Yi,2, Yi,3, . . . consisting of only positive values to an in-
dependence test. We then assume in applying Cor. 1 that each
job τi,j for which Yi,j = 0 has an execution time of hi+Ei,j ,
whereEi,j is drawn from the same distribution as the random
variables in the tested (positive-only) subsequence. That is, in
defining execution times, we allow the term Yi,j , when 0, to
be replaced by a positive value. This introduces some pes-
simism, but such a substitution is valid because Cor. 1 only
provides an upper bound on response times.

5.3 Testing for Identical Distribution

The two-sample Kolmogorov-Smirnov test (KS-Test2) deter-
mines if two samples are identically distributed by evaluat-
ing the difference between their empirical cumulative distri-



t1 ← max{xi,1, xi,2, xi,3, . . . , xi,N}
t0 ← min{xi,1, xi,2, xi,3, . . . , xi,N}
t← (t0 + t1)/2
x′i ← {max{0, x− t} : x ∈ xi}
x+i ← {x ∈ x

′
i : x > 0}

while true do
if x+i passes both the runs test and KS-Test2 then

if t− t0 < 0.01 then
return hi ← t

else
t1 ← t
t← (t1 + t0)/2
Update x′i and x+i accordingly

end if
else

t0 ← t
t← (t1 + t2)/2
Update x′i and x+i accordingly

end if
end while

Figure 4: Measurement procedure for setting independence thresh-
olds. Either runs test can be used.

bution functions [7]. To test if a data set is identically dis-
tributed, we randomly select two samples of equal size from
the data set and apply KS-Test2 to these two samples. This
“selection-compare” process is performed multiple times for
multiple sample sizes. If we use a significance level of 0.05
in KS-Test2, then it will reject one out of 20 pairs of sam-
ples on average even if they are identically distributed. To
avoid such over-rejecting, we apply the Bonferroni correc-
tion, which uses a significance level of 0.05/k when exam-
ining k pairs of samples [20]. For instance, for a data set of
size 10,000, we could select two random samples of size 500,
1,000, 2,000, and 5,000 respectively, and then apply KS-Test2
to each pair of samples of the same size using a significance
level of 0.0125. The data set under testing can be considered
identically distributed if all pairs of samples pass KS-Test2.

5.4 Measurement Process for Independence Thresholds

Let xi = xi,1, xi,2, xi,3, . . . , xi,N be a sequence of N sample
execution times of task τi. To find the lowest suitable inde-
pendence threshold for τi, we perform a binary-search-like
operation as shown in Fig. 4.

The procedure in Fig. 4 keeps t0 as a lower bound for hi
and updates its value as the search proceeds. The search ter-
minates when the difference between the measured hi and t0
is less than 0.01. Recall that a lower value of hi means that
the system designer has more confidence in the independence
of τi’s execution times, and such a lower value will yield a
less pessimistic response-time bound. This procedure returns
the lowest value of hi for a given precision. In addition, it
does not require the existence of τi’s WCET.

Limitations of statistical tests. The statistical tests intro-
duced in this section involve examining the validity of the
null hypothesis. For example, the runs test is based on the

null hypothesis that the sequence being tested is independent.
Informally speaking, the test looks for evidence through the
number of runs to prove that the null hypothesis is wrong. If
the runs test cannot find enough evidence (the number of runs
is neither too many nor too few), then it will fail to reject the
independence assumption. If the data set is small and/or the
level of dependence is weak, then the runs test could accept
the sequence as independent only because there is not suffi-
cient data to show otherwise. The ability of a test to correctly
reject the null hypothesis is known as power. Thus, these tests
must be applied with care. Generally speaking, it is desirable
to have as large a sample as possible to increase the power of
the test.

Note that, while using budgeted servers temporally iso-
lates different tasks to a large degree, our measurement proce-
dure for setting independence thresholds does not assess de-
pendencies across tasks but only within the jobs of the same
task. Dependencies across tasks could arise either implic-
itly (e.g., through contention involving shared hardware such
as caches) or explicitly (e.g., through shared data structures).
The implicit case can be dealt with by using a stress-inducing
workload in the measurement process that creates contention
for hardware resources and thus gives conservative estimates
(e.g., using a methodology similar to that used in [4]). The
explicit case is trickier and would involve properly account-
ing for how explicit interactions influence per-job execution
times, e.g., due to variations in code paths taken. This is a
complicated issue that we defer for further study.

Despite these limitations, recall that the focus here is the
provisioning of SRT systems with less stringent timing re-
quirements than HRT systems. Moreover, we are attempting
to provide guidance and reduce assumed risks in provisioning
such systems. We are not claiming that all risks can be elim-
inated. For our purposes, the tests we have introduced would
likely give acceptable results in many practical scenarios.

6 MPEG Case Study
In this section, we illustrate the application of our results by
presenting the results of a case study we conducted involv-
ing MPEG decoding. We selected MPEG as a case study for
several reasons. First, video decoding times vary from frame
to frame with MPEG. Second, decoding times are higher for
scenes with significant movement. Thus, a frame is more
likely to take a long time to decode if its predecessor took
a long time to decode, i.e., per-frame decoding times are not
independent. Third, with MPEG decoding there is a signif-
icant difference between the worst-case per-frame decoding
time and the average case. This motivates wanting to avoid a
worst-case provisioning.

Experimental setup. A system of 12 tasks was considered
in our experiments, where each task decodes a separate high-
definition movie trailer. (A similar workload was considered
in [13].) The hardware platform used to trace frame decod-
ing times has two six-core Xeon X5650 processors (running



Table 1: Computed independence thresholds and other deduced in-
formation for 12 MPEG decoding tasks (all times are in ms).

Video hi ēi σ2
i hi + ēi WCET

1 29.06 5.35 43.23 34.41 64.10
2 17.54 6.71 34.38 24.25 67.90
3 31.23 3.71 14.28 34.94 52.49
4 22.62 4.60 17.48 27.22 45.38
5 26.63 5.36 41.35 31.99 78.33
6 16.20 3.34 7.05 19.54 39.76
7 17.63 7.18 49.41 24.81 71.47
8 25.60 3.32 8.11 28.92 37.32
9 17.71 4.19 8.50 21.90 38.70

10 12.63 1.42 1.33 14.05 19.09
11 24.72 4.90 29.38 29.62 59.29
12 12.81 6.54 35.96 19.35 73.03

at 2.67 GHz), giving the system 12 cores in total. Each pro-
cessor has a 12 MB L3 cache shared among its six cores.
The considered platform has a NUMA (nonuniform memory
access) memory architecture, with one 12 GB memory mod-
ule per processor. Each job of each task decodes one frame
of video. In determining per-job execution times, tasks were
run in isolation and all videos were preloaded into memory
to avoid page faults. (In applying our measurement proce-
dure, such choices are left to the system designer.) The videos
used in this case study all have a constant frame rate of 23.98
frames per second (fps). Thus, each decoding task has a pe-
riod of 1/(23.98 fps) ≈ 41.70ms.

Independence threshold selection. For each video decod-
ing task, we determined the lowest independence threshold
possible (without job windowing) using the proposed mea-
surement procedure. We used the “up/down” runs test to test
for independence. The typical movie trailer contains approx-
imately 3,200 frames, which translates to a sample size of ap-
proximately 3,200 as well. Table 1 shows the resulting values
obtained for hi, as well as ēi and σ2

i , for each video. The ta-
ble also lists the resulting average-case provisioning, as given
by hi + ēi, and the observed WCET for each video. Ob-
serve that the provisioned execution-time reduction afforded
by the usage of independence thresholds is considerable. On
average across all videos, a two-fold reduction was enabled,
without violating the independence assumptions used in our
response-time analysis. The greatest reduction was by a fac-
tor of approximately 3.5.

Budget selection. We now examine expected response-
time bounds that can be computed for our system of decod-
ing tasks. Such bounds will depend on how server budgets
are determined. According to Cor. 1, if the server Ti can be
scheduled with bounded tardiness, then the expected response
time of τi will be bounded, provided Ti’s budget is selected
to satisfy bi > Zi, which is equivalent to bi > hi + ēi. This
leaves some leeway in budget selection; the actual value se-
lected for bi will impact the expected response-time bound

that results. Mills and Anderson [17] proposed two heuristics
for assigning bi values:

• Proportional Execution Heuristic: Here, bi is set to
min{pi, α(ei + hi)}, where α is a parameter satisfying

1 < α ≤ mpi
ei + hi

.

• Variance-Based Heuristic: Here, bi is set to min{pi, ei+
hi+βσi}, where σi is the standard deviation ofEi,j and
β is a parameter satisfying

0 < β ≤
m−

∑n
i=1

ei+hi

pi∑n
i=1

σi

pi

. (4)

The ranges of α and β ensure that bi > ei + hi and∑n
i=1 bi/pi ≤ m, which is required for the server system

T to have bounded tardiness on m processors.
As pointed out in [17], the proportional execution heuris-

tic performs better when the variance of Ei,j is small, while
the variance-based heuristic is preferable when there is high
variability in Ei,j .

Scheduling algorithm. Response-time bounds also depend
on the scheduling algorithm used to schedule servers. A
number of global scheduling algorithms, such as GEDF, can
schedule the system of servers on a multiprocessor with
bounded tardiness, under the mild conditions that

bi ≤ pi ∀i and
n∑
i=1

bi/pi ≤ m,

where m is the number of processors. For example, when
m ≥ 2, GEDF ensures the tardiness bound

Bi(T,GEDF) =

∑
Tk∈Emax

bk − bmin

m−
∑

Tk∈Umax

bk
pk

+ bi, (5)

where Emax is the set of m−1 servers with largest execution
budgets, Umax is the set of m− 1 servers with largest utiliza-
tions (bi/pi), and bmin is the smallest budget of any server [9].
For simplicity, we consider the usage of GEDF here and the
above tardiness bound, even though global algorithms with
better tardiness bounds exist and better bounds for GEDF are
known [11]. (These better algorithms and bounds are more
complicated to explain, and the algorithm and bound we are
assuming are sufficient to illustrate our analysis.) We also
assume that the considered tasks are scheduled on m = 11
of the cores on our test system (in our test system, one core
is dedicated to handling interrupts). Decoding times exhibit
a large variance, so we used the variance-based heuristic in
determining server budgets, giving β the largest value al-
lowed by (4). The server budgets and expected response-
time bounds (obtained from (5) and (1)) that result from these



Table 2: Server Budgets and expected response time bounds for 12
MPEG decoding tasks (all times are in ms).

Video bi Response Time Bound
1 41.70 391.70
2 40.04 388.20
3 41.70 389.79
4 38.48 386.35
5 41.70 390.86
6 26.69 374.49
7 41.70 390.19
8 36.59 384.22
9 29.75 377.54

10 17.16 364.71
11 41.70 389.95
12 35.50 383.84

choices are given in Table 2. The response-time bounds can
be used to provision output queues by comparing against the
common per-task period of 41.70 ms.2

Comparison with a worst-case provisioning. As seen in
Table 1, under a worst-case provisioning many of the decod-
ing tasks are not schedulable, as their WCETs exceed their
periods. In contrast, as seen in Table 2, by provisioning
the system based on independence thresholds, all tasks are
schedulable and all expected response times are bounded.

Independence threshold selection assuming job windows
of size three. Following the same process as described
above, we also determined independence thresholds assum-
ing job windowing is used as suggested in [17], with three
jobs per window. Recall that windowing is an alternative
technique for dealing with dependencies—jobs within the
same window may have dependencies. When windowing
is used, all measurements and analyses are done on a per-
window basis. Effectively, each such window has a pe-
riod of 41.70 ms × 3 = 125.10 ms. Comparing Tables 1
and 3, we can see that using windows of size three results
in lower independence thresholds. In comparing these two
tables, it is important to note that the thresholds in Table 3
apply to groups of three jobs, while those in Table 1 apply
to individual jobs. Said another way, a period three times
larger is assumed for Table 3, which impacts expected uti-
lization. For example, from the data in Table 1, task τ1 would
have an expected utilization of 34.41/41.70 ≈ 0.825, while
from the data in Table 3, its expected utilization would be
49.53/125.10 ≈ 0.396. Because the number of windows is
now one third of the total number of frames, it is not clear
whether these improvements come from a real decrease in
execution-time dependencies or from having an insufficient
number of sample values when applying the tests discussed
in Sec. 5. Corresponding response-time bounds for the win-

2Response-time bounds can be greatly reduced by using a scheduler like
global fair lateness [11] with better tardiness bounds than GEDF to schedule
servers, or by using better server tardiness analysis than covered here.

Table 3: Independence thresholds and other computed information
for 12 MPEG decoding tasks assuming three jobs per window (all
times are in ms).

Video hi ēi σ2
i hi + ēi WCET

1 14.94 34.59 255.40 49.53 135.03
2 53.50 17.27 14.28 70.77 114.97
3 16.34 37.15 401.10 53.49 110.43
4 0 47.51 239.58 47.51 109.58
5 43.38 14.11 172.97 57.49 123.65
6 30.94 17.47 77.81 48.41 77.82
7 0 53.82 356.57 53.82 148.34
8 63.56 4.00 18.38 67.56 80.93
9 70.57 5.07 20.90 75.64 100.06

10 24.60 11.41 24.94 36.01 49.57
11 42.25 15.06 185.24 57.31 150.93
12 39.91 14.05 129.22 54.96 113.73

Table 4: Server Budgets and expected response time bounds for 12
MPEG decoding tasks assuming three jobs per window (all times
are in ms).

Video bi Response Time Bound
1 125.10 1098.87
2 90.50 1063.08
3 125.10 1099.98
4 125.10 1098.73
5 125.10 1098.46
6 94.47 1067.67
7 125.10 1099.68
8 89.94 1062.60
9 99.51 1072.14

10 62.08 1035.13
11 125.10 1098.55
12 111.31 1086.60

dowing case are given in Table 4. Comparing to Table 2, we
see the price to be paid for windowing: expected response
times are now bounded on a per-window basis and hence are
much larger.

Allowing resource sharing. As discussed in Sec. 4, we
can allow lock-based resource sharing (under suspension-
oblivious analysis) in our model by treating all critical-
section-related costs (i.e., critical section execution times plus
blocking times) on a worst-case basis. In our MPEG case
study, each job of each task actually adds its decoded frame
to a lock-protected queue before terminating. Since the lock
associated with this queue is acquired at the end of a job’s
execution, the introduction of lock-based sharing in this case
cannot alter code paths taken within jobs (thus, most of the
complexities associated with resource-sharing noted at the
end of Sec. 5.4 do not arise). For the jobs under consideration,
we found the worst-case per-job critical-section-related cost
to be approximately 10 µs. This cost can be accounted for by
adding it to the hi values given in Tables 1 and 3, or equiv-
alently, by requiring the hi values to be at least 10 µs when



applying the measurement procedure. Given the magnitude
of the hi values given in these tables, we can see that such
a change would have a near-negligible impact. In fact, even
if critical-section-related costs were several times larger, the
impact would still be small. Of course, some systems might
have worst-case critical-section-related costs so large that the
benefits of a stochastic provisioning are negated.

Sample sizes. We remarked at the end of Sec. 5 that a large
sample size is generally desirable when applying hypothesis
tests. This begs the question: what is “large”? In the context
of MPEG decoding, this would require much more study and
is beyond the scope of this paper. Our intent in this section
was not to report on a thorough study of the provisioning of
MPEG decoding tasks, but rather to illustrate how our anal-
ysis may potentially be applied using MPEG as an example.
Indeed, in this particular study, sample sizes were fundamen-
tally limited by the lengths of the trailers we used.

7 Conclusion
We considered the scheduling of SRT systems with stochastic
execution demands. We proposed the notion of an indepen-
dence threshold as a way of achieving a reasonable balance
between the conflicting goals of having tractable stochas-
tic analysis and avoiding a worst-case system provisioning.
We also explained how to use independence thresholds along
with job windowing, and how to apply them when critical sec-
tions due to resource sharing exist. To our knowledge, this is
the first paper to present an approach for dealing with critical
sections when stochastic analysis is applied to SRT systems.

An independence threshold is a tunable parameter that can
be arbitrarily set. If set lower, the system designer is ac-
cepting more risk that independence assumptions underlying
analysis might be violated in practice. As a further contribu-
tion, we presented a measurement-based framework for prop-
erly setting such thresholds based on known statistical tests.
Applying this framework can give system designers a sense
of the extent of the risks they are taking.

For purposes of illustration, we applied this framework
and our analysis in a case study involving MPEG video de-
coding. In this case study, the usage of independence thresh-
olds enabled up to a 3.5-fold reduction in provisioned task ex-
ecution times compared to the worst case. Moreover, the con-
sidered tasks have resource-sharing constraints, which were
found to have a near-negligible impact on analysis.

The results of this paper provide a sound framework for
provisioning and analyzing SRT applications on multiproces-
sors. This framework is ultimately measurement-based, and
thus avoids the pitfalls of static timing analysis tools that arise
in the context of multprocessor machines.

In future work, we intend to refine our measurement
framework by obtaining results that indicate appropriate sam-
ple sizes in various use cases. Further work is also needed
to ensure that execution-time variations caused by resource
sharing are properly captured.

References
[1] R. Bartels. The rank version of von Neumann’s ratio test for

randomness. Journal of the American Statistical Association,
77(377):40–46, 1982.

[2] G. Bernat, A. Burns, and M. Newby. Probabilistic timing anal-
ysis: An approach using copulas. Journal of Embedded Com-
puting, 1(2):179–194, 2005.

[3] J. V. Bradley. Distribution-Free Statistical Tests. Prentice-Hall,
1968.

[4] B. Brandenburg. Scheduling and Locking in Multiprocessor
Real-Time Operating Systems. PhD thesis, University of North
Carolina, Chapel Hill, NC, 2011.

[5] B. Brandenburg and J. Anderson. Optimality results for multi-
processor real-time locking. 31st RTSS, 2010.

[6] A. Burns, G. Bernat, and I. Broster. A probabilistic framework
for schedulability analysis. 3rd EMSOFT, 2003.

[7] I. Chakravarti, R. Laha, and J. Roy. Handbook of methods of
applied statistics, volume 1. John Wiley, 1967.

[8] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Var-
danega, L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and
F. Cazorla. Measurement-based probabilistic timing analysis
for multi-path programs. 24th ECRTS, 2012.

[9] U. Devi and J. Anderson. Tardiness bounds for global
EDF scheduling on a multiprocessor. Real-Time Systems,
38(2):133–189, 2008.

[10] S. Edgar and A. Burns. Statistical analysis of WCET for
scheduling. 22nd RTSS, 2001.

[11] J. Erickson, B. Ward, and J. Anderson. Fair lateness schedul-
ing: Reducing maximum lateness in G-EDF-like scheduling.
Real-Time Systems, 50(1):5–47, 2014.

[12] J. Hansen, S. Hissam, and G. Moreno. Statistical-based wcet
estimation and validation. WCET, 2009.

[13] C. Kenna, J. Herman, B. Brandenburg, A. Mills, and J. An-
derson. Soft real-time on multiprocessors: Are analysis-based
schedulers really worth it? 32nd RTSS, 2011.

[14] H. Leontyev and J. Anderson. Generalized tardiness bounds
for global multiprocessor scheduling. Real-Time Systems,
44(1):26–71, 2010.

[15] D. Maxim and L. Cucu-Grosjean. Response time analysis
for fixed-priority tasks with multiple probabilistic parameters.
24th RTSS, 2013.

[16] A. Mills and J. Anderson. A stochastic framework for multi-
processor soft real-time scheduling. 16th RTAS, 2010.

[17] A. Mills and J. Anderson. A multiprocessor server-based
scheduler for soft real-time tasks with stochastic execution de-
mand. 17th RTCSA, 2011.

[18] L. Palopoli, D. Fontanelli, N. Manica, and L. Abeni. An ana-
lytical bound for probabilistic deadlines. 24th ECRTS, 2012.

[19] P. Radojkovic, P. Carpenter, M. Moreto, A. Ramirez, and
F. Cazorla. Kernel partitioning of streaming applications: A
statistical approach to an np-complete problem. 45th MICRO,
2012.

[20] J. Shaffer. Multiple hypothesis testing. Annual Review of Psy-
chology, 46(1):561–584, 1995.


