
Exploring the Multitude of Real-Time Multi-GPU Configurations

Glenn A. Elliott and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract—Motivated by computational capacity and power
efficiency, techniques for integrating graphics processing units
(GPUs) into real-time systems have become an active area
of research. While much of this work has focused on single-
GPU systems, multiple GPUs may be used for further benefits.
Similar to CPUs in multiprocessor systems, GPUs in multi-GPU
systems may be managed using partitioned, clustered, or global
methods, independent of CPU organization. This gives rise to
many combinations of CPU/GPU organizational methods that,
when combined with additional GPU management options,
results in thousands of “reasonable” configuration choices.
In this paper, we explore real-time schedulability of several
categories of configurations for multiprocessor, multi-GPU
systems that are possible under GPUSync, a recently proposed
highly configurable real-time GPU management framework.
Our analysis includes the careful consideration of GPU-related
overheads. We show system configuration strongly affects real-
time schedulability. We also identify which configurations offer
the best schedulability in order to guide the implementation of
GPU-based real-time systems and future research.

I. INTRODUCTION

It is quickly becoming standard practice to use graphics pro-
cessing units (GPUs) to tackle general purpose, data parallel
computational problems, due to the significant performance
advantages GPUs have over traditional CPUs, both in terms
of throughput and power efficiency. The ways in which
GPUs are managed and scheduled differ greatly from CPUs.
This has spurred research on supporting GPUs in real-time
systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Still, few have explored
multiprocessor, multi-GPU real-time systems.

CPUs in traditional multiprocessor scheduling can follow
a partitioned, clustered, or global approach. Under clustered
scheduling, a system’s m CPUs are separated into clusters
of c CPUs each, and each task is scheduled within a single
cluster. Partitioned and global scheduling are special cases,
where c = 1 and c = m, respectively. Similarly, GPUs can
be organized by following a partitioned, clustered, or global
approach. This categorization yields nine possible allocation
categories, as illustrated in matrix form in Fig. 1. As we
describe later, when combined with additional GPU manage-
ment options, these nine choices multiply into many more.
Which configurations are best for real-time predictability?
Does configuration really matter? The answers to these basic
questions are not immediately clear.

We began to answer some of these questions in prior
work, where we explored technical implementation is-
sues and the run-time performance of a subset of multi-
GPU configurations [7]. Therein, we observed that clus-
tered GPU scheduling can improve job response time.

Figure 1: Matrix of CPU
and GPU organization.

However, we did not investi-
gate performance in terms of
real-time schedulability. In this
paper, we present an evaluation
of several categories of multi-
GPU configurations based on
real-time schedulability. This
evaluation carefully considers
both general and GPU-specific
runtime overheads. Although
not exhaustive, our evaluation
is broad (requiring over 40,000
CPU hours to complete). We investigate several possible
configurations within each of the nine aforementioned high-
level categories. We show that real-time guarantees differ
greatly among configurations.
Scope and contributions. Our study was performed within
the context of GPUSync, a highly configurable real-time
GPU management framework developed by us that extends
LITMUSRT, a Linux-based real-time OS.1 GPUSync takes
a locking-protocol-based philosophy to GPU scheduling.
Thus, schedulability tests incorporate lock-related blocking
analysis, as well as overhead accounting.

We investigate real-time schedulability in terms of the
existence of response-time bounds. This motivates us to use
“fair-lateness” (FL) schedulers, which are earliest-deadline-
first-like (EDF-like) schedulers that have provably smaller
response-time bounds than standard EDF schedulers when
c > 1 (FL is equivalent to EDF when c = 1) [11]. Under FL
scheduling, priority points are defined to minimize worst-
case response times. The FL scheduler uses these priority
points as pseudo-deadlines, and thus is a job-level static-
priority scheduler (a requirement of GPUSync).

The central contribution and intent of this paper is to
identify the most promising CPU/GPU configurations by
modeling real-world system behavior in overhead-aware
schedulability tests (we do not seek to address other real-
time issues such as precise bounds on worse-case execu-
tion time). We follow the overall empirical measurement,
overhead accounting, and experimental process developed
by Brandenburg [12], with additional techniques to quantify
the effects that GPU operations have on overheads. We also
devise a new ranking method to aid in comparing many
CPU/GPU configurations under various assumptions and
task set properties. Ultimately, we find that clustered CPU
scheduling with partitioned GPUs offers the best real-time

1LITMUSRT and GPUSync source code is shared at www.litmus-rt.org.



schedulability, overall. However, clustered GPU configura-
tions are competitive in some situations. In these cases, a
system designer may take advantage of the improved run-
time performance demonstrated in [7] with minimal impact
on response-time bounds.
Organization. In the rest of the paper, we provide needed
background (Sec. II), discuss aspects of GPUSync relevant
to blocking analysis (Sec. III), consider general and GPU-
specific overheads and present empirical measurements
(Sec. IV), and present the results from our schedulability
experiments (Sec. V). We conclude with a summary of our
findings and notes for future work (Sec. VI). Additional data
and blocking analysis is presented as appendices.

II. BACKGROUND

Current real-time GPU research falls within three gen-
eral categories: (i) techniques for persistent low-latency
tasks [1, 13], (ii) worst-case execution-time analysis of
GPU program code [3, 4], or (iii) GPU resource schedul-
ing [2, 5, 6, 7, 8, 9, 10]. In (i), a persistent task executes
on a dedicated GPU, polling for and processing work. This
research has focused on efficient data movement between a
single GPU and the rest of the system. There is no need for
scheduling data-movement or GPU computations since there
is only a single dedicated GPU. Research on (ii) has focused
on bounding the execution time of GPU program code, with
no attention paid to scheduling or data-movement costs—it
is assumed all data already resides on the GPU. In contrast
to the first two categories, the techniques developed in (iii)
seek to schedule both data movement and GPU computations
on GPU(s) shared by competing jobs of different priorities.
Only [5, 6, 7] have directly approached the topic of multi-
GPU scheduling in real-time systems. This paper also falls
within this last category. Specifically, we investigate the
analytical real-time properties of GPUSync [7] ([7] focuses
on observed real-time performance). However, before we
can address this topic directly, we must first discuss system
hardware specifics, examine how GPUs are used, and moti-
vate our synchronization-based approach. We adapt some of
the following information from [7] to suit our needs here.
System hardware. GPUs may be “discrete” or “integrated.”
There are two distinguishing characteristics between these.
First, integrated GPUs share main memory with CPUs,
while discrete GPUs have local high-performance memory.
Second, integrated GPUs are built with fewer transistors
since they share silicon with CPUs and other system-on-
chip components—this limits performance. We focus our
attention on discrete GPUs due to their performance char-
acteristics, but this introduces challenges posed by memory
management. However, our management techniques are still
applicable to integrated GPUs, except that there is no need
for GPU memory management.

Our GPUs of interest each have an execution engine (EE)
and one or two DMA copy engines (CEs). The EE consists
of many parallel processors and performs all computation.
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Figure 2: Example high-level architecture. On some multicore
chips the I/O hub may be integrated.

The CEs transmit data between system memory and GPU
memory.2 GPUs commonly have only one CE and cannot
send and receive data at the same time. However, high-end
GPUs may have an additional independent CE, enabling
simultaneous bi-directional transmissions. EEs and CEs per-
form operations non-preemptively.

Fig. 2 depicts a high-level architecture of a multicore,
multi-GPU system. The CEs connect to the host system via
a full-duplex PCIe bus. PCIe is a hierarchically organized
packet-switched bus with an I/O hub at its root. Switches
multiplex the bus to allow multiple devices to connect
to the I/O hub. Traffic is arbitrated at each switch using
round-robin arbitration at the packet level. The structure
depicted in Fig. 2 may be replicated in large-scale NUMA
platforms, with CPUs and I/O hubs connected by high-speed
interconnects. However, only devices that share an I/O hub
may communicate directly with each other as peers.

GPU usage pattern. GPU-using programs execute on CPUs
and invoke a sequence of GPU operations. There are two
types of GPU operations. Kernel operations are programs
executed by the GPU EE. Memory copy operations are
data transfers to or from a GPU’s local memory; these are
processed by the CEs. A general execution sequence for a
GPU-using program scheduled alone is depicted in Fig. 3.
Observe that a program running on a CPU initiates GPU
operations—the GPU does not initiate them independently.
At time t1, the program selects a GPU to use. At time
t2, the program transmits input data for the GPU kernel
from system memory to GPU memory. The memory copy
is processed by one of the GPU’s CEs. The program waits
(it may elect to either busy-wait or suspend) until the copy
operation completes at time t3. A kernel that operates on
the input data is executed at time t4—computational results
are stored in GPU memory. The program copies the kernel
output from the GPU at time t6. Finally, the program no
longer requires the GPU at time t8. We call the duration
from time t1 to time t8 a GPU critical section because the
program expects its sequence of operations to be carried out

2GPUs support several data transmission methods [1, 14], but we focus
on CEs due to high performance and ease of deterministic control.
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Figure 3: GPU-using program execution sequence.

on the same GPU. Recall that GPU operations on the various
engines are non-preemptive. For example, GPUCE0

cannot
be preempted within [t2, t3]. However, the program running
on the CPU is preemptive while waiting if it busy-waits
(and is not running if it suspends). There are two important
things to note about this example. First, this is only a simple
execution sequence. Any number of GPU operations may
be issued within the GPU critical section. Second, we have
depicted the input and output memory copies as processed
by different CEs—it is actually up to the GPU to select
which CE to use.

In addition to memory used for input and output, recurrent
tasks may maintain inter-job state in GPU memory. State
must be migrated from one GPU to another if such a task
switches GPUs. Migration cost is the time taken to copy
state data between these GPUs. This cost is partly dependent
upon the distance between GPUs and the method used to
copy state between them. Distance is the number of links
to the nearest common switch or I/O hub of two GPUs. For
example, in Fig. 2, the distance between GPUs 0 and 2 is
two (one link to a switch, a second link to the common
I/O hub). One may use either of two methods to migrate
state between GPUs. The first is a two-step process by way
of a temporary buffer in system memory: data is copied to
system memory from one GPU and then back out to another.
The other method is a more efficient single-step approach
using peer-to-peer (P2P) communication: data is copied
directly from one GPU to another. P2P-based migrations are
potentially more efficient, especially over short distances,
due to proximity and reduced bus contention. However, this
method requires coordination between the GPUs.

Synchronization-based philosophy. Significant difficulties
arise when we attempt to develop schedulability tests for
the system described above. A multiprocessor, multi-GPU
system is a heterogenous multiprocessor system. However,
GPU-using tasks are not fully preemptive, cannot execute
wholly on one processor type or another, and may not
arbitrarily migrate from one processor type to another.
Thus, prior holistic schedulability tests for heterogenous
multiprocessors do not apply because they assume tasks can
be partitioned among heterogenous processors or execution
is fully preemptive (e.g., [15, 16, 17]). Recently, Kim et
al. presented schedulability analysis for uniprocessor, uni-
GPU, systems under fixed-priority scheduling [10]. The

main contribution of [10] is in managing self-suspensions
that arise when a job suspends from a CPU to execute on a
GPU. However, Kim et al.’s approach is not general enough
for us to explore all the possibilities discussed in Sec. I.
This lack of generality motivates us to consider alternative
methods.

Real-time locking protocols impart a predictable access
pattern to non-CPU resources. The locking protocol itself
is a non-preemptive scheduler: it is non-preemptive since
lock ownership cannot be arbitrarily revoked. Gai et al.
observed this in [18], where they cast the problem of
scheduling a uniprocessor with a single non-preemptive
digital signal processor as a synchronization problem. We
also took this perspective in developing GPUSync, a single
synchronization-based framework that allows us to explore
every high-level category described in Sec. I.

Although our current analysis is centered on locking
protocols, it may be possible to analyze GPUSync with new
holistic schedulability tests for heterogenous multiprocessors
without having to change GPUSync itself. New tests would
have to account for the complex relationship between EEs
and CEs and task self-suspensions.

III. GPUSYNC

In this section, we discuss the synchronization-based frame-
work implemented by GPUSync. We limit our attention
to the aspects of GPUSync that relate to schedulability
analysis. A treatment of technical aspects (such as interrupt
handling and budgeting) can be found in [7]. We begin with
a discussion of our assumed system model and proceed to
describe GPUSync.
A. System Model
We consider a task system, T , comprised of n real-time tasks
T1, · · · , Tn that are scheduled on m CPUs, partitioned into
clusters of c CPUs each. The subset TG ⊆ T includes all
tasks that require GPU resources from the system’s h GPUs,
partitioned into clusters of g GPUs each. The subset TC ,
T\TG are tasks that do not use a GPU. We assume that the
workload to be supported can be modeled as a traditional
sporadic real-time task system. Every task has a provisioned
CPU execution time of ecpu

i , period pi, and relative deadline
di. Each task releases a (potentially infinite) series of jobs
Ti,j with a minimum separation time of pi time units. Job
Ti,j is released (arrives) at time ai,j and completes (finishes)
at time fi,j . The response time of Ti,j is ri,j , fi,j − ai,j .
The parameter egpu

i denotes Ti’s provisioned GPU execution
time. The parameter qcpu

i denotes Ti’s total CPU execution
time requirements within its GPU critical section (note that
qcpu
i is included in ecpu

i ). Each Ti,j sends (receives) zIi (zOi )
bytes of data as input (output) to (from) GPU computations.
The size of Ti,j’s state is denoted by zSi . For convenience,
we define the function xmit(zIi , z

O
i , z

S
i ) to specify the total

data transmission time required by Ti,j . As we discuss in
Sec. IV, this can be computed given empirical measurement
data. We assume that a job of Ti ∈ TG may use any



Parameter Description
m number of system CPUs
h number of system GPUs
c CPU cluster size
g GPU cluster size
TG set of all GPU-using tasks
TC set of all CPU-only tasks
ecpu
i Ti’s provisioned CPU execution time
egpu
i Ti’s provisioned GPU execution time

qcpu
i

total CPU execution time within
Ti’s GPU critical section

zIi size of Ti’s GPU input data (bytes)
zOi size of Ti’s GPU output data (bytes)
zSi size of Ti’s inter-job GPU state data (bytes)
bi upperbound on blocking for Ti

Table I: Important notation.

one arbitrary GPU in its GPU cluster. egpu
i , zIi , zOi , and

zSi are zero for Ti ∈ TC . The term bi denotes an upper-
bound on the time Ti,j may be blocked due to lock requests
(for presentation simplicity, we assume tasks share no other
resources, but this is not a GPUSync requirement). We derive
values for bi in Appendix B. Finally, Ti’s utilization is given
by ui , (ecpu

i + egpu
i + xmit(zIi , z

O
i , z

S
i ))/pi, and the task set

utilization is U ,
∑n

i=1 ui.
We refer back to the parameters summarized in Table I.

Example. If we assume that the GPU usage pattern illus-
trated in Fig. 3 represents the entire execution sequence of a
job Ti,j , then ecpu

i = (t2−t0)+(t4−t3)+(t6−t5)+(t9−t7),
egpu
i = t5−t4, qcpu

i = (t2−t1)+(t4−t3)+(t6−t5)+(t8−t7),
and xmit(zIi , z

O
i , z

S
i ) = (t3 − t2) + (t7 − t6) (assuming

zSi = 0, i.e. the job has no state to migrate between GPUs).

B. GPUSync Structure

It helps to refer to concrete system configurations in describ-
ing GPUSync, so let us define several such configurations.
Fig. 4 depicts a matrix of several high-level CPU/GPU
configurations for a 12-CPU, 8-GPU system, which we also
use in Secs. IV and V. We refer to each cell in Fig. 4 using a
column-major tuple, with the indices P , C, and G denoting
partition, clustered, and global choices, respectively. The
tuple (P, P ) refers to the top-left corner—a configuration
with partitioned CPUs and GPUs. Likewise, (G,C) indicates
the right-most middle cell—globally scheduled CPUs with
clustered GPUs. We use the wildcard ∗ to refer to an
entire row or column: e.g., (P, ∗) refers to the left-most
column—all configurations with partitioned CPUs. Within
each cell, individual CPUs and GPUs are shown on the
left and right, respectively. Dashed boxes delineate CPU and
GPU clusters (no boxes are used in partitioned cases). The
solid lines depict the association between CPUs and GPUs.
For example, the solid lines in (C,C) indicate that two GPU
clusters are wholly assigned to each CPU cluster. Finally,
the horizontal dashed line across each cell denotes the
NUMA boundary of the system. Offline, tasks are assigned
to CPU and GPU clusters in accordance with the desired
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Figure 4: Concrete configurations.

configuration.
GPUSync uses a two-level nested locking structure: an

outermost token lock to allocate GPUs to jobs and innermost
engine locks to arbitrate access to GPU engines. This is
depicted in Fig. 5. In Step A (or time t1 in Fig. 3), the
job requests a token from the GPU allocator responsible for
managing the GPUs in the job’s GPU cluster. The GPU
allocator determines which token—and by extension, which
GPU—should be allocated to the request. The requesting
job may access the assigned GPU once it receives a token
in Step B. In Step C, the job competes with other token-
holding jobs for GPU engines; access is arbitrated by the
engine locks. A job may only issue GPU operations on its
assigned GPU after acquiring its needed engine locks in Step
D. For example, an engine lock must be acquired at times t2,
t4, and t6 in Fig. 3. With the exception of P2P migrations,
a job cannot hold more than one engine lock at a time.

GPUSync can be configured to use different locking
protocols to manage tokens and engines. In this paper, we
configure GPUSync to use protocols known to offer asymp-
totically optimal blocking bounds under FL scheduling. We
now describe the two locking levels in more detail. We
provide blocking analysis in Appendix B.

Token lock. Each cluster of g GPUs is managed by
one GPU allocator. We associate ρ tokens (a configurable
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Figure 5: High-level design of GPUSync.



parameter) with each GPU. All GPU tokens are pooled and
managed by the per-cluster GPU allocator using a single k-
exclusion lock, where k = ρg. Jobs with a pending token
request suspend until assigned a token.

We employ one of two k-exclusion locking protocols
to allocate tokens, depending upon how GPU clusters are
shared among CPU clusters. We use the Replica-Request
Donation Global Locking Protocol (R2DGLP) [19] in cases
where GPU clusters are wholly assigned to a single CPU
cluster. This is because the R2DGLP’s progress mechanism
(i.e., priority inheritance) ensures predictable behavior with-
out directly affecting CPU-only tasks. However, a stronger
mechanism (i.e., priority donation) is required when GPU
clusters are shared among CPU clusters. Hence, we employ
the Clustered k-exclusion O(m) Locking Protocol (CK-
OMLP) [20] for cases (P,C), (P,G) and (C,G). Priority
donation may cause CPU-only tasks to experience blocking
at release-time. We use the R2DGLP and CK-OMLP be-
cause these protocols offer asymptotically optimal blocking
bounds with the associated CPU/GPU cluster configurations
under FL scheduling. To improve runtime performance,
we augment both protocols with heuristics that bias token
selection towards certain GPUs over others in order to reduce
the frequency and cost of GPU migrations within a cluster.
We showed that this can substantially improve observed
performance in [7]. Moreover, these heuristics do not affect
the analytical properties of the locking protocol.

The value of ρ affects both migration frequency and
GPU parallelism. A small value of ρ, such as ρ = 1, will
trigger frequent migrations since tokens are scarce, incurring
migration overheads. A larger value of ρ, such as ρ = 3,
will allow the engines of a GPU to be used by separate
jobs simultaneously. However, if tokens are too plentiful,
then work may “pile up” on few GPUs, while others are
underutilized. There is a balance to strike: the value of ρ
should promote GPU parallelism while distributing work
equitably across GPUs.
Engine locks. A mutex is associated with every GPU EE
and CE. For GPUs with two CEs, one engine is dedicated
to inbound data copies, and the other to outbound data
copies. Although CEs are capable of copying data both to
and from the GPU, on our test platform, we were unable to
coax a dual-CE GPU (NVIDIA Quadro K5000) to perform
two copies simultaneously in the same direction. Thus,
we are unable to reserve one CE for copies to and from
system memory and the other for P2P migrations (such a
configuration may offer favorable analytical properties).

Each engine mutex prioritizes requests in FIFO order.
Blocked jobs suspend while waiting for an engine. A job
that holds an engine lock may inherit the priority of any job
it blocks. Priority inheritance relations from the token lock
may propagate to an engine holder to ensure timely real-time
scheduling. A job releases an engine lock once its engine-
related operation (e.g., GPU kernel execution or memory
copy) completes. In order to reduce worst-case blocking, a

Parameter Choices
CPU Scheduling P, C, G

GPU Organization P, C, G
Tokens per GPU (ρ) N1

Migration Method None, System Memory, P2P

Table II: GPUSync configuration parameters studied in this paper.

job is allowed to hold at most one engine lock at a time,
except during P2P migrations.

Schedulability is best when engine locks are held for
short durations, so each individual GPU operation should be
protected by separate engine-lock critical sections. To that
end, GPUSync provides convenience routines to break large
memory copies into chucks. Others have used this chunking
technique [1, 8].

Migrations. GPUSync supports both P2P and system
memory migrations. The rules governing each method differ.

Under P2P migration, when migrating from GPUa to
GPUb, a job must hold the appropriate CE locks for both
GPUa and GPUb. As shown in [21], worst-case blocking
grows quadratically with respect to the total number of GPU
tokens if these locks are acquired separately. We avoid such
excessive blocking by instead using dynamic group locks
(DGLs) [22]. Using DGLs, a job atomically requests both
CE locks simultaneously, instead requesting of one after
the other. As a result, worst-case blocking grows linearly
instead of quadratically. A job may issue memory copies to
carry out migration once both engine locks are held. P2P
migrations are usually only possible between GPUs within
the same NUMA node, so P2P migrations are restricted to
cases (∗, C) of Fig. 4.

System memory migrations are performed speculatively,
i.e., migrations are always assumed to be necessary. Thus,
state data is aggregated with input and output data. State is
always copied off of a GPU after per-job GPU computations
have completed. State is then copied back to the next GPU
used by the task for the subsequent job if a different GPU
is allocated. An advantage of this approach over P2P migra-
tions is that a job never has to hold two CE locks at once.
This reduces lock contention and may improve blocking
bounds, depending upon system and task set parameters.

Speculative migrations may seem heavy handed, espe-
cially when migrations between GPUs may not always be
necessary. Instead, an “on demand” approach could be taken
where each migration forces data to be copied off of the
previously allocated GPU to system memory and then to
the newly allocated GPU. However, this method offers no
analytical real-time benefits over P2P migrations.

Table II summarizes the GPUSync configuration options
we study in this paper. Not every combination is valid, e.g.,
the migration method “None” is only valid for (∗, P ).

IV. OVERHEADS

In this section, we discuss the methodology we used to
gather general and GPU-related system overheads for the
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test platform upon which our evaluation in Sec. V is based.
Brandenburg demonstrated in [12] the importance (and chal-
lenges) of incorporating such overheads into schedulability
analysis—sometimes schedulers that perform well in theory,
do poorly in practice. We replicate and extend Brandenburg’s
methods for gathering and accounting for these overheads.
We classify overheads as either algorithmic overheads or
memory overheads. Before discussing these further, we first
frame the context in which our overheads were gathered.
Evaluation platform. Our analysis and overheads are
within the context of our implementation of GPUSync in
LITMUSRT (based on the 3.10.5 Linux kernel) running on
our test platform. This platform has two NUMA nodes,
each like the system depicted in Fig. 2. Each NUMA
node is equipped with one Xeon X5060 processor with six
2.67GHz cores, and four NVIDIA K5000 Quadro GPUs.
Overheads were gathered under partitioned, clustered, and
global FL scheduling. We used CUDA 6.0 as our GPU
runtime environment and the NVIDIA Linux driver 331.62.
A. Algorithmic Overheads

We followed Brandenburg’s methods to gather algorithmic
overheads. These include: thread context switching, schedul-
ing, job release queuing, inter-processor interrupt latency,
CPU clock tick processing, and GPU interrupt process-
ing. We measured these overheads using the light-weight
tracing facilities of LITMUSRT while executing workloads
that stress the various hardware components managed by
GPUSync. These overheads were measured under different
CPU and GPU cluster configurations, as well as with task
sets of varying sizes (in order to capture overhead trends
dependent upon the number of tasks). Over 11GB of trace
data was recorded (a single trace event is only 16 bytes
in size). We distilled this data into average and worst-case
overheads, and incorporate them into schedulability analy-
sis using Brandenburg’s “preemption-centric” method [12].
Most of these algorithmic overheads have been studied in
prior work, so we do not discuss them further. However, we
do discuss algorithmic overheads related to GPUs.

GPUs interact with the host system primarily through
I/O interrupts. Interrupt processing is split into “top” and

“bottom” halves. Due to page constraints, we defer a lengthy
description of our GPU interrupt accounting method to [21].
Nevertheless, this accounting requires that we quantify the
execution cost of top and bottom halves of GPU interrupt
processing. Fig. 6 shows a histogram of observed top-half
execution times recorded over a 20 minute period, where
30 tasks executing at rates between 10 and 30 frames
per second, used GPUs managed by GPUSync to perform
computer vision calculations.3 The most striking aspect of
this data is the outliers: the maximum value is 87.19µs,
yet the mean and median are only 8.01µs and 7.31µs,
respectively. We observed similar characteristics for bottom-
halves: the maximum observed bottom-half execution time
was 1ms, while the mean and median are 66.14µs and
54.68µs, respectively. Although these overheads are greater,
GPUSync schedules these bottom-halves according to real-
time priorities, so this significantly mitigates their impact [5].
We must be mindful of the discrepancies between worst-case
and average measurements as we model schedulability and
determine system provisioning in practice.

B. Memory Overheads

Although algorithmic overheads are important, those related
to memory access are more so in a real-time GPU system.
As pointed out by Pellizzoni et al. [23], I/O memory bus
traffic can significantly impact the performance of tasks
executing on CPUs due to system memory bus contention.
Moreover, in multi-GPU systems, there is also contention
for the PCIe bus. We seek to quantify two memory-related
overheads. First, we want to determine the impact GPU
memory traffic has on cache preemption/migration delays
(CPMDs) [12]. Second, we seek to determine the speed at
which data can be transmitted to and from system memory
and directly between GPUs. We incorporate the former into
schedulability analysis. The latter is used to compute task
execution requirements on GPU CEs—critical to real-time
GPU schedulability. CPMD and GPU memory copy costs
have been studied in prior work ([12] and [14], respectively),
so we refrain from repeating such work here. Instead, we
focus on cost increases due to GPU memory traffic under
worst-case scenarios.

Increase in CPMDs. To assess CPMDs, we used an
experimental method modeled after the “synthetic method”
described in [12]. A non-preemptive instrumented process
records the time taken to read a prescribed amount (a
“working set size”) of sequential data from a “hot” cache.
The process suspends for a short duration, resumes on
a random processor, and rereads said data from the now
“cold” cache. A cost is determined by subtracting the hot
measurement from the cold.

We are concerned with two memory configurations since
our test platform is a NUMA system. Under partitioned
and clustered CPU scheduling (when clusters reside entirely

3This is the same test scenario used in our evaluations in [7].



within a NUMA node), memory can be allocated locally to
increase performance and reduce interference from NUMA-
remote tasks. However, under global CPU scheduling, one
may interleave memory pages across the NUMA nodes in
order to obtain good average case performance. We require
overhead data for both configurations in order to accurately
model each CPU/GPU configuration described in Sec. III.

Under both local and interleaved configurations, we col-
lected three CPMD datasets: (i) an “idle” dataset where
the instrumented process runs alone, (ii) a “loaded” dataset
where “cold” measurements are taken in the presence of
cache-trashing processes that introduce contention for both
caches and memory bus, and (iii) a “loaded-gpu” dataset
where additional load is created by GPU-using processes,
one for each CE, that fully loads the bidirectional PCIe bus
with a constant stream of 512MB DMA memory transfers
to and from pinned pages in system memory. We observed
that GPU traffic increased local CPMD costs by a factor
between two and four for working set sizes larger than
32KB. Interleaved CPMDs were affected to a lesser degree,
with increases by a factor between 1.1 and 1.9. However,
interleaved CPMDs without GPU traffic are nearly as great
as local CPMDs with GPU traffic.

GPU memory copy costs. We performed similar exper-
iments to determine GPU memory copy costs. An instru-
mented process performed memory copies to and from sys-
tem memory and P2P memory copies between neighboring
GPUs. We tested both local and interleaved configurations
under idle and loaded scenarios. In addition to loading every
GPU CE, we also executed memory-heavy GPU kernels on
the EE of GPUs used by the instrumented process in order
to stress the GPU’s own local memory bus. Table III shows
the worst-case GPU transmission times with and without
load for 1MB memory copies. There are no results for P2P
copies in the interleaved case since P2P copies are isolated
from system memory. We see that load greatly increases
memory transmission time. For example, system-to-GPU
memory copies increased by factors of 6.6 and 9.6 for
the local and interleaved cases, respectively. Interestingly,
P2P transmissions were hardly affected. This is because
P2P copies were performed between neighboring GPUs, so
there was no contention for the PCIe bus linking them. This
result also shows that the EE did not strongly affect DMA
performance. This is due to the GPU’s architecture: the EE
has a very high-bandwidth connection to GPU memory in
comparison to a CE.

V. EXPERIMENTAL RESULTS

In this section, we assess trade-offs among many con-
figuration options supported by GPUSync by presenting
the results of overhead-aware schedulability studies. We
randomly generated task sets of varying characteristics and
tested them for schedulability using the methods described
in [11]. We now describe the experimental process we used.

1MB Idle Loaded Factor
Local

System-to-GPU 179.6ms 1181.3ms 6.6
GPU-to-System 169.2ms 1214.3ms 7.2

P2P 167.9ms 175.68ms 1.05
Interleaved

System-to-GPU 187.1ms 1802.4ms 9.6
GPU-to-System 204.6ms 1733.7ms 8.4

Table III: Worst-case GPU memory copy cost for 1MB.

Experimental setup. There is a wide space of system
configuration and taskset parameters to explore. We eval-
uated each high-level configuration illustrated in Fig. 4.
These configurations are not exhaustive, but we feel they
are they simplest and realistic configurations within each
cell. For instance, in (P, P ), four partitioned CPUs have
no attached GPU; these CPUs may only schedule tasks of
TC . Such a configuration is a natural extension of existing
uniprocessor, uni-GPU methods. We also only explore GPU
clusters of size two in (∗, C). This is because we found
no runtime benefit to larger sizes in [7]. The configurations
of (∗, C) were also tested under system memory and P2P
migration methods (we denote the P2P cases as (∗, CP2P)).
Every cell was tested with several values of ρ: ρ = 1
to examine schedulability under exclusive GPU allocation;
ρ = 3 to explore schedulability when all GPU engines
(one EE and two CEs) are given the opportunity to operate
simultaneously; and ρ = 2 to see if there is a balance to
strike between ρ = 1 and ρ = 3. (∗, P ) was also tested
with ρ =∞ since ρ’s role in facilitating migrations is moot.
Finally, we assumed a data copy chunk size of 1MB.

Random task sets for schedulability experiments were
generated according to several parameters in a multistep
process. Task utilizations were generated using three uni-
form distributions: [0.01, 0.1] (light), [0.1, 0.4] (medium),
and [0.5, 0.9] (heavy). Task periods were generated using two
uniform distributions with ranges [33ms, 100ms] (moderate),
[200ms, 1000ms] (long).4 Tasks were generated by selecting
a utilization and period until reaching a desired task set
utilization. The task set was then randomly subdivided into
TG and TC . The number of tasks in TG was set to be:
33%, 66%, or 100% of the task set size. For tasks in
TG, kernel execution times were generated using three
uniform distributions with ranges [10%, 25%], [25%, 75%],
and [75%, 95%] of task execution time (a corresponding
amount of time was subtracted from CPU execution time).
Input/output data sizes were generated using three values:
256KB (light), 2MB (medium), and 8MB (heavy). A selected
data size was evenly split between zIi and zOi . Task GPU
state size was generated using three values: 0%, 25%, and
100% of Ti’s combined input/output data size. In order to
keep our study tractable, all tasks were assigned a CPU
cache working set size of 4KB. For tasks in TG, 5% of its

4These periods are inspired by the sensor streams GPUs may process.
Moderate periods represent video-based sensors. Long periods model
slower sensors such as LIDAR.
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Figure 7: Illustrative ranking.

CPU execution time was determined to be within the task’s
single GPU critical section. Overheads and data transmission
times were taken from four data sets: average-case (AC)
observations in an idle system (AC/I); AC observations in
a loaded system (AC/L); worst-case (WC) observations in
an idle system (WC/I); and WC observations in a loaded
system (WC/L).

A unique combination of the above system configurations
and taskset parameters defined a set of experiment settings,
75, 816 in all. Under each set of experiment parameters,
for each 0.25 increment in system utilization range (0, 12]
(reflecting the range of system utilizations supported by our
twelve-core test platform), we generated between 500 and
4, 000 task sets.5 Task sets were partitioned to the CPU/GPU
clusters in three phases:
Phase 1: TG was partitioned among the GPU clusters, using
the worst-fit heuristic in decreasing GPU utilization order,
where ugpui , (egpu

i + qcpu
i + xmit(zIi , z

O
i , z

S
i ))/pi.

Phase 2: TG was then partitioned among CPU clusters, in
accordance with experiment parameters, using the worst-fit
heuristic in decreasing utilization (as defined in Sec. III)
order. Blocking terms were calculated and incorporated into
each CPU cluster’s (estimated) total utilization.
Phase 3: TC was then partitioned among the CPU clusters
using the worst-fit heuristic in decreasing utilization order.
Task sets were then tested for bounded response time,
incorporating the overheads discussed in Sec. IV; blocking
terms were calculated using the fine-grain analysis presented
in [21]. Approximately two billion task sets were tested. We
used a university compute cluster to perform our experi-
ments, consuming over 42, 000 CPU hours. Our experiment
tools were implemented on top of the schedulability test
toolkit SchedCAT [24].
Results. With over 75, 000 experiments, it is infeasible
to compare different system configurations by examining
individual schedulability curves alone. Since our primary
goal is to compare the effectiveness of each configuration,
we devised the following ranking method to collapse our
results into something more manageable. For every unique
combination of task set parameters, we determined a “sub-

5After testing a minimum of 500 task sets, additional task sets were
generated until average schedulability fell within a three percentage-point
interval with 95% confidence, or until 4, 000 task sets had been tested.

Rankings Under Worst-Case Overheads, Loaded
Rank Median Avg Std (CPU,GPU,ρ) WC/I AC/I AC/L

1 3 5.75 5.35 (C,P,∞) 1 1 1
2 4 6.16 5.24 (C,P, 3) 3 4 2
3 5 6.05 4.97 (C,P, 2) 2 5 3
4 6 7.27 5.91 (P, P,∞) 5 7 9
5 6 7.75 6.52 (P, P, 2) 4 12 12
6 6 7.91 6.24 (P, P, 3) 6 13 11
7 10 10.82 4.48 (C,C, 2) 8 9 7
8 10 11.02 7.93 (P, P, 1) 9 22 21
9 11 10.95 4.45 (C,P, 1) 7 16 14

10 11 11.40 4.49 (C,CP2P, 2) 10 10 8
11 13 13.18 4.44 (C,C, 3) 11 15 15
12 13 13.39 4.59 (C,CP2P, 3) 13 20 16
13 13 14.02 8.60 (G,P,∞) 14 2 4
14 13 14.25 8.35 (G,P, 3) 15 3 5
15 13 14.69 8.26 (G,P, 2) 12 6 6
16 18 18.57 5.61 (G,P, 1) 16 17 17
17 18 18.88 5.59 (G,C, 2) 17 8 10
18 19 19.22 5.49 (G,CP2P, 2) 18 11 13
19 21 19.06 5.26 (C,CP2P, 1) 21 26 23
20 21 19.44 5.81 (C,C, 1) 20 25 24
21 21 20.51 5.15 (G,C, 3) 19 14 18
22 21 20.77 5.16 (G,CP2P, 3) 22 19 19
23 24 24.83 6.54 (G,G, 2) 23 18 20
24 25 24.79 4.10 (G,CP2P, 1) 25 24 25
25 25 24.88 4.07 (G,C, 1) 26 23 26
26 26 25.95 6.56 (G,G, 3) 24 21 22
27 27 22.35 9.22 (P,C, 1) 27 29 28
28 27 22.47 9.17 (P,CP2P, 1) 28 28 29
29 28 23.35 9.48 (P,C, 2) 29 30 30
30 29 23.82 9.46 (P,CP2P, 2) 30 31 31
31 29 24.43 9.96 (P,C, 3) 32 32 32
32 30 24.84 10.18 (P,CP2P, 3) 33 33 33
33 31 29.04 6.29 (G,G, 1) 31 27 27
34 35 35.09 1.47 (P,G, 1) 34 34 34
35 35 35.25 1.40 (P,G, 2) 35 36 35
36 35 35.32 1.44 (P,G, 3) 36 37 37
37 37 35.73 1.64 (C,G, 1) 37 35 36
38 38 38.03 1.33 (C,G, 3) 39 39 39
39 38 38.09 1.38 (C,G, 2) 38 38 38

Table IV: Configuration rankings under WC/L.

rank” for each system configuration from first to last place.
These sub-rankings were determined by comparing the area
under each system configuration’s schedulability curve. A
larger area under the curve indicates better schedulability.
An illustrative example is shown in Fig. 7. In this example
with two system configurations A and B, configuration A
has a first-place sub-rank since the area under A’s curve is
greater (i.e., more task sets were schedulable under A). A
final rank for each system configuration was determined by
computing for each configuration, the median, average, and
standard deviation of its sub-ranks. We then ranked system
configurations according to median sub-rank, tie-breaking
by average sub-rank. This ranking approach was applied
separately to results from each of our four overhead datasets.

Table IV shows configuration rankings assuming worst-
case, loaded system overheads (WC/L). Rankings under
other overhead assumptions are given in Appendix A. The



column labeled “Rank” gives each configuration’s final rank.
Observe that the table is sorted according to this column.
The next three columns give the median, average, and
standard deviation of each configuration’s sub-ranks. Entries
in the column labeled “(CPU,GPU,ρ)” identify the ranked
system configuration. Here, we extend the tuple-notation
from Sec. III to include ρ. The last three columns give the
final rank of a configuration under the other overhead data
sets. For a given row, we may compare the values of these
columns against each other, and the value in the “Rank”
column, to discern how a system configuration’s ranking
changes under different overhead conditions. We make the
following observations.

Obs. 1. Clustered CPU scheduling with partitioned GPUs
and ρ = ∞ had the highest rank under all overhead
conditions.

We may observe this in the first row of Table IV by
comparing the values for the Rank column against columns
WC/I, AC/I, and AC/L—all have a first-place rank.

Obs. 2. Clustered CPU scheduling with partitioned GPUs
and ρ =∞ was not always the best configuration.

To see this, compare the Median and Average sub-rank
values of the first row for (C,P,∞). If (C,P,∞) always
had the highest rank, then Median and Average would both
have a value of “1.” They do not.

Obs. 3. Under partitioned GPUs, schedulability tends to be
maximized when ρ is large. Namely, when ρ =∞.

We may observe this by scanning the system configuration
column, picking out entries matching (∗, P, ∗). Observe that
entires that only differ by ρ tend to be ranked in decreas-
ing ρ-order. For instance, (C,P,∞), (C,P, 3), (C,P, 2),
and (C,P, 1) are ranked first, second, third, and ninth,
respectively. This pattern is repeated for (G,P, ∗) for ranks
13 through 16. The rankings for (P, P, 2) (ranked fifth)
and (P, P, 3) (ranked sixth) are an exception to this trend.
However, their average sub-ranks are very close: 7.75 and
7.91, respectively.

Obs. 4. Under clustered GPUs, schedulability tends to be
maximized when ρ = 2.

Locate the (∗, C, 2) and (∗, CP2P , 2) entries in Table IV.
Observe that each entry, with one exception, has the highest
rank among similar configurations that only differ by ρ. For
example, (C,C, 2) is ranked seventh while (C,C, 3) and
(C,C, 1) are ranked 11th and 20th, respectively. The only
exception to this trend is with the (P,C, ∗) configurations.
Here, (P,C, 1) is ranked 27th and (P,C, 2) is ranked 29th.
It is highly likely that this exceptional behavior is due to the
CK-OMLP, which is used to distribute GPU tokens in this
case, but not the others. These same trends can be observed
for rankings in the WC/L, AC/I, and AC/L columns, as well.

Obs. 5. Schedulability is comparably poor under the CK-
OMLP.

We observe in Table IV that configurations (P,G, ∗),
(P,C, ∗), (P,CP2P , ∗), and (C,G, ∗) make up twelve of
the thirteen last rankings under WC/L. This similarly holds
under the other overhead data sets.
Obs. 6. System memory migrations offer better schedula-
bility than P2P migrations.

Every clustered GPU configuration where P2P migrations
were used was ranked lower than the similar configuration
where system memory migrations were used. In most cases,
the P2P-variant ranks closely below the other. For instance,
(C,C, 2) is ranked seventh and (C,CP2P , 2) is ranked tenth.
The difference is similar under the other overhead data sets.

This is a disappointing result since we observed superior
runtime performance under P2P migrations in [7]. The
blocking complexity under P2P migrations is greater (refer
to Appendix B for details), and this may result in more
pessimistic blocking bounds.6 Despite this disappointment,
we observe that the rankings for system memory and P2P
migration methods remain close enough that a system de-
signer may opt to use P2P configuration for the sake of better
runtime performance.
Obs. 7. Global GPU scheduling performed poorly.

(G,G, 2) was the best global GPU configuration and it
ranked 18th under AC/I, and in the twenties for the other data
sets. Since global CPU scheduling performs comparatively
well for (G,P, ∗) (ranks 13th, 14th, and 15th), we do not
believe this poor performance is due to greater scheduling
overheads. Instead, it is most likely due to the additional
GPU memory overheads incurred by using memory pages
interleaved across the NUMA nodes, as we discussed in
Sec. IV.
Obs. 8. Global CPU scheduling with partitioned GPUs
performs well under AC overheads.

Locate the (G,P, ∗) entries in Table IV at rankings 13
through 16. These rankings are relatively low. However,
compare these to their rankings under AC/I and AC/L over-
head data sets. (G,P, ∗) does much better. Indeed (G,P,∞)
ranks second under AC/I instead of thirteenth under WC/L.

This completes our high-level comparisons of the various
system configurations. We now take a deeper look at some of
our results. Fig. 8 plots schedulability curves for the highest-
ranked configuration of each high-level configuration under
AC/L overheads. Tasks had a medium utilization, moderate
period, medium data requirement, and no state. GPU kernel
execution times were determined by the [10%, 25%] uniform
distribution. Finally, 66% of the tasks in each task set used
a GPU. We make the following observations.
Obs. 9. Clustered GPU scheduling can be competitive with
partitioned GPU scheduling.

Observe the curve for (C,C, 2) (line 3) in Fig. 8 and
compare it to curves for (C,P,∞) and (G,P,∞) (lines 1

6We discuss the challenge of determining tighter blocking bounds for
P2P migrations in [21].
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Figure 8: Detailed schedulability result.

and 2, respectively). Although schedulability is not as good,
it is close. Moreover, (C,C, 2) beats (P, P,∞). This is
interesting since (P, P,∞) represents the natural extension
of existing uniprocessor, uni-GPU methods. This result pro-
motes (C,C, 2) as an attractive choice in cases such as this
because, in practice, it offers better resilience to GPU failure
(or misbehaving GPU-using tasks) since a failed/locked-up
GPU does not halt all GPU service to tasks within its cluster.
Obs. 10. Global CPU scheduling can perform well.

We see that (G,P,∞) (line 2) and (G,C, 2) (line 4)
are competitive with their corresponding clustered-CPU con-
figurations, (C,P,∞) (line 1) and (C,C, 2) (line 2). This
supports the trend we identified in Obs. 8 through high-level
observations. For example, (G,P,∞) ranks fourth for AC/L
in Table IV.

VI. CONCLUSION

GPUs have been advocated as accelerators in many settings
where real-time constraints exist. However, to deploy GPUs
in such settings, an understanding of schedulability-related
tradeoffs is needed. In this paper, we have presented the first
ever comprehensive study of such tradeoffs. Our study has
focused particularly on multicore platforms augmented with
potentially several GPUs. Multi-GPU multicore systems are
an attractive platform for providing the necessary compu-
tational capacity for real-time applications that require in-
tensive data-parallel processing, while adhering to stringent
size, weight, and power envelopes.

The study reported in this paper was a significant un-
dertaking, having examined nearly two billion different
task systems and 156 different system configurations via
experiments that took over 40,000 CPU hours to complete.
Despite the extensive nature of this study, it had to be
necessarily constrained. Specifically, we focused only on
examining whether response-time bounds could be ensured.
This motivated us to focus on one particular class of sched-
ulers, namely the FL schedulers. In future work, we intend to
expand this study to consider other real-time constraints and
other classes of schedulers. This paper lays the groundwork
for how such studies should be carried out.

Dealing with the vast amount of data produced by our
study led to a secondary contribution: the development
of a ranking method (inspired by the notion of weighted
schedulability [12]) as a way of collapsing many thousands
of schedulability graphs into a form that is much more
succinct and allows trends to be more easily seen. While
such a collapsing was necessary due to space constraints,
any aggregation of data runs the risk of hiding important
information. To guard against this, we have made all of our
data available online in the form of a SQLite database file.
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APPENDIX A.
RANKING DATA

In this appendix, we present ranking data for the AC/I, AC/L,
and WC/I experiments. This data is given in Tables V–VII.

APPENDIX B.
ANALYSIS

In this appendix, we present a coarse analysis of blocking
under GPUSync. Our main purpose here is to expose analyt-
ical differences among various configurations of GPUSync.
Fine-grained blocking analysis can be found in [21]. We
make the simplifying assumption that each job of any task
competes for a GPU token at most once.

Due to our FL scheduler and locking protocols, we are
constrained to “suspension-oblivious” schedulability analy-
sis, where all task self-suspensions due to GPU operations
and blocking are treated as CPU demand [20]. This is a
safe, albeit pessimistic, technique. Nevertheless, utilization
loss due to this pessimism can be easily offset by the
performance gains offered by GPUs, which are often an
order of magnitude faster than a CPU.

We must introduce some additional blocking-related no-
tation. Let Ki denote the maximum token critical section
length of Ti, bKi denote the maximum time Ti,j may be
blocked due to the token lock, and bEi denote the maximum
time Ti,j may be blocked within a token critical section
for all engine locks. Then, the maximum time a job may be
blocked accessing locks and tokens is given by bi , bKi +bEi .
Let N I

i , NO
i and NS

i denote the number of chunks required
to copy zIi , zOi , and zSi , respectively. Let XI , XO, and
XP2P denote the maximum time it takes to transmit a
chunk of GPU data for input, output, and P2P migration,
respectively, and let Xmax denote the maximum of XI , XO,
and XP2P. Also, let Si denote the maximum time to perform
a GPU migration. For P2P migrations, Si = XP2PNS

i . For
migrations through system memory, Si = XINS

i +XONS
i .

For (∗, P ) configurations, Si = 0. Let Emax denote the
longest duration an EE lock is held by any other task, and
let Kmax denote the longest token critical section among
all tasks.

A job must acquire a token from the GPU allocator
before it can begin using a GPU. When the R2DGLP
is in use, a token-requesting job is blocked by at most
2dc/(ρg)e − 1 token critical sections of other jobs [19].
Thus, the total duration of blocking while waiting for a

Rankings Under Average-Case Overheads, Idle
Rank Median Avg Std (CPU,GPU,ρ) WC/I AC/L WC/L

1 2 3.66 4.04 (C,P,∞) 1 1 1
2 3 3.48 2.54 (G,P,∞) 14 4 13
3 4 4.51 2.79 (G,P, 3) 15 5 14
4 4 4.94 3.96 (C,P, 3) 3 2 2
5 5 5.07 3.39 (C,P, 2) 2 3 3
6 5 5.21 2.53 (G,P, 2) 12 6 15
7 11 11.52 5.78 (P, P,∞) 5 9 4
8 11 11.78 5.00 (G,C, 2) 17 10 17
9 11 12.02 4.70 (C,C, 2) 8 7 7
10 11 12.83 4.79 (C,CP2P, 2) 10 8 10
11 12 12.65 5.14 (G,CP2P, 2) 18 13 18
12 13 13.19 6.20 (P, P, 2) 4 12 5
13 13 13.81 5.37 (P, P, 3) 6 11 6
14 15 15.01 5.73 (G,C, 3) 19 18 21
15 15 15.07 5.17 (C,C, 3) 11 15 11
16 15 15.07 4.32 (C,P, 1) 7 14 9
17 15 14.30 5.66 (G,P, 1) 16 17 16
18 16 15.20 6.08 (G,G, 2) 23 20 23
19 16 15.26 5.44 (G,CP2P, 3) 22 19 22
20 16 15.55 4.89 (C,CP2P, 3) 13 16 12
21 18 17.58 6.64 (G,G, 3) 24 22 26
22 21 18.52 4.75 (P, P, 1) 9 21 8
23 24 22.22 6.11 (G,C, 1) 26 26 25
24 24 22.28 6.10 (G,CP2P, 1) 25 25 24
25 24 23.16 3.43 (C,C, 1) 20 24 20
26 24 23.25 3.32 (C,CP2P, 1) 21 23 19
27 27 24.70 9.90 (G,G, 1) 31 27 33
28 28 28.54 2.24 (P,CP2P, 1) 28 29 28
29 28 28.58 2.25 (P,C, 1) 27 28 27
30 30 29.67 2.26 (P,C, 2) 29 30 29
31 30 29.70 2.27 (P,CP2P, 2) 30 31 30
32 31 30.55 2.26 (P,C, 3) 32 32 31
33 31 30.78 2.25 (P,CP2P, 3) 33 33 32
34 35 34.74 2.00 (P,G, 1) 34 34 34
35 35 35.10 2.12 (C,G, 1) 37 36 37
36 35 35.14 2.03 (P,G, 2) 35 35 35
37 36 35.32 2.03 (P,G, 3) 36 37 36
38 38 37.93 1.67 (C,G, 2) 38 38 39
39 38 37.99 1.73 (C,G, 3) 39 39 38

Table V: Configuration rankings under AC/I.

token is bounded by bKi = Kmax(2dc/(ρg)e − 1). Let M
denote the number of CPUs that share a given GPU cluster.
Under the CK-OMLP, a token-requesting job is blocked
by at most dM/(ρg)e − 1 token critical sections of other
jobs [20]. However, all tasks, including those in TC , may
experience up to Kmax blocking at release-time due to
priority donation. bKi = KmaxdM/(ρg)e when Ti ∈ TG

and bKi = Kmax when Ti ∈ TC . Bounds on Kmax must
be computed since tasks may block while acquiring engine
locks. By construction, the token critical-section length for
Ti is Ki = qcpu

i + egpu
i + bEi + XIN I

i + XONO
i + Si. All

these parameters have been derived, excepting bEi .
bEi is the sum of all blocking experienced within the token

critical section. Let bEE
i denote Ti’s maximum total blocking

time for the EE lock, let bI/Oi denote its maximum total
blocking time while waiting to transmit input and output
chunks, and let bP2P

i denote its maximum total blocking time
while waiting for CE locks to perform a P2P migration.
Then, bEi = bEE

i + b
I/O
i + bP2P

i .



Rankings Under Average-Case Overheads, Loaded
Rank Median Avg Std (CPU,GPU,ρ) WC/I AC/I WC/L

1 2 3.15 3.59 (C,P,∞) 1 1 1
2 3 4.01 3.32 (C,P, 3) 3 4 2
3 3 4.62 3.46 (C,P, 2) 2 5 3
4 4 6.08 6.39 (G,P,∞) 14 2 13
5 5 7.01 6.09 (G,P, 3) 15 3 14
6 6 7.62 5.81 (G,P, 2) 12 6 15
7 9 10.77 4.48 (C,C, 2) 8 9 7
8 10 10.95 4.69 (C,CP2P, 2) 10 10 10
9 11 12.02 5.49 (P, P,∞) 5 7 4

10 12 13.96 5.80 (G,C, 2) 17 8 17
11 13 13.53 5.26 (P, P, 3) 6 13 6
12 13 13.91 5.70 (P, P, 2) 4 12 5
13 13 14.30 5.45 (G,CP2P, 2) 18 11 18
14 14 12.84 5.02 (C,P, 1) 7 16 9
15 14 13.27 5.10 (C,C, 3) 11 15 11
16 15 13.59 5.05 (C,CP2P, 3) 13 20 12
17 16 15.47 5.17 (G,P, 1) 16 17 16
18 17 16.31 5.93 (G,C, 3) 19 14 21
19 17 16.38 5.79 (G,CP2P, 3) 22 19 22
20 20 20.07 6.69 (G,G, 2) 23 18 23
21 21 18.11 5.74 (P, P, 1) 9 22 8
22 22 21.04 6.86 (G,G, 3) 24 21 26
23 23 20.16 6.26 (C,CP2P, 1) 21 26 19
24 23 20.84 6.28 (C,C, 1) 20 25 20
25 24 22.88 4.76 (G,CP2P, 1) 25 24 24
26 24 23.45 4.88 (G,C, 1) 26 23 25
27 27 26.99 7.46 (G,G, 1) 31 27 33
28 28 27.98 4.25 (P,C, 1) 27 29 27
29 28 27.99 4.53 (P,CP2P, 1) 28 28 28
30 30 28.61 4.18 (P,C, 2) 29 30 29
31 30 28.79 4.62 (P,CP2P, 2) 30 31 30
32 31 29.41 4.54 (P,C, 3) 32 32 31
33 31 29.77 4.21 (P,CP2P, 3) 33 33 32
34 35 35.22 1.63 (P,G, 1) 34 34 34
35 35 35.42 1.64 (P,G, 2) 35 36 35
36 36 35.46 1.79 (C,G, 1) 37 35 37
37 36 35.47 1.63 (P,G, 3) 36 37 36
38 38 37.97 1.39 (C,G, 2) 38 38 39
39 38 38.03 1.40 (C,G, 3) 39 39 38

Table VI: Configuration rankings under AC/L.

A job may be blocked for every GPU kernel it executes
when acquiring the EE lock of its allocated GPU. At most
ρ− 1 other jobs may compete simultaneously for this lock
for a given request. Since requests are FIFO ordered, the
resulting blocking is bounded by bKi = Emax(ρ− 1).

Bounds for bI/Oi and bP2P
i depend on whether migrations

are P2P or through system memory and on the number of
CEs per GPU. In our analysis, we assume that all migrations
are performed using the same method, though GPUSync
could support both types in the same system.
CE blocking with P2P. Under P2P migrations, any task
holding a GPU token may request the CE lock of the GPU
it used in its prior job in order to perform a migration. There
are at most ρg such tasks. In the worst case, they may all
attempt to access the same CE lock at the same instant.
Thus, any request for a CE lock may be blocked by ρg− 1
other requests. From the blocking analysis of DGLs [22],
the total number of blocking requests for a CE is at most
ρg − 1. Since no task requires more than Xmax time to

Rankings Under Worst-Case Overheads, Idle
Rank Median Avg Std (CPU,GPU,ρ) AC/I AC/L WC/L

1 3 4.84 4.35 (C,P,∞) 1 1 1
2 3 5.12 4.35 (C,P, 2) 5 3 3
3 4 5.30 4.28 (C,P, 3) 4 2 2
4 6 7.82 6.60 (P, P, 2) 12 12 5
5 6 7.92 6.18 (P, P,∞) 7 9 4
6 7 8.71 6.50 (P, P, 3) 13 11 6
7 9 9.97 4.53 (C,P, 1) 16 14 9
8 9 10.31 4.13 (C,C, 2) 9 7 7
9 10 10.66 8.00 (P, P, 1) 22 21 8

10 10 10.96 4.29 (C,CP2P, 2) 10 8 10
11 12 12.57 4.64 (C,C, 3) 15 15 11
12 12 13.96 8.16 (G,P, 2) 6 6 15
13 12 12.97 4.60 (C,CP2P, 3) 20 16 12
14 13 13.71 8.82 (G,P,∞) 2 4 13
15 13 14.02 8.47 (G,P, 3) 3 5 14
16 18 18.40 5.81 (G,P, 1) 17 17 16
17 18 18.71 6.48 (G,C, 2) 8 10 17
18 18 19.01 6.16 (G,CP2P, 2) 11 13 18
19 20 20.63 5.56 (G,C, 3) 14 18 21
20 21 18.69 5.99 (C,C, 1) 25 24 20
21 21 19.03 5.63 (C,CP2P, 1) 26 23 19
22 21 20.64 5.45 (G,CP2P, 3) 19 19 22
23 21 21.66 6.32 (G,G, 2) 18 20 23
24 24 23.44 6.61 (G,G, 3) 21 22 26
25 26 24.94 4.80 (G,CP2P, 1) 24 25 24
26 26 24.99 4.81 (G,C, 1) 23 26 25
27 27 24.07 7.61 (P,C, 1) 29 28 27
28 27 24.42 7.48 (P,CP2P, 1) 28 29 28
29 29 26.05 7.16 (P,C, 2) 30 30 29
30 29 26.37 6.92 (P,CP2P, 2) 31 31 30
31 30 27.40 7.63 (G,G, 1) 27 27 33
32 31 27.53 7.04 (P,C, 3) 32 32 31
33 31 27.65 7.03 (P,CP2P, 3) 33 33 32
34 35 34.55 2.50 (P,G, 1) 34 34 34
35 35 35.12 2.48 (P,G, 2) 36 35 35
36 36 35.15 2.63 (P,G, 3) 37 37 36
37 36 35.28 2.89 (C,G, 1) 35 36 37
38 38 38.28 0.85 (C,G, 2) 38 38 39
39 38 38.33 0.79 (C,G, 3) 39 39 38

Table VII: Configuration rankings under WC/I.

complete b
I/O
i = Xmax(N I

i + NO
i )(ρg − 1) and bP2P

i =
XmaxNS

i (ρg − 1).
CE blocking with system memory migration. In this case,
CEs are only accessed by tasks that have been given a token
for an allocated GPU, so at most ρ − 1 other jobs may
compete for the CE lock at a given instant. Recall that state
is aggregated with input and output data. Thus, bP2P

i = 0.
However, now b

I/O
i = Xmax(N I

i +N
O
i +2NS

i )(ρ−1) since
state data must be handled twice.

Analytical bounds for P2P and system memory migrations
differ. CE lock contention is O(ρg) and O(ρ) under P2P
and system memory migrations, respectively. Despite its
inferior order of complexity, P2P migration may still result
in better analytical bounds if the advantages of fewer and
faster memory copies can be exploited (it is faster because
state is not copied to memory). Also, there are benefits to
P2P migrations that cannot be captured in the above analysis,
namely, isolation from the system memory bus and rarity of
migrations due to the GPU allocator’s heuristics.


