
OpenVX and Real-Time Certification:
The Troublesome History
Tanya Amert, Sergey Voronov, and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill

Abstract—Many computer-vision (CV) applications used in
autonomous vehicles rely on historical results, which introduce
cycles in processing graphs. However, existing response-time anal-
ysis breaks down in the presence of cycles, either by failing com-
pletely or by drastically sacrificing parallelism or CV accuracy.
To address this situation, this paper presents a new graph-based
task model, based on the recently ratified OpenVX standard,
that includes historical requirements and their induced cycles as
first-class concepts. Using this model, response-time bounds for
graphs that may contain cycles are derived. These bounds expose
a tradeoff between responsiveness and CV accuracy that hinges
on the extent of allowed parallelism. This tradeoff is illustrated
via a CV case study involving pedestrian tracking. In this case
study, the methods proposed in this paper enabled significant
improvements in both analytical and observed response times,
with acceptable CV accuracy, compared to prior methods.

I. INTRODUCTION

In semi- or fully autonomous advanced driver-assist systems
(ADASs), computer-vision (CV) algorithms are often used to
provide much of the safety-critical sensor-based processing.
To facilitate the development of these algorithms, the OpenVX
standard was ratified in 2014 [37]. OpenVX, which specifically
targets heterogeneous embedded hardware, allows program-
mers to specify CV algorithms as dataflow graphs by inter-
connecting high-level CV primitives. While such an approach
eases the design of CV algorithms, the OpenVX API has a
glaring omission: it completely ignores real-time concerns.
This omission has led to recent work directed at applying real-
time scheduling principles to OpenVX graphs and producing
response-time bounds for such graphs [14, 42–44].

Unfortunately, prior OpenVX response-time analysis breaks
down in the presence of cycles, either by failing completely or
by drastically sacrificing parallelism or CV accuracy. This is
a critical shortcoming, because actual ADAS CV processing
graphs often have cycles due to historical dependencies. For
example, pedestrian tracking entails predicting future pedes-
trian positions from their prior trajectories. In order to be able
to certify CV applications as used in ADASs, response-time
analysis for cyclic OpenVX graphs is needed. If this problem
is not addressed, these workloads cannot be certified.

In this paper, we address this problem by presenting the
first ever response-time analysis for cyclic OpenVX graphs
that does not require conservative methods that obviate cycles
in simplistic ways at the price of degrading CV accuracy or
schedulability. Our work specifically targets multicore plat-
forms augmented with graphics processing units (GPUs)—
arguably the most commonly considered type of hardware

platform in work involving OpenVX. Before describing what
we mean by “conservative methods,” and how we avoid them,
we first provide an overview of prior work.

Prior work. A number of methods exist for modeling dataflow
applications [5, 7, 8, 21, 22, 36, 40]. Generally, these methods
specify computations as processing graphs, with tasks corre-
sponding to graph nodes, and edges indicating precedence rela-
tionships between tasks. The real-time scheduling and analysis
of such graphs, both on uniprocessors and multiprocessors,
has been extensively studied; representative publications in-
clude [1–4, 11, 13, 14, 17–20, 25–29, 31–35, 39, 41–44].

Of the just-cited papers, three [14, 42, 44] warrant further
scrutiny: they are the only ones to consider OpenVX graphs,
and one of them [42] is the only prior work to consider
response-time bounds for cyclic multicore graphs. Two of
these papers, by Elliott et al. [14] and by K. Yang et al. [42],
are companion papers, focusing on implementation and anal-
ysis, respectively. K. Yang et al. proposed two techniques for
breaking cycles. First, they noted that any back edge in a
graph that feeds history information to its target task that is
so “old” that cycle-oblivious real-time scheduling ensures the
precedence constraint anyway can simply be removed. How-
ever, in any CV algorithm that provides reasonable accuracy,
such “old” history information would likely be of little use.
Second, they showed that a given cycle can be broken by
combining all of its nodes into a single sequential supernode.
This technique can be applied to convert any OpenVX graph
into a DAG. K. Yang et al. showed that a response-time bound
can be computed for such a DAG by transforming it to an
“equivalent” set of independent sporadic tasks, as done in
earlier work by Liu and Anderson on DAGs generally [25].
However, this transformation process requires the utilization
of each node (i.e., task) to be at most 1.0, a restriction that
can be easily violated by a supernode.

More recently, M. Yang et al. [44] proposed altering the
transformation process above by converting to a sporadic task
set that allows intra-task parallelism (i.e., multiple jobs of
the same task may execute concurrently), as done in earlier
work [15, 43] not pertaining to OpenVX. M. Yang et al.
showed that such parallelism enables much lower response-
time bounds for OpenVX graphs. However, parallel node exe-
cution breaks the supernode idea, so they expressly considered
cycles to be out of scope.

Contributions. We extend the prior transformation-based
methods discussed above [14, 42, 44] to enable the real-time

Coarse-Grained
OpenVX Graph 𝐺𝑖

Fine-Grained
OpenVX Graph 𝐺𝑖

Sporadic Task
Graph Γ𝑖

Sporadic Task
DAG 𝜏𝑖

Sporadic Task
Set 𝜏𝑖

Step 1 Step 2 Step 3 Step 4
(a) Sequential

(b) Full parallelism

(c) Restricted parallelism

Fig. 1: The transformation from an OpenVX graph to a sporadic task set; different models of sporadic task sets provide varying
intra-task parallelism (labeled (a)-(c)). Steps 1, 2-3, and 4 come from [44], [42], and [32], respectively.

certification of arbitrary OpenVX graphs on multicore+GPU
platforms. We make three key contributions.

First, we extend the transformation process of M. Yang
et al. [44] to deal with cyclic graphs. Our key insight here
is based upon a property of the sporadic task model with
intra-task parallelism: under this model, per-task response-time
bounds can be computed without requiring task utilizations to
be at most 1.0. This fact suggests a way forward for handling
arbitrary supernodes. While (as noted earlier) parallelism
breaks the supernode idea, we show that it can be allowed
if back edges can supply slightly older history information.
In fact, we will show that, for any schedulable system of
graphs, the degree of parallelism that can be allowed, the age
of history information, and the response-time bounds that can
be guaranteed are all closely linked. Loosely speaking, older
history information allows for increased parallelism and lower
response-time bounds; insisting on the most recent possible
history information can kill parallelism and result in an un-
schedulable graph. The designers of CV algorithms should be
aware of these tradeoffs when constucting OpenVX graphs.
In particular, they should set history age requirements so that
both CV accuracy and response-time bounds are acceptable.

From a schedulability point of view, setting history age
requirements equates to specifying an allowed degree of
parallelism in processing a cycle. Thus, we need as the end
point of our transformation process a sporadic task model
wherein the allowed intra-task parallelism is a per-task settable
parameter. Our second key contribution involves defining such
a task model, namely the rp-sporadic task model (restricted
parallelism), and presenting response-time analysis for it.

Though analytically interesting, it remains to be seen
whether the parallelism/accuracy/response-time tradeoffs en-
abled by our work are worthwhile to consider from the
perspective of a CV algorithm designer. As a final contribution,
we present an assessment of this issue via a case study
involving pedestrian tracking. In this study, we consider an
OpenVX graph that is actually unschedulable as originally
specified and show the effects of increasing parallelism. We
found that we were able to bound response times for this graph
if intra-task parallelism is enabled, with only a minor accuracy
drop compared to the original unschedulable graph (which has
the highest accuracy but unbounded response times).

Generality. Although we focus on OpenVX as our motivation,
the rp-sporadic task model and the derived response-time anal-
ysis are applicable to any application that can be specified as a
sporadic task graph containing cycles, as Fig. 1 (discussed in
Sec. II) implies. Such graphs may arise in many contexts, such
as control, motion planning, and recurrent neural networks; if
the utilization of a cycle is greater than 1.0, prior work cannot

provide response-time bounds for these graphs.

Organization. In the rest of this paper, we describe our new
transformation process (Sec. II), present the rp-sporadic task
model (Sec. III) and response-time analysis under it (Sec. IV),
discuss our case study (Sec. V), and conclude (Sec. VI).

II. TRANSFORMATION PROCESS

Prior work has shown how to transform an OpenVX graph
into an “equivalent” set of independent sporadic tasks [32, 42,
44], for which response-time analysis exists [10, 15, 16, 23–
25]. This process is depicted in Fig. 1. However, Step 3, as
originally proposed [42], requires that the utilization of each
cycle is at most 1.0.

In this section, we illustrate the existing transformation steps
and discuss the implications of no or full intra-task parallelism
(choices (a) and (b) in Fig. 1). We then describe how we
augment Steps 2-4 to allow restricted parallelism, enabling
this approach for graphs containing cycles of any utilization.

A. OpenVX
In OpenVX, primitives and the data objects upon which they

operate comprise a bipartite graph [38]. An OpenVX graph Gi
contains data objects Di

1, . . . , D
i
yi and nodes N i

1, . . . , N
i
zi . An

edge
(
N i
v, D

i
w

)
corresponds to a data object Di

w that is written
by node N i

v , and
(
Di
w, N

i
v

)
corresponds to a data object read

by node N i
v . Data objects can optionally be delay objects,

indicating that the data from prior time steps must be buffered
for later use. Associated with each delay object is a value
indicating the age, in time steps, of the data.

To simplify analysis, we assume that each graph has a single
source node and a single sink node. (If this is not the case,
then a single “virtual” source and/or sink can be added.) For
all graphs we consider, we assume that the first indexed node
(N i

1 for an OpenVX graph Gi) is the source.
Ex. 1. An example OpenVX graph G1 is shown in Fig. 2. In
this figure, rectangles correspond to data objects, D1

1, . . . , D
1
8 ,

and round nodes indicate primitives, N1
1 , . . . , N

1
4 , that act on

them. There are three delay objects, D1
3 , D1

5 , and D1
6 , with

delay values 1, 3, and 2, respectively. ♦
The OpenVX standard specifies a series of rules for pro-

cessing graphs [38]. The rules relevant to our work are:
1) Single Writer: Every data object has at most one incom-

ing edge.
2) Broken Cycles: Every cycle in Gi must contain at least

one input edge
(
Di
w, N

i
v

)
where Di

w is a delay object.

Ex. 1 (cont’d). In G1, every data object has a single incoming
edge (although D1

2 has two outgoing edges). Additionally,
there are two cycles, containing edges from delay objects D1

5

and D1
6 to node N1

3 . ♦

N1
1 N3

1

N2
1

N4
1D2

1
D1
1

D3
1

D4
1

D5
1

D6
1

D7
1

D8
1

Primitive Data objectN𝑣
𝑖 D𝑤

𝑖
D𝑤

𝑖
Delay object

d
1

3

2

Fig. 2: An OpenVX graph G1 of four primitives and eight data objects, including three delay objects. Delay values are inset
in the delay object boxes.

1
2 4

2

2
2

5
2D2

2
D1
2

D3
2

D4
2

D7
2

D1
2

3
2 D9

2
6
2 D8

2
0

D5
2

D6
2

Data objectCPU node𝜏𝑣
𝑖 D𝑤

𝑖
D𝑤

𝑖
Delay objectGPU node𝜏𝑣

𝑖Primitive
d

1

3

2

Fig. 3: A fine-grained OpenVX graph G2 corresponding to the coarse-grained graph in Fig. 2. G2 contains six nodes (four
CPU nodes and two GPU nodes) and ten data objects. N1

3 and N1
4 have each been expanded to separate CPU and GPU nodes,

and new data objects have been added.

B. Transforming OpenVX Graphs to Sporadic Task Sets

The transformation process depicted in Fig. 1 must be
performed for each OpenVX graph Gi in a system. We now
illustrate each step in detail.

Step 1: From a coarse- to a fine-grained OpenVX graph.
The OpenVX standard specifies little about the concurrent
execution of primitives within a graph. M. Yang et al. [44]
showed that treating each primitive as a schedulable entity is
often too coarse-grained to guarantee bounded response times.
Rather, primitives should be split into multiple nodes, with
each executing on either a CPU or a GPU.1

Ex. 2. We illustrate the transformation process with a contin-
uing example. Fig. 3 depicts a fine-grained OpenVX graph
G2 corresponding to the coarse-grained OpenVX graph G1
from Fig. 2. Primitives N1

3 and N1
4 have been decomposed

into nodes {τ23 , τ24 } and {τ25 , τ26 }, respectively, with additional
data objects D2

9 and D2
10 added between the new nodes.

Additionally, each node in Fig. 3 is shaded based on whether
that node executes on a CPU or a GPU. ♦

Step 2: From a fine-grained OpenVX graph to a sporadic
task graph. A sporadic task graph Γi is comprised of zi nodes,
τ i1, . . . , τ

i
zi , with each node corresponding to a task. A task τ iv

releases a potentially infinite sequence of jobs J iv,1, J
i
v,2,

Edges in Γi indicate producer/consumer relationships between

1We assume the mapping of primitives to processor types is decided by the
application designer.

tasks: a job must wait to begin execution until the correspond-
ing job of each task from which it consumes data (i.e., for each
edge for which it is a consumer) has completed.

Given a fine-grained OpenVX graph Gi, we can perform a
simple transformation to obtain a sporadic task graph Γi:

• Each node τ iv in Gi becomes a node τ iv in Γi.
• Each input edge

(
Di
w, N

i
v

)
other than that into the source

τ i1 becomes a directed edge
(
τ iu, τ

i
v

)
, where τ iu is the

single writer of data object Di
w.

• An edge is a delay edge if its corresponding data object
Di
w is a delay object, and a regular edge otherwise.

• Multiple edges of the same type between the same pair
of nodes are merged into a single edge of that type.

Note that delay edges can be either forward or backward
edges, depending on whether they result in a cycle in the
graph. For each delay edge

(
τ iv, τ

i
u

)
, we include a range [p, q],2

p ≤ q, corresponding to the range of delay values for that edge.
Thus, a delay edge

(
τ iv, τ

i
u

)
with range [p, q] indicates that a

job J iu,j relies on the outputs of {J iv,j−q, . . . , J iv,j−p}.
Ex. 2 (cont’d). Fig. 4 shows the sporadic task graph Γ2

corresponding to the fine-grained OpenVX graph from Fig. 3.
The three delay objects are represented here as two delay
edges, one forward and one backward. The delay values are
encapsulated in the p and q values for the delay edges. ♦

2For simplicity of notation, we will omit subscripts and superscripts for
delay edges’ ranges when the edge in question is clear.

1
2 4

2

2
2

5
2 6

2

3
2

Regular edge Delay edge

CPU node𝜏𝑣
𝑖 GPU (suspension) node𝜏𝑣

𝑖

𝑝 = 𝑞 = 1

𝑝 = 2, 𝑞 = 3

Fig. 4: A sporadic task graph Γ2 derived from the fine-grained
OpenVX graph from Fig. 3.

1
2 456

2

2
2

3
2

Fig. 5: A sporadic task DAG τ2 derived from the cyclic graph
from Fig. 4.

Step 3: From a sporadic task graph to a sporadic task
DAG. K. Yang et al. [42] provided a series of rules for
removing delay edges from graphs, resulting in a DAG. They
showed that forward delay edges can simply be replaced by
regular edges, and they proposed to break cycles by combining
all nodes in a given cycle in a graph into a single supernode.

Ex. 2 (cont’d). Fig. 5 shows the DAG τ2 derived from the
cyclic graph Γ2 in Fig. 4. The forward delay edge from τ21 to
τ22 has been removed because a regular edge between these
nodes already exists, and nodes τ24 , τ25 , and τ26 comprising the
cycle have been combined into a single supernode τ2456. ♦

Step 4: From a sporadic task DAG to a sporadic task set.
Given a sporadic task DAG τ i, it is straightforward to consider
each node as an independent sporadic task. Each task τ iv has a
worst-case execution time given by Civ and a relative deadline
given by Di

v . All tasks belonging to τ i share a period T i. Jobs
of the source task τ i1 are assumed to be released sporadically, at
least T i time units apart. For non-source tasks, Liu et al. [32]
showed how response-time bounds Riu (explained in detail
below) of tasks τ iu that produce data consumed by τ iv can be
used to set an offset Φiv . This offset specifies the release time
of a job J iv,j relative to that of its graph’s corresponding source
job J i1,j .

3 Note that task deadlines are used here to define
priorities rather than strict (hard) timing constraints, so Riv
may exceed Di

v , i.e., jobs may complete after their deadlines.

Ex. 2 (cont’d). Fig. 6 depicts an example schedule for the task
set derived from the sporadic task DAG τ2 in Fig. 5. In this

3Liu et al. [32] also showed that early releasing [9] can be used to improve
response times by releasing a job as soon as its consumed data is available,
potentially before its actual release time, as long as its deadline is unchanged.

Time

0

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.)

5 10 15

Φ1 = 0

τ1

2

R1
2

2

R : the end-to-end response-time bound for G

20 25 30

Job Release Job Deadline Job Completion CPU Execution GPU Execution

end-to-end response time of first invocation

end-to-end response time of second invocation

R2
2

Φ2
2

τ2

2

R3
2

Φ3
2

τ3

2

R456
2

Φ456
2

τ456
2

2 2

Fig. 6: A possible schedule of two sets of jobs of the sporadic
tasks in τ2. The second job of each task is shaded darker than
the first.

example, we assume response-time bounds of the four DAG
tasks have been computed to be R2

1 = 9, R2
2 = 7, R2

3 = 5, and
R2

456 = 9. As described in [32], Φ2
1 = 0, Φ2

2 = Φ2
3 = R2

1 = 9,
and Φ2

456 = max{Φ2
2 +R2

2,Φ
2
3 +R2

3} = 16. ♦

We define the utilization of τ iv to be uiv = Civ/T
i.

The utilization of the entire system is given by U =∑
τ i∈τ

∑
τ iv∈τ i

uiv . We can define the utilization of a cycle
similarly:

∑
τ iv∈τ ′

uiv , where τ ′ is the set of tasks in the cycle.

C. Response-Time Analysis

For a job J iv,j of task τ iv , let riv,j denote its release time and
let f iv,j denote its completion time (or finish time). We define
J iv,j’s response time as f iv,j−riv,j and the end-to-end response
time of a sporadic task graph Γi as maxj{f izi,j − r

i
1,j}.

We seek to calculate a response-time bound Riv for each
task τ iv . Such bounds can be propagated back to the orig-
inal graph(s) to give end-to-end response-time bounds of all
graphs. The available response-time analysis depends upon the
choice of parallelism in the sporadic task model.

Existing sporadic task models. The conventional sporadic
task model requires jobs of the same task to execute sequen-
tially, i.e., a job J iv,j , j ≥ 2, is not ready unless J iv,j−1
has completed execution. This model has been the subject
of much prior work on response-time analysis under global
schedulers [10, 16, 23, 24], which will be our focus here.

Ex. 3. Fig. 7 depicts possible schedules for jobs of τ2456 from
Fig. 5 on a platform with four CPUs and one GPU, assuming
T 2 = 5, C2

456 = 6, and R2
456 = 21. The schedule begins at

time 100, when job J2
456,21 is released.

In schedule (a), the jobs execute sequentially. Due to jobs
of other tasks (not shown), J2

456,21 is not scheduled until time
114. This postponement impacts the subsequent jobs; J2

456,24

has a response time of 7.4. However, the p = 2 requirement
is met, e.g., J2

456,21 completes before J2
456,23 begins. ♦

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.)

Job Release Job Deadline Job Completion CPU Execution GPU Execution

100 105 110 115 120

Time

a)

b) ∙∙∙

c)

R456
2

𝑟456,22
2 𝑟456,23

2
𝑟456,24

2𝑟456,21
2

Fig. 7: Scheduling repercussions of the degree of intra-task
parallelism, assuming GPU computations are FIFO scheduled
on a single GPU. Successive jobs J2

456,21, J2
456,22, J2

456,23, and
J2
456,24 are shaded progressively darker.

Later work considered a model that allows full intra-task
parallelism, i.e., any number of unfinished jobs of the same
task may execute concurrently. This model enables much
smaller response-time bounds to be ensured [15].

Ex. 3 (cont’d). Schedule (b) in Fig. 7 shows the result of
allowing full intra-task parallelism. We assume GPU compu-
tations are FIFO scheduled, which causes three of the four
jobs’ execution times to increase. However, the response time
of J2

456,24 is reduced to 3.2 time units. ♦

Unfortunately, unrestricted intra-task parallelism creates two
problems. First, the jobs of a task can complete out of order;
however, this can be simply resolved by buffering job outputs,
as discussed in [14]. Second, and more importantly, such
parallelism can violate the dependencies required by back-
ward delay edges. In fact, sequential execution was originally
assumed for the transformation to a DAG (Step 3) [42].
Theorem 3 in [42] showed that if p = 1 for some backward
delay edge, then no two jobs of any task in that cycle may
execute in parallel. This proof can be generalized to show that
if more than p jobs of a task in a cycle execute concurrently,
then a precedence constraint must be violated.

Ex. 3 (cont’d). The supernode τ2456 was created from a cycle
with p = 2. Thus, job J2

456,23 requires output from job J2
456,21.

However, in schedule (b) of Fig. 7, jobs J2
456,21 and J2

456,23

execute concurrently, violating this precedence constraint. ♦

The troublesome history. Response-time analysis for sequen-
tial sporadic tasks requires uiv ≤ 1.0 for all tasks. This
requirement extends to supernodes in [42]: the utilization of
each cycle must be at most 1.0. However, if smaller bounds
are desired or if the cycle has higher utilization, no existing
analysis can be applied. Furthermore, cycles with utilization
exeeding 1.0 can easily occur in actual CV graphs. When
full intra-task parallelism is enabled, uiv ≤ 1.0 is no longer
required, but historical requirements may not be met.

Ex. 3 (cont’d). If jobs execute sequentially as in Fig. 7(a),
response times can be unbounded for τ2456, as u2456 = 6/5. ♦

1
2 456

2

2
2

3
2

𝑃1
2 = 𝑚

𝑃2
2 = 𝑚

𝑃3
2 = 𝑚

𝑃456
2 = 2

Fig. 8: Intra-task parallelism for nodes of τ2 from Fig. 5.

D. A New Hybrid Approach

Our work bridges this parallelism divide, resulting in
response-time bounds for sporadic task graphs (and thus
OpenVX graphs) that prior work deemed infeasible. We
provide a new restricted-parallelism sporadic task model that
specifies intra-task parallelism on a per-task basis. A key fea-
ture of our approach is that per-task utilizations are allowed to
exceed 1.0, yet parallelism (and hence accuracy) is controlled.
Ex. 3 (cont’d). Restricted intra-task parallelism is shown in
schedule (c) of Fig. 7. The response time of J2

456,24 is
increased to 4.0, but the history requirements are respected,
as only p = 2 jobs of τ2456 execute concurrently. ♦

Abstracting GPU computations. Although M. Yang et
al. [44] suggested considering CPU and GPU tasks separately
in response-time analysis, their results hold only for DAGs.
Instead, as in K. Yang et al. [42], we arbitrate access to the
GPU with a locking protocol, such as GPUSync [12]. Thus,
we henceforth assume that all graph nodes are CPU nodes,
with their worst-case execution times inflated to include GPU
blocking and execution time, and that tasks can contain non-
preemptive regions due to said locking protocol. In Sec. IV-C,
we briefly discuss the complications that arise in our setting
if CPU access is not arbitrated via a locking protocol.

Transforming cycles, revisited. We leverage the supernode
concept from [42] to transform a sporadic task graph Γi into
a sporadic task DAG τ i. We supplement each node τ iv of
the DAG with a value P iv indicating the allowed intra-task
parallelism for the jobs of that task. All tasks within a cycle
are combined into a single supernode τ iu, with P iu defined
to be the smallest p of any forward or backward delay edge
contained in the cycle (we do not use q, as it is does not limit
the parallelism of the cycle). A task τ iv that is not part of
any cycle has P iv = m, the number of CPU processors, i.e.,
unrestricted intra-task parallelism, as in [44].
Ex. 4. Fig. 8 depicts the DAG that results from our
parallelism-aware supernode transformation.4 The nodes cor-
respond to those in Fig. 5, and are labeled with their intra-task
parallelism values P iv . For tasks that are not supernodes, the
intra-task parallelism is m. Task τ2456 is a supernode derived
from a cycle with p = 2 in Fig. 4, so it has P 2

456 = 2. ♦

Offset computation for forward delay edges. In prior work,
forward delay edges were either deemed as out of scope [44]

4Note that, while we ended up with the same number of compute nodes as
in the original coarse-grained graph in Fig. 2, this will generally not be the
case. We are somewhat constrained here to consider small graphs.

or supported assuming only sequential task execution [13, 42].
We propose a different method for handling such edges here.

Consider a forward delay edge
(
τ iv, τ

i
u

)
with delay value p.

Denote the offset of τ iu computed in a DAG without the delay
edge as Φ′iu . The forward delay edge adds the requirement that
a job J iu,j must not start earlier than the completion of J iv,j−p,
p DAG periods prior. Thus, we require Φiu ≥ Φiv+Riv−p ·T i.
At the same time, we require Φiu ≥ Φ′iu . Combining both
expressions, we have Φiu = max(Φ′iu ,Φ

i
v +Riv − p · T i).

Note that, because offsets are determined from source to
sink [32], by the definition of a forward delay, Φiv is available
when Φiu is determined. Note also that the method above can
be generalized for the case wherein forward delay edges are
directed from several nodes to the node τ iu.

K. Yang et al. [42] proposed instead to replace each forward
delay edge with a regular forward edge. Effectively, such a
replacement is equivalent to the computation of Φiu with p = 0,
so our approach generalizes theirs.

To this point, we have explained how to adapt prior
work to transform a coarse-grained OpenVX graph into an
“equivalent” sporadic task set with restricted parallelism. What
remains is to formally define this sporadic task-model variant
and to derive response-time bounds under it. This we do next
in Secs. III and IV, respectively.

III. THE RP-SPORADIC TASK MODEL

We now introduce the rp-sporadic task model, which per-
mits per-task allowed parallelism to be specified. Under this
model, the ith task is specified as τi = (Φi, Ti, Ci, Pi), where
Φi, Ti, Ci, and Pi are as defined in Sec. II (but omitting the
graph index, as it is not relevant to us here). We assume that
tasks have implicit deadlines, i.e., Di = Ti. We denote τi’s
utilization as ui = Ci/Ti, total utilization as U , the jth job of
τi as Ji,j , its release time as ri,j , its deadline as di,j = ri,j+Ti,
the maximal length of a single non-preemptive section as Bmax

(recall the earlier discussion about using locking protocols to
arbitrate GPU access), and the maximal worst-case execution
time (WCET) of any task as Cmax.

Scheduler. We consider a platform with m CPUs (recall that,
with GPU access arbitrated using locking protocols, we can
focus on a CPU-only system in our analysis). Global earliest-
deadline-first (G-EDF) scheduling guarantees bounded re-
sponse times without undue utilization restrictions [10, 15], so
we assume G-EDF scheduling with deadline ties broken arbi-
trarily but consistently (e.g., by task index). We let Ji,j ≺ Jk,l
denote that job Ji,j has higher priority than job Jk,l.

Feasibility conditions. As in existing response-time analysis,
we require U ≤ m, or the entire system can become overuti-
lized, with response times being unbounded. Additionally, at
most Pi jobs of a task τi can execute at once, so we require

∀i : ui ≤ Pi. (1)

In particular, with τi restricted to execute on at most Pi
processors at any time, if ui > Pi and τi releases jobs as
early as possible, its response times will grow without bound.

IV. RESPONSE-TIME BOUNDS

In this section, we prove that every task of a feasible rp-
sporadic task set τ has bounded response times under G-EDF.
In proving this result, we assume time to be continuous.

A. Basic Bound

Throughout this section, we consider a job of interest;
as the proven response-time bound holds for any job of
interest, it inductively applies to all jobs of all tasks in the
task system. We consider an analysis window, and bound
the amount of work that conflicts with the job of interest
within this window. Initially, we consider a simpler edge case
(Lemma 2). For the more complex case, we first show that
non-preemptive sections of lower-priority jobs can affect the
execution of higher-priority jobs only if such sections are
scheduled at the start of the analysis window (Lemma 3). To
bound the response time for the job of interest, we first bound
the total workload of high-priority jobs given their maximal
response times (Lemma 4). Then, we show that the inductively
assumed response-time bounds of high-priority jobs ensure
the same bound for the job of interest if it is big enough
(Lemma 5). Finally, we present our full response-time theorem
(Theorem 1) and its closed-form version (Corollary 1).

Def. 1. At a time instant t, job Ji,j is unreleased if t < ri,j
and released otherwise; Ji,j is complete if it is completed by t;
Ji,j is pending if it is released but not completed; and Ji,j is
ready if it is pending and job Ji,j−Pi is complete (i.e., Ji,j can
be scheduled at t).

Job of interest. We consider an arbitrary job Jk,l of a task
τk ∈ τ . Let td be the absolute deadline of Jk,l, i.e., td =
rk,l+Tk. Let tf be the completion time of Jk,l. We will show
inductively with respect to ≺ that the response time of τk is
bounded by x+Tk+Ck for any positive x that is large enough
(as formalized later in (9)). We assume td ≤ tf , for otherwise
the response time of Jk,l is less than Tk.

Def. 2. We let Ψ (resp., Ψ) denote the job set consisting of all
jobs that have higher (resp., lower) priority than Jk,l.

Def. 3. We say that a time instant t is busy if m jobs of
Ψ ∪ {Jk,l} are scheduled, or there is a ready job in Ψ ∪ {Jk,l}
that is not scheduled at t, and non-busy otherwise. Both busy
conditions imply that every processor executes a job. We say
that a time interval [t, t′) is busy if all instants in it are busy.

Lemma 1. For any task τi the number of its ready jobs in
Ψ ∪ {Jk,l} does not increase after td.

Proof. All jobs in Ψ ∪ {Jk,l} are released within [0, td]. A
pending job Ji,j in this set can become ready after td only
at the time instant when Ji,j−Pi completes (and is no longer
ready). Thus, the total number of ready jobs of τi in Ψ ∪ {Jk,l}
does not increase after td.

There are two cases for td: it is either a busy or a non-busy
time instant. We will consider the non-busy case in Lemma 2
first and then the busy case in Lemmas 3–5.

m
pr

oc
es

so
rs

timetdrk,l tft′ td + x
td + x+ Ck

Jk,l

Jk,l−Pk

Jk,l−1

Jk,l−2

Jk,l becomes ready

can occupy the
same processor

(non-busy instant)

Fig. 9: Lemma 2 illustration (Pk = 3).

Lemma 2. If td is a non-busy time instant, and the response
time of each job of τk released before Jk,l is at most x+Tk+Ck,
then the response time of Jk,l is bounded by x+ Tk +Ck. (No
conditions on x except x ≥ 0 are implied in this lemma.)

Proof. By Lemma 1, the number of ready jobs in Ψ ∪ {Jk,l}
does not increase after td. Therefore, if td is not a busy time
instant, then any later time instant is not busy, as jobs from
Ψ ∪ {Jk,l} occupy fewer than m processors.

Thus, Jk,l is scheduled at the first time instant t′ ≥ td when
it is ready. As shown in Fig. 9, if t′ > td, then Jk,l becomes
ready upon completion of Jk,l−Pk , which was released by time
td − Tk − Pk · Tk. By the lemma statement, Jk,l−Pk must
complete by time td−Tk−Pk ·Tk +x+Ck +Tk = td +x+
Ck −Pk · Tk. By (1), Ck ≤ Pk · Tk, so t′ ≤ td + x. As Jk,l is
scheduled immediately upon becoming ready, it completes by
time td+x+Ck, within x+Tk+Ck time units from rk,l.

We now consider the case when td is busy.

Def. 4. Let t0 denote the first busy instant such that [t0, td) is a
busy interval. Let tb denote the last time instant such that [td, tb)
is a busy interval.

The following lemma limits the number of lower-priority
jobs in Ψ that can affect the execution of higher-priority ones.

Lemma 3. A non-preemptive section of a job Ji,j in Ψ may
block the execution of ready jobs in Ψ ∪ {Jk,l} within [t0, tf)
only if that section is scheduled at t0. Moreover, such blocking
may occur only within [t0, tb).

Proof. Consider the interval [t0, tf), depicted in Fig. 10 for
two cases, (a) tb > tf and (b) tb ≤ tf (note that tav is defined
later in Lemma 5). We begin by showing, in both cases, that
all time instants after tb are non-busy. By Def. 3, at tb, the
at most m − 1 ready jobs in Ψ ∪ {Jk,l} are scheduled. By
Lemma 1, the number of ready jobs in Ψ ∪ {Jk,l} does not
increase after td. Thus, if a job Jg,h ∈ Ψ ∪ {Jk,l} becomes
ready at some time t > td, then Jg,h−Pg must have completed,
and the processor upon which it executed is available at t.
Additionally, as jobs in Ψ ∪ {Jk,l} have higher priority than
those in Ψ, they remain scheduled until they complete, so no
time instant after tb is busy.

By Def. 3, if Ji,j ∈ Ψ blocks a job in Ψ ∪ {Jk,l} at
t′ ∈ [t0, tf), then t′ is a busy instant. As no time instant after
tb is busy, t′ ∈ [t0, tb). Ji,j has lower priority than any job in
Ψ ∪ {Jk,l}, so it must therefore execute non-preemptively at
every instant in [t0, t

′], or else it would be preempted. Thus, the
non-preemptive section scheduled at t′ must also be scheduled
at t0, and blocking by Ji,j occurs only within [t0, tb).

m
pr

oc
es

so
rs

busy interval

blocking due to an np-section of a job
in Ψ, which has to be scheduled at t0

m jobs in Ψ ∪ {Jk,l} are
scheduled or at least one such
job is ready but not scheduled

np-sections of jobs in Ψjobs in Ψ

Jk,l

t0 rk,l td tbtf time

(a) tb > tf

m
pr

oc
es

so
rs

busy interval

blocking due to an np-section of a job
in Ψ, which has to be scheduled at t0

non-busy interval

no blocking due
to a job in Ψ

m jobs in Ψ ∪ {Jk,l} are
scheduled or at least one such
job is ready but not scheduled

all ready jobs in
Ψ ∪ {Jk,l} are sched-
uled (fewer than m)

np-sections of jobs in Ψjobs in Ψ Jk,l

t0 rk,l td tb tav tf time

(b) tb ≤ tf

Fig. 10: Important time points in the analysis.

Let Wd be Ck plus the total workload that can potentially
prevent the execution of Jk,l. By Lemma 3, Wd includes the
workload of non-preemptive sections of jobs in Ψ that are
scheduled at t0 and the workload of all jobs in Ψ ∪ {Jk,l}.

By Lemma 4, given below, L(x), defined next, is an upper
bound for Wd.

L(x) = (m−1)Cmax+Bmax+ max
τ∗⊆τ s.t.∑

τi∈τ∗
Pi≤m−1

(∑
τi∈τ∗

(uix+ 2Ci)

)

(2)

Lemma 4. If td is a busy time instant, and the response time
of each job Ji,j ∈ Ψ is at most x+ Ti + Ci, then Wd ≤ L(x).

Proof. Let t−0 be t0 − ε for an arbitrarily small ε > 0 such
that [t−0 , t0) is a non-busy interval, as illustrated in Fig. 11. (If
t0 = 0, then we can conceptually view [−ε, 0) as an interval
where no work is scheduled.) Because ε is arbitrarily small, no
scheduling events (jobs completions or releases) occur within
[t−0 , t0). To upper bound Wd, we first bound the workload
at t0 of jobs released before t−0 in Claims 1 and 2 (all jobs
in Ψ ∪ {Jk,l} that are ready at t−0 are scheduled). Then we
bound the workload of jobs released within [t0, td) in Claim 3.
Finally, we bound the workload completed over [t0, td) in
Claim 4. (For clarity, claim proofs end with � while other
proofs end with �.)

Let a (resp., b) be the number of jobs in Ψ ∪ {Jk,l} (resp.,
Ψ) that are scheduled at t−0 .

Claim 1. Consider the jobs that are scheduled at t−0 . Their total
non-completed workload at t0 is at most aCmax + bBmax.

Proof. By Lemma 3, only non-preemptive sections of jobs in
Ψ can block the execution of jobs in Ψ ∪ {Jk,l}. The maximal
length of a non-preemptive section is Bmax, and the number
of such sections is b. The maximal workload of any job in
Ψ ∪ {Jk,l} is bounded by Cmax, and the number of such jobs
scheduled at t−0 is a. The total non-completed workload due
to these jobs is upper bounded by aCmax + bBmax. �

Let τ∗ be the set of all tasks that have jobs in Ψ ∪ {Jk,l}
that are pending but not ready at t−0 .

Claim 2. Consider the pending jobs in Ψ ∪ {Jk,l} that are not
ready at t−0 . Their total workload at t0 is at most

∑
τi∈τ∗

(uix+2Ci).

Proof. Let si be the number of jobs of a task τi ∈ τ∗ that are
pending at t−0 . By the definition of τ∗, some jobs of τi are
pending but not ready at t−0 . Thus, certain preceding jobs of
τi are not completed at t−0 . By the definition of Pi and job
readiness, the first Pi pending jobs of τi are ready, because Pi
jobs of τi can be scheduled in parallel. Thus, si > Pi. Note
that the first Pi of these jobs are scheduled at t−0 (t−0 is a non-
busy instant). Let Ji,j be the earliest pending job of τi at t−0 .
Then Ji,j is ready at t−0 , and Ji,j 6= Jk,l, or else τk /∈ τ∗ (as
all pending jobs of τk in Ψ ∪ {Jk,l} would be ready). Thus,
Ji,j ∈ Ψ. Also, because si jobs of τi are pending at t−0 ,

ri,j ≤ t−0 − (si − 1)Ti. (3)

Since Ji,j ∈ Ψ, it is completed by time ri,j + x + Ti + Ci.
Because Ji,j is pending at t−0 , ri,j + x+ Ti + Ci ≥ t−0 , or

ri,j ≥ t−0 − x− Ci − Ti. (4)

Combining (3) and (4), t−0 − x− Ci − Ti ≤ t
−
0 − (si − 1)Ti,

which implies si − 2 ≤ (x+ Ci)/Ti, which in turn implies

si ≤ x/Ti + ui + 2. (5)

As the first Pi pending jobs of τi at t−0 are ready, the total
workload at t0 of the jobs pending but not ready at t−0 is

(si − Pi)Ci ≤ {by (5)}
(x/Ti + ui + 2− Pi)Ci

= {Ci/Ti = ui}
uix+ 2Ci + (ui − Pi)Ci

≤ {τ is feasible, so by (1), ui ≤ Pi}
uix+ 2Ci.

Combining over all tasks in τ∗, we have a total workload of
at most

∑
τi∈τ∗

(uix+ 2Ci), as claimed. �

Claim 3. Consider the jobs in Ψ ∪ {Jk,l} that are not released
at t−0 . Their total generated workload over [t0, td) is at most
U(td − t0).

m
pr

oc
es

so
rs

busy interval

non-busy interval

a jobs in Ψ ∪ {Jk,l} are sched-
uled at t−0 (all ready jobs are
scheduled)

b non-preemptive sections of
jobs in Ψ are scheduled at t−0

np-sections of jobs in Ψ jobs in Ψ ∪ {Jk,l}

timet−0 t0 td

Fig. 11: Lemma 4 illustration.

Proof. All jobs in Ψ ∪ {Jk,l} have deadlines at or before td.
The jobs of a task τi with releases and deadlines within [t0, td)
generate a workload of at most b(td − t0)/TicCi ≤ ui(td −
t0). Summing over all such jobs of all tasks in τ yields the
claim. �

Claim 4. The workload completed in [t0, td) is m(td − t0).

Proof. By Def. 4, t0 ≤ td and [t0, td) is a busy interval, so
the total completed workload is m(td − t0). �

Now we can finally bound Wd:

Wd = Workload at t0 of jobs scheduled at t−0
+ Workload at t0 of jobs pending but

not ready at t−0
+ Workload at td of jobs released after t−0
−Workload completed within [t0, td)

≤ {by Claims 1-4}

aCmax + bBmax +
∑
τi∈τ∗

(uix+ 2Ci)

+ U(td − t0)−m(td − t0)

≤ {τ is feasible, so U ≤ m}

aCmax + bBmax +
∑
τi∈τ∗

(uix+ 2Ci) (6)

Note that, by the definition of t−0 , at least one processor is not
occupied with a job from Ψ ∪ {Jk,l} at t−0 , so a ≤ (m− 1).
Additionally, the total number of scheduled jobs at t−0 cannot
exceed m. Thus, because Bmax ≤ Cmax, we have

aCmax + bBmax ≤ (m− 1)Cmax +Bmax. (7)

Also, any task τi ∈ τ∗ has exactly Pi ready jobs scheduled at
t−0 , while their total number is at most (m− 1). Thus,∑

τi∈τ∗
Pi ≤ m− 1. (8)

Combining (6), (7) and (8), and recalling (2), we get
Wd ≤ (m− 1)Cmax +Bmax +

∑
τi∈τ∗

(uix+ 2Ci) ≤ L(x). �

Lemma 5. If td is a busy time instant, and the response time
of each job Ji,j ∈ Ψ is at most x+ Ti + Ci, where

mx ≥ L(x), (9)

then the response time of Jk,l is bounded by x+ Tk + Ck.

Proof. Note that under G-EDF, Jk,l cannot be preempted after
its deadline td (which is Tk time units after Jk,l’s release).
Thus, it is enough to prove that Jk,l is scheduled at some
point within [td, td + x].

Let tav (“av” means a processor is available—see Fig. 10(b))
denote the first time instant after td such that some processor
exists that is not executing a job in Ψ ∪ {Jk,l} or any non-
preemptive section of a job in Ψ that is scheduled at time t0
(and hence executes continually in [t0, tav]). Note that tb ≤ tav.
We consider three cases, depending on how much processor
allocation Jk,l receives within [t0, tav).

Case 1. Jk,l is completed before tav.
In this case, the response time of Jk,l is bounded by

tav − rk,l = tav − td + Tk. Note that tav ≤ td + Wd/m
(Wd is the workload that keeps all processors busy), so
by Lemma 4, tav − td ≤ L(x)/m, which, by (9), implies
tav − td ≤ mx/m = x. This ensures a response-time bound
of x+ Tk + Ck for Jk,l.

Case 2. Jk,l is ready at tav.
Let δ denote the remaining amount of execution for Jk,l

at tav. Because the total remaining workload from jobs in
Ψ ∪ {Jk,l} at td is Wd, at most Wd − δ of this workload can
be completed within [td, tav). Hence, tav − td ≤ (Wd − δ)/m.
By Lemma 4, Wd ≤ L(x), so tav − td ≤ (L(x) − δ)/m. By
Lemma 3, Jk,l cannot be blocked by jobs or non-preemptive
sections that do not contribute to Wd, so Jk,l is scheduled in
[tav, tav + δ), and tav + δ − rk,l = tav + δ − td + Tk is the
response time of Jk,l. Because

tav − td + δ ≤ (L(x)− δ)/m+ δ

= L(x)/m+ δ(1− 1/m)

≤ {by (9)}
mx/m+ δ(1− 1/m)

≤ {δ ≤ Ck}
x+ Ck,

the response time of Jk,l is at most x+ Ck + Tk.
Case 3. Jk,l is not ready at tav.
In this case, Jk,l−Pk (which is in Ψ ∪ {Jk,l}) is not finished

by tav. This predecessor is released at the latest by time td −
(Pk+1)·Tk. By the lemma statement, Jk,l−Pk completes at the
latest by td−(Pk+1)·Tk+x+Tk+Ck = td+x−Pk ·Tk+Ck.
By (1), Ck ≤ Pk · Tk, so Jk,l is ready at the latest by td + x.
By Lemma 3, Jk,l is not blocked by any job at tav, because
tb ≤ tav. That ensures the response-time bound.

We now can conclude both the busy and the non-busy td
cases in the following theorem.

Theorem 1. Every job Ji,j of every task τi ∈ τ completes
within x + Ti + Ci time units after its release for any x > 0
such that x satisfies (9).

Proof. Follows by induction over ≺, applying Lemma 2 or
Lemma 5.

We now introduce some terminology that is used in obtain-
ing a closed-form expression for x that it is of relevance in
the context of the processing graphs that motivate this work.

Def. 5. Call a task τi p-restricted (parallelism-restricted) if
Pi < m, and non-p-restricted if Pi ≥ m. Also, let

U bres =
∑

b largest values
τi is p-restricted

ui and Cbres =
∑

b largest values
τi is p-restricted

Ci,

and let Ures = Unres and Cres = Cnres.

Corollary 1. The response time of any task τi ∈ τ is bounded
by x+ Ti + Ci, where

x =
(m− 1)Cmax +Bmax + 2Cres

m− Ures
. (10)

Furthermore, if there exists Pmin ≥ 1 such that for every p-
restricted task τi, Pi ≥ Pmin, then Ures and Cres in (10) can be
replaced with U `res and C`res, where ` = b(m− 1)/Pminc.

Proof. Note that the task subset τ∗ in (2) consists of only
p-restricted tasks, because

∑
τi∈τ∗

Pi ≤ m − 1 (see (8)), while

Pi ≥ m for any non-p-restricted task. Thus,

max
τ∗⊆τ s.t.∑

τi∈τ∗
Pi≤m−1

(∑
τi∈τ∗

(uix+ 2Ci)

)

= max
τ∗ consists of p-restricted tasks∑

τi∈τ∗
Pi≤m−1

(∑
τi∈τ∗

(uix+ 2Ci)

)

≤
∑

τi is a p-restricted task

(uix+ 2Ci)

= Uresx+ 2Cres.

Hence, by (2), L(x) ≤ (m− 1)Cmax + Bmax + Uresx+ 2Cres.
Because, by (10), mx = (m−1)Cmax +Bmax +Uresx+2Cres ≥
L(x), x satisfies (9). Therefore, by Theorem 1, x + Ti + Ci
is a response-time bound for any task τi.

If for every p-restricted task τi, Pi ≥ Pmin, then |τ∗| ≤
b(m − 1)/Pminc, as

∑
τi∈τ∗

Pi ≤ m − 1. In this case, only the

b(m−1)/Pminc p-restricted tasks with the highest correspond-
ing values have to be considered in Ures and Cres.

Recall that we are interested in rp-sporadic tasks obtained
via our graph-transformation process. Tasks corresponding to
supernodes will generally be p-restricted, while other tasks
will not. Hence, the corollary above is useful in our context.

The results of this section provide clear tradeoffs. For
example, if an OpenVX graph has a cycle with utilization
exceeding 1.0 that must execute sequentially, then bounded
response times for that graph cannot be ensured. Our analysis
shows that, by allowing parallelism within such a cycle, this
result can be reversed. Furthermore, Corollary 1 shows that
response-time bounds can be lowered by increasing Pi values,
i.e., by sacrificing some accuracy.

B. Improved Bounds
The basic bound just derived can be improved via several

techniques that we omitted above due to space constraints. We
briefly mention those techniques here.

Improved definition of a busy time instant. We could replace
m with m+ = dUe. This change would yield a significant
improvement for low-utilization task sets.

Accurate accounting of ready jobs. In Claim 1 of Lemma 4,
we bounded the maximal workload of any ready job at t−0 as
Cmax. However, this could be reduced with a more precise
accounting of ready jobs, yielding an improvement for task
sets for which the highest-WCET tasks are p-restricted.

Compliant-vector analysis. We considered every task to have
the same value x. We could instead apply compliant-vector
analysis [15, 16], which assigns a distinct xi to each task τi.

GEL schedulers. The provided analysis easily extends to any
GEL (G-EDF-like) scheduler. Such a scheduler prioritizes
each job by a priority point, a point in time a constant distance
from its release. Under arbitrary GEL scheduling, response
times can be lowered by determining priority points via linear
optimization [43]. Also, as FIFO is a GEL scheduler, the same
analysis can be applied for FIFO-scheduled GPUs.

C. GPUs as Schedulable Entities
The final comment above suggests the possibility of consid-

ering GPUs as schedulable entities instead of synchronization
objects as we have done. However, the former creates some
surprising analysis difficulties, as illustrated next.
Ex. 5. Consider the cycle depicted in Fig. 12 in a system with
one CPU and one GPU. Observe that the total utilization of
this cycle is 1.0. However, both the CPU and the GPU are
not fully utilized. Thus, there could exist other GPU work
on the same platform that causes some amount of blocking
for the GPU task in the figure. When considering this cycle
from a CPU point of view, where time spent accessing the
GPU (including both execution and blocking) is viewed as
suspension time away from the CPU, the GPU blocking results
in an overloaded system and unbounded response times. ♦

As this example suggests, it turns out that, with GPUs con-
sidered as schedulable entities, we must consider a given cycle
from both a CPU perspective—in which case time accessing a
GPU is suspension time away from CPU execution—and from
a GPU perspective—in which case time executing on a CPU is
suspension time away from GPU execution. Determining such
suspension times requires determining GPU and CPU response
times, respectively. Thus, we have a circularity: in order to
determine CPU and GPU response times, we need to know
CPU and GPU response times! Note that this circularity is
unique to nodes within cycles—other nodes are not so affected.

While this circularity may seem rather devastating, we
have actually devised several workarounds to it, but we lack
sufficient space to explain them. In any event, we mention this
issue here to provide some indication as to why we opted for
the simpler synchronization-based approach in this first work
on dealing with arbitrary cycles in OpenVX graphs.

time

τ2 τ2 τ2

τ1 τ3 τ1 τ3 τ1 τ3

GPU

CPU

Response times

CPU/GPU execution
CPU waits for
competing GPU
workload

CPU waits
for own GPU
workload

Competing GPU
workload

CPU idleness. CPU utilization ≈50%.

CPU GPU CPU

p = 1

C = 1, T = 3 C = 1, T = 3 C = 1, T = 3
τ1 τ2 τ3

Cycle release

Cycle completion

Fig. 12: A schedule of the cycle from Ex. 5.

V. CASE STUDY EVALUATION

We evaluated our approach via a case study of a CV
pedestrian-tracking application for which the graph contains
a cycle. In this section, we describe our pedestrian-tracking
experimental setup, and then present the results of varying
the minimum history requirement for the cycle induced by
tracking, and discuss the effects on analytical and observed
response times and on the tracking accuracy.

A. Experimental Setup

We chose for our case study a pedestrian-tracking applica-
tion using the Histogram of Oriented Gradients (HOG) method
for detecting pedestrians from camera image frames. This
type of application would be important in an ADAS, as it
enables the car to take action depending on the trajectories of
pedestrians or other dynamic obstacles.

Pedestrian tracking via HOG. HOG computes gradients
within the image at a range of different scales, and classifies
potential detections at each scale. The computational cost
increases with the number of image scales, but each scale
enables detection of a pedestrian at a different distance from
the camera. We used as a starting point the HOG implemen-
tation evaluated in prior work by our group [44]. As in [14]
and [44], we used PGMRT [13] to handle data passing, and
employed schedulers provided by LITMUSRT [30].

The features computed by HOG are provided to a classifier
such as a support vector machine, which determines whether
a potential detection is a pedestrian. The output is a series
of rectangles of varying sizes and positions. Over time (i.e.,
frames of the video), detections of a given pedestrian can be
matched to form a track of positions. This process requires
matching a current-frame detection with a track based on the
prior frame (or older, if p > 1), resulting in a cycle.

The graphs involved in our case study are depicted in
Fig. 13. As discussed later, we chose to execute HOG on the
CPU as a single non-p-restricted node. The cycle introduced
by tracking results in a single p-restriced supernode. In order
to achieve intra-task parallelism at runtime, we replicated the

Sequential p = 1 p = 2 p = 3

Analytical Bound (ms) N/A N/A 927.27 928.37

Observed Maximum Response Time (ms) 25250.67 572.81 713.53 537.60

Observed Average Response Time (ms) 11765.23 293.63 280.86 293.07

TABLE I: Analytical and observed end-to-end response times. A bound of N/A indicates a violated feasibility condition.

HOG Tracking

Fig. 13: Graphs comprising the case study. The tracking, A1,

and A2 tasks all use the GPU.

HOG node Pi = m times and the tracking node Pi = p times

in the PGMRT graph. Each frame of the video was passed to

only one of the HOG replicas, in round-robin order. Similarly,

only one of the p tracking supernodes processed the resulting

detections for a given frame.

Test platform. We performed our experiments on a platform

with two eight-core Intel CPUs and 32 GB of DRAM. The

CPU cores each have a 32-KB L1 data cache, a 32-KB L1

instruction cache, and a 1-MB L2 cache. All eight cores on a

socket share an 11-MB L3 cache. The platform additionally

has an NVIDIA 1070 GPU, and was configured to run Ubuntu

16.04 with the 2017.1 LITMUSRT kernel [30].

Competing workloads. We chose as competing workloads

two synthetic GPU-using tasks (A1 and A2 in Fig. 13) with

p = m that increase the blocking suffered by the tracking

supernode. To measure the full effect of this contention, we

ran HOG on the CPU, and configured tracking to perform

computations on both the CPU and the GPU (see Fig. 13).

The HOG and tracking tasks were given a 25-ms period,

corresponding to camera frames being processed at 40 frames

per second (FPS) (CV applications typically target 30–60
FPS). Each competing task was given a 50-ms period and

accessed the GPU for 2 ms, resulting in worst-case blocking

of Bmax = 32 ms for 16 processors. The number of competing

tasks was chosen to be the maximum such that U < m.

B. Results

Our goal was to measure the impact, in terms of response

times and accuracy, of varying p for a given graph in the pres-

ence of resource contention that results in a higher utilization

for that graph’s supernode. We compare varying values of p
for just the tracking supernode to sequential scheduling, in

which all tasks (not just tracking) have p = 1.

Impact of p on response times. We used FeatherTrace [6]

to measure the worst-case execution times of each task, and

took the 99th percentile value over 10, 000 samples.

We computed the response-time bound of each task using

Corollary 1 in Sec. IV-A. The utilization constraints are

Fig. 14: CDF of observed response times for varying p.

violated for sequential scheduling and for p = 1, so no bound

could be computed. The resulting end-to-end response-time

bounds are listed in Table I for varying p, along with the

observed worst- and average-case end-to-end response times.

The response-time distributions are plotted in Fig. 14.

Obs. 1. The system is unschedulable if the supernode is not

replicated (p = 1) or if graph is scheduled sequentially.

Under sequential scheduling, both HOG and tracking have

p = 1. HOG in particular has a high worst-case execution time,

so the end-to-end response time of the graph far exceeded

its period, and in fact grew without bound. This is evident

in the observed response time in both Table I and Fig. 14.

When p = 1, the observed response time was much better,

but the inflation due to potential GPU blocking caused the

tracking node to have a utilization higher than 1.0, violating

the feasibility condition (1) in Sec. III.

Obs. 2. The analytical response-time bounds for p ≥ 2 are

almost identical.

This is expected behavior; due to space constraints, the

bound we presented in Corollary 1 is somewhat conservative,

and remains the same if p increases but the number of p-

restricted tasks remains significantly smaller than m (this case

study includes a single p-restricted task).

Obs. 3. The analytical response-time bounds upper-bounded

the observed response times for p ≥ 2.

This is demonstrated in Table I.

Obs. 4. For p ≥ 2, as p increases, observed maximum (resp.,

average) response times decrease (resp., increase).

This trend is shown in Table I. Although intra-task paral-

lelism allows for shorter response times in the worst case, the

number of jobs competing with the job of interest at a given

time increases, resulting in worse average-case behavior.

Impact of p on accuracy. Bounded response times for

(previously unschedulable) cycles come at a price: accuracy

drops as p increases. To fully assess the impact on accuracy, a

study of multiple CV workloads with varying p values would

Fig. 15: Total tracks per frame for p = 1, 2.

be required. In this paper, we instead seek to demonstrate

that allowing a small amount of restricted parallelism does

not necessarily translate to a large drop in accuracy.

As p increases, the distance between the “current” position

of a pedestrian and their last-tracked position increases. As

a result, the track might be lost, to be started anew at a

later frame. Therefore, we expect the total number of tracks

maintained throughout the video (including tracks abandoned

when pedestrians are “lost”) to increase with increasing p.

In practice, p might represent the maximum age of historical

results available in a given cycle, i.e., newer results could be

used, if available. In our experiments, however, we assume

that p corresponds to the actual age of the historical results

available in order to demonstrate the worst-case accuracy. This

worst-case behavior effectively partitions the frames into dis-

tinct sets. For example, if p = 2, then data produced by frames

0, 2, 4, 6, ... will never be available to frames 1, 3, 5, 7, ... and

vice versa; in this case, a given pedestrian corresponds to two

separate tracks, one for each set of frames.

We chose as a metric for accuracy the total number of tracks

maintained throughout the video, including tracks abandoned

when pedestrians are lost. Given the divisions of frames based

on p, we consider this total on a per-frame-set basis. Figs. 15

and 16 depict the total tracks for 100 frames of the video. The

solid line indicates the total track count for p = 1. Fig. 15

depicts the total track counts for the two frame sets for p = 2,

and Fig. 16 depicts the three frame sets for p = 3.

Obs. 5. Accuracy is comparable for p = 1 and p = 2.

This is supported by Fig. 15. For p = 2, the two sets of

even and odd frames effectively result in two different video

sequences, each with half the frame rate of the original. The

even frame sequence for p = 2 maintains the same number

of tracks as the “ground truth” of p = 1, and after the first

few frames, the odd frame sequence tracks only one fewer

pedestrian. Additionally, the two sequences for p = 2 only

differ by at most one tracked pedestrian.

Obs. 6. Accuracy significantly decreases for p = 3.

This can be seen in comparing Figs. 15 and 16. For p = 3,

pedestrians effectively move three times as far as p = 1
between “consecutive” frames of a given sequence. As a

result, pedestrians are more frequently lost, as evidenced by

the higher total track count for one of the p = 3 sets in

Fig. 16. Furthermore, the three sequences corresponding to

Fig. 16: Total tracks per frame for p = 1, 3.

p = 3 in Fig. 16 differ greatly from each other, indicating that

the results are much less stable as p increases.

As mentioned above, the results presented here assume that

p represents the exact age of historical results available in

a given cycle. If p instead represented the maximum age of

results, then we expect that higher values of p could be used

without significant impact on the accuracy. We plan to explore

such implications in future work.

VI. CONCLUSION

We have presented the first ever work on guaranteeing

response-time bounds for OpenVX graphs that have arbitrary

cycles. Such graphs are crucial to consider in real-time certifi-

cation processes applicable to autonomous vehicles due to the

prevalence of uses cases where historical information must be

tracked. Our results reveal interesting tradeoffs pertaining to

graph cycles that hinge on response times, allowed parallelism,

and CV accuracy. We discussed an approach to enable such

tradeoffs to be explored that involves transforming an OpenVX

graph to an “equivalent” sporadic task set for which allowed

intra-task parallelism is a settable per-task parameter. We

introduced the rp-sporadic task model to enable the formal

study of such task sets, and derived response-time bounds

that are applicable to any feasible task set under this model.

Additionally, our work can be applied to any graph that

contains a cycle, including those from motion planning and

machine-learning applications.

This paper opens up many avenues for future work. First, as

discussed in Secs. IV-B and IV-C, we made certain simplifying

assumptions in our analysis due to space constraints; we intend

to fully explore all of the options mentioned there for easing

these assumptions. Second, like in prior work, our approach

does not allow specifying desired response-time bounds (doing

so would introduce utilization constraints). We will explore

system design choices and their impacts on resulting bounds.

Third, we intend to extend our experimental efforts to consider

higher-level notions of accuracy in autonomous driving, such

as missed obstacles when engaged in actual driving scenarios,

and to perform a large-scale study of the tradeoff between

response times and accuracy for a broad set of autonomous-

driving applications. Finally, we intend to develop a tool that

will enable CV programmers to graphically specify OpenVX

programs that are then automatically transformed to fine-

grained implementations with response-time analysis.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Catherine Nemitz and
Clara Hobbs for stimulating discussion and helpful feedback.
Additionally, this work was supported by NSF grants CNS
1409175, CNS 1563845, CNS 1717589, and CPS 1837337,
ARO grant W911NF-17-1-0294, and funding from General
Motors.

REFERENCES

[1] H. I. Ali, B. Akesson, and L. M. Pinho, “Generalized extraction of
real-time parameters for homogeneous synchronous dataflow graphs,” in
Proceedings of the 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2015, pp. 701–710.

[2] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications,” in Proceedings
of the 9th ACM International Conference on Embedded Software, 2011,
pp. 195–204.

[3] S. Baruah, “Federated scheduling of sporadic DAG task systems,” in
Proceedings of the 29th IEEE International Parallel and Distributed
Processing Symposium, 2015, pp. 179–186.

[4] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software synthesis
from dataflow graphs. Springer Science & Business Media, 2012, vol.
360.

[5] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static
dataflow,” IEEE Transactions on signal processing, vol. 44, no. 2, pp.
397–408, 1996.

[6] B. Brandenburg and J. H. Anderson, “Feather-Trace: A lightweight
event tracing toolkit,” in Proceedings of the 3rd International Workshop
on Operating Systems Platforms for Embedded Real-Time applications,
2007, pp. 19–28.

[7] S. Chatterjee and J. Strosnider, “Distributed pipeline scheduling: A
framework for distributed, heterogeneous real-time system design,” The
Computer Journal, vol. 38, no. 4, pp. 271–285, 1995.

[8] S. Chatterjee and J. Strosnider, “A generalized admissions control strat-
egy for heterogeneous, distributed multimedia systems,” in Proceedings
of the ACM Multimedia, 1995, pp. 345–356.

[9] U. Devi, “Soft real-time scheduling on multiprocessors,” Ph.D. disser-
tation, University of North Carolina at Chapel Hill, 2006.

[10] U. Devi and J. H. Anderson, “Tardiness bounds under global EDF
scheduling on a multiprocessor,” Real-Time Systems, vol. 38, no. 2, pp.
133–189, 2008.

[11] Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson,
“Optimal dataflow scheduling on a heterogeneous multiprocessor with
reduced response time bounds,” in Proceedings of the 29th Euromicro
Conference on Real-Time Systems, 2017, pp. 15:1–15:22.

[12] G. A. Elliott, “Real-time scheduling of GPUs, with applications in
advanced automotive systems,” Ph.D. dissertation, University of North
Carolina at Chapel Hill, 2015.

[13] G. A. Elliott, N. Kim, J. P. Erickson, C. Liu, and J. H. Anderson,
“Minimizing response times of automotive dataflows on multicore,” in
Proceedings of the 20th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, 2014, pp. 1–10.

[14] G. A. Elliott, K. Yang, and J. H. Anderson, “Supporting real-time com-
puter vision workloads using OpenVX on multicore+GPU platforms,”
in Proceedings of the 36th IEEE Real-Time Systems Symposium, 2015,
pp. 273–284.

[15] J. P. Erickson and J. H. Anderson, “Response time bounds for G-EDF
without intra-task precedence constraints,” in Proceedings of the 15th
International Conference On Principles Of Distributed Systems, 2011,
pp. 128–142.

[16] J. P. Erickson, N. Guan, and S. Baruah, “Tardiness bounds for global
EDF with deadlines different from periods,” in Proceedings of the 14th
International Conference On Principles Of Distributed Systems, 2010,
pp. 286–301.

[17] S. Goddard, “On the management of latency in the synthesis of real-time
signal processing systems from processing graphs,” Ph.D. dissertation,
University of North Carolina at Chapel Hill, 1998.

[18] J. P. Hausmans, M. H. Wiggers, S. J. Geuns, and M. J. Bekooij,
“Dataflow analysis for multiprocessor systems with non-starvation-free
schedulers,” in Proceedings of the 16th International Workshop on
Software and Compilers for Embedded Systems, 2013, pp. 13–22.

[19] C.-J. Hsu and S. S. Bhattacharyya, “Cycle-breaking techniques for
scheduling synchronous dataflow graphs,” Institute for Advanced Com-
puter Studies, University of Maryland, Tech. Rep., 2007.

[20] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in Proceedings of the 38th
IEEE Real-Time Systems Symposium, 2017, pp. 80–91.

[21] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in Proceedings of the 31st IEEE
Real-Time Systems Symposium, 2010, pp. 259–268.

[22] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[23] H. Leontyev and J. H. Anderson, “Generalized tardiness bounds for
global multiprocessor scheduling,” in Proceedings of the 28th IEEE
Real-Time Systems Symposium, 2007, pp. 413–422.

[24] H. Leontyev and J. H. Anderson, “Tardiness bounds for FIFO scheduling
on multiprocessors,” in Proceedings of the 19th Euromicro Conference
on Real-Time Systems, 2007, pp. 71–80.

[25] H. Leontyev and J. H. Anderson, “Generalized tardiness bounds for
global multiprocessor scheduling,” Real-Time Systems, vol. 44, no. 1-3,
pp. 26–71, 2010.

[26] J. Li, “Parallel real-time scheduling for latency-critical applications,”
Ph.D. dissertation, Washington University in St. Louis, 2017.

[27] J. Li, K. Agrawal, C. Gill, and C. Lu, “Federated scheduling for
stochastic parallel real-time tasks,” in Proceedings of the 20th IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, 2014, pp. 1–10.

[28] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu, “Mixed-
criticality federated scheduling for parallel real-time tasks,” Real-Time
Systems, vol. 53, no. 5, pp. 760–811, 2017.

[29] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu, “Global EDF
scheduling for parallel real-time tasks,” Real-Time Systems, vol. 51,
no. 4, pp. 395–439, 2015.

[30] LITMUSRT Project, http://www.litmus-rt.org/.
[31] C. Liu and J. H. Anderson, “Supporting soft real-time DAG-based

systems on multiprocessors with no utilization loss,” in Proceedings
of the 31st IEEE Real-Time Systems Symposium, 2010, pp. 3–13.

[32] C. Liu and J. H. Anderson, “Supporting graph-based real-time applica-
tions in distributed systems,” in Proceedings of the 20th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, 2011, pp. 143–152.

[33] C. Liu and J. H. Anderson, “Supporting soft real-time parallel applica-
tions on multicore processors,” in Proceedings of the 18th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications, 2012, pp. 114–123.

[34] Y. Liu, X. Zhang, H. Li, and D. Qian, “Allocating tasks in multi-core
processor based parallel system,” in Proceedings of the 4th IFIP Inter-
national Conference on Network and Parallel Computing Workshops,
2007, pp. 748–753.

[35] S. Niknam, P. Wang, and T. Stefanov, “Hard real-time scheduling of
streaming applications modeled as cyclic csdf graphs,” in The 23rd
Design, Automation & Test in Europe Conference & Exhibition, 2019,
pp. 1549–1554.

[36] Naval Research Laboratory, “Processing graph method specification,”
1987.

[37] The Khronos Group, “OpenVX: Portable, Power Efficient Vision Pro-
cessing,” Online at https://www.khronos.org/openvx/.

[38] The Khronos Group, “The OpenVX Specification,” Online at
https://www.khronos.org/registry/OpenVX/specs/1.2.1/OpenVX Specifi-
cation 1 2 1.html#sub graphs rules.

[39] H. Rihani, M. Moy, C. Maiza, R. I. Davis, and S. Altmeyer, “Response
time analysis of synchronous data flow programs on a many-core
processor,” in Proceedings of the 24th International Conference on Real-
Time Networks and Systems, 2016, pp. 67–76.

[40] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in Proceedings of the
32nd IEEE Real-Time Systems Symposium, 2011, pp. 217–226.

[41] N. Ueter, G. von der Brüggen, J.-J. Chen, J. Li, and K. Agrawal,
“Reservation-based federated scheduling for parallel real-time tasks,”
in Proceedings of the 39th IEEE Real-Time Systems Symposium, 2018,
pp. 482–494.

[42] K. Yang, G. A. Elliott, and J. H. Anderson, “Analysis for supporting
real-time computer vision workloads using OpenVX on multicore+GPU
platforms,” in Proceedings of the 23th International Conference on Real-
Time Networks and Systems, 2015, pp. 77–86.

[43] K. Yang, M. Yang, and J. H. Anderson, “Reducing response-time bounds
for DAG-based task systems on heterogeneous multicore platforms,”
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, 2016, pp. 349–358.

[44] M. Yang, T. Amert, K. Yang, N. Otterness, J. H. Anderson, F. D. Smith,
and S. Wang, “Making OpenVX really ‘Real Time’,” in Proceedings of
the 39th IEEE Real-Time Systems Symposium, 2018, pp. 80–93.

