
Recovering from Overload in Multicore Mixed-Criticality Systems

Jeremy P. Erickson, Namhoon Kim, and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill∗

Abstract

The MC2 mixed-criticality framework has been previ-
ously proposed for mixing safety-critical hard real-time
(HRT) and mission-critical soft real-time (SRT) software
on the same multicore computer. This paper focuses on the
execution of SRT software within this framework. When de-
termining SRT guarantees, jobs are provisioned based on
a provisioned worst-case execution time (PWCET) that is
not very pessimistic and could be overrun. In this paper, we
propose a mechanism to recover from the overload created
by such overruns. Specifically, we propose a modification to
the previously proposed G-EDF-like (GEL) class of sched-
ulers that uses virtual time to increase task periods. We also
experimentally determine how long it takes to return to nor-
mal behavior after a transient overload.

1 Introduction

Future cyber-physical systems will require mixing tasks of
varying importance. For example, future unmanned aerial
vehicles (UAVs) will require more stringent timing re-
quirements for adjusting flight surfaces than for long-term
decision-making [11]. The mixed-criticality (MC) frame-
work MC2 has been previously proposed in order to allow
workloads of differing criticalities to be simultaneously sup-
ported on a single multicore machine [11, 17]. Using a sin-
gle machine allows reductions in size, weight, and power.

In any MC system, there are a number of criticality lev-
els. For example, MC2 has four criticality levels, denoted
A (highest) through D (lowest). Each MC task is assigned
a distinct criticality level. When analyzing an MC system,
each task is assigned a separate provisioned worst-case exe-
cution time (PWCET) for each criticality level. Guarantees
are provided for level-` tasks by assuming that no task with
criticality at or above level ` exceeds its level-` PWCET.
For example, when analyzing level C, level-A, -B, and -C
tasks are considered using level-C PWCETs.

As noted by Burns and Davis [6], most proposed MC
frameworks do not provide any guarantees for a given
level ` if any job exceeds its level-` PWCET. This assump-
tion could be highly problematic in practice. For example,
suppose that a level-A flight-control job on a UAV exceeds
its level-C PWCET. It would be very undesirable if no guar-
antees could be provided for level-C mission control tasks

∗Work supported by NSF grants CNS 1016954, CNS 1115284, CNS
1218693, and CNS 1239135.

Figure 1: MC2 architecture.

from that point forward.1 The purpose of this paper is to
provide guarantees in MC2 in such situations.

Specifically, we consider response-time behavior for
tasks at level C in MC2. The architecture of MC2 as de-
scribed by Herman et al. [11] is depicted in Fig. 1: lev-
els A and B are scheduled on a per-processor basis using
table-driven and EDF scheduling, respectively. Level C was
proposed by Mollison et al. [17] to be scheduled using the
global earliest-deadline-first (G-EDF) scheduler, which pro-
vides bounded response times but may not meet all dead-
lines. Erickson et al. [9] demonstrated that the more general
class of G-EDF-like (GEL) schedulers [15] can yield better
response-time bounds. Therefore, we consider general GEL
schedulers here.
Contributions. When any job at or above level C overruns
its level-C PWCET, the system at level C may be over-
loaded, compromising level-C guarantees. Using the MC2

framework, a task may have its per-job response times per-
manently increased as a result of even a single overload
event, and multiple overload events could cause such in-
creases to build up over time. Examples of conditions that
could cause this to happen are presented in Sec. 2. As a
result, we must alter scheduling decisions to attempt to
recover from transient overload conditions. In this paper,
we propose a scheme that does so by scaling task inter-
release times and modifying scheduling priorities. We fur-
ther present an implementation of this scheme, including
both in-kernel and userspace components. We also provide
experimental results based on an actual implementation that
demonstrates that this scheme can effectively recover from
overload.
Comparison to Related Work. Other techniques for man-
aging overload have been provided in other settings, al-
though most previously proposed techniques either focus
exclusively on uniprocessors [2, 3, 7, 13, 16] or only pro-

1At the industry session of RTAS 2014, several industry practitioners
noted this as a practical concern that had not been adequately addressed in
the literature on MC systems.

1

vide heuristics without theoretical guarantees [10].
Our paper uses the idea of “virtual time” from

Zhang [23] (as also used by Stoica et al. [20]), where job
separation times are determined using a virtual clock that
changes speeds with respect to the actual clock. In our work,
we recover from overload by slowing down virtual time,
effectively reducing the frequency of job releases. Unlike
in [20], we never speed up virtual time relative to the nor-
mal underloaded system, so we avoid problems that have
previously prevented virtual time from being used on a mul-
tiprocessor. To our knowledge, this work is the first to use
virtual time in multiprocessor scheduling.

Some past work on recovering from PWCET overruns in
MC systems has used techniques similar to ours, albeit in
the context of trying to meet all deadlines [12, 18, 19, 21,
22]. Our scheme is also similar to reweighting techniques
that modify task parameters such as periods. A detailed sur-
vey of several such techniques is provided by Block [4].

Organization. In Sec. 2, we describe the task model used
in prior work and show why overload can cause guarantees
to be permanently violated. In Sec. 3, we describe our mod-
ified task model and scheduler, and discuss how it can be
used to recover from overload. In Sec. 4, we describe our
implementation, and in Sec. 5, we provide experimental ev-
idence that our scheme is effective.

2 Original MC2 And Overload
In this paper, we assume that time is continuous and we
consider only the system at level C. In other words, we con-
sider level-A and -B tasks as CPU supply that is unavailable
to level C, rather than as explicit tasks. We consider a sys-
tem τ = {τ0, τ1, . . . , τn−1} of n level-C tasks running onm
processors P = {P0, P0, . . . , Pm−1}. Each τi is composed
of a (potentially infinite) series of jobs {τi,0, τi,1, . . .}. The
release time of τi,k is denoted as ri,k. We assume that
minτi∈τ ri,0 = 0. Each τi,k is prioritized on the basis of a
priority point (PP), denoted yi,k. The time when τi,k actu-
ally completes is denoted tci,k, and its actual execution time
is denoted ei,k. We define the response time Ri,k of τi,k
as tci,k − ri,k. We define a job τi,k as pending at time t if
ri,k ≤ t < tci,k.

Under GEL scheduling and the conventional sporadic
task model, each task is characterized by a per-job worst-
case execution time (WCET) Ci > 0, a minimum separa-
tion Ti > 0 between releases, and a relative PP Yi ≥ 0.
Using the above notation, the system is subject to the fol-
lowing constraints for every τi,k:

ei,k ≤ Ci, (1)
ri,k+1 ≥ ri,k + Ti, (2)
yi,k = ri,k + Yi. (3)

In our work, we consider provisioned WCETs due to the
mixed-criticality analysis, as discussed in the introduction.

Prior work [14, 17] shows that bounded response times

can be achieved for level-C tasks assuming certain con-
straints on system-wide and per-task utilizations. To illus-
trate this property, we depict in Fig. 2(a) a system that only
has level-A and -C tasks, with one level-A task per CPU.
For level-A tasks, we use the notation (Ti, C

C
i , C

A
i), where

Ti is task τi’s period, CCi is its level-C PWCET, and CAi
is its level-A PWCET. For level-C tasks, we use the nota-
tion (Ti, Yi, Ci). Observe that in Fig. 2(a), no job runs for
longer than its level-C PWCET. Under this condition, re-
sponse times can be bounded using techniques from prior
work [14, 17]. In this paper, we typically concern ourselves
with response times relative to a job’s PP. Under the model
we are defining in this section, such a response time can be
converted to an absolute response time by adding Yi. Ob-
serve that in Fig. 2(a) some jobs do complete after their PPs;
this is allowed by our model. Similarly, some jobs complete
after the release of their respective successor jobs.

The particular example in Fig. 2(a) fully utilizes all pro-
cessors. In the situation depicted in Fig. 2(b), both level-A
tasks released at time 12 run for their full level-A PWCETs.
Therefore, from the perspective of level C, an overload
occurs.2 Because the system is fully utilized, there is no
“slack” that allows for recovery from overload, and re-
sponse times are permanently increased. In a system with
large utilization, response times could take significant time
to settle back to normal, even if they eventually will.

Another cause of overload is depicted in Fig. 3, where
there is only a single level-C task. Observe that in Fig. 3(a)
τ1 executes except when both CPUs are occupied by level-
A tasks. Therefore, when the overload occurs at time 12 in
Fig. 3(b), τ1 cannot recover despite the frequent presence of
slack on the other CPU. This demonstrates that an overload
can cause long-running problems due to a single task’s uti-
lization, not merely due to the total utilization of the system.

In the next section, we discuss our approach for recover-
ing from overload.

3 Our Modifications
In order to recover from overload, it is necessary to effec-
tively reduce task utilizations, to avoid the problems dis-
cussed in the previous section. In this paper, we propose to
do so by using a notion of virtual time (as in [20]), as de-
scribed in this section.

Our scheme involves a generalized version of GEL
scheduling, called GEL with virtual time (GEL-v) schedul-
ing, and a generalized version of the sporadic task model,
called the sporadic with virtual time and overload (SVO)
model. Under the SVO model, we no longer assume a par-
ticular WCET (thus allowing overload). Therefore, (1) is no

2 A similar overload could occur if a level-C task exceeds its level-C
PWCET. However, MC2 optionally supports the use of execution budgets
in order to prevent such an occurrence. While the use of execution budgets
would prevent level-A and -B tasks from overrunning their level-A and
-B PWCETs, respectively, they can still overrun their level-C PWCETs.
Thus, we have chosen examples that provide overload even when execution
budgets are used.

2

(a) Example MC2 schedule in the absence of overload, illustrating bounded response times.

(b) The same schedule in the presence of overload caused by level-A tasks running for their full level-A PWCETs. Notice
that response times of level-C jobs settle into a pattern that is degraded compared to (a). For example, consider τ2,6, which is
released at actual time 36. In (a) it completes at actual time 43 for a response time of 7, but in this schedule it does not complete
until actual time 46, for a response time of 10.

(c) The same schedule in the presence of overload and the recovery techniques described in Sec. 3. Notice that response times
of level-C jobs settle into a pattern that is more like (a) than (b). For example, consider again τ2,6, which now is not released
until actual time 41 and completes at actual time 47 for a response time of 6. This is more similar to (a) than to (b).

Figure 2: Example MC2 task system, without and with overload.

longer required to hold.3 Under GEL-v scheduling and the
SVO model, we also introduce the use of virtual time, and
we define the minimum separation time and relative PP of a
task with respect to virtual time after one of its job releases
instead of actual time. Virtual time affects only level C, not
levels A and B. The use of virtual time will allow us to re-
cover from overload. We now introduce our strategy using

3As mentioned in Footnote 2, execution budgets can be used to restore
this assumption at level C, in which case overloads can come only from
levels A and B.

the example depicted in Fig. 2(c).
Once an overload occurs, the system can respond by

altering virtual time for level C. Virtual time is based on
a global speed function s(t). During normal operation of
the system, s(t) is always 1. This means that actual time
and virtual time progress at the same rate. However, af-
ter an overload occurs, the scheduler may choose to select
0 < s(t) < 1, at which point virtual time progresses more
slowly than actual time. In Fig. 2(c), the system chooses to
use s(t) = 0.5 for t ∈ [19, 29). As a result, virtual time

3

(a) Example MC2 schedule in the absence of overload, illustrating bounded response times.

(b) The same schedule in the presence of overload caused by level-A tasks running for their full level-A PWCETs.

Figure 3: Another example MC2 task system, without and with overload. See Fig. 2 for key.

progresses more slowly in this interval, and new releases of
jobs are delayed. This allows the system to recover from the
overload, so at actual time 29, s(t) returns to 1. Observe
that job response times are significantly increased after ac-
tual time 12 when the overload occurs, but after actual time
29, they are similar to before the overload. In fact, the ar-
rival pattern of level A happens to result in better response
times after recovery than before the overload, although this
is not guaranteed under a sporadic release pattern.

An actual time t is converted to a virtual time using

v(t) ,
∫ t

0

s(t) dt. (4)

For example, in Fig. 2(c), v(25) =
∫ 25

0
s(t) dt =

∫ 19

0
1 dt+∫ 25

19
0.5 dt = 19 + 3 = 22. Unless otherwise noted, all in-

stants herein (e.g., t, ri,k, etc.) are specified in actual time,
and all variables except Ti and Yi (defined below) refer to
quantities of actual time.

Under the SVO model, (2) generalizes to

v(ri,k+1) ≥ v(ri,k) + Ti, (5)

and under GEL-v scheduling, (3) generalizes to

v(yi,k) = v(ri,k) + Yi. (6)

For example, in Fig. 2(c), τ1,0 is released at actual time 0,
has its PP three units of (both actual and virtual) time later
at actual time 3, and τ1,1 can be released four units of (both
actual and virtual) time later at time 4. However, τ1,5 of the
same task is released at actual time 21, shortly after the vir-
tual clock slows down. Therefore, its PP is at actual time 27,
which is three units of virtual time after its release, and the

release of τ1,6 can be no sooner than actual time 29, which
is four units of virtual time after the release of τ1,5. How-
ever, the execution time of τ1,5 is not affected by the slower
virtual clock.

In a real system, unlike in our examples so far, level-C
jobs will often run for less time than their respective level-C
PWCETs. Therefore, it may be unnecessarily pessimistic to
initiate overload response whenever a job overruns its level-
C PWCET. Instead, we use the following definition.

Def. 1. τi has a nonnegative response-time tolerance, de-
noted ξi, relative to each job’s PP. A task meets its response-
time tolerance if tci,k ≤ yi,k + ξi, and misses it otherwise.

We slow down the virtual clock only after some job
misses its response-time tolerance. Ideally, response-time
tolerances should be determined based on analytical upper
bounds of job response times, in order to guarantee that the
virtual clock is never slowed down in the absence of over-
load. However, for illustration, in Fig. 2(c) we simply use a
response-time tolerance of three for each task. Thus, we do
not slow down virtual time until some job’s completion time
is greater than three units of actual time after its PP. At time
18, τ3,4 completes exactly three units after its PP, which is
barely within its tolerance, so the virtual clock is not slowed
down. However, at time 19, τ1,3 completes four units after
its PP, which exceeds the response-time tolerance. There-
fore, we slow down the virtual clock at time 19.

We will define normal behavior for a system as the situ-
ation in which all jobs meet their response-time tolerances.
Recall that, as depicted in Fig. 2 above, a system with high
utilization may not effectively be able to recover from over-
load, because there is no slack, and as depicted in Fig. 3
above, a system with a task of high utilization may not
be able to effectively recover from overload. As we have

4

Figure 4: Illustration of “idle normal instant.” If all jobs
pending at t meet their response-time tolerances, then t is
an idle normal instant. t2 is referenced in Sec. 4.

just discussed, our technique creates extra slack both in a
system-wide sense and in a per-task sense, solving both
problems. Therefore, the system eventually returns to nor-
mal behavior. We denote the time required to do so as dissi-
pation time.

In a technical report [8], we provide theoretical analysis
of dissipation time. In that technical report, we first provide
analytical upper bounds on response time that can safely
be used as response-time tolerances. We also derive an up-
per bound on dissipation time, called a dissipation bound,
with respect to these response-time tolerances. As discussed
above, our technique causes the system to eventually return
to normal behavior, so this bound exists. In this paper, rather
than considering theoretical dissipation bounds, we focus on
experimentally determining dissipation time at runtime.

In the demand analysis used in our technical report, as in
most such analysis, demand is considered beginning at an
instant when some processor is idle. If all jobs pending at
this time meet their response-time tolerances, then regard-
less of how that situation arose, the system has returned to
normal behavior. Furthermore, the virtual clock can safely
be returned to speed 1 after such an instant. Therefore, the
system can detect such an instant to determine when to set
the virtual-clock speed back to 1. We now define such an
instant more formally.

Def. 2. Arbitrary time t is an idle normal instant if some
processor is idle at t and all jobs pending at t meet their
(normal) response-time tolerances.

Our method does not dictate a particular choice of s(t),
although in our experiments we consider several such val-
ues. Selecting a small value of s(t) will result in a large
short-term impact on level-C job releases, but the system
will return to normal behavior quickly. Alternatively, select-
ing a large value of s(t) will result in a lesser short-term im-
pact on job releases, causing only minor delays, but the sys-
tem will take a longer time in order to return to normal be-
havior. In our experimental comparison, we quantify these
effects and point to proper design decisions.

As suggested by the analysis in our technical report [8],
we determine when the system returns to normal behavior
by detecting an idle normal instant. Therefore, we return the
virtual clock to speed 1 after detecting such a t, which can
only be determined when all jobs pending at t are complete.
In Fig. 2(c), observe that only CPU 2 is executing work

from actual time 28 to actual time 29. Thus, only τ2 is pend-
ing throughout this interval, or CPU 1 would be executing
work. Furthermore, τ2,4 is the only pending job of τ2 at time
28. Observe that τ2,4 completes at its PP, and thus meets its
response-time tolerance of three, at time 29. Therefore, time
28 is an idle normal instant. The system can determine this
to be the case at time 29, when τ2,4 completes. Therefore,
the virtual clock returns to speed 1 at time 29.

4 Implementation Description

We implemented our scheme by extending the existing MC2

implementation that was described in [11]. That implemen-
tation is based on LITMUSRT [1], a real-time extension to
Linux originally developed at UNC. Source code for our
implementation is also available at [1]. Our implementation
consists of two components: the scheduler, which is part of
the kernel, and a monitor program, which runs in userspace.
The kernel reports job releases and job completions to the
monitor program and provides a system call that the mon-
itor program can use to change the speed of the virtual
clock. The speed of the virtual clock does not change be-
tween these calls. The kernel is responsible for implement-
ing virtual time, ensuring that the SVO model’s minimum-
separation constraints are respected, and making schedul-
ing decisions according to GEL-v scheduling. The monitor
program is responsible for determining when virtual-clock
speed changes should occur.

Within the kernel, the primary change that we made com-
pared to the prior MC2 implementation was the use of vir-
tual time at level C. No changes at levels A or B were re-
quired. Psuedocode for the changed functionality is pro-
vided in Algo. 1. now() is a function that always returns
the current actual time.

Because the virtual-clock speed is constant between dis-
crete changes, virtual time is a piecewise linear function
of actual time, as depicted in Fig. 5(a), where ts (speed
change) is the latest speed change before arbitrary time
t. The kernel keeps track of the most recent such actual
time as last act, the corresponding virtual time as last virt,
and the current speed of virtual time as speed. These
values are initialized in initialize() and updated in
change speed().

The convenience function act to virt() converts an
actual time to a virtual time, assuming that act > last act
and that there is no virtual-clock speed change between
last act and act. By (4), the virtual-clock speed at t is the
slope of the line graphed in Fig. 5(a) with ts = last act,
resulting in the simple calculation performed in that func-
tion. Similarly, the convenience function virt to act()
converts a virtual time to an actual time, assuming that
virt > last virt and that there is no virtual-clock speed
change between last act and virt to act(virt).

In order to set the release timer for a level-C job, the
kernel invokes schedule pending release(). This
function uses virt to act(v(ri,k)) to determine when
the timer should fire. This time could be incorrect if the

5

Function initialize()
1 last act := now();
2 last virt := 0;
3 speed := 1;

Function act to virt(act)
4 return last virt + (act− last act) · speed;

Function virt to act(virt)
5 return last act + (virt− last virt)/speed;

Function schedule pending release(τi,k,
v(ri,k))

6 Set release timer to fire at virt to act(v(ri,k));

Function job release(τi,k)
7 ri,k := now();
8 v(yi,k) := act to virt(ri,k)+ Yi;
9 yi,k := ⊥;

Function job complete(τi,k)
10 virt := act to virt(now());
11 if yi,k = ⊥ and v(yi,k) < virt then
12 yi,k := virt to act(v(yi,k));
13 Report τi,k, ri,k, yi,k, now(), and whether the

level-C ready queue is empty to the monitor program;

Function change speed(new speed)
14 act := now();
15 virt := act to virt(act);
16 foreach τi,k such that yi,k = ⊥ and v(yi,k) < virt do
17 yi,k := virt to act(v(yi,k));
18 last act := act;
19 last virt := virt;
20 speed := new speed;
21 foreach τi,k such that a pending release has been

scheduled for virtual time v(ri,k) do
22 Reset release timer to fire at

virt to act(v(ri,k));

Algorithm 1: In-kernel functionality used to handle
virtual time.

virtual-clock speed is changed before the timer fires, but in
that case change speed() will update the timer to fire at
the correct time.

When a job release actually occurs, job release()
is called. This function determines the scheduling priority
of τi,k, which is simply the virtual time v(yi,k) because the
actual time yi,k is not known until yi,k occurs (because the
virtual-clock speed may change). However, recall that the
definition of “response-time tolerance” in Def. 1 is based
on the actual time yi,k. Therefore, it will generally be nec-
essary for the kernel to determine yi,k and return it to the
monitor program. Initially, the kernel uses the placeholder
⊥, to indicate that yi,k has not yet occurred. There are three
cases for when yi,k could occur relative to tci,k, as depicted
in Fig. 5(b)–(d).

If tci,k ≤ yi,k, as depicted in Fig. 5(b), then τi,k meets
its response-time tolerance (which was defined in Def. 1 to
be nonnegative) by definition. Therefore, it is sufficient to

return ⊥ to the monitor program in this situation.
If tci,k > yi,k and the speed of the virtual clock changes

at least once between yi,k and tci,k, then this scenario is de-
picted in Fig. 5(c), where ts now refers to the first virtual-
clock speed change after yi,k. In this case, yi,k is computed
when change speed() is called at time ts.

If tci,k > yi,k and the speed of the virtual clock does
not change between yi,k and tci,k, then this scenario is de-
picted in Fig. 5(d). In this case, yi,k is computed when
job complete(τi,k) is called.

When any τi,k completes, job complete() performs
the just-mentioned check and notifies the monitor program.

When the monitor program requests a virtual-clock
speed change, change speed() is called. This function
performs the updates mentioned above and also updates
last act, last virt, and speed so that virt to act() and
act to virt() remain correct.

The general structure of a userspace monitor program is
presented in Algo. 2. A significant portion of the code is
intended to detect the earliest possible idle normal instant.
We define the following definition, which is closely related
to the definition of “idle normal instant” in Def. 2.

Def. 3. t is a candidate idle instant at time t2 ≥ t if some
processor is idle at t and any job pending at t either meets
its response-time tolerance or is still pending at t2.

In Fig. 4, t is a candidate idle instant at t2 even if τ1,3
misses its response-time tolerance, as long as τ1,2 and τ2,5
meet their response-time tolerances.

The following theorem shows that we may consider only
one candidate idle instant at any given time and still find the
earliest idle normal instant. In Fig. 4, t2 was selected as a
time when a processor becomes idle, in order to illustrate
this theorem.

Theorem 1. If t is a candidate idle instant at t2 and t2 is an
idle normal instant, then t is an idle normal instant.

Proof. Because t is a candidate idle instant, by Def. 3, ev-
ery job pending at t that is no longer pending at t2 meets
its response-time tolerance. Furthermore, because t2 is an
idle normal instant, by Def. 2, every job that is still pend-
ing at t2 meets its response-time tolerance. Therefore, every
job pending at t meets its response-time tolerance. Further-
more, because t is a candidate idle instant, by Def. 3, some
processor is idle at t. Therefore, by Def. 2, t is an idle nor-
mal instant.

In order to detect an idle normal instant, we main-
tain as idle cand the earliest candidate idle instant and
as pend idle cand the set of incomplete jobs pending at
idle cand. If there is no current candidate idle instant, then
the placeholder ⊥ is used instead. So that the monitor pro-
gram can determine pend idle cand when a candidate idle
instant is detected, it always maintains as pend now the
set of jobs currently pending. A job is added to pend now
whenever it is released, in on job release(). A job is
removed from pend now as soon as it has completed, in
on job complete().

6

(a) Example depicting how actual to
virtual time conversion is done.

(b) Example depicting yi,k when
v(yi,k) > v(tci,k).

(c) Example depicting yi,k when
v(yi,k) < v(tci,k) and at least one
speed change occured between yi,k
and tci,k .

(d) Example depicting yi,k when
v(yi,k) < v(tci,k) and no speed
change occured between yi,k and
tci,k .

Figure 5: Examples illustrating virtual time computations in the kernel.

In the definition of job complete() in Algo. 1, the
kernel reports to the monitor program whether the ready
queue is empty. The purpose for this reporting is that if
the ready queue is empty, the processor that just com-
pleted τi,k has become idle. This fact is exploited in both
init recovery() and on job complete() in order
to detect candidate idle instants.

The function init recovery() initializes recovery
mode, the process of finding an idle normal instant. Be-
cause recovery mode is always initiated as a result of a
job missing its response-time tolerance, and such a miss
is detected when the job completes, there is a relevant job
completion time comp time. As discussed above, if the
ready queue was empty at comp time, as indicated by
queue empty, then a processor became idle at comp time.
Therefore, by the definition of “candidate idle instant” in
Def. 3, comp time is a candidate idle instant. This case is
handled in Lines 2–4. Otherwise, no candidate idle instant
has yet been detected, as handled in Lines 5–7.

As discussed above, the function on job release()
simply updates the set pend now of currently pending jobs.

The function on job complete() first, in Line 9,
updates pend now as discussed above. Then, Lines 10–
11 consider a response-time tolerance miss, regardless of
whether the monitor program is currently in recovery mode.
If such a miss occurs, then the function handle miss()
is called. The particular implementation of this function
differs among the monitor programs we consider, and is
discussed later. Lines 12–20 execute only when the mon-
itor program is in recovery mode. Lines 12–17 execute if
there is already a candidate idle instant under considera-
tion. Lines 13–15 execute if τi,k has missed its response-
time tolerance, in which case any prior candidate idle in-
stant is no longer a candidate idle instant. On the other
hand, Lines 16–17 execute when τi,k has met its response-
time tolerance. In this case, we remove τi,k from the set
pend idle cand of still-pending jobs that were pending at
idle cand. Lines 18–20 consider the case that comp time
has become the earliest candidate idle instant. This could
happen either because a processor just became idle, or be-
cause a previous candidate idle instant was just discarded
in Lines 13–15 while a processor was idle. In either case,

we start considering comp time as a candidate idle instant.
Finally, in Lines 21–23 we consider the case that there is an
existing candidate idle instant, but the set pend idle cand
is empty. Whenever this situation occurs, either because the
last job in pend idle cand was removed on Line 17 or be-
cause the set of pending jobs considered in Line 20 was
empty, the system exits recovery mode.

Our first userspace monitor program, SIMPLE, is de-
picted in Algo. 3. It is given the response-time tolerances
desired for the tasks and a virtual time speed s(t) used for
overload recovery. When a response-time tolerance miss is
detected while the system is not in recovery mode, it simply
slows down the virtual clock and starts recovery mode.

Our second userspace monitor program, ADAPTIVE, is
depicted in Algo. 4. It allows a value of s(t) to be deter-
mined at runtime, selecting a smaller value for a more sig-
nificant response-time tolerance miss. This minimizes the
impact on the system when only a minor response-time tol-
erance miss has occured, but provides a more drastic re-
sponse when a larger miss has occured. The monitor ac-
cepts an aggressiveness factor a in addition to the set of
response-time tolerances, providing additional tuning. Once
a response-time tolerance violation is detected, the monitor
maintains the invariant that s(t) = a ·min((Yi + ξi)/Ri,k),
where the min is over all jobs with tci,k after recovery mode
last started. Thus, it chooses the speed based on the largest
observed response time since recovery mode started.

5 Experiments

When a designer provisions an MC system, he or she should
select level-C PWCETs that will be infrequently violated.
Therefore, in the most common cases, overload conditions
should be inherently transient, and it should be possible to
return the system to normal operation relatively quickly.
Therefore, our experiments consist of transient overloads
rather than continuous overloads.

We ran experiments on a system with one quad-core 920-
i7 CPU at 2.67 GHz, with 4GB of RAM. We generated
20 task sets, using a methodology similar to that described
in [11], which used task systems designed to mimic avion-
ics. We generated task systems where levels A and B each

7

Function init recovery(comp time,
queue empty)

1 recovery mode := true;
2 if queue empty then
3 idle cand := comp time;
4 pend idle cand := pend now;
5 else
6 idle cand := ⊥;
7 pend idle cand := {};

Function on job release(τi,k)
8 Add τi,k to pend now;

Function on job complete(τi,k, ri,k, yi,k,
comp time, queue empty)

9 Remove τi,k from pend now;
10 if comp time− yi,k > ξi then
11 handle miss(τi,k, ri,k, yi,k, comp time,

queue empty);
12 if recovery mode and idle cand 6= ⊥ then
13 if comp time− yi,k > ξi then
14 idle cand := ⊥;
15 pend idle cand := {};
16 else
17 Remove τi,k from pend idle cand;
18 if recovery mode and idle cand = ⊥ and

queue empty then
19 idle cand := comp time;
20 pend idle cand := pend now;
21 if recovery mode and idle cand 6= ⊥ and

pend idle cand = {} then
22 change speed(1);
23 recovery mode := false;

Algorithm 2: Userspace monitor algorithms common
to SIMPLE and ADAPTIVE.

Function handle miss(τi,k, ri,k, yi,k, comp time,
queue empty)

1 if not recovery mode then
2 change speed(s(t));
3 init recovery(comp time,

queue empty);

Algorithm 3: Specific userspace implementation for
SIMPLE.

occupy 5% of the system’s processor capacity and level C
occupies 65% of the system’s capacity, assuming that all
jobs at all levels execute for their level-C PWCETs. As
in [11], we assumed that each task’s level-B PWCET is ten
times its level-C PWCET, and that its level-A PWCET is
twenty times its level-C PWCET.

At levels A and B, we generated tasks on one
CPU at a time, using 5% of each CPU’s capacity for
level A (assuming level-C execution times) and 5% for
level B (again assuming level-C execution times). For
level-A tasks, we selected periods randomly from the set
{25 ms, 50 ms, 100 ms}. For level-B tasks, we selected ran-

Function handle miss(τi,k, ri,k, yi,k, comp time,
queue empty)

1 if not recovery mode then
2 current speed := 1;
3 init recovery(comp time,

queue empty);
4 new speed := a · (Yi + ξi)/(comp time− ri,k);
5 if new speed < current speed then
6 change speed(new speed);
7 current speed := new speed;

Algorithm 4: Specific userspace implementation for
ADAPTIVE.

dom multiples of the largest level-A period on the same
CPU, capped at 300 ms. We then selected, for each task,
a utilization (at its own criticality level) uniformly from
(0.1, 0.4). This is the “uniform medium” distribution from
prior work, e.g., [5]. For utilization at level C, the result-
ing choice is scaled by 1/20 for level-A tasks and 1/10
for level-B tasks. When a task would not fit within the al-
located capacity for its criticality level, its utilization was
scaled down to fit. Each task was then assigned a level-C
PWCET based on multiplying its level-C utilization by its
period.

At level C, we selected periods that were multiples of
5 ms between 10 ms and 100 ms, inclusive. We used uni-
form medium utilizations, as at levels A and B. As we did
with levels A and B, we scaled down the utilization of the
last task to fit. Yi was selected for each level-C task using
G-FL, which provides better response time bounds than G-
EDF [9]. To determine response-time tolerances, we used
the analytical bounds described in our technical report [8].

We tested the following overload scenarios:

• (SHORT) - All jobs at levels A, B, and C execute for
their level-B PWCETs for 500 ms, and then execute
for their level-C PWCETs afterward.
• (LONG) - All jobs at levels A, B, and C execute for

their level-B PWCETs for 1 s, and then execute for
their level-C PWCETs afterward.
• (DOUBLE) - All jobs at levels A, B, and C execute

for their level-B PWCETs for 500 ms, execute for
their level-C PWCETs for one second, execute for their
level-B PWCETs for another 500 ms, and then execute
for their level-C PWCETs afterward.

Because levels A and B together occupy 10% of the sys-
tem’s capacity at level C, and because level-B PWCETs are
ten times more pessimistic than level-C PWCETs, these rep-
resent a particularly pessimistic scenario in which all CPUs
are occupied by level-A and -B work for almost all of the
time during the overload.

For each overload scenario, we used SIMPLE with s(t)
choices from 0.2 to 1 in increments of 0.2. The choice of
s(t) = 1 does not use our overload management techniques
at all and provides a baseline for comparison. We also used
ADAPTIVE with a choices from 0.2 to 1.0 in increments of

8

0.2. We then recorded the minimum virtual-time speed (to
analyze the behavior of ADAPTIVE) and the amount of time
from when the last overload stopped until the virtual-time
clock was returned to normal. We then averaged each result
over all generated task sets.

In Fig. 6, we depict the average dissipation time using
SIMPLE with respect to the choice of s(t) during recovery.
Additionally, we depict error bars for 95% confidence in-
tervals. Under LONG, dissipation times are approximately
twice as long as under SHORT. This is to be expected, be-
cause overhead occurs for twice as long. Under DOUBLE,
dissipation times are bigger than under SHORT for s(t) = 1,
but nearly identical for smaller choices of s(t). This occurs
because dissipation time is measured from the end of the
second (and final) interval during which overload occurs.
For sufficiently small choices of s(t), the system usually
recovers completely before the second interval of overload
starts, and that interval is the same length as in SHORT. In
any case, a reduction of at least 50% of the dissipation time
can be achieved with a choice of s(t) = 0.6, and with that
choice, the dissipation time is less than twice the length of
the interval during which overload occurs. Smaller choices
of s(t) have diminishing returns, with only a small improve-
ment in dissipation time. Such a small improvement is likely
outweighed by the larger impact on job releases from select-
ing a smaller s(t).

In Fig. 7, we depict the average dissipation time using
ADAPTIVE with respect to the aggressiveness factor. As
before, we depict error bars for 95% confidence intervals.
There is significant variance in the initial choice of s(t)
by ADAPTIVE, depending on which level-C jobs complete
first after the overload starts, resulting in the larger confi-
dence intervals. This effect is particularly pronounced in the
case of DOUBLE. By comparing Figs. 6 and 7, we see that
ADAPTIVE significantly reduces the dependency of dissi-
pation time on the length of the overload interval. Further-
more, dissipation times are often significantly smaller under
ADAPTIVE than under SIMPLE.

However, in order to fully evaluate ADAPTIVE, we must
consider the minimum s(t) value it chooses. Fig. 8 depicts
the average of this choice with respect to the aggressive-
ness value, in addition to 95% confidence intervals. Here,
we see that ADAPTIVE achieves smaller dissipation times
than SIMPLE by choosing significantly slower virtual-clock
speeds. Thus, jobs are released at a drastically lower fre-
quency during the recovery period. Therefore, under the
highly pessimistic scenarios we considered, SIMPLE is a
better choice than ADAPTIVE.

As discussed above, level-C tasks run very little during
the overload, so jobs pending at the end of the overload
dominate other jobs in producing the largest response times.
Because ADAPTIVE usually results in complete recovery
from overload before the second overload interval, this
causes nearly identical minimum choices of s(t) between
SHORT and DOUBLE. Similarly, because the overload in-
terval is twice as long under LONG than under SHORT, the
minimum choice of s(t) is about half under LONG com-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.2 0.4 0.6 0.8 1

D
is

s
ip

a
ti
o

n
 t

im
e

 (
m

s
)

s(t) during recovery

Short Long Double

Figure 6: Dissipation time for SIMPLE

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.2 0.4 0.6 0.8 1

D
is

s
ip

a
ti
o

n
 t

im
e

 (
m

s
)

Aggressiveness factor

Figure 7: Dissipation time for ADAPTIVE

pared to SHORT.
In summary, the best choice of monitor under the tested

conditions was SIMPLE with s(t) = 0.6, although s(t) =
0.8 could be a good choice if it is preferable to have a
smaller impact on new releases with a longer dissipation
time.

We also measured the same overheads considered in [11]
both with and without our virtual time mechanism present,
and considering both average and maximum observed over-
heads. For most overheads considered, there was no signifi-
cant difference from the virtual time mechanism. However,
there was variance in the scheduling overheads, as depicted
in Fig. 9. For average-case overheads, the introduction of
virtual time increased the scheduling time by about 40%,
while for worst-case overheads, the introduction of virtual
time approximately doubled the scheduling time. Because
level C is SRT, the average-case overheads are more rele-
vant, and the cost of adding the virtual time mechanism is
small. Furthermore, the userspace monitor program had an
effective CPU utilization of approximately 0.1, less than a
typical task.

9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

M
in

im
u

m
 s

(t
)

Aggressiveness factor

Figure 8: Minimum s(t) for ADAPTIVE

 0
 2
 4
 6
 8

 10
 12
 14
 16

Avg,8

Avg,12

Avg,16

Avg,20

M
ax,8

M
ax,12

M
ax,16

M
ax,20

O
v
e

rh
e

a
d

 (
µ

s
)

Metric, Task Count

Scheduler Variant
Without-VT

With-VT

Figure 9: Scheduling overhead measurements

6 Conclusion
In this paper, we addressed the problem of scheduling under
MC2 when a transient overload occurs. We discussed the
conditions that could cause an overload to result in a long-
running increase in response-time bounds, and proposed a
virtual-time mechanism to deal with these conditions.

We then presented an implementation of our mechanism
and provided experiments to demonstrate that it can effec-
tively provide recovery from unexpected overload scenar-
ios. In our experiments, dissipation times could be brought
within twice the length of a pessimistic overload scenario
by only moderately affecting the time between job releases,
and our scheme created little additional overhead.

References

[1] LITMUSRT home page. http://www.litmus-rt.org/.
[2] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier,

and D. Shasha. On-line scheduling in the presence of over-
load. In FOCS, pages 100–110, 1991.

[3] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate
modulation of soft real-time tasks in autonomous robot con-
trol systems. In ECRTS, pages 21–28, 1999.

[4] A. Block. Adaptive Multiprocessor Real-Time Systems. PhD
thesis, The University of North Carolina at Chapel Hill,
2008.

[5] B. Brandenburg. Scheduling and Locking in Multiprocessor

Real-Time Operating Systems. PhD thesis, The University of
North Carolina at Chapel Hill, 2011.

[6] A. Burns and R. Davis. Mixed criticality systems -
a review. http://www-users.cs.york.ac.uk/

˜burns/review.pdf, December 2013.
[7] G. Buttazzo and J. Stankovic. RED: Robust earliest deadline

scheduling. In 3rd International Workshop on Responsive
Computing Systems, pages 100–111, 1993.

[8] J. Erickson and J. Anderson. Dissipation bounds: Recov-
ering from overload in multicore mixed-criticality systems.
Technical Report TR14-001, Department of Computer Sci-
ence, University of North Carolina at Chapel Hill, Chapel
Hill, NC, May 2014.

[9] J. Erickson, J. Anderson, and B. Ward. Fair lateness schedul-
ing: Reducing maximum lateness in G-EDF-like scheduling.
Real-Time Systems, 50(1):5–47, 2014.

[10] P. Garyali. On best-effort utility accrual real-time scheduling
on multiprocessors. Master’s thesis, The Virginia Polytech-
nic Institute and State University, 2010.

[11] J. Herman, C. Kenna, M. Mollison, J. Anderson, and
D. Johnson. RTOS support for multicore mixed-criticality
systems. In RTAS, pages 197–208, 2012.

[12] M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution
rate of low criticality tasks in mixed criticality systems. In
WMC, RTSS, pages 43–48, 2013.

[13] G. Koren and D. Shasha. Dover: An optimal on-line schedul-
ing algorithm for overloaded real-time systems. In RTSS,
pages 290–299, 1992.

[14] H. Leontyev and J. H. Anderson. Generalized tardiness
bounds for global multiprocessor scheduling. Real-Time
Sys., 44(1):26–71, 2010.

[15] H. Leontyev, S. Chakraborty, and J. Anderson. Multiproces-
sor extensions to real-time calculus. In RTSS, pages 410–
421, 2009.

[16] C. Locke. Best-Effort Decision Making for Real-Time
Scheduling. PhD thesis, Carnegie Mellon University, 1986.

[17] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and
J. Scoredos. Mixed-criticality real-time scheduling for mul-
ticore systems. In ICESS, pages 1864–1871, 2010.

[18] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing
mixed-criticality scheduling strictness for task sets scheduled
with fp. In ECRTS, pages 155–165, 2012.

[19] F. Santy, G. Raravi, G. Nelissen, V. Nélis, P. Kumar,
J. Goossens, and E. Tovar. Two protocols to reduce the crit-
icality level of multiprocessor mixed-criticality systems. In
RTNS, pages 183–192, 2013.

[20] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke,
and C. Plaxton. A proportional share resource allocation al-
gorithm for real-time, time-shared systems. In RTSS, pages
288–299, 1996.

[21] H. Su and D. Zhu. An elastic mixed-criticality task model
and its scheduling algorithm. In DATE, pages 147–152,
2013.

[22] H. Su, D. Zhu, and D. Mosse. Scheduling algorithms for elas-
tic mixed-criticality tasks in multicore systems. In RTCSA,
2013.

[23] L. Zhang. Virtual clock: A new traffic control algorithm for
packet switching. In SIGCOMM, pages 19–29, 1990.

10

