
Exploring the Multitude of Real-Time Multi-GPU Configurations

Glenn A. Elliott and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract—Motivated by computational capacity and power
efficiency, techniques for integrating graphics processing units
(GPUs) into real-time systems have become an active area
of research. While much of this work has focused on single-
GPU systems, multiple GPUs may be used for further benefits.
Similar to CPUs in multiprocessor systems, GPUs in multi-GPU
systems may be managed using partitioned, clustered, or global
methods, independent of CPU organization. This gives rise to
many combinations of CPU/GPU organizational methods that,
when combined with additional GPU management options,
results in thousands of “reasonable” configuration choices.
In this paper, we explore real-time schedulability of several
categories of configurations for multiprocessor, multi-GPU
systems that are possible under GPUSync, a recently proposed
highly configurable real-time GPU management framework.
Our analysis includes the careful consideration of GPU-related
overheads. We show system configuration strongly affects real-
time schedulability. We also identify which configurations offer
the best schedulability in order to guide the implementation of
GPU-based real-time systems and future research.

I. INTRODUCTION

It is quickly becoming standard practice to use graphics pro-
cessing units (GPUs) to tackle general purpose, data parallel
computational problems, due to the significant performance
advantages GPUs have over traditional CPUs, both in terms
of throughput and power efficiency. The ways in which
GPUs are managed and scheduled differ greatly from CPUs.
This has spurred research on supporting GPUs in real-time
systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Still, few have explored
multiprocessor, multi-GPU real-time systems.

CPUs in traditional multiprocessor scheduling can follow
a partitioned, clustered, or global approach. Under clustered
scheduling, a system’s m CPUs are separated into clusters
of c CPUs each, and each task is scheduled within a single
cluster. Partitioned and global scheduling are special cases,
where c = 1 and c = m, respectively. Similarly, GPUs can
be organized by following a partitioned, clustered, or global
approach. This categorization yields nine possible allocation
categories, as illustrated in matrix form in Fig. 1. As we
describe later, when combined with additional GPU manage-
ment options, these nine choices multiply into many more.
Which configurations are best for real-time predictability?
Does configuration really matter? The answers to these basic
questions are not immediately clear.

We began to answer some of these questions in prior
work, where we explored technical implementation is-
sues and the run-time performance of a subset of multi-
GPU configurations [7]. Therein, we observed that clus-
tered GPU scheduling can improve job response time.

Figure 1: Matrix of CPU
and GPU organization.

However, we did not investi-
gate performance in terms of
real-time schedulability. In this
paper, we present an evaluation
of several categories of multi-
GPU configurations based on
real-time schedulability. This
evaluation carefully considers
both general and GPU-specific
runtime overheads. Although
not exhaustive, our evaluation
is broad (requiring over 40,000
CPU hours to complete). We investigate several possible
configurations within each of the nine aforementioned high-
level categories. We show that real-time guarantees differ
greatly among configurations.

Scope and contributions. Our study was performed within
the context of GPUSync, a highly configurable real-time
GPU management framework developed by us that extends
LITMUSRT, a Linux-based real-time OS.1 GPUSync takes
a locking-protocol-based philosophy to GPU scheduling.
Thus, schedulability tests incorporate lock-related blocking
analysis, as well as overhead accounting.

We investigate real-time schedulability in terms of the
existence of response-time bounds. This motivates us to use
“fair-lateness” (FL) schedulers, which are earliest-deadline-
first-like (EDF-like) schedulers that have provably smaller
response-time bounds than standard EDF schedulers when
c > 1 (FL is equivalent to EDF when c = 1) [11]. Under FL
scheduling, priority points are defined to minimize worst-
case response times. The FL scheduler uses these priority
points as pseudo-deadlines, and thus is a job-level static-
priority scheduler (a requirement of GPUSync).

The central contribution and intent of this paper is to
identify the most promising CPU/GPU configurations by
modeling real-world system behavior in overhead-aware
schedulability tests (we do not seek to address other real-
time issues such as precise bounds on worse-case execu-
tion time). We follow the overall empirical measurement,
overhead accounting, and experimental process developed
by Brandenburg [12], with additional techniques to quantify
the effects that GPU operations have on overheads. We also
devise a new ranking method to aid in comparing many
CPU/GPU configurations under various assumptions and
task set properties. Ultimately, we find that clustered CPU

1LITMUSRT and GPUSync source code is shared at www.litmus-rt.org.



scheduling with partitioned GPUs offers the best real-time
schedulability, overall. However, clustered GPU configura-
tions are competitive in some situations. In these cases, a
system designer may take advantage of the improved run-
time performance demonstrated in [7] with minimal impact
on response-time bounds.

Organization. In the rest of the paper, we provide needed
background (Sec. II), discuss aspects of GPUSync relevant
to blocking analysis (Sec. III), consider general and GPU-
specific overheads and present empirical measurements
(Sec. IV), and present the results from our schedulability
experiments (Sec. V). We conclude with a summary of our
findings and notes for future work (Sec. VI). Additional data
and blocking analysis is presented as appendices.

II. BACKGROUND

Current real-time GPU research falls within three gen-
eral categories: (i) techniques for persistent low-latency
tasks [1, 13], (ii) worst-case execution-time analysis of
GPU program code [3, 4], or (iii) GPU resource schedul-
ing [2, 5, 6, 7, 8, 9, 10]. In (i), a persistent task executes
on a dedicated GPU, polling for and processing work. This
research has focused on efficient data movement between a
single GPU and the rest of the system. There is no need for
scheduling data-movement or GPU computations since there
is only a single dedicated GPU. Research on (ii) has focused
on bounding the execution time of GPU program code, with
no attention paid to scheduling or data-movement costs—it
is assumed all data already resides on the GPU. In contrast
to the first two categories, the techniques developed in (iii)
seek to schedule both data movement and GPU computations
on GPU(s) shared by competing jobs of different priorities.
Only [5, 6, 7] have directly approached the topic of multi-
GPU scheduling in real-time systems. This paper also falls
within this last category. Specifically, we investigate the
analytical real-time properties of GPUSync [7] ([7] focuses
on observed real-time performance). However, before we
can address this topic directly, we must first discuss system
hardware specifics, examine how GPUs are used, and moti-
vate our synchronization-based approach. We adapt some of
the following information from [7] to suit our needs here.

System hardware. GPUs may be “discrete” or “integrated.”
There are two distinguishing characteristics between these.
First, integrated GPUs share main memory with CPUs,
while discrete GPUs have local high-performance memory.
Second, integrated GPUs are built with fewer transistors
since they share silicon with CPUs and other system-on-
chip components—this limits performance. We focus our
attention on discrete GPUs due to their performance char-
acteristics, but this introduces challenges posed by memory
management. However, our management techniques are still
applicable to integrated GPUs, except that there is no need
for GPU memory management.

Multicore

Processor
I/O Hub

GPU 0

GPU 1

GPU 2

PCIe
High-Speed

Interconnect

Memory

Bus

System

Memory

Switch

Copy

Engine 0

Copy

Engine 1

Execution

Engine 1

GPU Memory

GPU 3

Figure 2: Example high-level architecture. On some multicore
chips the I/O hub may be integrated.

Our GPUs of interest each have an execution engine (EE)
and one or two DMA copy engines (CEs). The EE consists
of many parallel processors and performs all computation.
The CEs transmit data between system memory and GPU
memory.2 GPUs commonly have only one CE and cannot
send and receive data at the same time. However, high-end
GPUs may have an additional independent CE, enabling
simultaneous bi-directional transmissions. EEs and CEs per-
form operations non-preemptively.

Fig. 2 depicts a high-level architecture of a multicore,
multi-GPU system. The CEs connect to the host system via
a full-duplex PCIe bus. PCIe is a hierarchically organized
packet-switched bus with an I/O hub at its root. Switches
multiplex the bus to allow multiple devices to connect
to the I/O hub. Traffic is arbitrated at each switch using
round-robin arbitration at the packet level. The structure
depicted in Fig. 2 may be replicated in large-scale NUMA
platforms, with CPUs and I/O hubs connected by high-speed
interconnects. However, only devices that share an I/O hub
may communicate directly with each other as peers.

GPU usage pattern. GPU-using programs execute on CPUs
and invoke a sequence of GPU operations. There are two
types of GPU operations. Kernel operations are programs
executed by the GPU EE. Memory copy operations are
data transfers to or from a GPU’s local memory; these are
processed by the CEs. A general execution sequence for a
GPU-using program scheduled alone is depicted in Fig. 3.
Observe that a program running on a CPU initiates GPU
operations—the GPU does not initiate them independently.
At time t1, the program selects a GPU to use. At time
t2, the program transmits input data for the GPU kernel
from system memory to GPU memory. The memory copy
is processed by one of the GPU’s CEs. The program waits
(it may elect to either busy-wait or suspend) until the copy
operation completes at time t3. A kernel that operates on
the input data is executed at time t4—computational results
are stored in GPU memory. The program copies the kernel

2GPUs support several data transmission methods [1, 14], but we focus
on CEs due to high performance and ease of deterministic control.



GPU critical section

copy
input

kernel

copy
output

Figure 3: GPU-using program execution sequence.

output from the GPU at time t6. Finally, the program no
longer requires the GPU at time t8. We call the duration
from time t1 to time t8 a GPU critical section because the
program expects its sequence of operations to be carried out
on the same GPU. Recall that GPU operations on the various
engines are non-preemptive. For example, GPUCE0

cannot
be preempted within [t2, t3]. However, the program running
on the CPU is preemptive while waiting if it busy-waits
(and is not running if it suspends). There are two important
things to note about this example. First, this is only a simple
execution sequence. Any number of GPU operations may
be issued within the GPU critical section. Second, we have
depicted the input and output memory copies as processed
by different CEs—it is actually up to the GPU to select
which CE to use.

In addition to memory used for input and output, recurrent
tasks may maintain inter-job state in GPU memory. State
must be migrated from one GPU to another if such a task
switches GPUs. Migration cost is the time taken to copy
state data between these GPUs. This cost is partly dependent
upon the distance between GPUs and the method used to
copy state between them. Distance is the number of links
to the nearest common switch or I/O hub of two GPUs. For
example, in Fig. 2, the distance between GPUs 0 and 2 is
two (one link to a switch, a second link to the common
I/O hub). One may use either of two methods to migrate
state between GPUs. The first is a two-step process by way
of a temporary buffer in system memory: data is copied to
system memory from one GPU and then back out to another.
The other method is a more efficient single-step approach
using peer-to-peer (P2P) communication: data is copied
directly from one GPU to another. P2P-based migrations are
potentially more efficient, especially over short distances,
due to proximity and reduced bus contention. However, this
method requires coordination between the GPUs.

Synchronization-based philosophy. Significant difficulties
arise when we attempt to develop schedulability tests for
the system described above. A multiprocessor, multi-GPU
system is a heterogenous multiprocessor system. However,
GPU-using tasks are not fully preemptive, cannot execute
wholly on one processor type or another, and may not
arbitrarily migrate from one processor type to another.
Thus, prior holistic schedulability tests for heterogenous

multiprocessors do not apply because they assume tasks can
be partitioned among heterogenous processors or execution
is fully preemptive (e.g., [15, 16, 17]). Recently, Kim et
al. presented schedulability analysis for uniprocessor, uni-
GPU, systems under fixed-priority scheduling [10]. The
main contribution of [10] is in managing self-suspensions
that arise when a job suspends from a CPU to execute on a
GPU. However, Kim et al.’s approach is not general enough
for us to explore all the possibilities discussed in Sec. I.
This lack of generality motivates us to consider alternative
methods.

Real-time locking protocols impart a predictable access
pattern to non-CPU resources. The locking protocol itself
is a non-preemptive scheduler: it is non-preemptive since
lock ownership cannot be arbitrarily revoked. Gai et al.
observed this in [18], where they cast the problem of
scheduling a uniprocessor with a single non-preemptive
digital signal processor as a synchronization problem. We
also took this perspective in developing GPUSync, a single
synchronization-based framework that allows us to explore
every high-level category described in Sec. I.

Although our current analysis is centered on locking
protocols, it may be possible to analyze GPUSync with new
holistic schedulability tests for heterogenous multiprocessors
without having to change GPUSync itself. New tests would
have to account for the complex relationship between EEs
and CEs and task self-suspensions.

III. GPUSYNC

In this section, we discuss the synchronization-based frame-
work implemented by GPUSync. We limit our attention
to the aspects of GPUSync that relate to schedulability
analysis. A treatment of technical aspects (such as interrupt
handling and budgeting) can be found in [7]. We begin with
a discussion of our assumed system model and proceed to
describe GPUSync.

A. System Model

We consider a task system, T , comprised of n real-time tasks
T1, · · · , Tn that are scheduled on m CPUs, partitioned into
clusters of c CPUs each. The subset TG ⊆ T includes all
tasks that require GPU resources from the system’s h GPUs,
partitioned into clusters of g GPUs each. The subset TC ,
T\TG are tasks that do not use a GPU. We assume that the
workload to be supported can be modeled as a traditional
sporadic real-time task system. Every task has a provisioned
CPU execution time of ecpu

i , period pi, and relative deadline
di. Each task releases a (potentially infinite) series of jobs
Ti,j with a minimum separation time of pi time units. Job
Ti,j is released (arrives) at time ai,j and completes (finishes)
at time fi,j . The response time of Ti,j is ri,j , fi,j − ai,j .
The parameter egpu

i denotes Ti’s provisioned GPU execution
time. The parameter qcpu

i denotes Ti’s total CPU execution
time requirements within its GPU critical section (note that



Parameter Description
m number of system CPUs
h number of system GPUs
c CPU cluster size
g GPU cluster size
TG set of all GPU-using tasks
TC set of all CPU-only tasks
ecpu
i Ti’s provisioned CPU execution time
egpu
i Ti’s provisioned GPU execution time

qcpu
i

total CPU execution time within
Ti’s GPU critical section

zIi size of Ti’s GPU input data (bytes)
zOi size of Ti’s GPU output data (bytes)
zSi size of Ti’s inter-job GPU state data (bytes)
bi upperbound on blocking for Ti

Table I: Important notation.

qcpu
i is included in ecpu

i ). Each Ti,j sends (receives) zIi (zOi )
bytes of data as input (output) to (from) GPU computations.
The size of Ti,j’s state is denoted by zSi . For convenience,
we define the function xmit(zIi , z

O
i , z

S
i ) to specify the total

data transmission time required by Ti,j . As we discuss in
Sec. IV, this can be computed given empirical measurement
data. We assume that a job of Ti ∈ TG may use any
one arbitrary GPU in its GPU cluster. egpu

i , zIi , zOi , and
zSi are zero for Ti ∈ TC . The term bi denotes an upper-
bound on the time Ti,j may be blocked due to lock requests
(for presentation simplicity, we assume tasks share no other
resources, but this is not a GPUSync requirement). We derive
values for bi in Appendix B. Finally, Ti’s utilization is given
by ui , (ecpu

i + egpu
i + xmit(zIi , z

O
i , z

S
i ))/pi, and the task set

utilization is U ,
∑n
i=1 ui.

We refer back to the parameters summarized in Table I.

Example. If we assume that the GPU usage pattern illus-
trated in Fig. 3 represents the entire execution sequence of a
job Ti,j , then ecpu

i = (t2−t0)+(t4−t3)+(t6−t5)+(t9−t7),
egpu
i = t5−t4, qcpu

i = (t2−t1)+(t4−t3)+(t6−t5)+(t8−t7),
and xmit(zIi , z

O
i , z

S
i ) = (t3 − t2) + (t7 − t6) (assuming

zSi = 0, i.e. the job has no state to migrate between GPUs).

B. GPUSync Structure

It helps to refer to concrete system configurations in describ-
ing GPUSync, so let us define several such configurations.
Fig. 4 depicts a matrix of several high-level CPU/GPU
configurations for a 12-CPU, 8-GPU system, which we also
use in Secs. IV and V. We refer to each cell in Fig. 4 using a
column-major tuple, with the indices P , C, and G denoting
partition, clustered, and global choices, respectively. The
tuple (P, P ) refers to the top-left corner—a configuration
with partitioned CPUs and GPUs. Likewise, (G,C) indicates
the right-most middle cell—globally scheduled CPUs with
clustered GPUs. We use the wildcard ∗ to refer to an
entire row or column: e.g., (P, ∗) refers to the left-most
column—all configurations with partitioned CPUs. Within
each cell, individual CPUs and GPUs are shown on the

Partitioned Clustered Global

P
a
rt

it
io

n
e
d

C
lu

st
e
re

d
G

lo
b
a
l

CPU Scheduling

G
P

U
 O

rg
a
n
iz

a
ti
o
n

Figure 4: Concrete configurations.

left and right, respectively. Dashed boxes delineate CPU and
GPU clusters (no boxes are used in partitioned cases). The
solid lines depict the association between CPUs and GPUs.
For example, the solid lines in (C,C) indicate that two GPU
clusters are wholly assigned to each CPU cluster. Finally,
the horizontal dashed line across each cell denotes the
NUMA boundary of the system. Offline, tasks are assigned
to CPU and GPU clusters in accordance with the desired
configuration.

GPUSync uses a two-level nested locking structure: an
outermost token lock to allocate GPUs to jobs and innermost
engine locks to arbitrate access to GPU engines. This is
depicted in Fig. 5. In Step A (or time t1 in Fig. 3), the
job requests a token from the GPU allocator responsible for
managing the GPUs in the job’s GPU cluster. The GPU
allocator determines which token—and by extension, which
GPU—should be allocated to the request. The requesting
job may access the assigned GPU once it receives a token
in Step B. In Step C, the job competes with other token-
holding jobs for GPU engines; access is arbitrated by the
engine locks. A job may only issue GPU operations on its
assigned GPU after acquiring its needed engine locks in Step
D. For example, an engine lock must be acquired at times t2,
t4, and t6 in Fig. 3. With the exception of P2P migrations,
a job cannot hold more than one engine lock at a time.

CE0
IN

CE0
OUT

EE0

GPU

Allocator

request

Engine Locks

GPUg–1GPU0

Figure 5: High-level design of GPUSync.



GPUSync can be configured to use different locking
protocols to manage tokens and engines. In this paper, we
configure GPUSync to use protocols known to offer asymp-
totically optimal blocking bounds under FL scheduling. We
now describe the two locking levels in more detail. We
provide blocking analysis in Appendix B.

Token lock. Each cluster of g GPUs is managed by
one GPU allocator. We associate ρ tokens (a configurable
parameter) with each GPU. All GPU tokens are pooled and
managed by the per-cluster GPU allocator using a single k-
exclusion lock, where k = ρg. Jobs with a pending token
request suspend until assigned a token.

We employ one of two k-exclusion locking protocols
to allocate tokens, depending upon how GPU clusters are
shared among CPU clusters. We use the Replica-Request
Donation Global Locking Protocol (R2DGLP) [19] in cases
where GPU clusters are wholly assigned to a single CPU
cluster. This is because the R2DGLP’s progress mechanism
(i.e., priority inheritance) ensures predictable behavior with-
out directly affecting CPU-only tasks. However, a stronger
mechanism (i.e., priority donation) is required when GPU
clusters are shared among CPU clusters. Hence, we employ
the Clustered k-exclusion O(m) Locking Protocol (CK-
OMLP) [20] for cases (P,C), (P,G) and (C,G). Priority
donation may cause CPU-only tasks to experience blocking
at release-time. We use the R2DGLP and CK-OMLP be-
cause these protocols offer asymptotically optimal blocking
bounds with the associated CPU/GPU cluster configurations
under FL scheduling. To improve runtime performance,
we augment both protocols with heuristics that bias token
selection towards certain GPUs over others in order to reduce
the frequency and cost of GPU migrations within a cluster.
We showed that this can substantially improve observed
performance in [7]. Moreover, these heuristics do not affect
the analytical properties of the locking protocol.

The value of ρ affects both migration frequency and
GPU parallelism. A small value of ρ, such as ρ = 1, will
trigger frequent migrations since tokens are scarce, incurring
migration overheads. A larger value of ρ, such as ρ = 3,
will allow the engines of a GPU to be used by separate
jobs simultaneously. However, if tokens are too plentiful,
then work may “pile up” on few GPUs, while others are
underutilized. There is a balance to strike: the value of ρ
should promote GPU parallelism while distributing work
equitably across GPUs.

Engine locks. A mutex is associated with every GPU EE
and CE. For GPUs with two CEs, one engine is dedicated
to inbound data copies, and the other to outbound data
copies. Although CEs are capable of copying data both to
and from the GPU, on our test platform, we were unable to
coax a dual-CE GPU (NVIDIA Quadro K5000) to perform
two copies simultaneously in the same direction. Thus,
we are unable to reserve one CE for copies to and from

system memory and the other for P2P migrations (such a
configuration may offer favorable analytical properties).

Each engine mutex prioritizes requests in FIFO order.
Blocked jobs suspend while waiting for an engine. A job
that holds an engine lock may inherit the priority of any job
it blocks. Priority inheritance relations from the token lock
may propagate to an engine holder to ensure timely real-time
scheduling. A job releases an engine lock once its engine-
related operation (e.g., GPU kernel execution or memory
copy) completes. In order to reduce worst-case blocking, a
job is allowed to hold at most one engine lock at a time,
except during P2P migrations.

Schedulability is best when engine locks are held for
short durations, so each individual GPU operation should be
protected by separate engine-lock critical sections. To that
end, GPUSync provides convenience routines to break large
memory copies into chucks. Others have used this chunking
technique [1, 8].
Migrations. GPUSync supports both P2P and system
memory migrations. The rules governing each method differ.

Under P2P migration, when migrating from GPUa to
GPUb, a job must hold the appropriate CE locks for both
GPUa and GPUb. As shown in [21], worst-case blocking
grows quadratically with respect to the total number of GPU
tokens if these locks are acquired separately. We avoid such
excessive blocking by instead using dynamic group locks
(DGLs) [22]. Using DGLs, a job atomically requests both
CE locks simultaneously, instead requesting of one after
the other. As a result, worst-case blocking grows linearly
instead of quadratically. A job may issue memory copies to
carry out migration once both engine locks are held. P2P
migrations are usually only possible between GPUs within
the same NUMA node, so P2P migrations are restricted to
cases (∗, C) of Fig. 4.

System memory migrations are performed speculatively,
i.e., migrations are always assumed to be necessary. Thus,
state data is aggregated with input and output data. State is
always copied off of a GPU after per-job GPU computations
have completed. State is then copied back to the next GPU
used by the task for the subsequent job if a different GPU
is allocated. An advantage of this approach over P2P migra-
tions is that a job never has to hold two CE locks at once.
This reduces lock contention and may improve blocking
bounds, depending upon system and task set parameters.

Speculative migrations may seem heavy handed, espe-
cially when migrations between GPUs may not always be
necessary. Instead, an “on demand” approach could be taken
where each migration forces data to be copied off of the
previously allocated GPU to system memory and then to
the newly allocated GPU. However, this method offers no
analytical real-time benefits over P2P migrations.

Table II summarizes the GPUSync configuration options
we study in this paper. Not every combination is valid, e.g.,
the migration method “None” is only valid for (∗, P ).



Parameter Choices
CPU Scheduling P, C, G

GPU Organization P, C, G
Tokens per GPU (ρ) N1

Migration Method None, System Memory, P2P

Table II: GPUSync configuration parameters studied in this paper.

IV. OVERHEADS

In this section, we discuss the methodology we used to
gather general and GPU-related system overheads for the
test platform upon which our evaluation in Sec. V is based.
Brandenburg demonstrated in [12] the importance (and chal-
lenges) of incorporating such overheads into schedulability
analysis—sometimes schedulers that perform well in theory,
do poorly in practice. We replicate and extend Brandenburg’s
methods for gathering and accounting for these overheads.
We classify overheads as either algorithmic overheads or
memory overheads. Before discussing these further, we first
frame the context in which our overheads were gathered.

Evaluation platform. Our analysis and overheads are
within the context of our implementation of GPUSync in
LITMUSRT (based on the 3.10.5 Linux kernel) running on
our test platform. This platform has two NUMA nodes,
each like the system depicted in Fig. 2. Each NUMA
node is equipped with one Xeon X5060 processor with six
2.67GHz cores, and four NVIDIA K5000 Quadro GPUs.
Overheads were gathered under partitioned, clustered, and
global FL scheduling. We used CUDA 6.0 as our GPU
runtime environment and the NVIDIA Linux driver 331.62.

A. Algorithmic Overheads

We followed Brandenburg’s methods to gather algorithmic
overheads. These include: thread context switching, schedul-
ing, job release queuing, inter-processor interrupt latency,
CPU clock tick processing, and GPU interrupt process-
ing. We measured these overheads using the light-weight
tracing facilities of LITMUSRT while executing workloads
that stress the various hardware components managed by
GPUSync. These overheads were measured under different
CPU and GPU cluster configurations, as well as with task
sets of varying sizes (in order to capture overhead trends
dependent upon the number of tasks). Over 11GB of trace
data was recorded (a single trace event is only 16 bytes
in size). We distilled this data into average and worst-case
overheads, and incorporate them into schedulability analy-
sis using Brandenburg’s “preemption-centric” method [12].
Most of these algorithmic overheads have been studied in
prior work, so we do not discuss them further. However, we
do discuss algorithmic overheads related to GPUs.

GPUs interact with the host system primarily through
I/O interrupts. Interrupt processing is split into “top” and
“bottom” halves. Due to page constraints, we defer a lengthy
description of our GPU interrupt accounting method to [21].
Nevertheless, this accounting requires that we quantify the

 0 10 20 30 40 50 60 70 80 90
     0

 20000

 40000

 60000

 80000

100000

120000

Time (µs)

F
re

q
u

en
cy

Histogram of Observed Top−Half Execution Times

Max:    87.19 µs
Mean:   8.01 µs
Median: 7.31 µs

Figure 6: Histogram of observed top-half execution times.

execution cost of top and bottom halves of GPU interrupt
processing. Fig. 6 shows a histogram of observed top-half
execution times recorded over a 20 minute period, where
30 tasks executing at rates between 10 and 30 frames
per second, used GPUs managed by GPUSync to perform
computer vision calculations.3 The most striking aspect of
this data is the outliers: the maximum value is 87.19µs,
yet the mean and median are only 8.01µs and 7.31µs,
respectively. We observed similar characteristics for bottom-
halves: the maximum observed bottom-half execution time
was 1ms, while the mean and median are 66.14µs and
54.68µs, respectively. Although these overheads are greater,
GPUSync schedules these bottom-halves according to real-
time priorities, so this significantly mitigates their impact [5].
We must be mindful of the discrepancies between worst-case
and average measurements as we model schedulability and
determine system provisioning in practice.

B. Memory Overheads

Although algorithmic overheads are important, those related
to memory access are more so in a real-time GPU system.
As pointed out by Pellizzoni et al. [23], I/O memory bus
traffic can significantly impact the performance of tasks
executing on CPUs due to system memory bus contention.
Moreover, in multi-GPU systems, there is also contention
for the PCIe bus. We seek to quantify two memory-related
overheads. First, we want to determine the impact GPU
memory traffic has on cache preemption/migration delays
(CPMDs) [12]. Second, we seek to determine the speed at
which data can be transmitted to and from system memory
and directly between GPUs. We incorporate the former into
schedulability analysis. The latter is used to compute task
execution requirements on GPU CEs—critical to real-time
GPU schedulability. CPMD and GPU memory copy costs
have been studied in prior work ([12] and [14], respectively),
so we refrain from repeating such work here. Instead, we
focus on cost increases due to GPU memory traffic under
worst-case scenarios.

3This is the same test scenario used in our evaluations in [7].



Increase in CPMDs. To assess CPMDs, we used an
experimental method modeled after the “synthetic method”
described in [12]. A non-preemptive instrumented process
records the time taken to read a prescribed amount (a
“working set size”) of sequential data from a “hot” cache.
The process suspends for a short duration, resumes on
a random processor, and rereads said data from the now
“cold” cache. A cost is determined by subtracting the hot
measurement from the cold.

We are concerned with two memory configurations since
our test platform is a NUMA system. Under partitioned
and clustered CPU scheduling (when clusters reside entirely
within a NUMA node), memory can be allocated locally to
increase performance and reduce interference from NUMA-
remote tasks. However, under global CPU scheduling, one
may interleave memory pages across the NUMA nodes in
order to obtain good average case performance. We require
overhead data for both configurations in order to accurately
model each CPU/GPU configuration described in Sec. III.

Under both local and interleaved configurations, we col-
lected three CPMD datasets: (i) an “idle” dataset where
the instrumented process runs alone, (ii) a “loaded” dataset
where “cold” measurements are taken in the presence of
cache-trashing processes that introduce contention for both
caches and memory bus, and (iii) a “loaded-gpu” dataset
where additional load is created by GPU-using processes,
one for each CE, that fully loads the bidirectional PCIe bus
with a constant stream of 512MB DMA memory transfers
to and from pinned pages in system memory. We observed
that GPU traffic increased local CPMD costs by a factor
between two and four for working set sizes larger than
32KB. Interleaved CPMDs were affected to a lesser degree,
with increases by a factor between 1.1 and 1.9. However,
interleaved CPMDs without GPU traffic are nearly as great
as local CPMDs with GPU traffic.

GPU memory copy costs. We performed similar exper-
iments to determine GPU memory copy costs. An instru-
mented process performed memory copies to and from sys-
tem memory and P2P memory copies between neighboring
GPUs. We tested both local and interleaved configurations
under idle and loaded scenarios. In addition to loading every
GPU CE, we also executed memory-heavy GPU kernels on
the EE of GPUs used by the instrumented process in order
to stress the GPU’s own local memory bus. Table III shows
the worst-case GPU transmission times with and without
load for 1MB memory copies. There are no results for P2P
copies in the interleaved case since P2P copies are isolated
from system memory. We see that load greatly increases
memory transmission time. For example, system-to-GPU
memory copies increased by factors of 6.6 and 9.6 for
the local and interleaved cases, respectively. Interestingly,
P2P transmissions were hardly affected. This is because
P2P copies were performed between neighboring GPUs, so

1MB Idle Loaded Factor
Local

System-to-GPU 179.6ms 1181.3ms 6.6
GPU-to-System 169.2ms 1214.3ms 7.2

P2P 167.9ms 175.68ms 1.05
Interleaved

System-to-GPU 187.1ms 1802.4ms 9.6
GPU-to-System 204.6ms 1733.7ms 8.4

Table III: Worst-case GPU memory copy cost for 1MB.

there was no contention for the PCIe bus linking them. This
result also shows that the EE did not strongly affect DMA
performance. This is due to the GPU’s architecture: the EE
has a very high-bandwidth connection to GPU memory in
comparison to a CE.

V. EXPERIMENTAL RESULTS

In this section, we assess trade-offs among many con-
figuration options supported by GPUSync by presenting
the results of overhead-aware schedulability studies. We
randomly generated task sets of varying characteristics and
tested them for schedulability using the methods described
in [11]. We now describe the experimental process we used.
Experimental setup. There is a wide space of system
configuration and taskset parameters to explore. We eval-
uated each high-level configuration illustrated in Fig. 4.
These configurations are not exhaustive, but we feel they
are they simplest and realistic configurations within each
cell. For instance, in (P, P ), four partitioned CPUs have
no attached GPU; these CPUs may only schedule tasks of
TC . Such a configuration is a natural extension of existing
uniprocessor, uni-GPU methods. We also only explore GPU
clusters of size two in (∗, C). This is because we found
no runtime benefit to larger sizes in [7]. The configurations
of (∗, C) were also tested under system memory and P2P
migration methods (we denote the P2P cases as (∗, CP2P)).
Every cell was tested with several values of ρ: ρ = 1
to examine schedulability under exclusive GPU allocation;
ρ = 3 to explore schedulability when all GPU engines
(one EE and two CEs) are given the opportunity to operate
simultaneously; and ρ = 2 to see if there is a balance to
strike between ρ = 1 and ρ = 3. (∗, P ) was also tested
with ρ =∞ since ρ’s role in facilitating migrations is moot.
Finally, we assumed a data copy chunk size of 1MB.

Random task sets for schedulability experiments were
generated according to several parameters in a multistep
process. Task utilizations were generated using three uni-
form distributions: [0.01, 0.1] (light), [0.1, 0.4] (medium),
and [0.5, 0.9] (heavy). Task periods were generated using two
uniform distributions with ranges [33ms, 100ms] (moderate),
[200ms, 1000ms] (long).4 Tasks were generated by selecting
a utilization and period until reaching a desired task set

4These periods are inspired by the sensor streams GPUs may process.
Moderate periods represent video-based sensors. Long periods model
slower sensors such as LIDAR.



utilization. The task set was then randomly subdivided into
TG and TC . The number of tasks in TG was set to be:
33%, 66%, or 100% of the task set size. For tasks in
TG, kernel execution times were generated using three
uniform distributions with ranges [10%, 25%], [25%, 75%],
and [75%, 95%] of task execution time (a corresponding
amount of time was subtracted from CPU execution time).
Input/output data sizes were generated using three values:
256KB (light), 2MB (medium), and 8MB (heavy). A selected
data size was evenly split between zIi and zOi . Task GPU
state size was generated using three values: 0%, 25%, and
100% of Ti’s combined input/output data size. In order to
keep our study tractable, all tasks were assigned a CPU
cache working set size of 4KB. For tasks in TG, 5% of its
CPU execution time was determined to be within the task’s
single GPU critical section. Overheads and data transmission
times were taken from four data sets: average-case (AC)
observations in an idle system (AC/I); AC observations in
a loaded system (AC/L); worst-case (WC) observations in
an idle system (WC/I); and WC observations in a loaded
system (WC/L).

A unique combination of the above system configurations
and taskset parameters defined a set of experiment settings,
75, 816 in all. Under each set of experiment parameters,
for each 0.25 increment in system utilization range (0, 12]
(reflecting the range of system utilizations supported by our
twelve-core test platform), we generated between 500 and
4, 000 task sets.5 Task sets were partitioned to the CPU/GPU
clusters in three phases:
Phase 1: TG was partitioned among the GPU clusters, using
the worst-fit heuristic in decreasing GPU utilization order,
where ugpui , (egpu

i + qcpu
i + xmit(zIi , z

O
i , z

S
i ))/pi.

Phase 2: TG was then partitioned among CPU clusters, in
accordance with experiment parameters, using the worst-fit
heuristic in decreasing utilization (as defined in Sec. III)
order. Blocking terms were calculated and incorporated into
each CPU cluster’s (estimated) total utilization.
Phase 3: TC was then partitioned among the CPU clusters
using the worst-fit heuristic in decreasing utilization order.
Task sets were then tested for bounded response time,
incorporating the overheads discussed in Sec. IV; blocking
terms were calculated using the fine-grain analysis presented
in [21]. Approximately two billion task sets were tested. We
used a university compute cluster to perform our experi-
ments, consuming over 42, 000 CPU hours. Our experiment
tools were implemented on top of the schedulability test
toolkit SchedCAT [24].

Results. With over 75, 000 experiments, it is infeasible
to compare different system configurations by examining
individual schedulability curves alone. Since our primary

5After testing a minimum of 500 task sets, additional task sets were
generated until average schedulability fell within a three percentage-point
interval with 95% confidence, or until 4, 000 task sets had been tested.

Task Set Utilization

A
v
er

a
g
e 

S
ch

ed
u
la

b
il
it
y

m0

1.0

0.0

A

B

Area(A) > Area(B) ) Rank(A) > Rank(B)

Figure 7: Illustrative ranking.

goal is to compare the effectiveness of each configuration,
we devised the following ranking method to collapse our
results into something more manageable. For every unique
combination of task set parameters, we determined a “sub-
rank” for each system configuration from first to last place.
These sub-rankings were determined by comparing the area
under each system configuration’s schedulability curve. A
larger area under the curve indicates better schedulability.
An illustrative example is shown in Fig. 7. In this example
with two system configurations A and B, configuration A
has a first-place sub-rank since the area under A’s curve is
greater (i.e., more task sets were schedulable under A). A
final rank for each system configuration was determined by
computing for each configuration, the median, average, and
standard deviation of its sub-ranks. We then ranked system
configurations according to median sub-rank, tie-breaking
by average sub-rank. This ranking approach was applied
separately to results from each of our four overhead datasets.

Table IV shows configuration rankings assuming worst-
case, loaded system overheads (WC/L). Rankings under
other overhead assumptions are given in Appendix C. The
column labeled “Rank” gives each configuration’s final rank.
Observe that the table is sorted according to this column.
The next three columns give the median, average, and
standard deviation of each configuration’s sub-ranks. Entries
in the column labeled “(CPU,GPU,ρ)” identify the ranked
system configuration. Here, we extend the tuple-notation
from Sec. III to include ρ. The last three columns give the
final rank of a configuration under the other overhead data
sets. For a given row, we may compare the values of these
columns against each other, and the value in the “Rank”
column, to discern how a system configuration’s ranking
changes under different overhead conditions. We make the
following observations.

Obs. 1. Clustered CPU scheduling with partitioned GPUs
and ρ = ∞ had the highest rank under all overhead
conditions.

We may observe this in the first row of Table IV by
comparing the values for the Rank column against columns
WC/I, AC/I, and AC/L—all have a first-place rank.

Obs. 2. Clustered CPU scheduling with partitioned GPUs



Rankings Under Worst-Case Overheads, Loaded
Rank Median Avg Std (CPU,GPU,ρ) WC/I AC/I AC/L

1 3 5.75 5.35 (C,P,∞) 1 1 1
2 4 6.16 5.24 (C,P, 3) 3 4 2
3 5 6.05 4.97 (C,P, 2) 2 5 3
4 6 7.27 5.91 (P, P,∞) 5 7 9
5 6 7.75 6.52 (P, P, 2) 4 12 12
6 6 7.91 6.24 (P, P, 3) 6 13 11
7 10 10.82 4.48 (C,C, 2) 8 9 7
8 10 11.02 7.93 (P, P, 1) 9 22 21
9 11 10.95 4.45 (C,P, 1) 7 16 14

10 11 11.40 4.49 (C,CP2P, 2) 10 10 8
11 13 13.18 4.44 (C,C, 3) 11 15 15
12 13 13.39 4.59 (C,CP2P, 3) 13 20 16
13 13 14.02 8.60 (G,P,∞) 14 2 4
14 13 14.25 8.35 (G,P, 3) 15 3 5
15 13 14.69 8.26 (G,P, 2) 12 6 6
16 18 18.57 5.61 (G,P, 1) 16 17 17
17 18 18.88 5.59 (G,C, 2) 17 8 10
18 19 19.22 5.49 (G,CP2P, 2) 18 11 13
19 21 19.06 5.26 (C,CP2P, 1) 21 26 23
20 21 19.44 5.81 (C,C, 1) 20 25 24
21 21 20.51 5.15 (G,C, 3) 19 14 18
22 21 20.77 5.16 (G,CP2P, 3) 22 19 19
23 24 24.83 6.54 (G,G, 2) 23 18 20
24 25 24.79 4.10 (G,CP2P, 1) 25 24 25
25 25 24.88 4.07 (G,C, 1) 26 23 26
26 26 25.95 6.56 (G,G, 3) 24 21 22
27 27 22.35 9.22 (P,C, 1) 27 29 28
28 27 22.47 9.17 (P,CP2P, 1) 28 28 29
29 28 23.35 9.48 (P,C, 2) 29 30 30
30 29 23.82 9.46 (P,CP2P, 2) 30 31 31
31 29 24.43 9.96 (P,C, 3) 32 32 32
32 30 24.84 10.18 (P,CP2P, 3) 33 33 33
33 31 29.04 6.29 (G,G, 1) 31 27 27
34 35 35.09 1.47 (P,G, 1) 34 34 34
35 35 35.25 1.40 (P,G, 2) 35 36 35
36 35 35.32 1.44 (P,G, 3) 36 37 37
37 37 35.73 1.64 (C,G, 1) 37 35 36
38 38 38.03 1.33 (C,G, 3) 39 39 39
39 38 38.09 1.38 (C,G, 2) 38 38 38

Table IV: Configuration rankings under WC/L.

and ρ =∞ was not always the best configuration.

To see this, compare the Median and Average sub-rank
values of the first row for (C,P,∞). If (C,P,∞) always
had the highest rank, then Median and Average would both
have a value of “1.” They do not.

Obs. 3. Under partitioned GPUs, schedulability tends to be
maximized when ρ is large. Namely, when ρ =∞.

We may observe this by scanning the system configuration
column, picking out entries matching (∗, P, ∗). Observe that
entires that only differ by ρ tend to be ranked in decreas-
ing ρ-order. For instance, (C,P,∞), (C,P, 3), (C,P, 2),
and (C,P, 1) are ranked first, second, third, and ninth,
respectively. This pattern is repeated for (G,P, ∗) for ranks
13 through 16. The rankings for (P, P, 2) (ranked fifth)
and (P, P, 3) (ranked sixth) are an exception to this trend.
However, their average sub-ranks are very close: 7.75 and

7.91, respectively.

Obs. 4. Under clustered GPUs, schedulability tends to be
maximized when ρ = 2.

Locate the (∗, C, 2) and (∗, CP2P , 2) entries in Table IV.
Observe that each entry, with one exception, has the highest
rank among similar configurations that only differ by ρ. For
example, (C,C, 2) is ranked seventh while (C,C, 3) and
(C,C, 1) are ranked 11th and 20th, respectively. The only
exception to this trend is with the (P,C, ∗) configurations.
Here, (P,C, 1) is ranked 27th and (P,C, 2) is ranked 29th.
It is highly likely that this exceptional behavior is due to the
CK-OMLP, which is used to distribute GPU tokens in this
case, but not the others. These same trends can be observed
for rankings in the WC/L, AC/I, and AC/L columns, as well.

Obs. 5. Schedulability is comparably poor under the CK-
OMLP.

We observe in Table IV that configurations (P,G, ∗),
(P,C, ∗), (P,CP2P , ∗), and (C,G, ∗) make up twelve of
the thirteen last rankings under WC/L. This similarly holds
under the other overhead data sets.

Obs. 6. System memory migrations offer better schedula-
bility than P2P migrations.

Every clustered GPU configuration where P2P migrations
were used was ranked lower than the similar configuration
where system memory migrations were used. In most cases,
the P2P-variant ranks closely below the other. For instance,
(C,C, 2) is ranked seventh and (C,CP2P , 2) is ranked tenth.
The difference is similar under the other overhead data sets.

This is a disappointing result since we observed superior
runtime performance under P2P migrations in [7]. The
blocking complexity under P2P migrations is greater (refer
to Appendix B for details), and this may result in more
pessimistic blocking bounds.6 Despite this disappointment,
we observe that the rankings for system memory and P2P
migration methods remain close enough that a system de-
signer may opt to use P2P configuration for the sake of better
runtime performance.

Obs. 7. Global GPU scheduling performed poorly.

(G,G, 2) was the best global GPU configuration and it
ranked 18th under AC/I, and in the twenties for the other data
sets. Since global CPU scheduling performs comparatively
well for (G,P, ∗) (ranks 13th, 14th, and 15th), we do not
believe this poor performance is due to greater scheduling
overheads. Instead, it is most likely due to the additional
GPU memory overheads incurred by using memory pages
interleaved across the NUMA nodes, as we discussed in
Sec. IV.

Obs. 8. Global CPU scheduling with partitioned GPUs
performs well under AC overheads.

6We discuss the challenge of determining tighter blocking bounds for
P2P migrations in [21].



0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilization

S
ch

ed
u
la

b
il

it
y

AC/L, util: medium, period: moderate, kernel: [10%, 25%], data: medium, state: 0%, GPU pop.: 66%

 

 

[1] (C, P, ∞)

[2] (G, P, ∞)

[3] (C, C, 2)

[4] (G, C, 2)

[5] (G, G, 2)

[6] (P, P, ∞)

[7] (P, C, 1)

[8] (P, G, 3)

[9] (C, G, 1)

[1]

[2]

[3]

[4]

[5][6][7]

[9][8]

Figure 8: Detailed schedulability result.

Locate the (G,P, ∗) entries in Table IV at rankings 13
through 16. These rankings are relatively low. However,
compare these to their rankings under AC/I and AC/L over-
head data sets. (G,P, ∗) does much better. Indeed (G,P,∞)
ranks second under AC/I instead of thirteenth under WC/L.

This completes our high-level comparisons of the various
system configurations. We now take a deeper look at some of
our results. Fig. 8 plots schedulability curves for the highest-
ranked configuration of each high-level configuration under
AC/L overheads. Tasks had a medium utilization, moderate
period, medium data requirement, and no state. GPU kernel
execution times were determined by the [10%, 25%] uniform
distribution. Finally, 66% of the tasks in each task set used
a GPU. We make the following observations.
Obs. 9. Clustered GPU scheduling can be competitive with
partitioned GPU scheduling.

Observe the curve for (C,C, 2) (line 3) in Fig. 8 and
compare it to curves for (C,P,∞) and (G,P,∞) (lines 1
and 2, respectively). Although schedulability is not as good,
it is close. Moreover, (C,C, 2) beats (P, P,∞). This is
interesting since (P, P,∞) represents the natural extension
of existing uniprocessor, uni-GPU methods. This result pro-
motes (C,C, 2) as an attractive choice in cases such as this
because, in practice, it offers better resilience to GPU failure
(or misbehaving GPU-using tasks) since a failed/locked-up
GPU does not halt all GPU service to tasks within its cluster.
Obs. 10. Global CPU scheduling can perform well.

We see that (G,P,∞) (line 2) and (G,C, 2) (line 4)
are competitive with their corresponding clustered-CPU con-
figurations, (C,P,∞) (line 1) and (C,C, 2) (line 2). This
supports the trend we identified in Obs. 8 through high-level
observations. For example, (G,P,∞) ranks fourth for AC/L
in Table IV.

VI. CONCLUSION

GPUs have been advocated as accelerators in many settings
where real-time constraints exist. However, to deploy GPUs
in such settings, an understanding of schedulability-related
tradeoffs is needed. In this paper, we have presented the first

ever comprehensive study of such tradeoffs. Our study has
focused particularly on multicore platforms augmented with
potentially several GPUs. Multi-GPU multicore systems are
an attractive platform for providing the necessary compu-
tational capacity for real-time applications that require in-
tensive data-parallel processing, while adhering to stringent
size, weight, and power envelopes.

The study reported in this paper was a significant un-
dertaking, having examined nearly two billion different
task systems and 156 different system configurations via
experiments that took over 40,000 CPU hours to complete.
Despite the extensive nature of this study, it had to be
necessarily constrained. Specifically, we focused only on
examining whether response-time bounds could be ensured.
This motivated us to focus on one particular class of sched-
ulers, namely the FL schedulers. In future work, we intend to
expand this study to consider other real-time constraints and
other classes of schedulers. This paper lays the groundwork
for how such studies should be carried out.

Dealing with the vast amount of data produced by our
study led to a secondary contribution: the development
of a ranking method (inspired by the notion of weighted
schedulability [12]) as a way of collapsing many thousands
of schedulability graphs into a form that is much more
succinct and allows trends to be more easily seen. While
such a collapsing was necessary due to space constraints,
any aggregation of data runs the risk of hiding important
information. To guard against this, we have made all of our
data available online in the form of a SQLite database file.

REFERENCES

[1] J. Aumiller, S. Brandt, S. Kato, and N. Rath, “Supporting
low-latency CPS using GPUs and direct I/O schemes,” in 18th
RTCSA, 2012.

[2] C. Basaran and K.-D. Kang, “Supporting preemptive task
executions and memory copies in GPGPUs,” in 24th ECRTS,
2012.

[3] K. Berezovskyi, K. Bletsas, and B. Andersson, “Makespan
computation for GPU threads running on a single streaming
multiprocessor,” in 24th ECRTS, 2012.

[4] A. Betts and A. Donaldson, “Estimating the WCET of
GPU-accelerated applications using hybrid analysis,” in 25th
ECRTS, 2013.

[5] G. Elliott and J. Anderson, “Building a real-time multi-GPU
platform: Robust real-time interrupt handling despite closed-
source drivers,” in 24th ECRTS, 2012.

[6] ——, “An optimal k-exclusion real-time locking protocol mo-
tivated by multi-GPU systems,” Real-Time Systems, vol. 49,
no. 2, 2013.

[7] G. Elliott, B. Ward, and J. Anderson, “GPUSync: A frame-
work for real-time GPU management,” in 34th RTSS, 2013.

[8] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa,
and R. Rajkumar, “RGEM: A responsive GPGPU execution
model for runtime engines,” in 32nd RTSS, 2011.

[9] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa,
“TimeGraph: GPU scheduling for real-time multi-tasking
environments,” in USENIX ATC, 2011.

[10] J. Kim, B. Andersson, D. Niz, and R. Rajkumar, “Segment-



fixed priority scheduling for self-suspending real-time tasks,”
in 34th RTSS, 2013.

[11] J. Erickson, J. Anderson, and B. Ward, “Fair lateness schedul-
ing: reducing maximum lateness in G-EDF-like scheduling,”
Real-Time Sys., vol. 50, no. 1, 2014.

[12] B. Brandenburg, “Scheduling and locking in multiprocessor
real-time operating systems,” Ph.D. dissertation, Univ. of
North Carolina at Chapel Hill, 2011.

[13] N. Rath, J. Bialek, P. Byrne, B. DeBono, J. Levesque,
B. Li, M. Mauel, D. Maurer, G. Navratil, and D. Shiraki,
“High-speed, multi-input, multi-output control using GPU
processing in the HBT-EP tokamak,” Fusion Engineering and
Design, vol. 87, no. 12, 2012.

[14] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro, “Data
transfer matters for GPU computing,” in 19th ICPADS, 2013.

[15] S. Baruah, “Scheduling periodic tasks on uniform multipro-
cessors,” Information Processing Letters, vol. 80, no. 2, 2001.

[16] ——, “Feasibility analysis of preemptive real-time systems
upon heterogeneous multiprocessor platforms,” in 25th RTSS,
2004.

[17] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on
uniform multiprocessors,” in 22nd RTSS, 2001.

[18] P. Gai, L. Abeni, and G. Buttazzo, “Multiprocessor
DSP scheduling in system-on-a-chip architectures,” in 14th
ECRTS, 2002.

[19] B. Ward, G. Elliott, and J. Anderson, “Replica-request priority
donation: A real-time progress mechanism for global locking
protocols,” in 18th RTCSA, 2012.

[20] B. Brandenburg and J. Anderson, “The OMLP family of
optimal multiprocessor real-time locking protocols,” Design
Automation for Embedded Systems, 2012.

[21] G. Elliott and J. Anderson, “Appendix to exploring the
multitude of real-time multi-GPU configurations,” http://cs.
unc.edu/∼anderson/papers.html, December 2014.

[22] B. Ward and J. Anderson, “Fine-grained multiprocessor real-
time locking with improved blocking,” in 21st RTNS, 2013.

[23] R. Pellizzoni and M. Caccamo, “Impact of peripheral-
processor interference on WCET analysis of real-time em-
bedded systems,” IEEE Transactions on Computers, vol. 59,
no. 3, 2010.

[24] “SchedCAT,” http://mpi-sws.org/∼bbb/projects/schedcat.

APPENDIX A.
RANKING DATA

In this appendix, we present ranking data for the AC/I, AC/L,
and WC/I experiments. This data is given in Tables V–VII.

APPENDIX B.
ANALYSIS

In this appendix, we present a coarse analysis of blocking
under GPUSync. Our main purpose here is to expose analyt-
ical differences among various configurations of GPUSync.
Fine-grained blocking analysis can be found in [21]. We
make the simplifying assumption that each job of any task
competes for a GPU token at most once.

Due to our FL scheduler and locking protocols, we are
constrained to “suspension-oblivious” schedulability analy-
sis, where all task self-suspensions due to GPU operations
and blocking are treated as CPU demand [20]. This is a
safe, albeit pessimistic, technique. Nevertheless, utilization
loss due to this pessimism can be easily offset by the

performance gains offered by GPUs, which are often an
order of magnitude faster than a CPU.

We must introduce some additional blocking-related no-
tation. Let Ki denote the maximum token critical section
length of Ti, bKi denote the maximum time Ti,j may be
blocked due to the token lock, and bEi denote the maximum
time Ti,j may be blocked within a token critical section
for all engine locks. Then, the maximum time a job may be
blocked accessing locks and tokens is given by bi , bKi +bEi .
Let N I

i , NO
i and NS

i denote the number of chunks required
to copy zIi , zOi , and zSi , respectively. Let XI , XO, and
XP2P denote the maximum time it takes to transmit a
chunk of GPU data for input, output, and P2P migration,
respectively, and let Xmax denote the maximum of XI , XO,
and XP2P. Also, let Si denote the maximum time to perform
a GPU migration. For P2P migrations, Si = XP2PNS

i . For
migrations through system memory, Si = XINS

i +XONS
i .

For (∗, P ) configurations, Si = 0. Let Emax denote the
longest duration an EE lock is held by any other task, and
let Kmax denote the longest token critical section among
all tasks.

A job must acquire a token from the GPU allocator
before it can begin using a GPU. When the R2DGLP
is in use, a token-requesting job is blocked by at most
2dc/(ρg)e − 1 token critical sections of other jobs [19].
Thus, the total duration of blocking while waiting for a
token is bounded by bKi = Kmax(2dc/(ρg)e − 1). Let M
denote the number of CPUs that share a given GPU cluster.
Under the CK-OMLP, a token-requesting job is blocked
by at most dM/(ρg)e − 1 token critical sections of other
jobs [20]. However, all tasks, including those in TC , may
experience up to Kmax blocking at release-time due to
priority donation. bKi = KmaxdM/(ρg)e when Ti ∈ TG

and bKi = Kmax when Ti ∈ TC . Bounds on Kmax must
be computed since tasks may block while acquiring engine
locks. By construction, the token critical-section length for
Ti is Ki = qcpu

i + egpu
i + bEi + XIN I

i + XONO
i + Si. All

these parameters have been derived, excepting bEi .
bEi is the sum of all blocking experienced within the token

critical section. Let bEEi denote Ti’s maximum total blocking
time for the EE lock, let bI/Oi denote its maximum total
blocking time while waiting to transmit input and output
chunks, and let bP2P

i denote its maximum total blocking time
while waiting for CE locks to perform a P2P migration.
Then, bEi = bEEi + b

I/O
i + bP2P

i .
A job may be blocked for every GPU kernel it executes

when acquiring the EE lock of its allocated GPU. At most
ρ− 1 other jobs may compete simultaneously for this lock
for a given request. Since requests are FIFO ordered, the
resulting blocking is bounded by bKi = Emax(ρ− 1).

Bounds for bI/Oi and bP2P
i depend on whether migrations

are P2P or through system memory and on the number of
CEs per GPU. In our analysis, we assume that all migrations



Rankings Under Average-Case Overheads, Idle
Rank Median Avg Std (CPU,GPU,ρ) WC/I AC/L WC/L

1 2 3.66 4.04 (C,P,∞) 1 1 1
2 3 3.48 2.54 (G,P,∞) 14 4 13
3 4 4.51 2.79 (G,P, 3) 15 5 14
4 4 4.94 3.96 (C,P, 3) 3 2 2
5 5 5.07 3.39 (C,P, 2) 2 3 3
6 5 5.21 2.53 (G,P, 2) 12 6 15
7 11 11.52 5.78 (P, P,∞) 5 9 4
8 11 11.78 5.00 (G,C, 2) 17 10 17
9 11 12.02 4.70 (C,C, 2) 8 7 7
10 11 12.83 4.79 (C,CP2P, 2) 10 8 10
11 12 12.65 5.14 (G,CP2P, 2) 18 13 18
12 13 13.19 6.20 (P, P, 2) 4 12 5
13 13 13.81 5.37 (P, P, 3) 6 11 6
14 15 15.01 5.73 (G,C, 3) 19 18 21
15 15 15.07 5.17 (C,C, 3) 11 15 11
16 15 15.07 4.32 (C,P, 1) 7 14 9
17 15 14.30 5.66 (G,P, 1) 16 17 16
18 16 15.20 6.08 (G,G, 2) 23 20 23
19 16 15.26 5.44 (G,CP2P, 3) 22 19 22
20 16 15.55 4.89 (C,CP2P, 3) 13 16 12
21 18 17.58 6.64 (G,G, 3) 24 22 26
22 21 18.52 4.75 (P, P, 1) 9 21 8
23 24 22.22 6.11 (G,C, 1) 26 26 25
24 24 22.28 6.10 (G,CP2P, 1) 25 25 24
25 24 23.16 3.43 (C,C, 1) 20 24 20
26 24 23.25 3.32 (C,CP2P, 1) 21 23 19
27 27 24.70 9.90 (G,G, 1) 31 27 33
28 28 28.54 2.24 (P,CP2P, 1) 28 29 28
29 28 28.58 2.25 (P,C, 1) 27 28 27
30 30 29.67 2.26 (P,C, 2) 29 30 29
31 30 29.70 2.27 (P,CP2P, 2) 30 31 30
32 31 30.55 2.26 (P,C, 3) 32 32 31
33 31 30.78 2.25 (P,CP2P, 3) 33 33 32
34 35 34.74 2.00 (P,G, 1) 34 34 34
35 35 35.10 2.12 (C,G, 1) 37 36 37
36 35 35.14 2.03 (P,G, 2) 35 35 35
37 36 35.32 2.03 (P,G, 3) 36 37 36
38 38 37.93 1.67 (C,G, 2) 38 38 39
39 38 37.99 1.73 (C,G, 3) 39 39 38

Table V: Configuration rankings under AC/I.

are performed using the same method, though GPUSync
could support both types in the same system.
CE blocking with P2P. Under P2P migrations, any task
holding a GPU token may request the CE lock of the GPU
it used in its prior job in order to perform a migration. There
are at most ρg such tasks. In the worst case, they may all
attempt to access the same CE lock at the same instant.
Thus, any request for a CE lock may be blocked by ρg− 1
other requests. From the blocking analysis of DGLs [22],
the total number of blocking requests for a CE is at most
ρg − 1. Since no task requires more than Xmax time to
complete b

I/O
i = Xmax(N I

i + NO
i )(ρg − 1) and bP2P

i =
XmaxNS

i (ρg − 1).
CE blocking with system memory migration. In this case,
CEs are only accessed by tasks that have been given a token
for an allocated GPU, so at most ρ − 1 other jobs may
compete for the CE lock at a given instant. Recall that state

Rankings Under Average-Case Overheads, Loaded
Rank Median Avg Std (CPU,GPU,ρ) WC/I AC/I WC/L

1 2 3.15 3.59 (C,P,∞) 1 1 1
2 3 4.01 3.32 (C,P, 3) 3 4 2
3 3 4.62 3.46 (C,P, 2) 2 5 3
4 4 6.08 6.39 (G,P,∞) 14 2 13
5 5 7.01 6.09 (G,P, 3) 15 3 14
6 6 7.62 5.81 (G,P, 2) 12 6 15
7 9 10.77 4.48 (C,C, 2) 8 9 7
8 10 10.95 4.69 (C,CP2P, 2) 10 10 10
9 11 12.02 5.49 (P, P,∞) 5 7 4

10 12 13.96 5.80 (G,C, 2) 17 8 17
11 13 13.53 5.26 (P, P, 3) 6 13 6
12 13 13.91 5.70 (P, P, 2) 4 12 5
13 13 14.30 5.45 (G,CP2P, 2) 18 11 18
14 14 12.84 5.02 (C,P, 1) 7 16 9
15 14 13.27 5.10 (C,C, 3) 11 15 11
16 15 13.59 5.05 (C,CP2P, 3) 13 20 12
17 16 15.47 5.17 (G,P, 1) 16 17 16
18 17 16.31 5.93 (G,C, 3) 19 14 21
19 17 16.38 5.79 (G,CP2P, 3) 22 19 22
20 20 20.07 6.69 (G,G, 2) 23 18 23
21 21 18.11 5.74 (P, P, 1) 9 22 8
22 22 21.04 6.86 (G,G, 3) 24 21 26
23 23 20.16 6.26 (C,CP2P, 1) 21 26 19
24 23 20.84 6.28 (C,C, 1) 20 25 20
25 24 22.88 4.76 (G,CP2P, 1) 25 24 24
26 24 23.45 4.88 (G,C, 1) 26 23 25
27 27 26.99 7.46 (G,G, 1) 31 27 33
28 28 27.98 4.25 (P,C, 1) 27 29 27
29 28 27.99 4.53 (P,CP2P, 1) 28 28 28
30 30 28.61 4.18 (P,C, 2) 29 30 29
31 30 28.79 4.62 (P,CP2P, 2) 30 31 30
32 31 29.41 4.54 (P,C, 3) 32 32 31
33 31 29.77 4.21 (P,CP2P, 3) 33 33 32
34 35 35.22 1.63 (P,G, 1) 34 34 34
35 35 35.42 1.64 (P,G, 2) 35 36 35
36 36 35.46 1.79 (C,G, 1) 37 35 37
37 36 35.47 1.63 (P,G, 3) 36 37 36
38 38 37.97 1.39 (C,G, 2) 38 38 39
39 38 38.03 1.40 (C,G, 3) 39 39 38

Table VI: Configuration rankings under AC/L.

is aggregated with input and output data. Thus, bP2P
i = 0.

However, now b
I/O
i = Xmax(N I

i +NO
i +2NS

i )(ρ−1) since
state data must be handled twice.

Analytical bounds for P2P and system memory migrations
differ. CE lock contention is O(ρg) and O(ρ) under P2P
and system memory migrations, respectively. Despite its
inferior order of complexity, P2P migration may still result
in better analytical bounds if the advantages of fewer and
faster memory copies can be exploited (it is faster because
state is not copied to memory). Also, there are benefits to
P2P migrations that cannot be captured in the above analysis,
namely, isolation from the system memory bus and rarity of
migrations due to the GPU allocator’s heuristics.



Rankings Under Worst-Case Overheads, Idle
Rank Median Avg Std (CPU,GPU,ρ) AC/I AC/L WC/L

1 3 4.84 4.35 (C,P,∞) 1 1 1
2 3 5.12 4.35 (C,P, 2) 5 3 3
3 4 5.30 4.28 (C,P, 3) 4 2 2
4 6 7.82 6.60 (P, P, 2) 12 12 5
5 6 7.92 6.18 (P, P,∞) 7 9 4
6 7 8.71 6.50 (P, P, 3) 13 11 6
7 9 9.97 4.53 (C,P, 1) 16 14 9
8 9 10.31 4.13 (C,C, 2) 9 7 7
9 10 10.66 8.00 (P, P, 1) 22 21 8

10 10 10.96 4.29 (C,CP2P, 2) 10 8 10
11 12 12.57 4.64 (C,C, 3) 15 15 11
12 12 13.96 8.16 (G,P, 2) 6 6 15
13 12 12.97 4.60 (C,CP2P, 3) 20 16 12
14 13 13.71 8.82 (G,P,∞) 2 4 13
15 13 14.02 8.47 (G,P, 3) 3 5 14
16 18 18.40 5.81 (G,P, 1) 17 17 16
17 18 18.71 6.48 (G,C, 2) 8 10 17
18 18 19.01 6.16 (G,CP2P, 2) 11 13 18
19 20 20.63 5.56 (G,C, 3) 14 18 21
20 21 18.69 5.99 (C,C, 1) 25 24 20
21 21 19.03 5.63 (C,CP2P, 1) 26 23 19
22 21 20.64 5.45 (G,CP2P, 3) 19 19 22
23 21 21.66 6.32 (G,G, 2) 18 20 23
24 24 23.44 6.61 (G,G, 3) 21 22 26
25 26 24.94 4.80 (G,CP2P, 1) 24 25 24
26 26 24.99 4.81 (G,C, 1) 23 26 25
27 27 24.07 7.61 (P,C, 1) 29 28 27
28 27 24.42 7.48 (P,CP2P, 1) 28 29 28
29 29 26.05 7.16 (P,C, 2) 30 30 29
30 29 26.37 6.92 (P,CP2P, 2) 31 31 30
31 30 27.40 7.63 (G,G, 1) 27 27 33
32 31 27.53 7.04 (P,C, 3) 32 32 31
33 31 27.65 7.03 (P,CP2P, 3) 33 33 32
34 35 34.55 2.50 (P,G, 1) 34 34 34
35 35 35.12 2.48 (P,G, 2) 36 35 35
36 36 35.15 2.63 (P,G, 3) 37 37 36
37 36 35.28 2.89 (C,G, 1) 35 36 37
38 38 38.28 0.85 (C,G, 2) 38 38 39
39 38 38.33 0.79 (C,G, 3) 39 39 38

Table VII: Configuration rankings under WC/I.

APPENDIX C.
ADDITIONAL DATA

In this section, we present additional overhead-related
data for the topics discussed in Sec. IV. We first present
additional data for GPU interrupt handling overheads. This
is followed by additional information on CPMD and GPU
memory copy overheads and how they are affected by bus
contention and NUMA page interleaving.

A. GPU Interrupts

Fig. 6 of Sec. IV shows a histogram of the interrupt
top-half execution times we observed while running the
computer vision workload discussed in Sec. IV for 20
minutes. The predominate characteristic of the observed top-
half execution times is the extreme outliers. Fig. 9 shows a
histogram of the interrupt bottom-half execution times we
observed for the same workload. We see a similar outlier

   0  200  400  600  800 1000 1200
     0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

100000

Time ( s)

F
re

q
u
en

cy

Histogram of Observed Bottom−Half Execution Times

Max:    1008.58 µs
Mean:   66.14 µs
Median: 54.68 µs

µ

Figure 9: Histogram of observed top-half execution times.

0 10 20 30 40 50 60 70 80 90
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Execution Time ( s)

P
(E

x
ec

u
ti

o
n
 T

im
e 

>
 x

) 
[l

o
g

1
0
 s

ca
le

]

Complementary Cumulative Distribution Function of Top−Half Execution Times

µ

(a) Top-Half Observations

0 200 400 600 800 1000 1200
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Execution Time ( s)

P
(E

x
ec

u
ti

o
n
 T

im
e 

>
 x

) 
[l

o
g

1
0
 s

ca
le

]

Complementary Cumulative Distribution Function of Bottom−Half Execution Times

µ

(b) Bottom-Half Observations

Figure 10: CCDF of top-half and bottom-half execution times.
Note log-scale y-axis.

characteristic (even though bottom-half execution times are
themselves typically greater than those of top-halves). With
this data in mind, we make the following observation.

Obs. 11. GPUs raise many interrupts and they consumed a
nontrivial amount of available CPU time.

Many GPU interrupts were raised during our 20 minute
experiment. This is a relatively short period of time. In
all, we recorded 4,569,197 and 4,268,203 top-half and
bottom-half observations, respectively. (Not every top-half
is followed by a bottom-half, although we assume so in



schedulability analysis, as discussed in Appendix F.) The
total time spent executing top-halves was 36.6 seconds.
Similarly, 282.29s was spent executing bottom-halves. All
together, interrupt processing consumed 2.21% of available
CPU time, across twelve CPUs, over the 20 minute period.
Although small, this is not a trivial amount of CPU time, so
it should be accounted for in schedulability analysis.

Fig. 10 depicts the complement cumulative distribution
function (CCDF) of top-half (10a) and bottom-half (10b)
observations. It is important to notice that the y-axis is
plotted on a log scale. The CCDF, when plotted on a
log scale, enables us to observe and reason about outlier
characteristics. We make the following observations.

Obs. 12. Top-half outliers are rare.

In Fig. 10a, observe that only 0.01% (y = 10−4) of
observed top-halves had execution times greater than 50µs.
Moreover, only 0.001% of observed top-halves had execu-
tion times greater than 60µs, and only 0.0001% of observed
top-halves had execution times greater than 78µs.

Obs. 13. Bottom-half outliers are rare.

In Fig. 10b, observe that only 0.01% of observed bottom-
halves had execution times greater than 550µs. Moreover,
only 0.001% of observed bottom-halves had execution times
greater than 750µs, and only 0.0001% of observed bottom-
halves had execution times greater than 1000µs.

Obs. 14. Top-half and bottom-half observations have similar
tail characteristics.

Although they differ in scale (in terms of execution
time) the tails of the top-half and bottom-half CCDFs bear
similarities. In both insets a and b, the probability of their
most extreme outlier is near the magnitude of 0.00001%
(e.g., P (Execution Time > x) ≈ 10−7).

B. CPMDs and GPU Traffic

In Sec IV, we generalized the increases in CPMD over-
heads caused by GPU traffic. Here, we characterize these
increases with finer detail.

Fig. 11 plots the relative increase in CPMD costs of select
working set sizes for the overheads we gathered using the
methodology described in Sec. IV. These plots reflect the
increase in CPMDs between the “loaded” data set and the
“loaded-gpu” dataset. “Local CPMDs” are with respect to
migrations across a processor’s shared L3 cache (12MB
in size) shared by six CPUs, with all memory accesses
to memory pages local to the processor’s NUMA node.
We omit CPMDs gathered with respect to the L2 cache
for the sake of brevity (they exhibit similar trends to the
L3’s). “Interleaved CPMDs” are with respect to migrations
between CPUs on different NUMA nodes, with memory
accesses to memory pages interleaved across the system’s
two NUMA nodes. Observe that the x-axis uses a log2 scale.
We make the following observations.

2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14 2^15
1

1.5

2

2.5

3

3.5

4

4.5
Relative Increase in Maximum CPMD Costs Due to GPU Traffic

Data Size (bytes) [log2 scale]

C
P

M
D

 I
n
cr

ea
se

 R
at

io

 

 

[1] Local CPMD

[2] Interleaved CPMD

[1]

[2]

(a) Increase in maximum CPMDs.

2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14 2^15
1

1.5

2

2.5

3

3.5

4

4.5

Data Size (bytes) [log
2
 scale]

C
P

M
D

 I
n
cr

ea
se

 R
at

io

Relative Increase in Mean CPMD Cost Due to GPU Traffic

 

 

[1] Local CPMD

[2] Interleaved CPMD

[1]

[2]

(b) Increase in mean CPMDs.

Figure 11: Increase in considered CPMD overheads due to GPU
traffic.

Obs. 15. Maximum and mean CPMDs are affected similarly
by GPU traffic.

The shape and magnitude of the corresponding lines in
Figs. 11a and 11a are very similar. For example, the plots
for local CPMDs (lines (1)) both exhibit a dip in costs for
working set sizes around 8MB (x = 213).

Obs. 16. Local CPMDs are more strongly affected by GPU
traffic that interleaved CPMDs.

In Sec. IV, we stated that local CPMDs were affected
more strongly by GPU traffic than interleaved CPMDs. This
can be clearly observed in Figs. 11a and 11a: line (1) in each
graph is clearly greater than line (2). However, as we stated
in Sec. IV, interleaved CPMDs themselves are significantly
greater than local CPMDs.

C. GPU Memory Copy Costs

The time taken to copy data among GPU and system
memories is affected by both bus contention and memory
page interleaving. We discuss this in detail here.

1) Increases Due to Bus Contention: Under load, GPU
DMAs experience contention for the following buses: the
GPU-internal memory bus, several PCIe buses at various



4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
0

2

4

6

8

10

12

14

Data Chunk Size (KB) [log
2
 scale]

G
P

U
 D

at
a 

C
o

p
y

 T
im

e 
In

cr
ea

se
 R

at
io

Relative Increase in Maximum GPU Data Copy Time Due to Load

 

 

[1] P2P − Near

[2] P2P − Far

[3] GPU−to−System

[4] GPU−to−System (interleaved)

[5] System−to−GPU

[6] System−to−GPU (interleaved)

[1]

[2]

[3]

[6]

[4]

[5]

(a) Increase in maximum GPU memory copy time.

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
0

2

4

6

8

10

12

14

Data Chunk Size (KB) [log
2
 scale]

G
P

U
 D

at
a 

C
o
p
y
 T

im
e 

In
cr

ea
se

 R
at

io

Relative Increase in Mean GPU Data Copy Time Due to Load

 

 

[1] P2P − Near

[2] P2P − Far

[3] GPU−to−System

[4] GPU−to−System (interleaved)

[5] System−to−GPU

[6] System−to−GPU (interleaved)

[1]

[2]

[3]

[6]

[4]

[5]

(b) Increase in mean GPU memory copy time.

Figure 12: GPU memory cost increases due to load.

hierarchical levels), the processor-I/O hub interconnect, and
the system memory bus. If memory is interleaved across
NUMA nodes, then additional contention can be experienced
for the processor-processor (NUMA) interconnect as well as
the remote system memory bus. Here, we show how such
contention increases memory copy times (within the context
of our experiments).

Fig. 12 depicts observed increases in maximum and mean
costs of GPU memory DMAs caused by load. “Near P2P”
DMAs are those between neighboring GPUs, or those that
share the same PCIe switch (i.e., they have a distance of 1, as
discussed in Sec. II). “Far P2P” DMAs are those between
GPUs within the same NUMA node, but have a distance
of 2. Memory accesses are NUMA-local, unless otherwise
specified. We make the following observations.

Obs. 17. Load can cause significant increases in memory
copy times, and it must be considered in schedulability
analysis.

Consider the case where four GPUs share a PCIe bus,
as they do in Fig. 2. Under load, one may assume that
each GPU will obtain 25% of the PCIe bus’s bandwidth—
increasing DMA costs by a factor of four. However, we

can see in these graphs that increases may be considerably
greater. For example, consider lines (3) and (5) in Figs. 12a
and 12b. Here, we see that increases range between a
factor of five and seven. We observed increases to be even
greater when memory pages accessed by GPUs are inter-
leaved across the NUMA nodes. To see this, find lines (4)
and (6) in Figs. 12a and 12b. Here, we see that increases
generally range between eight and ten, but can be as great
as twelve (see System-to-GPU DMAs for 64KB memory
copies (lines (6))).

Ultimately, this result shows us that bus contention must
be accounted for in schedulability analysis. We consider this
a major oversight of prior work in real-time GPU research.

Obs. 18. Near P2P memory copies are hardly affected by
load. Far P2P memory copies are moderately affected.

Despite added contention for the GPUs local memory
bus, we observe that load hardly affects near P2P memory
copies: lines (1) in Figs. 12a and 12b are very close to 1.0
(never exceeding a factor of 1.12) for all memory copy sizes.
Far P2P memory copies exhibit an increase between factors
1.5 and 3.5. This tells us that contention for the I/O hub
under load is not negligible. This partly explains why “large”
GPU clusters of four GPUs in [7] could not outperform
smaller GPU clusters of two, even though migrations were
infrequent.

If we wish to minimize P2P migration costs, it is best
to pair GPUs into small clusters of two neighboring GPUs
apiece.

2) Increases Due to Interleaving: Fig. 13 depicts ob-
served increases in maximum and mean costs of GPU DMAs
caused by interleaving memory pages across NUMA nodes.
Fig. 13 only depicts increases for DMAs between system
and GPU memory since P2P DMAs are unaffected by
interleaving. We make the following observations.

Obs. 19. In practical systems, it is likely impossible to
improve GPU DMA performance by interleaving pages
among NUMA nodes.

One may suspect that interleaving pages among NUMA
nodes may improve GPU DMA performance since memory
accesses may operate in parallel. However, in general, inter-
leaving pages across NUMA nodes usually increases GPU
DMA costs, even in idle systems. We see this in all lines
(except lines (3)) of Figs. 13a and 13b.

Obs. 20. Interleaving has little affect on System-to-GPU
DMAs in an idle system.

Interleaving has little affect on DMAs from system mem-
ory to GPU memory in an idle system. Indeed, interleaving
can sometimes lead to a net benefit, as seen in lines (3) in
Figs. 13a and 13b for small copies such as 8KB. This is due
to the fact that system memory in each NUMA pool can
be accessed in parallel, ultimately reducing DMAs costs.
However, GPU-to-System DMA costs increase by roughly



4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

1

1.2

1.4

1.6

1.8

2

Data Chunk Size (KB) [log
2
 scale]

G
P

U
 D

at
a 

C
o

p
y

 T
im

e 
In

cr
ea

se
 R

at
io

Relative Increase in Max GPU Data Copy Time Due to Page Interleaving

 

 

[1] GPU−to−System (idle)

[2] GPU−to−System (loaded)

[3] System−to−GPU (idle)

[4] System−to−GPU (loaded)

[1]

[3]

[2]

[4]

(a) Increase in maximum GPU memory copy time.

Data Chunk Size (KB) [log
2
 scale]

[1]

[3]

[2]

[4]

(b) Increase in mean GPU memory copy time.

Figure 13: GPU memory cost increases due to page interleaving.

20% under interleaving (lines (1)). We have no definitive
explanation for this, but we speculate that more expensive
system memory writes (in comparison to reads) are the
cause.

This observation further supports our claim that it is likely
impossible to achieve meaningful performance benefits from
interleaved pages, since useful systems are rarely completely
idle—at least where real-time scheduling is concerned.

Obs. 21. Interleaving has a stronger effect on DMA costs
for systems under load.

As we discussed above, interleaving may introduce addi-
tional bus contention, especially for the bus connecting the
two NUMA nodes. Here, from lines (2) and (4) in Figs. 13a
and 13b, we see that the cross-traffic between NUMA nodes
caused by interleaving results in increased DMA costs. In
an idle system, increases are no more than 20%. However,
under load, the increase in DMA costs range between 40%
and 50%.

APPENDIX D.
SCHEDULABILITY RESULTS DATABASE

Dealing with the vast amount of data produced by our
study in Sec. V led to the development of the ranking method
as a way of collapsing many thousands of schedulability
graphs into a form that is much more succinct and allows
trends to be more easily seen. While such a collapsing
was necessary due to space constraints, any aggregation
of data runs the risk of hiding important information. To
guard against this, we have made all of our data available
online in the form of a SQLite database file at the following
URL: http://www.cs.unc.edu/∼gelliott/gpusync rtss14.db.gz.
This database can be read by v3.x SQLite tools freely
available at http://www.sqlite.org. We describe the format
for this database in this appendix.

The database file is contains three tables:
1) distrs: This table maps the text-based distributions

described in Sec. V to unique integer keys.
2) dp_ptested: Each row in this table denotes a

unique set of experiment parameters, 75,816 in all.
3) sched_results: Schedulability results are stored

in this table. Each row is unique and is identi-
fied by a foreign key (id) that maps to an entry
in dp_ptested, plus a task set utilization cap
(ts_util). In short, each row maps to a single point
in a traditional schedulability plot, such as a single
point of a plotted scenario depicted Fig. 8. Please note
that this table includes additional data (columns) not
discussed in this paper:

a) avg_tard: The average tardiness bound (nor-
malized by task periods) of schedulable task
sets at the point defined by unique the (id,
ts_util) pair.

b) avg_bandwidth: The average data bandwidth
requirement of schedulable task sets at the point
defined by unique the (id, ts_util) pair. Per-
task bandwidth requirements are computed as
(zIi +zOi )/pi—note that state data is not included
in order to enable comparisons between GPU
partitioning methods.

Sample query. The sample query in Fig. 14 extracts the
schedulability result data for (C,P,∞) (line (1)) of Fig. 8.

Note: ρ =∞ is stored in the database as ρ = 0.

APPENDIX E.
ADDITIONAL ANALYSIS

We present additional blocking and schedulability analysis
in this appendix. We first show how quadratic blocking terms
arise without the use of dynamic group locks, as mentioned
in Sec. III. We then present the fine-grain blocking analysis
of GPUSync, as well as the overhead accounting methodol-
ogy, we used in the schedulability experiments of Sec. V.



SELECT
ts_util,
sched

FROM
sched_results

WHERE
dp IN (

SELECT id
FROM dp_ptested
WHERE

is_worst_case = 0 AND
is_polluters = 1 AND
util_dist=2 AND
state_dist=16 AND
data_dist=9 AND
period_dist=5 AND
kernel_dist=23 AND
gpu_population=0.666667 AND
is_p2p = 0 AND
cpu_cluster_size = 6 AND
gpu_cluster_size = 1 AND
rho = 0

)
ORDER BY

ts_util;

Figure 14: Sample query.

A. Quadratic Blocking Without DGLs

If CE locks for P2P migrations are acquired via separate,
nested requests, as may be done using traditional approaches,
the worst-case blocking a task may experience is quadratic
with respect to the total number of GPU tokens, ρ. We
continue to use the notation introduced in Sec. III and
Appendix B.

Lemma 1. If tasks may require multiple CEs concurrently,
and such requests are satisfied via separate requests, a job
holding GPU token a can be blocked by at most (ρg−1)(ρg−
2)/2 requests per outermost CE request.

Proof: Consider the pathological worst case scenario in
which a request is enqueued behind ρg − 1 other requests
for a CE of GPUa. Because there can be at most ρg total
requests for any same CE, if the ith request in the queue
for a CE of GPUa issues a nested request, there may be at
most i− 1 other requests enqueued ahead of it (directly or
transitively) after it issues its nested request. Thus the total
number of blocking requests is

∑ρg
i=1(i−1) = (ρg−1)(ρg−

2)/2.

Theorem 1. If tasks may require multiple CEs concurrently,
and such requests are satisfied via separate requests, bP2P

i =
O(ρ2g2).

Proof: By Lemma 1, a task that requests CE locks
through separate requests may be blocked by (ρg−1)(ρg−
2)/2 other requests. A task makes NS

i requests per mi-
gration. Thus, bP2P

i = ((ρg − 1)(ρg − 2)/2)XmaxNS
i =

O(ρ2g2).

By Theorem 1, worst-case blocking grows quadratically

with respect to ρ, when CE locks for P2P migrations are
acquired via separate requests.

B. Fine-Grain Blocking Analysis

We now present fine-grain blocking analysis used in the
experiments of Sec. V.

The coarse-grain analysis in Appendix B assumed gen-
eralized worst-case conditions for all blocking computa-
tions. While fine-grain analysis also assumes worst-case
conditions, it derives less pessimistic worst-case conditions
deduced from the interrelations between specific tasks. This
results in less pessimistic blocking bounds and improves
schedulability. This fine-grain analysis technique is based
upon that found in [12].

We first describe the fine-grain analytical process and
later derive the detailed formulas that are plugged into this
process. For task Ti, we first determine the number of
jobs of another task, Tj where i 6= j, that may be ready
to run at the same time as Ti,u. This is characterized by
the task interference function, tif(Ti, Tj). From tif(Ti, Tj),
we generate a set of interfering resource requests that the
interfering jobs Tj,v may make when Ti,u requests a resource
of the same type, where type may be GPU token, execution
engine lock, or copy engine lock. This set is generated by the
request interference function, xif(Ti, Tj , Rk), where Rk is a
given resource. We aggregate the set of interfering requests
of all tasks (excluding Ti) into a single set of all interfering
resource requests that may be made, as given by the total
request interference function, txif(Ti, Rk).

Each interfering request, Qj , has an associated blocking
length, lj , |Qj |. For example, a CE lock may be held for at
most Xmax time units (as ensured by priority inheritance or
priority donation), so lj = Xmax for such a CE request. The
set defined by Si,k , txif(Ti, Rk) is sorted in descending or-
der by blocking length. To compute the blocking experienced
by Ti,u for a given single resource request, the top y blocking
requests are removed from Si,k, depleting Si,k by y requests,
and summed. This process is repeated iteratively for each
request of a given type made by Ti,u, terminating early if
Si,k becomes empty. In general, the value of y depends upon
the locking protocol used and resource organization. For
example, under GPUSync, y = (ρg−1) for CE lock requests
when P2P migrations are used. This is derived directly from
the coarse-grain analysis given in Appendix B.

This entire process must be repeated for each type of
resource: GPU token, EE lock, CE lock(s).

In the case of soft real-time scheduling,
tif(Ti, Tj , d)epends upon tardiness bounds, which in
turn depend upon blocking bounds. A fixed-point iterative
method must then also be used ensure schedulability,
outlined by the following steps: (1) initialize tardiness
bounds to zero; (2) compute blocking bounds; (3) compute
tardiness bounds; (4) compute new blocking bounds; (5)
check schedulability, if schedulable but new blocking



bounds from step (4) differ from bounds previously
computed, go back to step (3). This method will terminate
when either blocking bounds have reached a steady state or
the task set is unschedulable. This highlights a significant
benefit of FL scheduling over EDF scheduling: the tighter
tardiness bounds offered by FL scheduling may reduce
computed blocking bounds.

Before proceeding, we make two assumptions. First, we
assume that the total number of GPU-using tasks is greater
than g; otherwise, the GPU allocator (as implemented by the
modified R2DGLP) load-balances GPU token requests such
that no two tasks share a GPU and that each task always
receives the same GPU for every job (due to token lock
heuristics mentioned in Sec. III)—there is no blocking or
migration under this scenario. Second, we assume that a
GPU-using tasks only requests a GPU token once per job.
The following analysis can be extended to handle multiple
token requests per job, though it becomes cumbersome to
express.

We now proceed to define the above formulas for the
various resource types.

Def. 1. For hard real-time systems,

tif(Ti, Tj) ,
⌈
pi + r̂j
pj

⌉
, (1)

where r̂j denotes the worst-case response time of any job
of Tj [12].

Def. 2. For soft real-time systems (under the “bounded
tardiness” definition of soft real-time),

tif(Ti, Tj) ,
⌈

max(pi, r̂i) + r̂j
pj

⌉
. (2)

tif(Ti, Tj) gives us the number of jobs of Tj that may
interfere with a job Ti,u. We now derive the set of requests
from Tj that may interfere with requests of Ti,u for resource
Rk.

Def. 3. The set of requests of Tj that interfere with requests
of a job of Ti for resource Rk is given by

xif(Ti, Tj , Rk) ,
{
Qj,v | 1 ≤ v ≤ tif(Ti, Tj)×NRk

j

}
,

(3)
where NRk

j is the maximum number of requests for Rk that
a job of Tj may make.

We say that xif(Ti, Tj , Rk) defines a set of generic
requests because request Qj,v ∈ xif(Ti, Tj , Rk) does not
denote the vth request made by task Tj after the release of
Tj’s first job. Rather, Qj,v denotes the vth resource request
in a worst-case string of consecutive requests of Tj that may
interfere with request Qi of Ti.

Finally, we can derive an aggregate of all interfering
requests.

We aggregate the set of interfering requests of all tasks
(excluding Ti) into a single set of all interfering resource

requests that may be made, as given by the total request
interference function.
Def. 4. The set of all interfering resource requests of other
jobs that may interfere with requests of a job of Ti for
resource Rk is given by

txif(Ti, Rk) ,
⋃

Tj∈T\{Ti}

xif(Ti, Tj , Rk). (4)

1) Fine-Grain EE Blocking: We can now compute the
worst-case blocking job Ti,u experiences when it requests
an EE, bKi .
Def. 5. Let the function top(v,S) denote the v longest
requests in the set of requests S, where request length is
given by li = |Qi|.
Def. 6. Let SEEi , txif(Ti, REE), denoting the sorted set
of interfering requests for EEs of any single GPU, where
NEE
j = NK

j , and NK
j is the number of kernels executed

by a job of Tj .
Def. 7. The total worst-case blocking experienced by Ti,u
while waiting for an execution engine is bounded by

bEEi =
∑

Qk∈top((ρ−1)×NK
i , SEE

i )

|Qk| , (5)

where |Qk| is equal to the portion of egpu
j , budgeted to the

executed kernel, of the interfering task Tj that generated Qk
as defined in Sec. B.

For simplicity, we have assumed that all GPU kernels
executed by job Tj,v are of the same length. Of course, even
finer-grain bounds may be accommodated by modifying
Eq. (3) to generate requests with finer per-kernel lengths.

We must derive fine-grain bounds for bI/Oi and bP2P
i under

P2P and system memory migrations. We begin with systems
that use P2P migrations.

2) Fine-Grain CE Blocking with P2P: In Appendix B,
we computed blocking for normal data copies and migration
data copies separately, denoted by the terms b

I/O
i and

bP2P
i , respectively. Under fine-grain analysis, it is easier to

compute blocking for these different types of data copies
jointly. We denote blocking due to all CE requests by bCEi .
We first present fine-grain analysis that holds for GPUs with
either one or two CEs. We then present tighter analysis for
the dual-CE case.
Def. 8. Let SIi , txif(Ti, RI), denoting the sorted set of
interfering requests for the CE of any single GPU to copy
input data, where N I

j = N I
j .

Def. 9. Let SOi , txif(Ti, RO), denoting the sorted set of
interfering requests for the CE of any single GPU to copy
output data, where NO

j = NO
j .

Def. 10. Let SP2P
i , txif(Ti, RP2P), denoting the sorted set

of interfering requests for CEs of any single GPU used to
perform migrations, where N P2P

j = NS
j .



Def. 11. Let SCE
i , SIi

⋃
SOi
⋃
SP2P
i , denoting the sorted

set of requests that may interfere with any CE request of
any single GPU.

Def. 12. The total worst-case blocking experienced by Ti,u
while waiting for a CE to copy data to or from a GPU when
P2P migrations are used is bounded by

bCEi =
∑

Qk∈top((ρg−1)×(NI
i +N

O
i +NS

i ), SCE
i )

|Qk| , (6)

where |Qk| is equal to the length of the associated CE
operation (i.e., XI , XO, or XP2P).

Observe that the above analysis does not take advantage
of the fact that the GPU has two CEs. That is, the above
analysis holds when a GPU has only one CE. The transitive
blocking induced by P2P migrations makes it difficult to
derive tighter blocking bounds for dual-CE GPUs. However,
tighter analysis is possible. We now describe this optimiza-
tion.

Tighter bounds for dual-CE GPUs. Transitive blocking
due to P2P migrations are only possible when SP2P

i 6= ∅.
Recall that the computation of bCEi is iterative: requests from
SCE
i are extracted in groups of ρg − 1 at a time.

Def. 13. Let ŜCE
i,k denote the set of requests remaining after

the kth iteration of bCEi ’s computation.

Def. 14. Let Ŝ I
i,k , ŜCE

i,k

⋂
SIi , denoting the sorted set of

remaining interfering input data copy requests in ŜCE
i,k.

Def. 15. Let ŜO
i,k , ŜCE

i,k

⋂
SOi , denoting the sorted set of

remaining interfering output data copy requests in ŜCE
i,k.

Def. 16. Let ŜP2P
i,k , ŜCE

i,k

⋂
SP2P
i , denoting the sorted set of

remaining interfering migration data copy requests in ŜCE
i,k.

If ŜP2P
i,k = ∅ then transitive blocking due to migrations is

no longer possible since no migration requests remain. From
this observation, we derive the following tighter analysis for
dual-CE GPUs where bCEi is broken down into two terms,
bCE

trans

i and bCE
direct

i , where blocking complexity is O(ρg)
and O(ρ), respectively.

Def. 17. Let ` ∈ N1 denote the smallest integer such that
(SCE
i \top((ρg − 1)× `, SCE

i ))
⋂
SP2P
i = ∅.

Observe that (SCE
i \top((ρg−1)×`, SCE

i )) ≡ ŜCE
i,k. Hence,

we refer to ŜCE
i,` to avoid confusion with the term Qk.

Def. 18. The total transitive worst-case blocking experi-
enced by Ti,u while waiting for a CE to copy data to or
from a GPU when P2P migrations are used with dual-CE
GPUs is bounded by

bCE
trans

i =
∑

Qk∈top((ρg−1)×`, SCE
i )

|Qk| . (7)

Def. 19. The total direct worst-case blocking experienced
by Ti,u while waiting for a CE to copy data to or from a

Inbound Outbound
Chain Cost (µs) Chain Cost (µs)

IOOOM 4934 IIOOM 4967
IIIMM 3995 IOOMM 3929
IIOMM 3962 OOOM 3896
IOOMM 3929 IIOM 3786
OOOM 3896 IOOM 3753
IOOM 3753 IIMMM 2956
OOOM 3720 IOMMM 2923
IIMMM 2956 OOMMM 2890
IOMMM 2923 IOMM 2747
OOMMM 2890 OOMM 2715

IIMM 2780 IIM 2605
IOMM 2747 IOM 2572
OOMM 2715 OOM 2539

IOM 2572 OO 2363
OOM 2539 IMMMM 1917

II 2429 OMMMM 1885
IMMMM 1917 IMMM 1742
OMMMM 1885 OMMM 1709

IMMM 1742 IMM 1566
OMMM 1709 OMM 1533

IMM 1566 IM 1390
OMM 1533 OM 1358

IM 1390 O 1182
OM 1358 MMMMM 879

I 1215 MMMM 703
MMMM 703 MMM 528
MMM 528 MM 352
MM 352 M 176
M 176 - -

Table VIII: Representative CE blocking chains for g = 2 and
ρ = 3.

GPU when P2P migrations are used with dual-CE GPUs is
bounded by

bCE
direct

i =
∑

Qk∈top((ρ−1)×max(NI
i +N

O
i +NS

i −`,0), Ŝ
CE
i,`)

|Qk| ,

(8)

Def. 20. By construction, the total worst-case blocking
experienced by Ti,u while waiting for a CE to copy data
to or from a GPU when P2P migrations are used with dual-
CE GPUs is bounded by

bCEi = bCE
trans

i + bCE
direct

i . (9)

Tight bounds for CE blocking. Is a tight bound on CE
blocking possible? Certainly. Table VIII depicts all possible
representative CE blocking chains for inbound and outbound
CE requests when g = 2 and ρ = 3.7 Here, “I”, “O”, and
“M” represent input, output, and migration copy operations,
respectively. We say the chains are representative since

7Chains were determined by an exhaustive search constrained by: request
type, g, and ρ. Inbound and outbound chains are not merely complements
of each other since migrations are pulled from one GPU to another. Thus,
there may be at most ρ simultaneous inbound migration requests for a
given GPU’s inbound CE, but as many as ρ(g−1) simultaneous outbound
migration requests for the same GPU’s outbound CE.



the strings “IMO” and “MOI” are cost-equivalent: they
contain the same frequency of request types. Thus, only
“IMO” appears in the table. Chains are sorted in order of
decreasing cost (1MB per operation, reflecting a 1MB chunk
size), assuming the worst-case, non-interleaved, loaded GPU
memory copy costs discussed in Sec. IV.

Every CE request may be blocked by one of these chains,
until all requests Qk ∈ SCE

i have been counted. Clearly, a
tight bound on bCEi is computed from the maximal sum of
all possible chains. This can be computed using an integer
linear program (ILP), given N I

i , NO
i , NS

i , SCE
i , and assumed

overhead costs. This is an undesirable solution since solving
an ILP is NP-hard in the strong sense. Does a greedy
polynomial-time algorithm exist? In general, the answer is
in the negative. Consider the following case. Suppose job
Ti,u makes two inbound requests to copy data to a GPU,
so N I

i = 2. Assume NS
i = 0 and NS

j 6= 0. Further
suppose SCE

i made up of three inbound requests, two out-
bound requests, and two migration requests. That is, SCE

i =
ŜCE
i,0 = {I, I, I, O,O,M,M}. We consider the blocking

chains listed in the “inbound” column of Table VIII. Under
a greedy algorithm, for the first request of Ti,u, we extract
the chain “IIIMM” from ŜCE

i,0 , so ŜCE
i,1 = {O,O}. No chain

consisting of only “O”s appears in the “inbound” column of
Table VIII, so Ti,u cannot experience further CE blocking.
The blocking bound computed by the greedy algorithm for
Ti,u’s requests is 3994µs. However, what if we had made
the non-greedy choice for Ti,u’s first request? Under a non-
greedy algorithm, for the first request of Ti,u, we extract the
chain “IIOMM” from SCE

i,0 , so ŜCE
i,1 = {I,O}. For the second

request, we extract “I”. The blocking bound computed by
the non-greedy algorithm for Ti,u’s requests is 5208µs—
greater than the greedy algorithm’s “bound.” This example
demonstrates that the greedy algorithm is too optimistic and
fails to provide valid bounds. It appears that at least one ILP
must be solved per task Ti ∈ TG to obtain tight bounds.

One may be tempted to cast these computations to a
knapsack problem and obtain a pseudo-polynomial-time
through dynamic programming. However, our set of “items”
to pack into our knapsack are not entire blocking chains, but
rather the individual requests that make up these blocking
chains. Thus, our problem is a nested knapsack problem—
or a knapsack of knapsacks problem. It may be possible to
apply knapsack approximation algorithms to produce tighter
blocking bounds than those we presented above, but this
remains an open question.

3) Fine-Grain CE Blocking with System Memory Migra-
tion: Fine-grain blocking bounds for CEs under system
memory migration are much easier to conceptualize and
compute since there is no transitive blocking. We present
fine-grain bounds for dual-CEs first. As before we denote
blocking due to all CE requests by bCEi . We redefine SIi ,
SOi , and SCEi as needed.

Dual-CE case. We compute bCEi in two parts: bCE
I

i and
bCE

O

i .

Def. 21. Let SIi , txif(Ti, RI), denoting the sorted set of
interfering requests for the CE of any single GPU to copy
input or state data, where N I

j = N I
j +NS

j .

Def. 22. The total worst-case blocking experienced by Ti,u
while waiting for a CE to copy data to a GPU when system
memory migrations are used with dual-CE GPUs is bounded
by

bCE
I

i =
∑

Qk∈top((ρ−1)×(NI
i +N

S
i ), SI

i )

|Qk| , (10)

where |Qk| is equal to the length of the associated CE
operation (i.e., XI ).

Def. 23. Let SOi , txif(Ti, RO), denoting the sorted set of
interfering requests for the CE of any single GPU to copy
input or state data, where NO

j = NO
j +NS

j .

Def. 24. The total worst-case blocking experienced by Ti,u
while waiting for a CE to copy data from a GPU when
system memory migrations are used with dual-CE GPUs is
bounded by

bCE
O

i =
∑

Qk∈top((ρ−1)×(NO
i +NS

i ), SO
i )

|Qk| , (11)

where |Qk| is equal to the length of the associated CE
operation (i.e., XO).

Def. 25. By construction, the total worst-case blocking
experienced by Ti,u while waiting for a CE to copy data to
or from a GPU when system memory migrations are used
with dual-CE GPUs is bounded by

bCEi = bCE
I

i + bCE
O

i . (12)

Unlike the more complicated analysis for bounds when
P2P migrations are used, bounds for inbound and outbound
CEs are completely isolated from one another.

Uni-CE case. We combine input, output, and state opera-
tions to compute bCEi jointly for task Ti.

Def. 26. Let SCEi , SIi
⋃
SOi , denoting the sorted set of

interfering requests for the CE of any single GPU.

Def. 27. The total worst-case blocking experienced by Ti,u
while waiting for a CE to copy data from a GPU when
system memory migrations are used with uni-CE GPUs is
bounded by

bCEi =
∑

Qk∈top((ρ−1)×(NI
i +N

O
i +2NS

i ), SCE
i )

|Qk| , (13)

where |Qk| is equal to the length of the associated CE
operation (i.e., XI or XO). Migrations are counted twice
(i.e., the term 2NS

i ) since state data is copied twice: once
to system memory and once to GPU memory.

This concludes fine-grain blocking analysis for engine



locks.
4) GPU Token Blocking: Fine-grain analysis for blocking

bounds for the CK-OMLP has been presented in [20]. We do
not repeat that analysis here. However, we do present fine-
grain analysis for the R2DGLP, following a quick remark
on the CK-OMLP and engine lock blocking bounds.

Tighter engine blocking bounds under the CK-OMLP.
We note one optimization that may be made to fine-grain
engine blocking analysis in cases where the CK-OMLP is
used to allocate GPU tokens. Recall from Appendix B that
M denotes the number of CPUs that share a given GPU
cluster. Thus, at most M tasks may compete for a given
GPU engine at a time. This allows us to replace all instances
of “(ρ − 1)” and “(ρg − 1)” with “min(ρ − 1,M − 1)”
and “min(ρg− 1,M − 1)”, respectively, where appropriate.
However, we observe that this optimization appears to be of
little importance since cases where tokens were managed by
the CK-OMLP performed so poorly in Sec. V (Obs. 5).

Token blocking under the R2DGLP. We now derive fine-
grain blocking bounds for GPU tokens under the R2DGLP.
Recall from Appendix B that Ki denotes the maximum
token critical section length of Ti. A fine-grain value for
Ki can be computed using the fine-grain blocking analysis
above for engine locks. Also recall that bKi denotes the time
a job of Ti may be blocked while waiting for a GPU token.

Def. 28. Let
∣∣TG∣∣ denote the number of GPU-using tasks

managed by an instance of the R2DGLP.

Def. 29. Let NTCX denote the maximum number of token
critical sections that may block a given token request.

There are three modes of worst-case blocking under the
R2DGLP [19]:

1) If
∣∣TG∣∣ ≤ ρg, then token requests are trivially satis-

fied since there is always an available token for any
requesting task; NTCX = 0.

2) If ρg <
∣∣TG∣∣ ≤ c, then NTCX =

⌊
(
∣∣TG∣∣− 1)/ρg

⌋
.

3) If
∣∣TG∣∣ > c, then NTCX = 2 dc/(ρg)e − 1.

Given these task set-dependent values for NTCX , we can
compute bKi .

Def. 30. Let STCX
i , txif(Ti, RTCX ), denoting the sorted

set of interfering requests for GPU tokens, where NTCX
j =

1 (that is, a token is requested at most once per job for all
tasks).

Def. 31. The total worst-case blocking experienced by job
Ti,u while waiting for a GPU token is given by

bKi =
∑

Qk∈top(NTCX , STCX
i )

|Qk| , (14)

where |Qk| is equal to Kj of the task Tj that generated Qk.

This concludes the fine-grain analysis for GPUSync.

Parameter Description
∆sch Scheduler overhead
∆csx Context switch overhead
∆cpd CPMD cost
∆ipi Inter-processor interrupt delay
∆ev Event latency
bnp
i Non-preemptive section length (CPU-side)

bother
i

Total locking-protocol-related
blocking and self-suspensions

cpre Total interrupt preemption cost
utck
0 Utilization loss due to scheduler ticks∑

1≤j≤n u
irq
j

Utilization loss due to
release timer interrupts of other tasks

Table IX: Overheads in preemption-centric accounting.

APPENDIX F.
OVERHEAD ACCOUNTING

We discuss the overhead accounting methodology we used
in our overhead-aware schedulability experiments presented
in Sec. V.

We follow the overhead accounting techniques for event-
driven schedulers as developed by Brandenburg in his PhD
dissertation—specifically, his “preemption-centric interrupt
accounting” method (see Sec. 3.4 of [12]). We do not fully
describe this overhead accounting method here. Instead, we
focus only on its general principles and final formulations,
as well as the enhancements necessary to account for GPU-
related overheads.

Preemption-centric accounting. The core principle of
overhead accounting is to determine a safe approximation
of additional execution time due to system overheads and
delays experienced by a task Ti. Generally, a task’s provi-
sioned execution time is inflated to account for additional
computations and its relative deadline and period are shrunk
to account for delays. After much derivation, Brandenburg
presents the following general equation for accounting for
system overheads and interrupts (page 262 of [12]):

e′i =
ei + 2 · (∆sch + ∆cxs) + ∆cpd

1− utck
0 −

∑
1≤j≤n u

irq
j

+ 2 · cpre + ∆ipi (15)

p′i = pi −∆ev

d′i = di −∆ev

b′i = bother
i +max(0, bnp

i −∆ipi)

Table IX describes the meaning of relevant terms in these
equations. For simplicity, in our analysis, we assume no task
Ti ∈ T has a non-preemptive section on the CPU, so bnp

i =
0.

Task utilization, for the purpose of schedulability tests for
implicit-deadline tasks, is computed as:

u′i = (e′i + b′i)/p
′
i.



A. Overhead Accounting For GPUSync

We make the following enhancements to account for
GPU-related overheads. We first discuss accounting top-
half interrupt processing, and then discuss the inflation of
critical sections under GPUSync to account for locking-
protocol-related self-suspensions and bottom-half interrupt
processing.

Let us re-write Eq. (15) as

êi = ei + 2 · (∆sch + ∆cxs) + ∆cpd

e′i =
êi

1− utck
0 −

∑
1≤j≤n u

irq
j

+ 2 · cpre + ∆ipi. (16)

We will incrementally inflate êi to account for various
GPUSync overheads. We use the super-script notation on
ei (and similar parameters) such that the super-script value
indicated within the [Eq. #] matches the equation label where
the inflated execution cost was defined.
GPU interrupts. We assume that GPU interrupts are
arbitrarily delivered to CPUs where tasks Ti ∈ TG may
execute—other CPUs are shielded from processing these
interrupts.
Def. 32. Let T denote the set of tasks that are scheduled
on the CPUs of the CPU-clusters that share a given GPU-
cluster. Also, let T C , T

⋂
TC and T G , T

⋂
TG.

T may be made up of tasks from different CPU clusters
when GPU clusters are shared among CPU clusters (i.e.,
(P,G, ∗), (P,C, ∗), (P,CP2P, ∗), and (C,G, ∗))). GPU in-
terrupts may delay any task Ti ∈ T at any time.
Def. 33. Let ηi denote the maximum number of times
Ti ∈ T G performs a GPU engine operation (e.g., executes
a kernel, performs a memory copy).

Under the following analysis, we assume that all GPU
using tasks are configured to suspend while waiting for GPU
operations to complete. Thus, each job of Ti causes at most
ηi to be raised by a GPU.

GPUSync schedules bottom-halves in threads, one per
GPU. There need be only one thread since the GPU driver
serializes all bottom-half processing, per-GPU, using a sin-
gle Linux “tasklet” data structure.
Def. 34. Let y , min(ρ,#engines per GPU) denote the
maximum number of simultaneous operations that may be
carried out by a single GPU.

Under GPUSync, the bottom-half thread is scheduled
with the maximum priority of any task suspended while
waiting for its GPU operation to complete that has also been
allocated the corresponding GPU.8 Thus, the bottom-half
thread is scheduled with the maximum of y unique priorities.
Suppose the bottom-half thread is scheduled with the priority
of job Ti,u. Because bottom-half processing is serialized, up

8We assume that under P2P migrations, the GPU performing the pull-
migration (i.e., migrating task’s allocated GPU), raises interrupts.

to y−1 bottom-halves may proceed a ready bottom-half for
job Ti,u; up to y − 1 bottom-halves of other jobs may be
executed under the priority of Ti,u.

We must inflate each engine request length of job Ti,u
accordingly. In addition to charging bottom-half processing
costs, there are also scheduling overheads to consider since
bottom-half processing is threaded.

Def. 35. Let
∣∣∣Q̂i,k∣∣∣ denote the inflated cost of the engine

operation Qi,k of job Ti,u.

To account for bottom-half processing,∣∣∣Q̂k∣∣∣[17] , |Qk|+(y−1)·∆bot +2(∆sch +∆csx)+∆ipi, (17)

where ∆bot denotes the assumed overhead to execute a GPU
interrupt bottom-half.

While
∣∣∣Q̂k∣∣∣[17] captures the inflated cost of processing an

engine request, additional overheads due to the locking pro-
tocol governing engine lock access must also be considered.
These overheads relate to waking up a previously blocked
thread waiting for lock access. Applying Eq. (7.7) from [12],
we further inflate

∣∣∣Q̂k∣∣∣:∣∣∣Q̂k∣∣∣[18] , ∣∣∣Q̂k∣∣∣[17] + 2(∆sch + ∆csx) + ∆ipi + ∆sci + ∆sco,

(18)
where ∆sci and ∆sco denote the overhead cost entering, and
returning from, a system call made to the operating system,
respectively. These overheads are required, since the locking
protocol is managed by the operating system.

In CUDA versions 4.2 and later, an proxy thread, one
per task, is responsible for relaying GPU operation com-
pletion messages (embodied by bottom-half completion).
This thread is only active as it relays the message, and
it sleeps otherwise. GPUSync schedules this proxy thread
with the current priority of the corresponding task Ti, but
only while Ti is suspend waiting for a GPU operation to
complete. We assume the execution cost of the proxy thread
is already captured by ecpu

i . However, we must include thread
scheduling costs of the proxy thread:∣∣∣Q̂k∣∣∣[19] , ∣∣∣Q̂k∣∣∣[18] + 2(∆sch + ∆csx) + ∆ipi. (19)

To incorporate overheads into blocking analysis, one

substitutes |Qk| for
∣∣∣Q̂k∣∣∣[19] in Appendix E-B1, E-B2,

and E-B3.
Blocking analysis characterizes how job Ti,u is affected

by job Tj,v . We must also charge bottom-half processing
overheads to Ti,u itself. Hence,

ê[20]
i = êi+ ηi((y−1) ·∆bot + 2(∆sch + ∆csx) + ∆ipi), (20)

ê[21]
i = ê[20]

i + ηi(2(∆sch + ∆csx) + ∆ipi), (21)

ê[22]
i = ê[21]

i + ηi(2(∆sch + ∆csx) + ∆ipi), (22)



applying the steps used to derive Eqs. (17), (18), and (19).
We assume overhead costs for ∆sci and ∆sco are accounted
for by ecpu

i .
We have thus far accounted for overheads due to GPU

operations and engine locking. We must account for over-
heads due to token locking. We do so by applying Eq. (18)
to |Qk| in Eq. (14). Likewise, êi must be further inflated to
account for the locking protocol:

ê[23]
i = ê[22]

i + ηi(2(∆sch + ∆csx) + ∆ipi), (23)

We must now account for top-half interrupt processing
overheads. We compute the total number of top-half inter-
rupts each Ti ∈ T may be affected (or “hit”) by as

Hi =
∑

Tj∈T \{Ti}

ηj · tif(Ti, Tj) (24)

We inflate task execution cost to place an upper bound
upon the burden of processing GPU interrupt top-halves:

ê[25]
i = ê[22]

i +Hi ·∆top, (25)

where ∆top denotes the assumed overhead to execute a GPU
interrupt top-half.
Schedulability. As we discussed in Appendix B, our
analysis is suspension-oblivious, where self-suspensions are
treated as execution time. Thus, we inflate êi to become

ê[26]
i = ê[25]

i + egpu
i + xmit(zIi , z

O
i , z

S
i ). (26)

As we mentioned in Sec. II, a job may choose to spin or
suspend while waiting for a GPU operation to complete;
ê[26]
i holds in either case.

Applying the above overhead analysis to Eq. (16), we get:

e′i =
ê[26]
i

1− utck
0 −

∑
1≤j≤n u

irq
j

+ 2 · cpre + ∆ipi. (27)

e′i above, along with b′i that incorporates inflated engine
and token request lengths, we can compute task utilization
accordingly for use in schedulability tests.

Fixed-point iterative schedulability tests must be used
since the overhead accounting methods presented here de-
pend upon job response time bounds. However, this bound is
likewise dependent upon the overheads under consideration.
Thus, schedulability tests must be iteratively performed until
tardiness bounds remain unchanged.


