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Abstract—Modern operating systems allow task migrations to
be restricted by specifying per-task processor affinity masks. Such
a mask specifies the set of processor cores upon which a task
can be scheduled. In this paper, a semi-partitioned scheduler,
AM-Red (affinity mask reduction), is presented for scheduling
implicit-deadline sporadic tasks with arbitrary affinity masks on
an identical multiprocessor. AM-Red is obtained by applying
an affinity-mask-reduction method that produces affinities in
accordance with those specified, without compromising feasibility,
but with only a linear number of migrating tasks. It functions
by employing a tunable frame of size F . For any choice of
F , AM-Red is soft-real-time optimal, with tardiness bounded

by F , but the frequency of task migrations is proportional to
F . If F divides all task periods, then AM-Red is also hard-

real-time-optimal (tardiness is zero). AM-Red is the first optimal
scheduler proposed for arbitrary affinity masks without future
knowledge of all job releases. Experiments are presented that
show that AM-Red is implementable with low overhead and
yields reasonable tardiness and task-migration frequency.

Index Terms—scheduling theory, multicore, processor affinity
masks

I. INTRODUCTION

On multicore machines, particularly ones with relatively
high core counts, it is often desirable to limit task migrations
to lessen cache- and I/O-related overheads [13] and to enable
load balancing [28], [32], among other reasons [24]. Proces-
sor affinity masks are an operating-system (OS) mechanism
that enables allowed migrations to be flexibly determined. A
given task’s affinity mask specifies which cores it is allowed
to execute upon. General-purpose OSs that support affinity
masks include Windows, Linux, and MacOS X. Real-time OSs
(RTOSs) that support them include FreeRTOS [21], QNX [2],
VxWorks [3], and many others.

Unfortunately, in the real-time systems domain, no non-
clairvoyant optimal scheduler has heretofore been proposed
that allows arbitrary affinity masks. Thus, while OSs provide
flexible control over migrations through affinity masks in the-
ory, such support must typically be restricted in practice. For
example, under Linux’s SCHED DEADLINE scheduler [12],
[20], affinity masks are essentially ignored: any task is as-
sumed to be executable on any core [4]. Such conservative
behavior can be changed, but doing so requires disabled
admission control, and no response-time guarantees can be
provided.

In this paper, we show for the first time that the goals of al-
lowing arbitrary affinity masks and scheduling real-time tasks
optimally do not fundamentally conflict. We do so by present-
ing a new scheduler, AM-Red (affinity mask reduction), that

optimally schedules implicit-deadline sporadic tasks. Before
delving into notable specifics concerning AM-Red, we first
review relevant prior work to provide context.

Related work. The existing literature pertaining to scheduling
real-time tasks with affinity masks is not very extensive. For
hard real-time (HRT) implicit-deadline sporadic task systems
with arbitrary affinity masks, Baruah et al. [7] proposed an
exact feasibility test and corresponding scheduler. However,
their scheduler has an offline phase with high time complex-
ity and is a fluid scheduler that gives rise to unboundedly
frequent task migrations, which (seemingly) can be reduced
to a practical level only through clairvoyant knowledge of all
job releases. Muneeswari et al. [23] presented a scheduler
supporting affinities that they claimed is applicable to real-
time systems, but they provided no analysis to support this
claim. Cerqueira et al. [11] presented a fixed-priority arbitrary-
affinity scheduler, but it is not optimal. Gujarati et al. [15], [16]
presented several schedulability tests for any job-level fixed-
priority scheduler assuming arbitrary affinities, but these tests
are all non-tight or non-polynomial.

Hierarchical affinity masks are often used on multicore
machines to reflect multi-level cache hierarchies (L1, L2, etc.).
With hierarchical affinities, if the masks of two tasks intersect,
then one must be contained within the other. For hierarchical
affinities, Bonifaci et al. [8] proposed an HRT scheduler
(which evolved from a prior approach [11]) that ensures
a certain “greedy” property that avoids wasted processing
capacity. However, they provided no schedulability test.

Contributions. The main contribution of this paper is
AM-Red, a new scheduling algorithm for implicit-deadline
sporadic task systems with arbitrary affinity masks. AM-Red
is a semi-partitioned scheduler; under such schedulers, only
certain tasks are allowed to migrate and these tasks are
determined in an offline allocation phase [5].

AM-Red schedules tasks by iteratively considering a sched-
ule computed offline for a window of time called a frame. The
frame size |F | is a configurable parameter. For soft real-time
(SRT) task systems that require bounded deadline tardiness,
AM-Red is optimal and ensures a tardiness bound of |F |.
The frame size |F | also determines the frequency of task
migrations, so choosing |F | yields a tradeoff: larger values
reduce migration costs while smaller values reduce tardiness.
If |F | divides all task periods, then AM-Red is also optimal
for scheduling HRT task systems. For n tasks executing on m



processors, if masks are hierarchical, then AM-Red requires
O(m+n) time complexity for its offline phase and O(1) time
per scheduling decision; these time bounds are asymptotically
optimal. To the best of our knowledge, AM-Red is the first
non-clairvoyant scheduler to be proposed that is HRT/SRT-
optimal for implicit-deadline sporadic tasks under arbitrary
affinity masks.

In addition to presenting AM-Red, we also explore a num-
ber of issues concerning affinity-mask reductions. In particular,
we consider affinity graphs that aggregate the specified masks
of all tasks, and present a method that can reduce the number
of edges in such a graph without compromising task-system
feasibility. While feasibility can be assessed using the test
of Baruah et al. [7], we instead use a test proposed here
that has lower time complexity. Our reduction method yields
affinity masks under which at most (m−1) tasks migrate. This
property is actually instrumental in enabling a semi-partitioned
approach.

In order to assess the efficacy of AM-Red, we recorded
scheduling and other OS overheads under it in an actual
LITMUSRT [1] implementation on a 24-core Intel platform.
We found that these overheads tended to be small, on the
order of just a few microseconds. We also experimentally
compared AM-Red to the (non-optimal) scheduler proposed
in [8] on the basis of migration frequency and tardiness. In
these experiments, AM-Red demonstrated performance even
better than our analysis predicts. It proved capable of ensuring
tardiness of just a few tens of milliseconds with task-migration
frequencies that were nearly two orders of magnitude less than
those under the scheduler from [8] in some cases. Recall that,
unlike AM-Red, that scheduler is limited to hierarchical masks
and has no schedulability test.
Organization. In the rest of this paper, we provide needed
background (Sec. II), present our new feasibility test (Sec. III),
develop algorithm AM-Red by considering first “acyclic”
affinities (Sec. IV) and then arbitrary ones (Sec. V), consider
the special case of hierarchical affinities (Sec. VI), and con-
clude (Sec. VIII).

II. BACKGROUND

We consider the problem of scheduling n implicit-deadline
sporadic tasks, τ1, ..., τn, on m identical unit-speed cores,
π1, ..., πm. We assume familiarity with the implicit-deadline
sporadic task model, consider only task sets in accordance
with this model, and assume that all time-related parameters
are rational.1 We will use the following notation: Ci denotes
the worst-case execution time of task τi, Ti denotes its period,
Di = Ti denotes its relative deadline, and Ui = Ci/Ti ≤ 1
denotes its utilization; Ji,k denotes the kth job released by τi,
and Ci,k ≤ Ci denotes the execution time of Ji,k; U =

∑
i Ui

denotes the total system utilization. Job Ji,k has an absolute
deadline di that occurs Di time units after its release, and
once it has received a processor allocation equal to Ci,k,

1Our analysis can be extended to support real values at the expense of
additional space.

it is completed. Job Ji,k+1 cannot be scheduled until the
prior job of τi, Ji,k, has completed, even if Ji,k misses
its (absolute) deadline. As is typical in scheduling-theoretic
work, we assume that overheads are negligible (though we do
examine measured overheads under AM-Red in Sec. VII).

If a job has a deadline at time td and completes at time tc,
then its tardiness is defined as max(0, tc − td). The tardiness
of task τi is the supremum of the tardiness of any of its jobs. If
this value is finite, then we say that τi has bounded tardiness.

A task set τ is HRT-schedulable (resp., SRT-schedulable)
under scheduling algorithm S if each task in τ has zero (resp.,
bounded) tardiness in any schedule for τ generated by S. A
task set τ is HRT-feasible (resp., SRT-feasible) if, for any job-
release sequence (as allowed by the sporadic task model), a
schedule exists in which each task has zero (resp., bounded)
tardiness. Scheduling algorithm S is HRT-optimal (resp., SRT-
optimal) if every HRT-feasible (resp., SRT-feasible) task set
τ is HRT-schedulable (resp., SRT-schedulable) under S. Al-
though HRT- and SRT-feasibility are fundamentally different
concepts in some contexts, we show later that in the context
of this paper, they are actually equivalent.

Affinity masks. In practice, affinity masks are usually spec-
ified using bit-vectors, but we opt for a more abstract speci-
fication. In particular, we define the affinity mask αi of task
τi to be the set of cores upon which τi is allowed to execute.
We define the aggregate affinity mask of a subset of tasks
τ ′ ⊆ τ as ατ ′ =

⋃
i∈τ ′ αi. We call the aggregate affinity

mask ατ of the set of all tasks τ the system affinity mask.
For a given task set τ , we define a bipartite undirected graph
called an affinity graph, denoted AG(τ), as follows: AG(τ)
has n vertices τ1, . . . , τn (representing tasks), and m vertices
π1, . . . , πm (representing cores), and contains edge (τi, πj) if
and only if πj ∈ αi (i.e., task τi can execute on core πj).

Example 1. Consider a task set τ with four tasks, τ1, ..., τ4,
to be scheduled on three cores, π1, π2, π3, with affinity masks
α1 = {π1}, α2 = {π1}, α3 = {π1, π2}, and α4 = {π2, π3}.
AG(τ) is shown in Fig. 1a. The aggregate affinity mask for
{τ1, τ4} is {π1, π2, π3}, while for {τ2, τ3} it is {π1, π2}.

Important affinity-mask categories. For a given task set
τ , we call ατ acyclic if and only if AG(τ) is acyclic. For
example, the affinity graph in Fig. 1a is acyclic. We consider
this family of affinity-mask sets in Sec. IV.

As mentioned in Sec. I, hierarchical affinity masks have
received prior attention [8], [9], [29]. For a given task set τ ,
we call ατ and AG(τ) hierarchical if and only if, for any
i and j, αi ∩ αj = ∅ or αi ⊆ αj or αi ⊇ αj . Note that
hierarchical masks may or may not be acyclic. Note also that
the core assignments of any global, clustered, or partitioned
scheduler can be specified using masks that are hierarchical.
Under global and clustered scheduling, if at least two tasks
are allowed to share at least two cores, then such masks will
not be acyclic. We consider hierarchical masks in detail in
Sec. VI. If we place no restrictions on affinity masks, then ατ
and AG(τ) are called arbitrary. We consider such masks in
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(a) Task set from Ex. 1
(acyclic affinities).
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(b) Task set from Ex. 2
(hierarchical affinities).

Fig. 1: Example affinity graphs.
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Fig. 2: Feasibility proof overview.

Sec. V.

Example 2. Consider a task set τ with four tasks, τ1, ..., τ4,
to be scheduled on three cores, π1, π2, and π3, with affinity
masks α1 = {π1}, α2 = {π1, π2}, α3 = {π1, π2}, and α4 =
{π3}. The affinity graph AG(τ) for this task set is shown in
Fig. 1b. From the figure, it is easy to see that these affinities
are hierarchical but not acyclic.

III. FEASIBILITY

In order to design a scheduling algorithm for task sets with
arbitrary affinity masks and show that it is optimal, we must
have a means for determining which such task sets are feasible.
A test for HRT-feasibility has been given previously by Baruah
et al. [7]. In this section, we show that in the considered
context, HRT-feasibility and SRT-feasibility are equivalent. We
also present a feasibility test that is more efficient than that of
Baruah et al.

It is easy to see that HRT-feasibility implies SRT-feasibility
because zero tardiness implies bounded tardiness. To show
the equivalence of the two, we must therefore show that every
SRT-feasible task set τ is also HRT-feasible. We do this in
three steps: we first establish a special property of SRT-feasible
task sets in Sec. III-A; we then develop a new exact feasibility
test in Sec. III-B based on max flow; finally, we show the
equivalence of the obtained test to that of Baruah et al. [7]. A
depiction of these steps is given in Fig. 2.

A. A Special Property of SRT-Feasible Task Sets

It follows from results in [22] that, under global scheduling,
τ is feasible (HRT or SRT) if and only if U ≤ m holds and
Ui ≤ 1 holds for each task τi. That is, avoiding over-utilization
is the key to ensuring feasibility. In this section, we show that
the same is generally true for SRT-feasibility with arbitrary
affinity masks, but the “no over-utilization” condition is more
complicated. For τ ′ ⊆ τ , let Uτ ′ denote

∑
τi∈τ ′ Ui. The “no

over-utilization” condition we require is:
Utilization Balance: ∀τ ′ ⊆ τ : Uτ ′ ≤ |ατ ′ |.

We begin by proving the following lemma, which is true for
any arbitrary schedule with bounded tardiness. The lemma
statement refers to “uncompleted work.” In a given schedule,
the uncompleted work at time t is the total execution time
of all jobs released prior to t minus the processing capacity
already allocated to those jobs.

Lemma 1. If the tardiness of every task in τ is at most B in
some schedule, then at any time instant in that schedule, the
amount of uncompleted work is at most BU + 2

∑
i Ci.

Proof. If tardiness never exceeds B, then every job completes
within B time units of its deadline, which for a job of task τi,
is within B+Ti time units of its release. Thus, at any time t, all
jobs of task τi released prior to time t−B−Ti are completed.
During [t−B−Ti, t) task τi may release at most dB+Ti

Ti
e jobs.

Thus, the amount of uncompleted work due to τi at time t is at
most CidB+Ti

Ti
e ≤ Ci

(
2 + B

Ti

)
= 2Ci +BCi

Ti
= 2Ci +BUi.

Summing over all tasks yields BU + 2
∑
i Ci.

Returning to Utilization Balance, we have the following.

Lemma 2. If τ is SRT-feasible, then it satisfies Utilization
Balance.

Proof. Assume, contrary to the statement of the lemma, that a
SRT-feasible task set τ exists that violates Utilization Balance.
Then, for some τ ′ ⊆ τ ,

|ατ ′ | < Uτ ′ . (1)

Consider the following periodic release sequence for τ :
each task τi in τ releases jobs every Ti time units, starting at
time 0, and each such job executes for Ci time units. Let S be
the schedule with bounded tardiness for this release sequence
mentioned in Lemma 1.

By the definition of ατ ′ , all jobs of all tasks in τ ′ are
scheduled in S on cores from ατ ′ . Let H be the hyperperiod of
τ . Then, for any integer k, the amount of work generated by τ ′

over [0, kH) is
∑
τi∈τ ′ Ci · kHTi

= kHUτ ′ > kH|ατ ′ |, where
the last inequality follows from (1). Observe that kH|ατ ′ |
corresponds to the total available capacity over [0, kH) on
cores in ατ ′ . Thus, the uncompleted work at time kH in S is
at least kH(Uτ ′ − |ατ ′ |). This value grows unboundedly with
increasing k, contradicting Lemma 1.

From results presented later, it will follow that Utilization
Balance is a necessary and sufficient condition for SRT-
feasibility (and also HRT-feasibility), i.e., Lemma 2 can be
strengthened by specifying “if and only if.” When we hence-
forth wish to emphasize this usage of Utilization Balance, we
will refer to it as the UB Test. Unfortunately, applying the
UB Test by considering different subsets of tasks can require
Ω(2n) time. However, the structure of this test is similar to the
famous condition of Hall’s Marriage Theorem [17], the proof
of which involves examining maximal “edge matchings” in a
graph. Such matchings can be determined by considering the
Ford-Fulkerson max-flow algorithm and its correctness proof
[14]. This connection to prior work (along with the existence



of polynomial-time algorithms for max flow) motivates us
to determine whether max flow can be used to efficiently
determine SRT-feasibility.

B. Max-Flow Feasibility Test

To cast checking feasibility as a max-flow problem, we
define for any task set τ a flow network FN (τ) that is obtained
from its affinity graph AG(τ) via several steps. First, each
edge (τi, πj) in AG(τ) is viewed as a directed edge from
τi to πj with capacity Z, where Z > m.2 Second, a source
vertex s is added along with an edge (s, τi) with capacity Ui
for each vertex τi. Finally, a sink vertex t is added along with
an edge (πj , t) with capacity 1.0 for each vertex πj . Following
conventional notation, we let f denote a flow that is defined
with respect to FN (τ), with f(u, v) denoting the flow from
vertex u to vertex v, and we let |f | denote the value of the
flow f (which equals the total flow from the source s). (To
avoid notational clutter, we do not parameterize f by τ .)

Example 3. Fig. 3a shows the flow network corresponding to
the affinity graph in Fig. 1b.

Lemma 3. If Utilization Balance holds for τ and f is a maxi-
mum flow, then |f | = U .

Proof. Assuming f is a maximum flow, by the Max-
Flow/Min-Cut Theorem [14], |f | equals the capacity of a
minimal cut. A cut is a partitioning of vertices that places
the source and sink in different partitions. The capacity of a
cut is simply the sum of the capacities of all edges that traverse
the cut. Such an edge is called a crossing edge. For example,
Fig. 3b shows one of the many cuts that can be defined with
respect to the flow network in Fig. 3a. (The vertex sets VV ,
VW , and VX are discussed later.) This cut has capacity U4+2.

Let C be a cut with minimal capacity. If any edge of the
form (τi, πj) is a crossing edge, then because its capacity Z
exceeds m and the capacity of any edge is non-negative, the
capacity of C exceeds m. This cannot be the case if C is
minimal because the cut that places t and all other vertices
in different partitions has capacity m. Thus, every crossing
edge is of the form (s, τi) or (πj , t). The cut shown in Fig. 3b
has this property, so the reader may wish to consult it for
illustrative purposes hereafter.

Let VW = {τi | (s, τi) is a crossing edge}, VV =
{τi | (s, τi) is not a crossing edge}, and VX = {πj |
(πj , t) is a crossing edge}. Then, the capacity of the cut C
is
∑
τi∈VW

Ui + |VX |. As long as there are no crossing edges
of the form (τi, πj), all edges from tasks in VV are directed to
VX . Thus, |VX | ≥ |αVV

|. Assuming Utilization Balance holds
for τ , |VX | ≥ |αVV

| ≥
∑
τi∈VV

Ui. Therefore, the capacity of
C is at least

∑
τi∈VW

Ui+|VX | ≥
∑
τi∈VW

Ui+
∑
τi∈VV

Ui =∑
τi∈τ Ui = U.

To summarize, a minimal cut has capacity at least U .
However, the cut that places s and all other vertices in different

2Actually, the capacity of the edge (τi, πj) can be set as small as Ui, but
such a setting requires additional reasoning, so we simply assume Z > m.
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(a) Flow graph for the task set in Ex. 2.
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t
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cut

(b) A cut of the flow graph in inset (a).

Fig. 3: Example flow graph and cut.

partitions has capacity U , so the capacity of any minimal cut
is U . Thus, by the Max-Flow/Min-Cut Theorem, |f | = U .

It will follow from results presented next that showing that
U is a maximum flow is an alternative way to test SRT-
feasibility. We refer to this alternative as the MF Test.

In fact, we are going to show that the UB Test and MF Test
are each valid tests for both HRT- and SRT-feasibility. We do
this by providing reasoning for the remaining links in the proof
overview given earlier in Fig. 2. One of these links involves
considering the HRT-feasibility test, denoted APA-Feas(τ, π),
presented by Baruah et al. [7]:

APA-Feas(τ, π) Test: declare τ to be HRT-feasible if and
only if values exist for the variables xij satisfying:

∀i :
∑
j∈αi

xij = 1, ∀j :
∑
i

xijUi ≤ 1, and ∀i, j : xij ≥ 0.

Max-flow linear program. The APA-Feas(τ, π) Test can be
cast as a linear program (LP). Thus, to make a connection
between it and our earlier results, we consider an LP-based
implementation of the MF Test, which we refer to as the LP-
MF Test:

Maximize
∑
i

f(s, τi)

Subject to:

C
on

st
ra

in
ts

E
dg

e C1: ∀i : 0 ≤ f(s, τi) ≤ Ui {(s, τi) edges}
C2: ∀i, j : 0 ≤ f(τi, πj) ≤ Z {(τi, πj) edges}
C3: ∀j : 0 ≤ f(πj , t) ≤ 1 {(πj , t) edges}

V
er

te
x C4: ∀i : f(s, τi) =

∑
j∈αi

f(τi, πj) {τi vertices}

C5: ∀j :
∑

i:(j∈αi)

f(τi, πj) = f(πj , t) {πj vertices}

The edge constraints ensure that edge capacities are re-
spected and the vertex constrains ensure that the flow into each
non-source/sink vertex matches the flow out of that vertex.

We now show that if |f | = U holds, then the constraints
in the LP above can be simplified, yielding constraints quite



similar to those in the APA-Feas(τ, π) Test. In particular, if f
is a maximum flow, then it still lies in the feasibility region
of the simplified LP.

Lemma 4. If f is a maximum flow and |f | = U , then the
following conditions hold.

∀i :
∑
j∈αi

f(τi, πj) = Ui (2)

∀j :
∑
i

f(τi, πj) ≤ 1 (3)

∀i, j,where j /∈ αi : f(τi, πj) = 0, (4)

assuming we assign f(τi, πj) to be 0 for j /∈ αi (note that, if j /∈
αi, then the edge (τi, πj) is not present in the flow network).

Proof. Let f be a maximum flow such that |f | = U . Because
f is a maximum flow, it satisfies the constraints of the LP
of the LP-MF Test. By Constraint C1, |f | =

∑
i f(s, τi) ≤∑

i Ui = U. Because |f | = U , by the construction of the
flow network, f(s, τi) = Ui holds for each i. Thus, by
Condition C4, (2) holds. Furthermore, by Conditions C3 and
C5,

∑
i:(j∈αi)

f(τi, πj) = f(πj , t) ≤ 1, so (3) holds, assuming
we assign f(τi, πj) to be 0 for j /∈ αi as stated in the lemma.
Note that such an assignment trivially satisfies (4).

C. HRT- and SRT-Feasibility Equivalence

The following theorem summarizes the results above.

Theorem 1. A task set τ is SRT-feasible if and only if it is
HRT-feasible. Moreover, the UB Test and the MF Test (and its
LP counterpart, the LP-MF Test) are each both exact SRT- and
HRT-feasibility tests.

Proof. By Lemma 2, if τ is SRT-feasible, then it satisfies
Utilization Balance, which by Lemma 3 implies that |f | = U
holds, where f is a maximum flow. Thus, by Lemma 4,
f satisfies Conditions (2)–(4). Now, defining xij by xij =
f(τi, πj)/Ui, Conditions (2)–(4) imply that all of the condi-
tions of the APA-Feas(τ, π) Test are satisfied, so τ is HRT-
feasibile. As noted earlier, HRT-feasibility trivially implies
SRT-feasibility. Thus, all links in the chain of reasoning
depicted in Fig. 2 have been validated.

Remarks. Given Theorem 1, we will generally use the term
“feasible” hereafter without qualifying whether we mean SRT-
or HRT-feasibility.

Using a max-flow algorithm from [19] with Õ(E
√

(V ))
time complexity,3 where V is the number of vertices and E
is the number of edges in the flow network, the MF Test can
be performed in Õ(mn

√
m+ n) time, since our flow network

satisfies V = m+n+2 and E ≤ mn+m+n. In contrast, the
APA-Feas(τ, π) Test requires solving an LP with mn variables
and n + m constraints, which requires Ω̃(mn(m + n)ω+0.5)
total time in the worst case [19], where 2 < ω < 2.4 is
the matrix multiplication constant [30]. Thus, the MF Test is
considerably more efficient than the APA-Feas(τ, π) Test.

3Õ ignores logarithmic factors: Õ(g(n)) = O(g(n) logk g(n)) for some
natural number k. Ω̃ is used similarly in expressing lower bounds.

IV. ACYCLIC AFFINITIES

As a stepping stone towards defining algorithm AM-Red,
we provide in this section an SRT-optimal scheduler under the
restriction that α is acyclic. For any feasible task set τ that this
scheduler must correctly schedule, we fix f to be a maximum
flow satisfying Conditions (2)–(4) of Lemma 4. Using this
fixed f , the algorithm designed here seeks to ensure that each
task τi receives a long-term processor share on core πj equal
to f(τi, πj).
Share graph. Note that f(τi, πj) = 0 may hold even when
πj ∈ αi. In this case, even though task τi is allowed to
execute on core πj , the share allocation defined above will
preclude this from happening. Thus, while the affinity graph
AG(τ) includes the edge (τi, πj), this edge can be ignored
without affecting schedulability. To reflect this, we define a
share graph SG(τ) that is a subgraph of AG(τ). The two are
the same except that, in SG(τ), any edge (τi, πj) in AG(τ) for
which f(τi, πj) = 0 holds in the corresponding flow network
FN (τ) is removed. Note that SG(τ) is acyclic if AG(τ) is.

Example 4. Consider a task set τ consisting of three tasks,
τ1, τ2, and τ3, scheduled on four cores, π1, π2, π3, and π4.
If the max-flow values computed for τ are as specified in
Fig. 5a, then its share graph is as depicted in Fig. 5b. (Fig. 5
has several other insets that are considered later.)

A. Frames

To realize the long-term per-task processor shares that we
want, we define allocations offline for a time interval called a
frame. We denote the allocation function by F and the frame
length by |F |. At runtime, we use F to perform allocations
within each successive time window of length |F |.4 Formally,
F is a mapping F : [0, |F |) × {π1, ..., πm} → {∅, τ1, ..., τn}.
Informally, at each time instant within a window of length |F |,
F indicates which task is scheduled on each core (if core πj
is idle at time instant t, then F (t, πj) = ∅).

Let IF (τi, πj) be the union of all maximal continuous
intervals on core πj allocated to task τi by F . (Note that we
use half-open intervals of the form [t, t′).) Then, F is termed
valid if the following conditions hold.

∀i, j, j′, j 6= j′ : IF (τi, πj) ∩ IF (τi, πj′) = ∅ (5)
∀i, j : |IF (τi, πj)| = f(τi, πj) · |F | (6)

(5) implies that τi cannot be allocated time on different cores
simultaneously, while (6) states that task τi receives a total
per-frame allocation of f(τi, πj) · |F | on core πj .

Example 5. Consider the task set τ from Ex. 1, with flow
values f(τ1, π1) = 1/4, f(τ2, π1) = 1/4. f(τ3, π1) = 1/4,
f(τ3, π2) = 3/8, f(τ4, π2) = 1/4 and f(τ4, π3) = 1/4.
A valid frame for τ is depicted in Fig. 4b. Observe that
|F | = 8 and (for example) τ3’s total allocation on core π2
is f(τ3, π2) · |F | = 3

8 · 8 = 3.

4We place no restrictions on |F |, but its value should be defined and fixed
before runtime.
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Fig. 4: A valid extended frame (Ex. 6) and a valid frame (Ex. 5), obtained
from it using Lemma 5. Different intervals of the same task have the same
shading.

Extended frames. To simplify the problem of defining a valid
frame F for τ , we introduce the concept of an extended frame
E. E is a mapping similar to F but its length is not a priori
bounded: E : [0,∞)×{π1, ..., πm} → {∅, τ1, ..., τn}. We will
show that a valid frame F can be obtained by first constructing
E and then “wrapping” the allocations given by E to obtain
F . First, we need to give validity conditions for E.

Let IE(τi, πj) be the union of all maximal continuous
intervals on core πj allocated to task τi by E. At the risk of
a slight notational overload, let LE(τi) =

⋃
j IE(τi, πj) and

LE(πj) =
⋃
i IE(τi, πj). The conditions for E to be valid are

as follows.
∀i, j : IE(τi, πj) is a single continuous interval (7)
∀i : LE(τi) is a single continuous interval (8)
∀j : LE(πj) is a single continuous interval (9)
∀i, j : |IE(τi, πj)| = f(τi, πj) · |F | (10)
∀i, j1, j2 : IE(τi, πj2) ∩ IE(τi, πj1) = ∅ (11)

Example 6. Fig. 4a shows a valid extended frame for the same
task set as in Ex. 5. Notice how each task is scheduled over
a continuous interval of time. A task can migrate from one
core to another during such an interval, but once it completes
executing on a given core, it cannot execute on that core again.
Also, once a core transitions from executing some task to being
idle, it must stay idle.

Note that (10) ensures that the total allocation to τi in E
matches that in F . However, no constraints are placed on the
length of E, so it may potentially contain many idle intervals.
Converting from extended frames to frames. The following
lemma reduces the problem of defining a valid frame to that
of defining a valid extended frame.

Lemma 5. Assume that the extended frame E is valid. Fur-
thermore, if E(t, πj) 6= ∅ for some t, then define F (t mod
|F |, πj) = E(t, πj). Then, F is valid.

Proof. First, note that F is well-defined: by (9) and (10),
allocations on πj obtained from E occur within an interval
of length

∑
i f(τi, πj) · |F | ≤ |F |, where the latter inequality

follows from (3). Thus, if πj is allocated (not idle) at distinct
time instants t and t′ by E (perhaps by different tasks), then
t mod |F | 6= t′ mod |F |. The same is true for τi: its allocation
intervals (perhaps on different cores) form an interval with
total length not exceeding |F |.

Algorithm 1 Extended-Frame Builder

Require: cores order (≺), tasks order for each core πj (
πj−→)

Ensure: extended frame
1: for πj ∈ cores order do
2: for τi ∈ tasks order for πj do
3: if τi is the first task allocated on πj then
4: start ← end of the last allocation interval for τi if

one exists, else 0
5: else
6: start← end of the last allocation interval on core πj
7: define the allocation interval for τi on πj to be

[start, start+ f(τi, πj))

To show that F is valid, we must show that (5) and (6) hold.
By (7), (8), and (10), LE(τi) has length

(∑
j∈αi

f(τi, πj)
)
·

|F | = Ui · |F | ≤ |F |, where the first equality follows from
(2). Thus, a similar argument as given in the first paragraph
of the proof can be applied to show that (5) holds. As for (6),
it follows directly from (10).

Constructing a valid extended frame. Given Lemma 5, we
can focus our attention now on constructing a valid extended
frame. To motivate some of the issues that arise in doing so,
we first consider an example.

Example 7. We can compute a valid extended frame E for the
task set in Ex. 4 with |F | = 1 as follows. Consider the cores
in order, and for each core πj , consider the tasks connected
by an edge to πj in turn. This ordering is illustrated in Fig. 5c
as an “outer” ordering of cores and an “inner” ordering of
tasks. Given this ordering, we can apply the simple scheme in
Alg. 1 to obtain E. First, consider core π1 and tasks τ1 and τ2
in turn. Allocate them shares of 1/3 and 2/3, respectively, on
π1, starting from time 0. Now, move on to core π2 and consider
the tasks τ1 and τ3 in turn. Allocate them shares of 1/3 and
2/3, respectively, on π2, but this time starting from the end of
τ1’s allocation on π1 (so that (11) is not violated). Continue
to consider cores and tasks in this manner until all tasks have
received their needed share allocations. The resulting extended
frame E that is constructed is shown in Fig. 5d.

Ordering cores and tasks. The determination of E worked
out easily in Ex. 7 because we conveniently ordered cores
and tasks in way to make this happen. Other orderings
could be problematic. For example, with the core ordering
π1, π4, π2, π3, the obtained extended frame E would not be
valid because (8) would be violated for τ3, as illustrated in
Fig. 5e. Properly ordering cores is not enough. For example,
had we kept the original core ordering but changed the
ordering of tasks on core π2, placing τ3 before τ1, then the
obtained extended frame would again violate (8), this time for
τ1, as illustrated in Fig. 5f. These examples show that properly
ordering cores and tasks is crucial for Alg. 1 to be correct.
Proper orderings. To correctly apply Alg. 1 in a general way,
we define a total order ≺ on cores, and for each core πj , a
total order

πj−→ on a certain subset of tasks τπj . We say that a
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Fig. 5: Illustrations pertaining to task set τ from Exs. 4 and 7.

task τi is a non-first task on core πj if and only if there exists
τi′ , where i′ 6= i, such that τi′

πj−→ τi. These orders are called
proper if the following conditions hold.

∀i, j : τi ∈ τπj if and only if f(τi, πj) > 0 (12)
∀i : task τi can be non-first task on at most one core (13)
∀i : if task τi is non-first on core πj ,

then for every πj′ ≺ πj , τi /∈ τπj′ (14)

Example 8. It is straightforward to verify that (12)–(14) hold
for the orders in Fig. 5c. Thus, these orders are proper.

Lemma 6. If Alg. 1 is provided proper orders, then a valid
extended frame is returned.

Proof. Alg. 1 places at most one allocation interval for each
task on any core, so (7) holds. The algorithm also ensures
that if multiple allocation intervals are placed on some core,
then each successive interval begins when the immediately
prior one ends, so (9) holds. By (12), the algorithm places
an interval of size f(τi, πj) on πj whenever f(τi, πj) > 0
holds, so (10) holds. (13) and (14) ensure that, if task τi has
allocation intervals placed on different cores, then it can be
a non-first task only on the first (by ≺) of these cores. Thus,
Alg. 1 ensures that these allocation intervals are contiguous,
so (8) and (11) hold.

Algorithm 2 Proper-Orders Generator
Require: acyclic share graph SG(τ)
Ensure: proper core/task orders

1: run BFS(SG(τ)) . breadth-first search of SG(τ)
. Every connected component of SG(τ) is searched starting

with an arbitrary vertex
2: define cores order, ≺, by ordering cores according to their BFS

discovery times
3: for πj ∈ cores order do
4: τπj ← {τi | f(τi, πj) 6= 0}
5: define the task order for πj ,

πj−→:
6: if πj is discovered in BSF by traversing the edge (τi, πj)
7: then place τi first
8: order other tasks in τπj arbitrarily, after τi (if it exists)

Generating proper orders. The final issue that remains is
actually generating proper cores/tasks orders. For this, we
provide Alg. 2. (Note that, if SG(τ) is not connected, then
we assume that the breadth-first-search routine searches every
connected component.)

Theorem 2. If SG(τ) is acyclic, then Alg. 2 produces orders
that are proper.

Proof. Line 4 of Alg. 2 ensures that (12) holds. In the rest of
the proof, we verify the remaining properies, (13) and (14).
We assume that all vertices and edges referenced in verifying
these properties are part of the same connected component of
SG(τ).

Assume, to the contrary of (13), that τi is a non-first task on
two distinct cores, πj and πj′ . Then, SG(τ) has edges (τi, πj)
and (τi, πj′). Furthermore, πj and πj′ were discovered before
τi. Without loss of generality, assume that πj was discovered
first. Then, there exists a path πj  πj′ that does not include
τi. Thus, we have a cycle, πj  πj′ → τi → πj , which is a
contradiction.

Finally, assume to the contrary of (14), that τi is non-first
on core πj , but core πj′ exists such that πj′ ≺ πj and τi ∈
τπj′ . Because πj′ ≺ πj holds, πj′ was discovered before πj .
Because τi ∈ τπj′ , the edge (τi, πj′) exists. Cores are not
connected by edges in SG(τ), so these facts imply that τi
was discovered before πj . Because τi was selected as a non-
first task on core πj , the edge (τi, πj) exists. It follows that πj
would have been discovered by traversing that edge, making
τi the first-ordered task on core πj , which is a contraction.

B. Scheduler

We summarize our results so far by presenting Alg. 3, our
algorithm for scheduling task sets with acyclic affinity masks.
In referring to a schedule produced by this algorithm, we call a
task migrating if it has allocations on multiple cores and fixed
otherwise. We present analysis pertaining to this scheduler
below, after first providing an example that illustrates how
it works.

Example 9. Consider the task set from Ex. 1 with f(τi, πj)
values from Ex. 5 and the (valid) frame F shown in Fig. 4b.



Algorithm 3 Acyclic Scheduler
Require: τ, frame len

1: function FEASIBILITYCHECK(τ ) . Sec. III-B
2: construct flow network FN (τ)
3: compute max flow f with respect to FN (τ)
4: if |f | = U then return f . MF Test
5: else return ⊥ . τ is infeasible
6: function GENERATEFRAME(τ, frame len, f ) . Sec. IV-A
7: run Alg. 2 to get proper core/task orders
8: run Alg. 1 to build a valid extended frame E
9: apply the transformation of Lemma 5 to E

to obtain a valid frame F with |F | = frame len
10: return F
11: function SCHEDULER(τ, frame len)
12: f ← FEASIBILITYCHECK(τ )
13: if f 6= ⊥ then
14: F ← GENERATEFRAME(τ, frame len, f )
15: repeat the allocations in F every |F | time units, letting

the jobs of each task τ execute within the allocation
intervals for τ in release-time order

Fig. 6 shows how several jobs of the sporadic migrating task
τ3 are scheduled under Alg. 3 assuming T3 = 1.25 · |F | = 10.
The core label within each allocation interval indicates the
core upon which τ3 is scheduled.

Frame-based schedulers were first studied years ago [25].
More recently, several frame-based semi-partitioned sched-
ulers have been proposed, [6], [18], [27], [31], but none
support affinities. Our frame-based scheduler draws inspiration
from one of these [31], but that scheduler is directed at uniform
heterogeneous multiprocessors.

C. Analysis

In this section, we analyze Alg. 3 from the perspectives of
task migrations, optimality, and time complexity.
Migrations. Let M denote the number of migrating tasks in
Alg. 3. The following theorem shows that Alg. 3 limits M
in accordance with the idea of semi-partitioned scheduling,
where the goal usually is to have M = O(m).

Theorem 3. M ≤ m− 1.

Proof. By assumption, SG(τi) is acyclic, which implies that
it has at most n+m−1 edges. M migrating tasks have at least
2M incident edges. Thus, the number of edges incident upon
fixed tasks is at most n + m − 1 − 2M . Each fixed task has
one incident edge (if the task set is feasible). It follows that at
most n+m− 1− 2M tasks are fixed. Because n is the total
number of tasks, we therefore have n ≤M+n+m−1−2M ,
implying M ≤ m− 1.

We now prove several migration-related bounds, all of
which are tight, i.e., task sets can be defined for which exactly
these bounds hold. In proving these bounds, we let F be the
(valid) frame used by Alg. 3, and let deg(τi) denote the degree
of τi in SG(τ). When we refer below to an allocation interval
for a task τi, we mean a maximal continuous interval during
which τi is allocated capacity on one core.

Lemma 7. τi has at most deg(τi) + 1 allocation intervals in F .

Proof. It is straightforward to show that, in the valid extended
frame E that is used to obtain F , task τi has at most deg(τi)
allocation intervals. Using (7)–(11), it is easy to show that
these intervals occupy a continuous time window of length
at most |F |. Thus, when this interval is “wrapped” (see
Lemma 5) to produce F , at most one of these intervals is
split into two subintervals (e.g., task τ3 on core π2 in Fig. 6).
The stated bound follows.

Theorem 4. The overall number of migrations within F is at
most 2m− 2.

Proof. Let τM denote the set of migrating tasks. To compute
the overall number of migrations, we consider only these
tasks. By Lemma 7, each such task has at most deg(τi) + 1
allocation intervals in F . This yields a bound of deg(τi)
for the number of migrations by τi in F because a task’s
first allocation interval does not entail a migration. Recall
(from the proof of Theorem 3) that SG(τ) has at most
n+m− 1 edges. Thus, the total number of migrations within
F is at most

∑
τi∈τM deg(τi) = no. of edges in SG(τ) −∑

τi /∈τM deg(τi) ≤ n + m − 1 − (n −M) = m − 1 + M,
which by Theorem 3, is at most 2m− 2.

Theorem 5. Within any continuous time interval of length L,
task τi has at most dL/|F |e·deg(τi) migrations, and the overall
number of migrations is at most dL/|F |e · (2m− 2).

Proof. As discussed in the proof of Lemma 7, when “wrap-
ping” the extended frame E to get F , a task τi has at most
one allocation interval that is split. If it has zero (e.g., task τ4
in Fig. 4b), then its first and last allocations per frame are for
different cores, while if it has one (e.g., task τ3 on core π2
in Fig. 6), they are for the same core. Thus, with zero split
allocations, inter-frame migrations can occur, while with one,
they cannot. Hence, reasoning as in the proofs of Lemma 7
and Theorem 4, when accounting for both intra- and inter-
frame migrations, we have at most deg(τi) migrations for τi
per frame and at most 2m− 2 per frame overall. Thus, within
L, τi experiences at most dL/|F |e·deg(τi) migrations, and the
overall number of migrations is at most dL/|F |e(2m−2).

Optimality. The next lemma shows that each task receives a
long-term processor share equal to its utilization. We use this
lemma in showing that Alg. 3 is optimal below.

Lemma 8. Task τi receives a total allocation of at least Ui · |F | ·
bL/|F |c during any interval of length L.

Proof. During an interval of length |F |, τi receives an alloca-
tion of Ui · |F |. (Note that, if such an interval begins within
a frame, then the missing part of that frame is compensated
for by the beginning of the next frame—recall that all frames
are identical.) During an interval of length L, at least bL/|F |c
complete intervals of length |F | occur.
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Theorem 6. Alg. 3 is SRT-optimal and ensures a tardiness
bound of |F |. Moreover, if |F | divides all periods, then it is
HRT-optimal.

Proof. Consider a job Ji,s that is released at time tr and has
a deadline at time td. Let t be the last time instant at or before
tr such that no job of τi released prior t is unfinished at t. Let
k be number of jobs of τi released in [t, td). Then, because τi
has a deadline at td, we have td−t ≥ kTi. Thus, by Lemma 8,
the total processor allocation received by τi during [t, td+|F |)
is at least

Ui · |F | ·
⌊
td + |F | − t
|F |

⌋
≥ Ui · |F | ·

⌊
k · Ti
|F |

+ 1

⌋
≥

≥ Ui · |F | ·
⌈
k · Ti
|F |

⌉
≥ Ui · |F | ·

(
k · Ti
|F |

)
= k · Ci.

This implies that Ji,s completes by time td+|F |, i.e., Alg. 3
is SRT-optimal and ensures a tardiness bound of |F |.

If |F | divides all task periods, then similar reasoning can
be applied, but this time with respect to the interval [t, td).
Because |F | divides Ti, by Lemma 8, the total processor
allocation received by τi during this interval is at least

Ui · |F | ·
⌊
td − t
|F |

⌋
≥ Ui · |F | ·

⌊
k · Ti
|F |

⌋
= Ui · |F | ·

k · Ti
|F |

= Ui · |F | ·
(
k · Ti
|F |

)
= k · Ci.

This implies that Ji,s completes with zero tardiness and that
Alg. 3 is HRT-optimal.

Time complexity. It is straightforward to show that Algs. 1
and 2 each can be implemented in O(m + n) time (under
the assumpion of correct input). In contrast, the most efficient
known max-flow algorithms require super-linear time. Thus,
the time complexity required by Alg. 3 to find a valid frame
is dominated by that of the max-flow algorithm that is used.
Lee et al. [19] have presented a max-flow algorithm that has
time complexity Õ(mn

√
m+ n) for an arbitrary AG(τ) and

Õ((m+n)3/2) in our setting (the number of edges in an acyclic
AG(τ) is limited by (m+ n− 1)), giving us the following.

Theorem 7. For any feasible task set τ with acyclic ατ , Alg. 3
can produce a valid frame F in Õ((m+ n)3/2) time.

Bonifaci et al. [9] claim that semi-partitioned and hierarchi-
cal scheduling with affinity masks is NP-hard to approximate.
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Fig. 7: Share graph for Ex. 10. (For clarity, task-to-core edges are solid and
core-to-task edges are dashed.)

Their work does not contradict Theorem 7 because it is
directed at a completely different context, namely, one-shot
jobs and makespan minimization.

V. ARBITRARY AFFINITY MASKS

In this section, we show that arbitrary affinities can be dealt
with by eliminating any cycles that may exist in SG(τ). First,
we show how to remove a single cycle from SG(τ).
Cycle removal procedure. Because SG(τ) is bipartite, any
cycle is of the form τi1→ πj1 → τi2 → πj2 → ... → πjk →
τi1 . Let fm = min(f(τi1 , πj2), f(τi2 , πj1), ..., f(τi1 , πjk)),
i.e., fm is the minimal f value of any task-to-core edge in
this cycle. Then, we can eliminate the cycle by decreasing the
f value of each core-to-task edge by fm and by increasing
the f value of each task-to-core edge by fm. This eliminates
all cycle edges with f values of fm. As a result, the cycle is
eliminated because at least one of its edges is removed (recall
that all edges have non-zero weights in SG(τ)). Note that
this procedure does not change

∑
τi
f(τi, πj) for any πj or∑

πj
f(τi, πj) for any τi. Thus, all conditions of Lemma 4

hold for f .

Example 10. Applying this cycle-removal procedure to the
share graph in Fig. 7a, we have fm = 0.1, and the share
graph in Fig. 7b results.

Now that we have a procedure for eliminating cycles, we
need a means for finding them. A breadth-first-search routine
can do this, as seen in Alg. 4. It is easy to see that this
algorithm produces an acyclic share graph: it does not add
any new edges, so it cannot create any new cycles; also, any
cycle initially in SG(τ) will be found by BFS and removed.

To determine the time complexity of Alg. 4, note that each
invocation of the BFS routine requires O(E) time, where E



Algorithm 4 Affinity-Reduction Algorithm
Require: f

1: construct SG(τ)
2: for τi ∈ τ do
3: while true do . process connected comp. (cc) of SG(τ)
4: Run BFS(τi)
5: if BFS found a cycle in SG(τ) then
6: remove edge(s) from the cycle using the procedure

described earlier and illustrated in Ex. 10
7: else . no more cycles in this cc of SG(τ)
8: break while
9: return obtained f

Algorithm 5 AM-Red Scheduler
Require: τ, frame len

1: function FEASIBILITYCHECK(τ ) . Sec. III-B
2: construct flow network FN (τ)
3: compute max flow f with respect to FN (τ)
4: if |f | = U then return f . MF Test
5: else return ⊥ . τ is infeasible
6: function GENERATEFRAME(τ, frame len, f ) . Sec. IV-A
7: run Alg. 2 to get proper core/task orders
8: run Alg. 1 to build a valid extended frame E
9: apply the transformation of Lemma 5 to E

to obtain a valid frame F with |F | = frame len
10: return F
11: function GETFLOW(τ )
12: f ← FEASIBILITYCHECK(τ )
13: run Alg. 4 to obtain acyclic f values
14: return f

15: function SCHEDULER(τ, frame len)
16: f ← GETFLOW(τ )
17: if f 6= ⊥ then
18: F ← GENERATEFRAME(τ, frame len, f )
19: repeat the allocations in F every |F | time units, letting

the jobs of each task τ execute within the allocation
intervals for τ in release-time order

is the number of edges in the initial graph SG(τ). In our
context, E is upper bounded by the number of edges in AG(τ),
which is O(mn). The BFS routine is invoked O(E+n) times,
because each invocation removes at least one edge or moves
to a new task. The edge-removal procedure itself (illustrated
in Ex. 10) requires O(m) time. From this discussion, we have
the following theorem.

Theorem 8. Alg. 4 transforms SG(τ) into acyclic graph. Its
time complexity is O(m2n2) generally, and O(n2) if the num-
ber of edges in AG(τ) is linear.

Algorithm AM-Red. We are finally in a position to present the
main contribution of this paper, algorithm AM-Red (Alg. 5). It
is obtained by applying the various algorithms presented in this
paper as building blocks in the expected way. The following
theorem combines the results of Theorems 3, 4, 6, 7, and 8.

Theorem 9. For any feasible task set τ , AM-Red produces a
valid frame F in O(m2n2) time; it ensures that at most m − 1
tasks migrate and that at most 2m − 2 migrations occur per
frame; it is SRT-optimal with a tardiness bound of |F |; if F
divides all periods, then it is also HRT-optimal.

VI. HIERARCHICAL MASKS

In this section, we show that the relatively high time
complexity of the MF Test and affinity reduction (Alg. 4),
which dominates the time complexity of AM-Red (Alg. 5), can
be avoided if ατ is hierarchical. To facilitate showing this, we
assume that tasks are indexed such that i ≤ j ⇒ |αi| ≤ |αj |.
We call this ordering canonical order. For now, we assume
this ordering is initially provided. Later we consider the time
complexity to obtain it if not initially provided.

We now establish a simpler feasibility test when ατ is hier-
archical. To facilitate our description of this test, we introduce
some new terminology. We say that task τi is nested within
task τj if and only if i ≤ j and αi ⊆ αj . It is easy to see that
the “nested within” relation is transitive. We denote the set of
tasks nested within τi as Ni (note that τi ∈ Ni). Observe that,
if τi is nested within τj , then Ni ⊂ Nj by transitivity. For any
task τi, we define its utilization closure as U∗i =

∑
τj∈Ni

Uj .
We call a task τi maximal if it is not nested within any other
task τj with the same affinity mask, where j ≥ i. For any task
τi, we let Ai denote the set of tasks with the same affinity
mask (note that τi ∈ Ai); we say that these tasks agree with
τi. Note that the last task in Ai (in canonical order) is maximal.
For τ ′ ⊆ τ , we let X(τ ′) denote the set of all maximal tasks
in
⋃
τi∈τ ′ Ai, and we let X̂(τ ′) denote those tasks in X(τ ′)

at the “top” of the nesting hierarchy, i.e., X̂(τ ′) = {τi : τi ∈
X(τ ′) ∧ τi is not nested within any other task in X(τ ′)}.
Note that distinct tasks in X̂(τ ′) have disjoint masks.

Example 11. Consider task set τ from Ex. 2. Its affinity graph
is shown in Fig. 1b. Consider the canonical order τ1, τ4, τ2, τ3.
(When reasoning abstractly, we assume this ordering is con-
sistent with task indices, as noted above.) Then, N1 = {τ1},
N2 = {τ1, τ2}, N3 = {τ1, τ2, τ3}, and N4 = {τ4}. Also,
A1 = {τ1}, A2 = A3 = {τ2, τ3}, and A4 = {τ4}. Tasks τ1,
τ3, and τ4 are maximal, but task τ2 is not since it is nested
within τ3. For τ ′ = {τ1, τ2, τ4}, X(τ ′) = {τ1, τ3, τ4} and
X̂(τ ′) = {τ3, τ4}. Note that τ3 and τ4 have disjoint masks.

Lemma 9. For any τi ∈ τ ′, τi is nested within some task in
X(τ ′) and also X̂(τ ′).

Proof. Any task in X(τ ′) is nested within some task in X̂(τ ′),
so we can limit attention to X(τ ′). If τi ∈ τ ′ and τi itself is
not maximal, then it is nested within another task τj with the
same mask that is maximal. Because τi ∈ τ ′, τj ∈ X(τ ′).

The simplified feasibility condition we require is as follows.

Nested Balance: For any maximal task τi : U∗i ≤ |αi|.

Lemma 10. For any hierarchical ατ Utilization Balance (UB)
and Nested Balance (NB) are equivalent.

Proof. It is easy to show UB ⇒ NB: if UB holds, then by
considering τ ′ = Ni in that condition, NB easily follows. In
the rest of the proof, we focus on showing NB⇒ UB.

Consider any τ ′ ⊆ τ and any task τi ∈ τ ′. By Lemma 9, τi
is nested within some task in X̂(τ ′). Thus, τ ′ ⊆

⋃
τj∈X̂(τ ′)Nj ,

which implies Uτ ′ ≤
∑
τj∈X̂(τ ′) U

∗
j . By NB,

∑
τj∈X̂(τ ′) U

∗
j ≤



Algorithm 6 Nested Balance Test
Require: τ (in canonical order)

1: cap[j] = 0 . capacity used on each core, bounded by one
2: for τi ∈ τ do
3: r ← Ui . r is remaining unallocated utilization of τi
4: while πj from αi with cap[j] < 1 exists and r > 0 do
5: f(τi, πj)← min(1− cap[j], r)
6: r ← r − f(τi, πj)
7: cap[j]← cap[j] + f(τi, πj)

8: if r > 0 then return ⊥ . Nested Balance is violated
9: else any non-defined f(τi, πj) value is considered to be 0

∑
τj∈X̂(τ ′) |αj |. As observed earlier, all tasks from X̂(τ ′)

have disjoint masks. Moreover, the cores included in these
masks are exactly the same as those included in ατ ′ . Hence,∑
τj∈X̂(τ ′) |αj | = |ατ ′ |. Putting these facts together, we have

Uτ ′ ≤
∑
τj∈X̂(τ ′) U

∗
j ≤ |ατ ′ |.

Having established a simpler feasibility condition, it remains
to show it can be efficiently computed. Alg. 6 does this while
also returning all needed non-zero f(τi, πj) values. On each
loop iteration (considering each task τi in turn), the algorithm
fills core πj fully or fully allocates to τi its utilization Ui.
Analysis. We now show that Alg. 6 is correct.

Theorem 10. Alg. 6 returns f(τi, πj) values satisfying (2)-(4)
if and only if τ satisfies Nested Balance.

Proof. Establishing the algorithm’s correctness when it does
not return ⊥ for τ is straightforward, so we focus on the
other possibility, i.e., it returns ⊥ when considering some
task τi in τ . Because tasks are processed in canonical order,
by the time τi is considered, all tasks from Ni/{τi} have
already been dealt with and no task with a larger mask has
yet been considered. Thus, the cores in αi could only have
been allocated to tasks in Ni. If we cannot allocate τi, then
U∗i =

∑
τj∈Ni

Uj > |αi|. If τi is maximal, then Nested
Balance is violated (and hence, by Theorem 1 and Lemma 10,
τ is infeasible). Otherwise, there exists a maximal task τk
with the same mask as τi but ordered after τi. In this case,
Ni ⊂ Nk, so U∗k > U∗i > |αi| = |αk|. Therefore, Nested
Balance is violated in this case as well.

Theorem 11. Alg. 6 completes in O(m+ n) time. Thus, if ατ
is hierarchical, tasks are indexed in canonical order, and Alg.
6 is used in place of the GETFLOW function in AM-Red, then
AM-Red produces a valid frame in O(m+ n) time.

Proof. During each while-loop iteration, either some core
πj becomes fully allocated (cap[j] becomes one), or the
current task becomes fully allocated (r becomes zero), or ⊥
is returned. Each of these possibilities may happen only once.
This implies that the total number of iterations of Alg. 6 is at
most m+ n.

If ατ is hierarchical, then only O(m) unique affinity masks
may exist [26, Theorem 3.5]. Thus, only O(m + n) space
is required to provide canonically ordered tasks as input, as
each task merely requires a pointer to one of the O(m) masks

Fig. 8: Scheduling and other OS overheads for AM-Red. Various percentiles
are given, as well as averages and medians, as computed over all collected
overhead values in each category.

that may exist. If canonical order cannot be pre-assumed, then
tasks must be sorted so they are so ordered. This can be done
in O(m logm+ n) time: the masks themselves can be sorted
in O(m logm) time, and all per-task mask pointers can be
updated in O(n) time. If one takes the core count m to be a
constant (which is a reasonable assumption), then the masks
can be sorted in O(1) time and the total time complexity
required to put tasks into canonical order is only O(n).

Example task sets can easily be constructed that have Ω(m)
distinct hierarchical masks. Because any feasibility test must
consider these masks and all tasks, it follows that the O(m+n)
time complexity shown above is asymptotically optimal.

VII. EXPERIMENTAL EVALUATION

This paper is mostly directed at the theoretical aspects of
scheduling with affinity masks. In this section, we experimen-
tally evaluate the culmination of this theory, AM-Red, on the
basis of overheads and tardiness.

Relevant overheads can be placed into three groups:
scheduling overhead (due to invocations of the sched-
uler), other OS-related overheads (interrupt handling, context
switches, etc.), and cache-related preemption and migration
delays (CPMDs) (caused by cache-affinity loss due to preemp-
tions and migrations). To assess scheduling and OS overheads,
we implemented AM-Red in LITMUSRT [1] and measured
these overheads on a 24-core Intel Xeon system. The results
we obtained are summarized in Fig. 8. Given the small
magnitude of these overheads, they can be easily factored into
task execution times when applying AM-Red.

CPMDs can be much larger [10, p. 325] and hinge on
task-specific characteristics pertaining to memory usage that
would require a more involved study than is possible to fully
consider given space constraints. In AM-Red, such overheads
are heavily tied to the frequency of task migrations, so to
provide a sense of the impact of CPMDs, we conducted
experiments in which migration frequency was assessed.

While it would be desirable to compare migration frequency
under AM-Red to a range of other algorithms, there is a dearth
of prior algorithms capable of handling affinity masks to which
to compare. Given this, we compared AM-Red to HPA-EDF,
the scheduler proposed in [8]. In this comparison, we were
forced to limit attention to hierarchical masks, as HPA-EDF
requires this. Because migration frequency hinges only on
algorithmic properties, we based our comparison on computed
schedules, rather than actual scheduler implementations. As
|F | is tunable parameter, we considered three different ways of
choosing it, resulting in three AM-Red variants: AM-Red-min,



(a) Only light tasks. (b) Mostly heavy tasks.

Fig. 9: Total number of migrations (×1000) under AM-Red and HPA-EDF,
averaged over the generated task sets, as a function of relative system
utilization.

for which |F | = min{Ti}; AM-Red-avg, for which |F | =
average{Ti}; and AM-Red-max, for which |F | = max{Ti}.
Input-data generation. To assess migration frequency, we
randomly generated sporadic task sets for a 16-core platform
(so m = 16), with task periods selected from the range
[40ms, 100ms]. Due to space limitations, we consider only two
categories of tasks here: light tasks with Ui ∈ (0.0, 0.3), and
heavy tasks with Ui ∈ [0.7, 1.0). We generated (hierarchical)
masks independently of tasks using a process that produced
masks for which the number of nesting levels ranged from
approximately logm to m− 1 (the maximum possible level).
We discarded any non-feasible task sets that were generated.
Migrations. We recorded, for both schedulers, the number of
task migrations over an interval of length 100s as a function
of relative system utilization. The relative system utilization
of a task set is its total utilization divided by the number of
cores. Results can be found in Fig. 9. Compared to HPA-EDF,
the curves shown here for the AM-Red variants are largely
unaffected by the range of task utilizations (compare insets
(a) and (b) of Fig. 9). In contrast, HPA-EDF exhibits many
more migrations for light task sets, which tend to have more
tasks. (A semi-partitioned scheduler such as AM-Red limits
migrations for such a task set.) Also, the curves for AM-Red-
avg and AM-Red-max are significantly lower than those for
HPA-EDF. Those for AM-Red-min start out lower, but in
inset (b), eventually cross and become higher as relative
system utilization nears 1.0.
Tardiness. In addition to migration frequency, we also as-
sessed maximum observed tardiness. Results can be found in
Fig. 10. The curves shown here for the AM-Red variants are
largely unaffected by the range of task utilizations (compare
insets (a) and (b) of Fig. 10). Also, each of these curves
plateaus and remains steady beyond a certain relative system
utilization value. In contrast, the curve for HPA-EDF is higher
for larger task utilizations. Also, each HPA-EDF curve sharply
increases as relative system utilization nears 1.0. As seen,
tardiness tends to be predictably low only under AM-Red-
min. However, from Fig. 9, this feature comes at the expense
of more migrations in the case of heavy task sets with high
utilizations, which is not surprising.

We conclude by reminding the reader that HPA-EDF works
only for hierarchical masks and has no schedulability test.

(a) Only light tasks. (b) Mostly heavy tasks.

Fig. 10: Maximum tardiness, averaged over the generated task sets, as a
function of relative system utilization.

A more exhaustive experimental study could have considered
other schedulers that allow arbitrary affinity masks, notably
those presented in [7], [11] and [20]. However, doing so
proved problematic given space constraints. Moreover, [11]
and [20] provide no optimality claims or schedulability test.
[7] gives an HRT-optimal arbitrary-affinity scheduler, but its
time complexity and characteristics depend on a specific LP
solver property. Thus, the choice of solver adds an additional
level of uncertainty, and the fastest solvers may not have the
required property. Additionally, the scheduler presented in [7]
is merely a fluid scheduler; converting it to a version that could
be reasonably applied in practice would (seemingly) require
clairvoyance, as discussed earlier in Sec. I.

VIII. CONCLUSION

We have presented AM-Red, the first (non-clairvoyant)
optimal scheduler for implicit-deadline sporadic task sets
assuming arbitrary processor affinity masks. We showed that
AM-Red is SRT-optimal, with a tardiness bound of |F |, and
that it is HRT-optimal if |F | divides the smallest task period.
We also presented analysis concerning task-migration fre-
quency and time complexity. In the special case of hierarchical
masks, we showed that AM-Red can be refined to find a valid
frame in O(m+ n) time, which is asymptotically optimal.

In other work that we omit due to space constraints, we have
shown that the time complexity for frame construction can be
reduced in other special cases. For example, for acyclic graphs,
it can be reduced to O(m+n), which again is asymptotically
optimal, using techniques similar to those discussed in Sec. VI.
If masks are restricted in length, then it can also be reduced
due to the internal structure of the affinity graph.

In future work, we intend to adapt AM-Red for heteroge-
neous multiprocessors, which are becoming more common in
practice. Also, although the number of migrating tasks under
AM-Red is generally optimal (i.e., task sets exist for which
m − 1 migrating tasks are fundamental, matching the bound
in Theorem 3), we wish to find a way to reduce the number
of migrating tasks to within a constant factor of that opti-
mally required for each specific task set under consideration.
Finally, while our focus in this paper has been semi-partitioned
scheduling, global scheduling warrants consideration.
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