
Reducing Response-Time Bounds for DAG-Based Task Systems on
Heterogeneous Multicore Platforms ∗

Kecheng Yang, Ming Yang, and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
This paper considers for the first time end-to-end response-
time analysis for DAG-based real-time task systems im-
plemented on heterogeneous multicore platforms. The spe-
cific analysis problem that is considered was motivated by
an industrial collaboration involving wireless cellular base
stations. The DAG-based systems considered herein allow
intra-task parallelism: while each invocation of a task (i.e.,
DAG node) is sequential, successive invocations of a task
may execute in parallel. In the proposed analysis, this char-
acteristic is exploited to reduce response-time bounds. Ad-
ditionally, there is some leeway in choosing how to set tasks’
relative deadlines. It is shown that by resolving such choices
holistically via linear programming, response-time bounds
can be further reduced. Finally, in the considered use case,
DAGs are defined based upon just a few templates and indi-
vidually often have quite low utilizations. It is shown that, by
combining many such DAGs into one of higher utilization,
response-time bounds can often be drastically lowered. The
effectiveness of these techniques is demonstrated via both
case-study and schedulability experiments.

1 Introduction
The multicore revolution is currently undergoing a second
wave of innovation in the form of heterogeneous hardware
platforms. In the domain of real-time embedded systems,
such platforms may be desirable to use for a variety of rea-
sons. For example, ARM’s big.LITTLE multicore architec-
ture [7] enables performance and energy concerns to be bal-
anced by providing a mix of relatively slower, low-power
cores and faster, high-power ones. Unfortunately, the move
towards greater heterogeneity is further complicating soft-
ware design processes that were already being challenged
on account of the significant parallelism that exists in “con-
ventional” multicore platforms with identical processors.
Such complications are impeding advancements in the em-
bedded computing industry today.

Problem considered herein. In this paper, we report on
our efforts towards solving a particular real-time analysis
problem concerning heterogeneity motivated by an indus-
trial collaboration. This problem pertains to the processing

∗Work supported by NSF grants CPS 1239135, CNS 1409175, and CPS
1446631, AFOSR grant FA9550-14-1-0161, ARO grant W911NF-14-1-
0499, and funding from both General Motors and FutureWei Corp.

done by cellular base stations in wireless networks. Due to
space constraints, we refrain from delving into specifics re-
garding this particular application domain, opting instead
for a more abstract treatment of the problem at hand.

This problem involves the scheduling of real-time data-
flows on heterogeneous computational elements (CEs), such
as CPUs, digital signal processors (DSPs), or one of many
types of hardware accelerators. Each dataflow is represented
by a DAG, the nodes (resp., edges) of which represent tasks
(resp., producer/consumer relationships). A given task is re-
stricted to run on a specific CE type. Task preemption may
be impossible for some CEs and should in any case be dis-
couraged. Each DAG has a single source task that is in-
voked periodically. Intra-task parallelism is allowed in the
sense that consecutive jobs (i.e., invocations) of the same
task can execute in parallel (but each job executes sequen-
tially). In fact, a later job can finish earlier due to variations
in running times.1 The DAGs to be supported are defined
using a relatively small number of “templates,” i.e., many
DAGs may exist that are structurally identical. The chal-
lenge is to devise a multi-resource, real-time scheduler for
supporting dataflows as described here with accompanying
per-dataflow end-to-end response-time analysis. Note that,
although response-time bounds are required (and should not
be too large), strict deadlines are not enforced.

Related work. The literature on real-time systems includes
much work pertaining to the scheduling of DAG-based task
systems on identical multiprocessor platforms [1, 3, 4, 5, 6,
8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22]. However, we are
not aware of any corresponding work directed at heteroge-
neous platforms. Moreover, the problem above has facets—
such as allowing intra-task parallelism and defining poten-
tially many DAGs based upon relatively few templates—
that have not been fully explored. (Intra-task parallelism
has been considered in a limited context in DAG-related
work pertaining to identical multiprocessors [6, 8, 21].) Ad-
ditionally, in prior work on the real-time scheduling of task
systems—which are not DAG-based—upon heterogeneous
platforms, task-to-CE assignments have been a paramount
concern. In our setting, this is a non-issue, as this assign-
ment is pre-determined based on CE functionalities.

Beyond the real-time systems community, DAG-based
systems implemented on heterogeneous platforms have

1In the considered application domain, the data produced by subsequent
jobs can be buffered until all prior jobs of the same task have completed.

1

been considered before (e.g., [2, 14, 24]). However, all such
work known to us focuses on one-shot, aperiodic DAG-
based jobs, rather than periodic or sporadic DAG-based task
systems. Moreover, real-time issues are considered only
obliquely from the perspectives of job admission control or
job makespan minimization.
Contributions. In this paper, we formalize the problem de-
scribed above and then address it by proposing a scheduling
approach and associated end-to-end response-time analysis.
In the first part of the paper, we attack the problem by pre-
senting a transformation process whereby successive task
models are introduced such that: (i) the first task model
directly formalizes the problem above; (ii) prior analysis
can be applied to the last model to obtain response-time
bounds under earliest-deadline-first (EDF) scheduling; and
(iii) each successive model is a refinement of the prior one
in the sense that all DAG-based precedence constraints are
preserved. Such a transformation approach was previously
used by Liu and Anderson [18] in work on DAG-based sys-
tems, but that work focused on identical multiprocessors.
Moreover, our work differs from theirs in that we allow
intra-task parallelism. This enables much smaller end-to-
end response-time bounds to be derived.

After presenting this transformation process, we discuss
two techniques that can reduce the response-time bounds
enabled by this process. The first technique exploits the fact
that some leeway exists in setting tasks’ relative deadlines.
By setting more aggressive deadlines for tasks along “long”
paths in a DAG, the overall end-to-end response-time bound
of that DAG can be reduced. We show that such deadline
adjustments can be made by solving a linear program.

The second technique exploits the fact that, in the con-
sidered context, DAGs are defined using relatively few tem-
plates and typically have quite low utilizations. These facts
enable us to reduce response-time bounds by combining
many DAGs into one of larger utilization. As a very simple
example, two DAGs with a period of 10 time units might be
combined into one with a period of 5 time units. A response-
time-bound reduction is enabled because these bounds tend
to be proportional to periods. In the considered application
domain, the extent of combining can be much more exten-
sive: upwards of 40 DAGs may be combinable.

As a final contribution, we evaluate our proposed
techniques via case-study and schedulability experiments.
These experiments show that our techniques can signifi-
cantly reduce response-time bounds. Furthermore, our anal-
ysis supports “early releasing” [10] (see Sec. 7) to im-
prove observed end-to-end response times. We experimen-
tally demonstrate the efficacy of this as well.
Organization. In the rest of this paper, we formalize the
considered problem (Sec. 2), present the refinements men-
tioned above that enable the use of prior analysis (Secs. 3–
4), show that the bounds arising from this analysis can be
improved via linear programming (Sec. 5) and DAG com-
bining (Sec. 6), discuss early releasing (Sec. 7), present our
case-study (Sec. 8) and schedulability (Sec. 9) experiments,
and conclude (Sec. 10).

2 System Model
In this section, we formalize the dataflow-scheduling prob-
lem described in Sec. 1 and introduce relevant terminology.
Each dataflow is represented by a DAG, as discussed earlier.

We specifically consider a system G = {G1, G2,
. . . , GN} comprised of N DAGs. The DAG Gi con-
sists of ni nodes, which correspond to ni tasks, de-
noted τ1

i , τ
2
i , . . . , τ

ni
i . Each task τvi releases a (po-

tentially infinite) sequence of jobs Jvi,1, J
v
i,2, The

edges in Gi reflect producer/consumer relationships. A
particular task τvi ’s producers are those tasks with
outgoing edges directed to τvi , and its consumers
are those with incoming edges directed from τvi .

1

1

11

1

2 3

4

Figure 1: A DAGG1.

The jth job of task τvi , Jvi,j , can-
not commence execution until
the jth jobs of all of its produc-
ers have completed; this ensures
that its necessary input data is
available. Such job dependen-
cies only exist with respect to
the same invocation of a DAG,
and not across different invoca-
tions. That is, while jobs must
execute sequentially, intra-task
parallelism is allowed.

Example 1. Fig. 1 shows an example DAG, G1. Task τ4
1 ’s

producers are tasks τ2
1 and τ3

1 , thus for any j, J4
1,j needs

input data from each of J2
1,j and J3

1,j , so it must wait until
those jobs complete. Because intra-task parallelism is al-
lowed, J4

1,j and J4
1,j+1 could potentially execute in parallel.

To simplify analysis, we assume that each DAG Gi has
exactly one source task τ1

i , which has only outgoing edges,
and one sink task τni

i , which has only incoming edges.
Multi-source/multi-sink DAGs can be supported with the
addition of singular “virtual” sources and sinks that connect
multiple sources and sinks, respectively. Virtual sources and
sinks have a worst-case execution time (WCET) of zero.

We consider the scheduling of DAGs as just described
on a heterogeneous hardware platform consisting of differ-
ent types of CEs. A given CE might be a CPU, DSP, or
some specialized hardware accelerator (HAC). The CEs are
organized in M CE pools, where each CE pool πk consists
of mk identical CEs. Each task τvi has a parameter P vi that
denotes the particular CE pool on which it must run, i.e.,
P vi = πk means that each job of τvi must be scheduled on a
CE in the CE pool πk. The WCET of task τvi is denoted Cvi .

Although the problem description in Sec. 1 indicated that
source tasks are released periodically, we generalize this to
allow sporadic releases, i.e., for the DAG Gi, the job re-
leases of τ1

i have a minimum separation time, denoted Ti.
A non-source task τvi (v > 1) releases its jth job Jvi,j when
the jth jobs of all its producer tasks in Gi have completed.
That is, letting avi,j and fvi,j denote the release (or arrival)
and finish times of Jvi,j , respectively,

avi,j = max{fwi,j | τwi is a producer of τvi }. (1)

2

Job Release Job Deadline

Time
0

Job Completion

J1,1

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.)

τ1

τ1
1

2

5 10 15

1
J1,2

1

J1,1

2
J1,2

2

τ1
4 J1,1

4

J1,2

4

τ1
3

J1,1

3
J1,2

3

end-to-end response time

end-to-end response time

CPU Execution DSP Execution

20

Figure 2: Example schedule for the DAG in G1 in Fig. 1.

The response time of job Jvi,j is defined as fvi,j − avi,j , and
the end-to-end response time of the DAG Gi as fni

i,j − a1
i,j .

Example 2. Fig. 2 depicts an example schedule for the
DAG G1 in Fig. 1, assuming task τ2

1 is required to execute
on a DSP and the other tasks are required to execute on a
CPU. The first (resp., second) job of each task has a lighter
(resp., darker) shading to make them easier to distinguish.
Tasks τ2

1 and τ3
1 have only one producer, τ1

1 , so when task
τ1
1 finishes a job at times 3 and 8, τ2

1 and τ3
1 release a job im-

mediately. In contrast, task τ4
1 has two producers, τ2

1 and τ3
1 .

Therefore, τ4
1 cannot release a job at time 5 when τ3

1 finishes
a job, but rather must wait until time 6 when τ2

1 also finishes
a job. Note that consecutive jobs of the same task might exe-
cute in parallel (e.g., J4

1,1 and J4
1,2 execute in parallel during

[11, 12)). Furthermore, for a given task, a later-released job
(e.g., J4

1,2) may even finish earlier than an earlier-released
one (e.g., J4

1,1) due to execution-time variations.

Scheduling. Since many CEs are non-preemptible, we use
the non-preemptive global EDF (G-EDF) scheduling algo-
rithm within each CE pool. The deadline of job Jvi,j is given
by

dvi,j = avi,j +Dv
i , (2)

whereDv
i is the relative deadline of task τvi . For example, in

the example schedule in Fig. 2, relative deadlines of D1
1 =

7, D2
1 = 4, D3

1 = 6, and D4
1 = 8 are assumed.

In the context of this paper, deadlines mainly serve the
purpose of determining jobs’ priorities, rather than strict
timing constraints for individual jobs. Therefore, deadline
misses are acceptable as long as the end-to-end response
time of each DAG can be reasonably bounded.

Utilization. We denote the utilization of task τvi by

uvi =
Cvi
Ti
. (3)

We also use Γk to denote the set of tasks that are required to
execute on the CE pool πk, i.e.,

Γk = {τvi | P vi = πk}. (4)

The overutilization of a CE pool could cause unbounded
response times, so we require for each k,∑

τv
i ∈Γk

uvi ≤ mk. (5)

3 Offset-Based Independent Tasks
In this section, we present a second task model, which as
shown in Sec. 4 can be viewed as a refinement of that just
presented. The prior model is somewhat problematic be-
cause of difficult-to-analyze dependencies among jobs. In
particular, by (1), the release times of jobs of non-source
tasks depend on the finish times of other jobs, and hence on
their execution times. By (2), deadlines (and hence priori-
ties) of jobs are affected by similar dependencies.

In order to ease analysis difficulties associated with such
job dependencies, we introduce here the offset-based inde-
pendent task (obi-task) model. Under this model, tasks are
partitioned into groups. The ith such group consists of tasks
denoted τ1

i , τ
2
i , . . . , τ

ni
i , where τ1

i is a designated source
task that releases jobs sporadically with a minimum sepa-
ration of Ti. That is, for any positive integer j,

a1
i,j+1 − a1

i,j ≥ Ti. (6)

Job releases of each non-source task τvi are governed by a
new parameter Φvi , called the offset of τvi . Specifically, τvi
releases its jth job exactly Φvi time units after the release
time of the jth job of the source task τ1

i of its group. That is,

avi,j = a1
i,j + Φvi . (7)

For consistency, we define

Φ1
i = 0. (8)

Under the obi-task model, a job of a task τvi can be sched-
uled at any time after its release independently of the execu-
tion of any other jobs, even jobs of the same task τvi .

The definitions so far have dealt with job releases. Addi-
tionally, the two per-task parametersCvi and P vi from Sec. 2
are retained with the same definitions.

The following property shows that every obi-task τvi has
a minimum job-release separation of Ti.

Property 1. For any obi-task τvi , avi,j+1 − avi,j ≥ Ti.
Proof.

avi,j+1 − avi,j = {by (7)}
(a1
i,j+1 + Φvi)− (a1

i,j + Φvi)

≥ {by (6)}
Ti

3

4 Response-Time Bounds
In this section, we establish two results that enable prior
work to be leveraged to establish response-time bounds for
DAG-based task systems. First, we show that, under the obi-
task model with arbitrary offset settings, per-task response-
time bounds can be derived by exploiting prior work per-
taining to a task model called the npc-sporadic task model
(“npc” stands for “no precedence constraints”—this refers
to the lack of precedence constraints among jobs of the same
task) [12, 25]. Second, we show that, by properly setting
offsets, any DAG-based task system can be transformed to
a corresponding obi-task system.

4.1 Response-Time Bounds for Obi-Tasks

An npc-sporadic task τi is specified by (Ci, Ti, Di), where
Ci is its WCET, Ti is the minimum separation time between
consecutive job releases of τi, andDi is its relative deadline.
As before, τi’s utilization is ui = Ci/Ti.

The main difference between the conventional sporadic
task model and the npc-sporadic task model is that the for-
mer requires successive jobs of each task to execute in se-
quence while the latter allows them to execute in paral-
lel. That is, under the conventional sporadic task model,
job Ji,j+1 cannot commence execution until its predecessor
Ji,j completes, even if ai,j+1, the release time of Ji,j+1,
has elapsed. In contrast, under the npc-sporadic task model,
any job can execute as soon as it is released. Note that, al-
though we allow intra-task parallelism, each individual job
still must execute sequentially.

Yang and Anderson [25] investigated the G-EDF
scheduling of npc-sporadic tasks on uniform heterogeneous
multiprocessor platforms where different processors may
have different speeds. By setting each processor’s speed to
be 1.0, the following theorem follows from their work.

Theorem 1. (Follows from Theorem 4 in [25]) Consider
the scheduling of a set of npc-sporadic tasks τ on m iden-
tical multiprocessors. Under non-preemptive G-EDF, each
npc-task τi ∈ τ has the following response-time bound, pro-
vided

∑
τl∈τ ul ≤ m.

1

m

(
Di ·

∑
τl∈τ

ul +
∑
τl∈τ

(
ul ·max

τl∈τ
{0, Tl −Dl}

))

+ max
τl∈τ
{Cl}+

m− 1

m
Ci.

We now show that Theorem 1 can be applied to obtain
per-task response-time bounds for any obi-task set.
Concrete vs. non-concrete. A concrete sequence of job re-
leases that satisfies a task’s specification (under either the
obi- or npc-sporadic task model) is called an instantiation of
that task. An instantiation of a task set is defined similarly.
In contrast, a task or a task set that can have multiple (poten-
tially infinite) instantiations satisfying its specification (e.g.,
minimum release separation) is called non-concrete.

By Property 1, any instantiation of an obi-task τvi is an

instantiation of the npc-sporadic task τvi = (Cvi , Ti, D
v
i).

Hence, any instantiation of an obi-task set {τvi | P vi = πk}
is an instantiation of the npc-sporadic task set {τvi | P vi =
πk}. Also, since obi-tasks execute independently of one an-
other, obi-tasks executing in different CE pools cannot af-
fect each other. Since each CE pool πk hasmk identical pro-
cessors, the problem we must consider is that of scheduling
an instantiation of the npc-sporadic task set {τvi | P vi = πk}
on mk identical processors. Since Theorem 1 applies to a
non-concrete npc-sporadic task set, it applies to every con-
crete instantiation of such a task set. Thus, we have the fol-
lowing response-time bound for each obi-task τvi :

Rvi =
1

mk

Dv
i ·
∑
τw
l ∈Γk

uwl +
∑
τw
l ∈Γk

(uwl ·max{0, Tl−Dw
l })


+ max
τw
l ∈Γk

{Cwl }+
mk − 1

mk
Cvi , (9)

where Γk = {τwl | Pwl = πk}.
Note that (9) is applicable as long as all relative deadlines

are non-negative, and applies to any arbitrary offset setting.

4.2 From DAG-Based Task Sets to Obi-Task Sets

We now show that, by properly setting offsets, any DAG-
based task set can be transformed to an obi-task set, and
per-DAG end-to-end response-time bounds can be derived
by leveraging the obi-task response-time bounds just stated.

Any DAG-based task set can be implemented by an obi-
task set in an obvious way: each DAG becomes an obi-task
group with the same task designated as its source, and all Ti,
Cvi , and P vi parameters are retained without modification.
What is less obvious is how to define task offsets under the
obi-task model. This is done by setting each Φvi (v 6= 1)
parameter to be a constant such that

Φvi ≥ max
τk
i ∈prod(τv

i)
{Φki +Rki }, (10)

where prod(τvi) denotes the set of obi-tasks corresponding
to the DAG-based tasks that are the producers of the DAG-
based task τvi in Gi, and Rki denotes a response-time bound
for the obi-task τki . For now, we assume that Rki is known,
but later, we will show how to compute it.
Example 3. Consider again the DAG G1 in Fig. 1. Assume
that, after applying the above transformation, the obi-tasks
have response-time bounds of R1

1 = 9, R2
1 = 5, R3

1 = 7,
andR1

1 = 8, respectively. Then, we can set Φ1
1 = 0, Φ2

1 = 9,
Φ3

1 = 9, and Φ4
1 = 16, respectively, and satisfy (10). With

these response-time bounds, the end-to-end response-time
bound that can be guaranteed is determined by R1

1, R3
1, and

R1
1 and is given byR1 = 24. Fig. 3 depicts a possible sched-

ule for these obi-tasks and illustrates the transformation.
Like in Fig. 2, the first (resp., second) job of each task has a
lighter (resp., darker) shading, and intra-task parallelism is
possible (e.g., J4

1,1 and J4
1,2 in time interval [23, 24)).

The following properties follow from this transformation

4

Time

0

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.)

τ1

1

5 10 15

R1
1

R12

R1
3

R1

4

Φ1 = 0
1

Φ1

2

R1 : the end-to-end response-time bound for G1

20 25 30

Job Release Job Deadline Job Completion CPU Execution DSP Execution

end-to-end response time

end-to-end response time

Φ1

3

Φ1

4

τ1

2

τ1

3

τ1

4

Figure 3: Example schedule of the obi-tasks corresponding to the
DAG-based tasks in G1 in Fig. 1.

process. According to Property 2, a DAG-based task set can
be implemented by a corresponding set of obi-tasks, and all
producer/consumer constraints in the DAG-based specifica-
tion will be implicitly guaranteed, provided the offsets of
the obi-tasks are properly set (i.e., satisfy (10)).

Property 2. If τki is a producer of τvi in the DAG-based
task system, then for the jth jobs of the corresponding two
obi-tasks, fki,j ≤ avi,j .

Proof. By (7), aki,j = a1
i,j + Φki , and by the definition of Rki ,

fki,j ≤ aki,j +Rki . Thus,

fki,j ≤ a1
i,j + Φki +Rki . (11)

By (7), avi,j = a1
i,j +Φvi , and by (10), Φvi ≥ Φki +Rki . Thus,

avi,j ≥ a1
i,j + Φki +Rki . (12)

By (11) and (12), fki,j ≤ avi,j .
Property 3 shows how to compute an end-to-end

response-time bound Ri.

Property 3. In the obi-task system, for each j, all jobs
J1
i,j , J

2
i,j , · · · , J

ni
i,j finish their execution within Ri time

units after a1
i , where

Ri = Φni
i +Rni

i . (13)

Proof. By (7) and the definition of Rvi , Jvi,j finishes by time
a1
i,j+Φvi +Rvi . Thus, Jni

i,j in particular finishes within Φni
i +

Rni
i = Ri time units after a1

i . Also, by (10), Φvi + Rvi ≤
Φni
i , since τni

i is the single sink in Gi. Because Φni
i ≤ Ri,

this implies that, for any v, Jvi,j finishes withinRi time units
after a1

i .

Thus, a DAG-based task set can be transformed to an
obi-task set with the same per-task parameters. Given these
per-task parameters, a response-time bound for each obi-
task can be computed by (9) for any arbitrary offset setting.
Then, we can properly set the offsets for each obi-task ac-
cording to (10) by considering the corresponding tasks in
each DAG in topological order, starting with Φ1

i = 0 for
each source task τ1

i , by (8). By Property 2, the resulting obi-
task set satisfies all requirements of the original DAG-based
task system, and by Property 3, an end-to-end response-time
bound Ri can be computed for each DAG Gi.

(Note that the response-time bound for a virtual
source/sink is not computed by (9), but is zero by definition,
since its WCET is zero. Any job of such a task completes in
zero time as soon as it is released.)

5 Setting Relative Deadlines
In the prior sections, we showed that, by applying our pro-
posed transformation techniques, an end-to-end response-
time bound for each DAG can be established, given ar-
bitrary but fixed relative-deadline settings. That is, given
Dv
i ≥ 0 for any i, v, we can compute correspond-

ing end-to-end response-time bounds (i.e., Ri for each i)
by (9), (8), (10), and (13).

Similar DAG transformation approaches have been pre-
sented previously [11, 18], but under the assumption that
intra-task precedence constraints exist (i.e., jobs of the same
task must execute in sequence). Moreover, in this prior
work, per-task relative deadlines have been defined in a
DAG-oblivious way. By considering the actual structure of
such a DAG, it may be possible to reduce its end-to-end
response-time bound by setting its tasks’ relative deadlines
so as to favor certain critical paths.

10

(8)

10

(8)

10

(8)

10

(15)

10

(8)

Figure 4: More
highly prioritizing
the right-side path
in this DAG de-
creases its end-to-
end response-time
bound.

Consider, for example, the DAG
illustrated in Fig. 4. Suppose that
the prior analysis yields a response-
time bound of 10 for each task,
as depicted within each node. The
corresponding end-to-end response-
time bound would then be 40 and
is obtained by considering the right-
side path. Now, suppose that we al-
ter the tasks’ relative-deadline set-
tings to favor the tasks along this
path at the possible expense of the
remaining task on the left. Further,
suppose this modification changes
the per-task response-time bounds
to be as depicted in parentheses.
Then, this modification would have
the impact of reducing the end-to-
end bound to 32.

In this section, we show that the problem of determining
the “best” relative-deadline settings can be cast as a linear-
programming problem, which can be solved in polynomial
time. The proposed linear program (LP) is developed in the
next two subsections.

5

5.1 Linear Program

In our LP, there are three variables per task τvi : Dv
i , Φvi , and

Rvi . The parameters Ti,Cvi , andmk are viewed as constants.
Thus, there are 3|V | variables in total, where |V | is the total
number of tasks (i.e., nodes) across all DAGs in the system.
Before stating the required constraints, we first establish the
following theorem, which shows that a relative-deadline set-
ting of Dy

x > Tx is pointless to consider.

Theorem 2. If Dy
x > Tx, then by setting Dy

x = Tx, Ryx,
the response-time bound of task τyx , will decrease, and each
other task’s response-time bound will remain the same.

Proof. To begin, note that, by (9), τyx does not impact
the response-time bounds of those tasks executing on CE
pools other than P yx . Therefore, the response-time bounds
{Rvi | P vi 6= P yx } for such tasks are not altered by any
change to Dy

x.
In the remainder of the proof, we consider a task τvi such

that P vi = P yx . Let Rvi and R′v
i denote the response-time

bounds for τvi before and after, respectively, reducing Dy
x to

Tx. If i = x and v = y, then by (9),

Ryx −R′y
x =

Dy
x − Tx
mk

·
∑
τw
l ∈τk

uwl +

uyx
mk

(max{0, Tx −Dy
x} −max{0, Tx − Tx})

>{since Dy
x > Tx}

0.

Alternatively, if i 6= x or v 6= y, then by (9),

Rvi −R′v
i =

uyx
mk

(max{0, Tx −Dy
x} −max{0, Tx − Tx})

={since Dy
x > Tx}

0.

Thus, the theorem follows.
By Theorem 2, the reduction of Dy

x mentioned in the
theorem does not increase the response-time bound for any
task. By (10), this implies that none of the offsets, {Φvi },
needs to be increased. Therefore, by Property 3, no end-to-
end response-time bound increases. These properties moti-
vate our first set of linear constraints.

Constraint Set (i): For each task τvi ,

0 ≤ Dv
i ≤ Ti.

2|V | individual linear inequalities arise from this constraint
set, where |V | is the total number of tasks.

Another issue we must address is that of ensuring that
the offset settings, given by (10), are encoded in our LP.
This gives rise to the next constraint set.

Constraint Set (ii): For each edge from τwi to τvi in a DAG
Gi,

Φvi ≥ Φwi +Rwi .

There are |E| distinct constraints in this set, where |E| is the
total number of edges in all DAGs in this system.

Finally, we have a set of constraints that are linear equal-
ity constraints.

Constraint Set (iii): With Constraints Set (i), it is clear that
we can re-write (9) as follows, for each task τvi ,

Rvi =
1

mk

Dv
i ·

∑
τw
l ∈Γk

uwl +
∑
τw
l ∈Γk

(
uwl · (Tl −Dw

l)
)

+ max
τw
l ∈Γk

{Cwl }+
mk − 1

mk
Cvi , (14)

where Γk = {τwl |Pwl = πk}. Moreover, by (8), for each
DAG Gi,

Φ1
i = 0.

Constraint Set (iii) yields |V | + |G| linear equations,
where |G| denotes the number of DAGs.

Constraint Sets (i), (ii), and (ii) fully specify our LP, with
the exception of the objective function. In this LP, there are
3|V | variables, 2|V |+ |E| inequality constraints, and |V |+
|G| linear equality constraints.

5.2 Objective Function

Different objective functions can be specified for our LP
that optimize end-to-end response-time bounds in different
senses. Here, we consider a few examples.

Single-DAG systems. For systems where only a single
DAG exists, the optimization criterion is rather clear. In
order to optimize the end-to-end response-time bound of
the single DAG, the objective function should minimize the
end-to-end response-time bound of the only DAG, G1. That
is, the desired LP is as follows.

minimize Φn1
1 +Rn1

1

subject to Constraint Sets (i), (ii), and (iii)

Multiple-DAG systems. For systems containing multiple
DAGs, choices exist as to the optimization criteria to con-
sider. We list two here.

Minimizing the average end-to-end response-time
bound:

minimize
∑
i

(Φni
i +Rni

i)

subject to Constraint Sets (i), (ii), and (iii)

Minimizing the maximum end-to-end response-
time bound:

minimize Y

subject to ∀i : Φni
i +Rni

i ≤ Y
Constraint Sets (i), (ii), and (iii)

6

G2

G1

G[1,2]

DAG Releases

T

T/2

Identical DAGs

Corresponding

to Invocations of: G1 G1 G1G2 G2 G2

Figure 5: Illustration of DAG combining.

6 DAG Combining
In the application domain that motivates our work, the
DAGs to be scheduled are typically of quite low utiliza-
tions and are defined based on a relatively small number of
templates that define various computational patterns. Two
DAGs defined using the same template are structurally iden-
tical: they are defined by graphs that are isomorphic, corre-
sponding nodes from the two graphs perform identical com-
putations, the source nodes are released at the same time,
etc. Such structurally identical graphs can be combined into
one graph with a reduced period and larger utilization, as
long any overutilization of the underlying hardware plat-
form is avoided. Such combining can be a very effective
technique, because as the experiments presented later show,
our response-time bounds tend to be proportional to periods.

We illustrate this idea with a simple example. Consider
two DAGs G1 and G2 with a common period of T that are
structurally identical. A schedule of these two DAGs is il-
lustrated abstractly at the top of Fig. 5. As illustrated at the
bottom of the figure, if these two DAGs are combined, then
they are replaced by a structurally identical graph, denoted
here as G[1,2], with a period of T/2. With this change, the
provided response-time bounds have to be slightly adjusted.
For example, if G[1,2] has a response-time bound of R[1,2],
then this would also be a response-time bound for G1, but
that for G2 would be R[1,2] + T

2 , because in combining the
two graphs, the releases of G2 are effectively shifted for-
ward by T

2 time units. While this graph combining idea is
really quite simple, the experiments presented later suggest
that it can have a profound impact in the considered appli-
cation domain. In particular, in that domain, per-DAG uti-
lizations are low enough that upwards of 40 DAGs can be
combined into one. Thus, the actual period reduction is not
merely by a factor of 1

2 but by a factor as high as 1
40 .

7 Early Releasing
Transforming a DAG-based task system to a correspond-
ing obi-task system enabled us to derive an end-to-end
response-time bound for each DAG. However, such a trans-
formation may actually cause observed end-to-end response
times at runtime to increase, because the offsets introduced
in the transformation may prevent a job from executing even

if all of its producers have already finished. For example,
in Fig. 3, J3

1,1 cannot execute until time 9, even though its
corresponding producer job, J1

1,1, has finished by time 3.
Observed response times can be improved under

deadline-based scheduling without altering analytical
response-time bounds by using a technique called early re-
leasing [10]. When early releasing is allowed, a job is eligi-
ble for execution as soon as all of its corresponding producer
jobs have finished, even if this condition is satisfied before
its actual release time. Early releasing does not impact ana-
lytical response-time bounds. In an appendix, why provide
a brief explanation as to why this is the case and consider
an example schedule where early releasing is allowed.

8 Case Study
To illustrate the computational details of our analysis, we
consider here a case-study system consisting of three DAGs,
G1, G2, and G3, which are specified in Fig. 6. π1 is a CE
pool consisting of two identical CPUs, and π2 is a CE pool
consisting of two identical DSPs. Thus, m1 = m2 = 2.
These three DAGs have fewer nodes and higher utilizations
than typically found in our considered application domain.
However, one can imagine that these graphs were obtained
from combining many identical graphs of lower utilization.
While it would have been desirable to consider larger graphs
with more nodes, graphs from our chosen domain typically
have tens of nodes, and this makes them rather unwieldy
to discuss. Still, the general conclusions we draw here are
applicable to larger graphs.

Utilization check. First, we must calculate the total uti-
lization of all tasks assigned to each CE pool to make
sure that neither is overutilized. We have

∑
τv
i ∈Γ1

uvi =
200+100+300

500 + 133+78+197+73+5
1000 = 1.686 < 2, and∑

τv
i ∈Γ2

uvi = 380
500 + 16+83+242

1000 = 1.101 < 2.

Virtual source/sink. Note that all DAGs have a single
source and sink, except for G2, which has two sinks. For it,
we connect its two sinks to a single virtual sink τ6

2 , which
has a WCET of 0 and a response-time bound of 0. We call
the resulting DAG G′

2. For convenience, we include a de-
piction of this graph in Fig. 10 in an appendix.

Implicit deadlines. We now show how to compute
response-time bounds assuming implicit deadines, i.e.,
Dv

1 = 500 for 1 ≤ v ≤ 4, Dv
2 = 1000 for 1 ≤ v ≤ 5

(the relative deadline of the virtual sink is irrelevant), and
Dv

3 = 1000 for 1 ≤ v ≤ 3. In order to derive an end-to-end
response-time bound, we first transform the original DAG-
based tasks into obi-tasks as described in Sec. 3. Next, we
calculate a response-time bound Rvi for each obi-task τvi
by (9). The resulting task response-time bounds, {Rvi }, are
listed in Table 2, which is given in the appendix. Note that,
as a virtual sink, the response-time bound for the virtual sink
τ6
2 does not need to be computed by (9), but is 0 by defini-

tion. By (8) and (10), the offsets of the obi-tasks can now be
computed in topological order with respect to each DAG.
The resulting offsets, {Φvi }, are also shown in Table 2.

7

τ1

τ1

τ1

τ1

1

2

4

3
C1 = 200

1

P1 = π1

1

C1 = 380
2

P1 = π2

2

C1 = 100
3

P1 = π1

3

C1 = 300
4

P1 = π1

4

T1 = 500

(a) G1

τ2 τ2

τ2 τ2

τ2

1 2

3 4

5
C2 = 133

1

P2 = π1

1

C2 = 16
2

P2 = π2

2

C2 = 83
3

P2 = π2

3

C2 = 78
5

P2 = π1

5

C2 = 197
4

P2 = π1

4

T2 = 1000

(b) G2

τ3 τ3 τ3

1 2 3

C3 = 73
1

P3 = π1

1

C3 = 242
2

P3 = π2

2

C3 = 5
3

P3 = π1

3

T3 = 1000

(c) G3

Figure 6: DAGs in the case-study system. G2 has two sinks, so to analyze it, a virtual sink τ62 must be added that has a WCET of 0 and a
response-time bound of 0. We show the resulting graph in Fig. 10 in an appendix.

Finally, by Property 3, we have an end-to-end response-
time bound for each DAG: R1 = Φ4

1 + R4
1 = 2538.25,

R2 = Φ6
2 +R6

2 = 4361.5, and R3 = Φ3
3 +R3

3 = 3376.5.

LP-based deadline settings. If we use LP techniques to
optimize end-to-end response-time bounds, then choices ex-
ist regarding the objective function, because our system has
multiple DAGs. We consider three choices here.

Minimizing the average end-to-end response-time
bound. For this choice, relative-deadline settings, obi-task
response-time bounds, and obi-task offsets are as shown in
Table 3(a), found in the appendix. The resulting end-to-end
response-time bounds are R1 = Φ4

1 + R4
1 = 3134.5,

R2 = Φ6
2 +R6

2 = 2341.2, and R3 = Φ3
3 +R3

3 = 1736.2.

Minimizing the maximum end-to-end response-time
bound. For this choice, relative-deadline settings, obi-task
response-time bounds, and obi-task offsets are as shown in
Table 3(b). The resulting end-to-end response-time bounds
are R1 = Φ4

1 + R4
1 = 2650.4, R2 = Φ6

2 + R6
2 = 2650.4,

and R3 = Φ3
3 +R3

3 = 2650.4.

Minimizing the maximum proportional end-to-end
response-time bound. For this choice, relative-deadline set-
tings, obi-task response-time bounds, and obi-task off-
sets are as shown in Table 3(c). The resulting end-to-end
response-time bounds are R1 = Φ4

1 + R4
1 = 2208.9,

R2 = Φ6
2 +R6

2 = 4417.8, and R3 = Φ3
3 +R3

3 = 4261.0.

Early releasing. As discussed in Sec. 7, early releasing
can improve observed response times without compromis-
ing response-time bounds. The value of allowing early re-
leasing can be seen in the results reported in Table 1. This
table gives the largest observed end-to-end response time of
each DAG, assuming implicit deadlines with and without
early releasing, in a schedule that was simulated for 50,000
time units. Analytical bounds are shown as well.

G1 G2 G3

Early releasing 1006 897 453
No early releasing 1966.75 3536.25 2586.0

Bounds 2538.25 4361.5 3376.5

Table 1: Observed end-to-end response times with/without early
releasing and analytical end-to-end response-time bounds for the
implicit-deadline setting.

9 Schedulability Studies
In this section, we expand upon the specific case study just
described by considering general schedulability trends seen
for randomly generated task systems.

9.1 Improvements Enabled by Basic Techniques

We first consider the improvements enabled by the ba-
sic techniques covered in Secs. 4 and 5 that underlie our
work: allowing intra-task parallelism as provided by the
npc-sporadic task model, and determining relative-deadline
settings by solving an LP.

Random system generation. We considered a heteroge-
neous platform comprised of three CE pools, each consist-
ing of eight identical CEs. Each pool was assumed to have
the same total utilization. We considered all choices of total
per-pool utilizations in the range [1, 8] in increments of 0.5.

We generated DAG-based task systems using a method
similar to that used by others [3, 15]. These systems were
generated by first specifying the number of DAGs in the
system, N , and the number of tasks per DAG, n. For
each considered pair N and n, we randomly generated 50
task-system structures, each comprised of N DAGs with n
nodes. Each node in such a structure was randomly assigned
to one of the CE pools, and for each DAG in the structure,
one node was designated as its source, and one as its sink.
Further, each pair of internal nodes (not a source or a sink)
was connected by an edge with probability edgeProb,
a settable arameter. Such an edge was directed from the
lower-indexed node to the higher-indexed node, to preclude
cycles. Finally, an edge was added from the source to each
internal node with no incoming edges, and to the sink from
each internal node with no outgoing edges.

For each considered per-pool untilization and each gen-
erated task-system structure, we randomly generated 50
actual task systems by generating task utilizations using
the MATLAB function randfixedsum() [23]. Accord-
ing to the application domain that motivates this work,2

we defined each DAG’s period to be 1 ms. (A task’s
WCET is determined by its utilization and period.) For

2In applications usually considered in the real-time-systems commu-
nity, much larger periods are the norm. The considered domain is quite
different.

8

Total Utilization in Each CE Pool

1 2 3 4 5 6 7 8A
v
e

ra
g

e
 M

a
x
im

u
m

 E
n

d
-t

o
-E

n
d

 R
e

s
p

o
n

s
e

-T
im

e
 B

o
u

n
d

s
 (

m
s
)

0

5

10

15

20

25

30

35

40

conventional sporadic tasks, implicit deadlines

npc-sporadic tasks, implicit deadlines

npc-sporadic tasks, LP-based deadlines

Figure 7: AMERBs as a function of total utilization in each CE
pool in the case where each task set has five DAGs, 20 tasks per
DAG, and edgeProb=0.5.

each considered value of N , n, and total per-pool utiliza-
tion (one point in one of our graphs), we considered 50 (task
system structures)× 50 (utilizations) = 2, 500 task sets.
Comparison setup. We compared three strategies: (i)
transforming to a conventional sporadic task system and
using implicit relative deadlines, which is a strategy used
in prior work on identical platforms [18]; (ii) transform-
ing to an npc-sporadic task system and using implicit rel-
ative deadlines; and (iii) transforming to an npc-sporadic
task system and using LP-based relative deadlines. When
applying our LP techniques, we chose the objective func-
tion that minimizes the maximum end-to-end response-time
bound. Although an identical platform was assumed in [18],
the techniques from that paper can be extended to heteroge-
neous platforms in a similar way to this paper.
Results. In all cases that we considered, the two evaluated
techniques improved end-to-end response-time bounds, of-
ten significantly. Due to space constraints, we present here
only the case where N = 5, n = 20, and edgeProb =
0.5. For each generated task set, we recorded the maximum
end-to-end response-time bound among its five DAGs. For
each given total per-pool utilization point, we report here the
average of the maximum end-to-end response-time bounds
among the 2, 500 task sets generated for that point. We call
this metric the average maximum end-to-end response-time
bound (AMERB). Fig. 7 plots AMERBs as a function of to-
tal per-CE-pool utilization. As seen, the application of both
techniques reduced AMERBs by 39.42% to 81.65%.

In addition to this plot, we also considered other cases
with different values for N , n, and edgeProb. These
other results show similar trends and can be found in an
online appendix (available at http://cs.unc.edu/

˜anderson/papers.html).

9.2 Improvements Enabled by DAG Combining

As mentioned in Sec. 6, in the application domain that mo-
tivates our work, DAGs are usually defined using several
well-defined computational templates, and as a result, many

identical DAGs will exist. We proposed the technique of
DAG combining in Sec. 6 to exploit this fact to further re-
duce response-time bounds. We now discuss schedulability
experiments that we conducted to evaluate this technique.
Random system generation. We employed a process of
randomly generating systems that is similar to that dis-
cussed in Sec. 9.1, except that, instead of generating task-
system structures comprised of N DAGs, we generated
structures comprised of N templates. Additionally, we in-
troduced a new parameter K that indicates the number of
identical DAGs per template. A period of 1 ms was still
associated with each DAG.
Comparison setup. We compared two strategies: (i) do no
combining, and compute end-to-end response-time bounds
assuming N · K independent DAGs; (ii) combine identi-
cal DAGs, and compute end-to-end response-time bounds
assuming N DAGs, making adjustments as discussed in
Sec. 6 to obtain actual response-time bounds for the DAGs
that were combined. Under both strategies, the general tech-
niques evaluated in Sec. 9.1 were applied.
Results. In all cases that we considered, the DAG combin-
ing technique improved end-to-end response-time bounds
significantly. Due to space constraints, we present here only
the case where each system has five templates, each of
which has 20 nodes, and edgeProb = 0.5. Other results
can be found online. For the considered case, Fig. 8 plots
AMERBs as a function of total per-pool utilization, when
the number of identical DAGs per template is fixed to 40
(this number is close to what would be expected in the appli-
cation domain that motivates this work). Also, Fig. 9 plots
AMERBs as a function of the number of identical DAGs
per template, when every CE pool is fully utilized (i.e.,
the total utilization of each pool is eight). In this case, the
AMERB metric was calculated over all task sets that have
the same number of identical DAGs per template. Note that
the AMERBs in Fig. 8 are much lower than those in Fig. 7,
even before applying the DAG combining technique. This
is because the systems considered in Fig. 8 have far more
DAGs than those in Fig. 7. As a result, for each given total
per-pool utilization, the systems in Fig. 8 have much lower
per-DAG and per-task utilizations.

According to our industry partners, in the considered ap-
plication domain, a DAG’s end-to-end response-time bound
should typically be at most 2.35 ms. As observed in Fig. 8,
in the absence of DAG combining, AMERBs in this exper-
iment were as high as 9.2 ms. However, the introduction
of DAG combining enabled a drop to less than 2.0ms, even
when the platform was fully utilized. This demonstrates that
DAG combining—as simple as it may seem—can have a
powerful impact in the targeted domain.

10 Conclusion
We presented task-transformation techniques to provide
end-to-end response-time bounds for DAG-based tasks im-
plemented on heterogenous multiprocessor platforms where
intra-task parallelism is allowed. We also presented an LP-

9

Total Utilization in Each CE Pool

1 2 3 4 5 6 7 8A
v
e

ra
g

e
 M

a
x
im

u
m

 E
n

d
-t

o
-E

n
d

 R
e

s
p

o
n

s
e

-T
im

e
 B

o
u

n
d

s
 (

m
s
)

0

2

4

6

8

10

Do not combine identical DAGs

Combine identical DAGs

Figure 8: AMERBs as a function of total utilization in each CE
pool in the case where the number of identical DAGs per template
is fixed to 40.

Number of Identical DAGs per Template

5 10 15 20 25 30 35 40 45 50A
v
e

ra
g

e
 M

a
x
im

u
m

 E
n

d
-t

o
-E

n
d

 R
e

s
p

o
n

s
e

-T
im

e
 B

o
u

n
d

s
 (

m
s
)

0

2

4

6

8

10

12

Do not combine identical DAGs

Combine identical DAGs

Figure 9: AMERBs as a function of the number of identical DAGs
per template in the case where total utilization in each CE pool is
fixed to eight.

based method for setting relative deadlines and a DAG
combining technique that can be applied to improve these
bounds. We evaluated the efficacy of these results by consid-
ering a case-study task system and by conducting schedu-
lability studies. To our knowledge, this paper is the first
to present end-to-end response-time analysis for the con-
sidered context. In future work, we intend to extend these
techniques to deal with synchronization requirements and
to incorporate methods for limiting interference caused by
contention for shared hardware components such as caches,
memory banks, etc.
Acknowledgments: We thank Alan Gatherer, Lee Mc-
Fearin, and Peter Yan for bringing the problem studied in
this paper to our attention and for answering many ques-
tions regarding cellular base stations.

References
[1] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Har-

tig. Response-time analysis of parallel fork-join workloads with real-
time constraints. In 25th ECRTS, 2013.

[2] R. Bajaj and D. Agrawal. Scheduling multiple task graphs in hetero-

geneous distributed real-time systems by exploiting schedule holes
with bin packing techniques. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(2):107–118, 2004.

[3] S. Baruah. Improved multiprocessor global schedulability analysis
of sporadic DAG task systems. In 26th ECRTS, 2014.

[4] S. Baruah. The federated scheduling of constrained-deadline spo-
radic DAG task systems. In 18th DATE, 2015.

[5] S. Baruah. Federated scheduling of sporadic DAG task systems. In
29th IPDPS, 2015.

[6] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese. A generalized parallel task model for recurrent real-time
processes. In 33rd RTSS, 2012.

[7] big.LITTLE Processing. http://www.arm.com/products/processors
/technologies/biglittleprocessing.php.

[8] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. Fea-
sibility analysis in the sporadic DAG task model. In 25th ECRTS,
2013.

[9] H. S. Chwa, J. Lee, K. M. Phan, A. Easwaran, and I. Shin. Global edf
schedulability analysis for synchronous parallel tasks on multicore
platforms. In 25th ECRTS, 2013.

[10] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis,
University of North Carolina, Chapel Hill, NC, 2006.

[11] G. Elliott, N. Kim, J. Erickson, C. Liu, and J. Anderson. Minimizing
response times of automotive dataflows on multicore. In 20th RTCSA,
2014.

[12] J. Erickson and J. Anderson. Response time bounds for G-EDF with-
out intra-task precedence constraints. In 15th OPODIS, 2011.

[13] J. C. Fonseca, V. Nelis, G. Raravi, and L. M. Pinho. A multi-DAG
model for real-time parallel applications with conditional execution.
In 30th SAC, 2015.

[14] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid proto-
typing for real-time embedded heterogeneous multiprocessors. In 7th
CODES, 1999.

[15] J. Li, K. Agrawal, C. Lu, and C. Gill. Analysis of global EDF for
parallel tasks. In 25th ECRTS, 2013.

[16] J. Li, A. Saifullah, K. Agrawal, C. Gill, and C. Lu. Analysis of fed-
erated and global scheduling for parallel real-time tasks. In 26th
ECRTS, 2014.

[17] J. Li, A. Saifullah, K. Agrawal, C. Gill, and C. Lu. Capacity augmen-
tation bound of federated scheduling for parallel DAG tasks. Techni-
cal report, Washington University in St Louis, 2014.

[18] C. Liu and J. Anderson. Supporting soft real-time DAG-based sys-
tems on multiprocessors with no utilization loss. In 31st RTSS, 2010.

[19] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho. Global edf
schedulability analysis for synchronous parallel tasks on multicore
platforms. In 22nd RTNS, 2014.

[20] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo. Response-time analysis of conditional DAG tasks in
multiprocessor systems. In 27th ECRTS, 2015.

[21] A. Parri, A. Biondi, and M. Marinoni. Response time analysis for g-
edf and g-dm scheduling of sporadic DAG-tasks with arbitrary dead-
line. In 23rd RTNS, 2015.

[22] A Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core real-time
scheduling for generalized parallel task models. In 32nd RTSS, 2011.

[23] R. Stafford. Random vectors with fixed sum. http://www.
mathworks.com/matlabcentral/fileexchange/
9700-random-vectors-with-fixed-sum.

[24] G. Stavrinides and H. Karatza. Scheduling multiple task graphs in
heterogeneous distributed real-time systems by exploiting schedule
holes with bin packing techniques. Simulation Modelling Practice
and Theory, 19(1):540–552, 2011.

[25] K. Yang and J. Anderson. Optimal GEDF-based schedulers that al-
low intra-task parallelism on heterogeneous multiprocessors. In ES-
TIMedia, 2014.

10

Appendix
In this appendix, we provide additional details ommitted
from the main body of the paper due to space constraints.

A: Additional Case-Study Details

Additional details concerning the case study covered in
Sec. 8 are provided below.

Virtual sink. G2 in Fig. 6 has two sinks, so to analyze it,
a virtual sink τ6

2 must be added that has a WCET of 0 and
a response-time bound of 0. The resulting graph, which we
denote as G′

2, is shown in Fig. 10.

τ2 τ2

τ2 τ2

τ2

1 2

3 4

5

T2 = 1000

τ2

6

C2 = 0
6

P2 = N/A
6

R2 = 0
6

C2 = 133
1

P2 = π1

1

C2 = 16
2

P2 = π2

2

C2 = 83
3

P2 = π2

3

C2 = 197
4

P2 = π1

4

C2 = 78
5

P2 = π1

5

Figure 10: G′2, where a virtual sink is created for G2.

Relative deadlines, offsets, and response-time bounds.
Detailed data arising in applying the intermediate steps in
deriving the end-to-end response-time bounds in the case
study in Sec. 8 is provided in Tables. 2 and 3.

B: Additional Details Concerning Early Releasing

As noted in Sec. 7, early releasing does not affect the
response-time analysis for npc-sporadic tasks presented pre-
viously [25] because this analysis is based on the total de-
mand for processing time due to jobs with deadlines at or
before a particular time instant. Early releasing does not
change upper bounds on such demand, because every job’s
actual release time and hence deadline are unaltered by
early releasing. Thus, the response-time bounds and there-
fore the end-to-end response-time bounds previously estab-
lished without early releasing still hold with early releasing.

Example 4. ConsideringG1 in Fig. 1 again, Fig. 3 is a pos-
sible schedule, without early releasing, for the obi-tasks that
implementG1, as discussed earlier. When we allow early re-
leasing, we do not change any release times or deadlines, but
simply allow a job to become eligible for execution before
its release time provided its producers have finished. Fig. 11
depicts a possible schedule where early releasing is allowed,
assuming the same releases and deadlines as in Fig. 3. Sev-
eral jobs (e.g., J2

1,1, J2
1,2, J3

1,2, J4
1,1, and J4

1,2) now com-
mence execution before their release times. As a result, ob-
served end-to-end response times are reduced, while still re-

taining all response-time bounds (per-task and end-to-end).

11

R1
1 R2

1 R3
1 R4

1 R1
2 R2

2 R3
2 R4

2 R5
2 R6

2 R1
3 R2

3 R3
3

821.5 845.25 771.5 871.5 1209.5 938.5 972 1241.5 1182 0 1179.5 1051.5 1145.5
Φ1

1 Φ2
1 Φ3

1 Φ4
1 Φ1

2 Φ2
2 Φ3

2 Φ4
2 Φ5

2 Φ6
2 Φ1

3 Φ2
3 Φ3

3
0 821.5 821.5 1666.75 0 1209.5 2148 3120 2148 4361.5 0 1179.5 2231

Table 2: Case-study task response-time bounds and obi-task offsets assuming implicit deadlines. Bold entries denote sinks.

D1
1 D2

1 D3
1 D4

1 D1
2 D2

2 D3
2 D4

2 D5
2 D6

2 D1
3 D2

3 D3
3

500 500 500 500 0 0 0 0 772.84 0 0 0 0
R1

1 R2
1 R3

1 R4
1 R1

2 R2
2 R3

2 R4
2 R5

2 R6
2 R1

3 R2
3 R3

3
1034.4 1015.7 984.36 1084.4 579.36 558.5 592 611.36 1203.4 0 549.36 671.5 515.36

Φ1
1 Φ2

1 Φ3
1 Φ4

1 Φ1
2 Φ2

2 Φ3
2 Φ4

2 Φ5
2 Φ6

2 Φ1
3 Φ2

3 Φ3
3

0 1034.4 1049.2 2050.1 0 579.36 1137.9 1729.9 1137.9 2341.2 0 549.36 1220.9
(a)

D1
1 D2

1 D3
1 D4

1 D1
2 D2

2 D3
2 D4

2 D5
2 D6

2 D1
3 D2

3 D3
3

0 500 359.06 500 0 0 0 584.52 1000 0 505.63 1000 0
R1

1 R2
1 R3

1 R4
1 R1

2 R2
2 R3

2 R4
2 R5

2 R6
2 R1

3 R2
3 R3

3
642.06 894.75 894.75 1113.6 608.56 437.5 471 1133.3 1424.1 0 1004.8 1101 544.56

Φ1
1 Φ2

1 Φ3
1 Φ4

1 Φ1
2 Φ2

2 Φ3
2 Φ4

2 Φ5
2 Φ6

2 Φ1
3 Φ2

3 Φ3
3

0 642.06 642.06 1536.8 0 608.56 1046.1 1517.1 1128.8 2650.4 0 1004.8 2105.8
(b)

D1
1 D2

1 D3
1 D4

1 D1
2 D2

2 D3
2 D4

2 D5
2 D6

2 D1
3 D2

3 D3
3

0 0 200.53 0 1000 0 253.21 1000 1000 0 1000 1000 1000
R1

1 R2
1 R3

1 R4
1 R1

2 R2
2 R3

2 R4
2 R5

2 R6
2 R1

3 R2
3 R3

3
679.95 798.99 798.99 729.95 1489.4 616.99 789.89 1521.4 1461.9 0 1459.4 1280.5 1425.4

Φ1
1 Φ2

1 Φ3
1 Φ4

1 Φ1
2 Φ2

2 Φ3
2 Φ4

2 Φ5
2 Φ6

2 Φ1
3 Φ2

3 Φ3
3

0 679.95 679.95 1478.9 0 1489.4 2106.4 2896.3 2552.7 4417.8 0 1508.3 2835.6
(c)

Table 3: Case-study relative-deadline settings, obi-task response-time bounds, and obi-task offsets when using linear programming to (a)
minimize average end-to-end response-time bounds, (b) minimize maximum end-to-end response-time bounds, and (c) minimize maximum
proportional end-to-end response-time bounds. Bold entries denote sinks.

end-to-end response time

end-to-end response time

Time

0

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.)

5 10 15 20 25 30

Job Release Job Deadline Job Completion CPU Execution DSP Execution

τ1

1

τ1

2

τ1

3

τ1

4

R1
1

Φ1 = 0
1

R1

2

R1
3

R1

4

Φ1

2

Φ1

3

Φ1

4

R1 : the end-to-end response-time bound for G1

Figure 11: Example schedule of the obi-tasks corresponding to the DAG-based tasks in G1 in Fig. 1, when early releasing is allowed.

12

