
TimeWall: Enabling Time Partitioning
for Real-Time Multicore+Accelerator

Platforms*
Tanya Amert, Zelin Tong, Sergey Voronov, Joshua Bakita, F. Donelson Smith, and James H. Anderson

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract—Across a range of safety-critical domains, an evolu-
tion is underway to endow embedded systems with “thinking”
capabilities by using artificial-intelligence (AI) techniques. This
evolution is being fueled by the availability of high-performance
embedded hardware, typically multicore machines augmented
with accelerators. Unfortunately, existing software certification
processes rely on time partitioning to isolate system compo-
nents, and this sense of isolation can be broken by accelerator
usage. To address this issue, this paper presents TimeWall,
a time-partitioning framework for multicore+accelerator plat-
forms. When applied alongside existing methods for alleviating
spatial interference, TimeWall can help enable component-wise
certification on multicore+accelerator platforms. The challenges
in realizing a TimeWall implementation are discussed in detail
in this paper. Additionally, the temporal isolation TimeWall
affords is examined experimentally, including via a case study
of a computer-vision perception application, on a real platform.

Index Terms—Real-Time Systems, Heterogeneous Architec-
tures, Graphics Processing Units

I. INTRODUCTION

The use of artificial-intelligence (AI) techniques to endow
embedded systems with “thinking” capabilities is transforming
the role these systems play in our everyday lives. A decade
ago, the goal of producing aircraft and automobiles at mass
scales that can autonomously “think” may have seemed far
fetched, yet we are closer than ever to this reality today.

Unfortunately, as the evolution towards increasing AI func-
tionality moves forward, a major stumbling block is looming:
some of the most compelling use cases for embedded AI—
such as autonomous aircraft and automobiles—fall within
safety-critical domains for which certification is essential. The
AI-based workloads of relevance to these use cases rely on
complex hardware—typically multicore machines augmented
with accelerators (e.g., graphics processing units (GPUs)).
These complexities present new challenges for certification.

Time and space partitioning. Existing safety-critical software
certification processes are rooted in time and space parti-
tioning. In avionics, for example, the sharing of hardware
between software components is specified by a real-time
operating system (RTOS) design in ARINC 653 [42]. The

*This work was supported by NSF grants CNS 1563845, CNS 1717589,
CPS 1837337, CPS 2038855, and CPS 2038960, ARO grant W911NF-20-1-
0237, and ONR grant N00014-20-1-2698.

Time
CPU 0
CPU 1
CPU 2
CPU 3

Partition 1
Partition 2

Partition 4
Partition 5

Partition 3 Task 1
Task 2
Task 3

Core idle

Fig. 1: Five partitions on four cores. Partition 3 executes on two cores;
other partitions each execute on one core. In-partition scheduling is
shown for Partition 3.

fundamental RTOS concept in ARINC 653 is a partition,
which encapsulates a set of software modules and affords them
isolation in time and space.1

Broadly speaking, time partitioning means that at most
one component may access each processing resource (e.g., a
CPU core) at any time, and space partitioning means that
components cannot adversely interfere with each other in
accessing non-processing resources, such as memory.

Space partitioning on multicore platforms can be provided
by memory-protection functions (e.g., page coloring). As
depicted in Fig. 1, time partitioning in ARINC 653 is achieved
via two-level scheduling: time slices are allocated to partitions,
and for each partition, an in-partition scheduler allocates time
to tasks of the contained component.

To evolve existing certification standards to embrace AI
workloads, time-partitioning methods must enable accelerator
usage. The key challenge here is that accelerators are typically
invoked non-preemptively—this creates a hazard, as acceler-
ator accesses too near the end of a time slice risk crossing
the time-slice boundary, breaking cross-component isolation.
Time-partitioning methods must prevent such scenarios—in
essence enforcing a “wall in time” that accelerator accesses
cannot cross.

Our focus. In this paper, we introduce TimeWall (Time-
Isolated Multicore Execution With AcceLerator Locking),
a framework for providing time partitioning on multi-
core+accelerator platforms. The design of TimeWall required
new research contributions on several fronts. Before describing
these contributions in detail, we briefly discuss prior work

1We use partition to indicate an allocation by the OS and component when
considering a portion of an application system that requires such an allocation.
Each component executes within a unique partition.

related to resource sharing in component-based systems, as
well as existing accelerator-access arbitration techniques.

Prior work. Component-based real-time systems have been
investigated before [1], [4]–[11], [16], [20]–[23], [33], [34],
[37], [38], [45], [52]. Some of this prior work considered
shared resources, but only on uniprocessor platforms [5]–[7],
[20] or multiprocessor platforms with each CPU dedicated
to only one component [37], [38] (effectively, infinite time
slices). To our knowledge, no prior work has explored the
additional complexities introduced when components share
accelerators, especially the challenges that arise when moving
beyond theory to a practical implementation.

GPUs are probably the accelerator type of most relevance to
AI workloads. GPU arbitration at the task level has been con-
sidered before, by using a real-time locking protocol [25], [31],
[49], or via scheduling modifications in the GPU driver [18],
[32]. However, to our knowledge, no prior work has considered
GPU arbitration in component-based real-time systems.

Contributions. Prior work has not addressed the time par-
titioning of shared accelerators in component-based real-time
systems. In this paper, we address this limitation by presenting
TimeWall. Our contributions are threefold.

First, we present the design of TimeWall, which consists of
three main parts: a table-driven scheduler that allocates time to
partitions, in-partition global earliest-deadline-first (G-EDF)
schedulers, and a specialized locking protocol that orchestrates
accelerator accesses while respecting time-slice boundaries.

Second, we detail the challenges in moving from theory
to practice when using GPUs as accelerators. In this setting,
enforcing temporal isolation across components required sig-
nificant effort due to unforeseen GPU-access edge cases. These
edge cases, which we discuss in detail, highlight the need for
GPU budget enforcement. We provide an approach for doing
this, which we implemented in TimeWall.

Third, we present an experimental evaluation of Time-
Wall to demonstrate the temporal isolation it affords be-
tween GPU-using components. We explore the impact of
various system partition configurations, and detail a case
study of a computer-vision-based perception component in a
LITMUSRT-based [12], [17] TimeWall implementation.

Organization. In the rest of this paper, we provide needed
background (Sec. II), describe the design of TimeWall
(Sec. III), detail the challenges in moving from theory to
practice (Sec. IV), present our case-study evaluation (Sec. V),
discuss our implementation in the broader context of response-
time analysis for graph-based AI computations (Sec. VI),
overview related work (Sec. VII), and conclude (Sec. VIII).

II. SYSTEM MODEL AND BACKGROUND

Significant prior work has been directed at spatial isolation,
most notably with respect to shared caches, buses, and DRAM
banks (e.g., see [43], [48], [57] and the references therein). We
assume that techniques from this prior work are used alongside
TimeWall to provide spatial partitioning for components (e.g.,
that memory is partitioned and that data-movement costs are

incorporated into timing analysis), and do not consider such
techniques further.

In this paper, we focus our attention on ensuring tempo-
ral isolation between multiple components that require non-
preemptive access to the same hardware accelerator; even
if preemption is supported, such overheads are often pro-
hibitively high. Time partitioning is violated if an accelerator
access by one component extends beyond a time-slice bound-
ary. Thus, a non-preemptive access must be postponed if it
may cross a time-slice boundary.

Our solution to the time partitioning of accelerators involves
using in-partition G-EDF schedulers alongside accelerator-
access arbitration via a multiprocessor locking protocol. We
now describe our system, task, and accelerator-request models,
and the locking protocol we extended.

A. System Model

We consider a multicore+accelerator platform comprised of
m identical CPUs alongside a set of accelerators. We allow
different types of accelerators, e.g., GPUs, digital signal pro-
cessors (DSPs), and field-programmable gate arrays (FPGAs).

In this paper, we assume that all system components, and
their assigned partition time slices, have been predetermined.2

Associated with each component Γ is a set τ of tasks to be
scheduled. During a time slice, Γ has exclusive access to a
specified set Υ of CPU cores and accelerators. Note that some
accelerators (e.g., GPUs) can be broken into multiple virtual
accelerators [39], [41]; we leave such sharing to future work.

B. Task Model

We assume that component Γ’s task set τ is comprised of
n implicit-deadline tasks. Each task τi releases a (potentially
infinite) sequence of jobs: Ji,1, Ji,2, . . . ; we refer to an
arbitrary job of task τi as Ji. We denote the period (and thus
relative deadline) of a task τi as Ti, τi’s worst-case execution
time (WCET) as Ci, τi’s utilization as ui = Ci/Ti, and the
total utilization of all tasks in Γ as U =

∑
i ui.

In some AI applications, a task’s utilization may ex-
ceed 1.0 [3]. Such tasks cannot be partitioned onto a single
processor without over-utilizing the processor. Thus, for such
tasks to be scheduled, CPU scheduling within a component
must be done via global scheduling (e.g., G-EDF), considering
all jobs of all tasks in Γ together on the CPUs available to Γ,
with consistent deadline tie breaking. Deadlines here define
priorities rather than timing constraints—these deadlines may
possibly be missed.3 Thus, we consider a component Γ to be
schedulable if, for each τi ∈ τ , we can compute a bound
on the response time of τi (i.e., the time between the release
and subsequent completion of each job Ji,j). We leave the
acceptability of such bounds as an application-level concern.

Task utilizations exceeding 1.0 also necessitate that some
degree of intra-task parallelism be allowed. Prior work has

2In future work, we will explore issues arising when defining system
components and time allocations. The results presented here are a necessary
precursor to that work.

3The term “priority point” would be more appropriate than “deadline,” but
we use the latter to be consistent with the name “G-EDF.”

0 1 2 3 4 5

Time
J1,1

J1,2

J1,3

J1,4

J1,5

u1 > 1

CPU 0
CPU 1

Job release Job deadline Jobs of τ1 Other jobs

Fig. 2: An example schedule for an rp-sporadic task τ1 with u1 =
1.25 and P1 = 2.

extended the traditional sporadic task model to allow full
parallelism [26] or restricted parallelism [3], enabling the
scheduling of tasks with utilizations exceeding 1.0. The rp-
sporadic task model [3] introduces an additional task param-
eter, Pi, representing the number of jobs of task τi that may
execute concurrently. We assume the rp-sporadic model in this
paper, as it generalizes both the traditional sporadic task model
(∀i : Pi = 1) and the fully parallel model (∀i : Pi = m).

Example 1. An rp-sporadic task τ1 with u1 = 1.25 is
depicted in Fig. 2. As u1 > 1, τ1 cannot be scheduled
assuming the sequential sporadic task model, nor can it be
partitioned to a single CPU. However, as P1 = 2, up to two
jobs of τ1 may execute concurrently, e.g., at time 4.5. ♦

C. Request Model

We consider accelerators to be shared resources that can be
accessed by at most one job at a given time. Such accesses
can be managed using a real-time mutual-exclusion locking
protocol. A job Ji may issue one or more requests, R1

i ,
R2

i , . . . , to the locking protocol; we let Ri denote an arbitrary
request of a job of task τi. Once Ji is granted access, Ri is
said to be satisfied until the job releases the lock. Request Ri

is active from its issuance until Ji releases the lock; an active
request is either waiting to acquire the lock or is satisfied.

D. Global OMLP

As discussed in Sec. II-B, allowing tasks with utilization ex-
ceeding 1.0 precludes partitioned scheduling, and we therefore
require global scheduling (e.g., G-EDF) and a multiprocessor
mutual-exclusion locking protocol. One such protocol is the
suspension-based global OMLP [14], which has been shown
to have optimal priority-inversion blocking (pi-blocking) un-
der suspension-oblivious analysis, which is the suspension-
accounting method usually used under G-EDF.

When used on m processors, the global OMLP ensures
O(m) pi-blocking by utilizing a dual-queue structure, with
an m-element FIFO queue fed into by a priority queue, as
depicted in Fig. 3. Using the global OMLP, when a new
request is issued, it is enqueued in the FIFO queue if fewer
than m requests are already active, and in the priority queue
otherwise. When the request at the head of the FIFO queue
(i.e., the lock holder) completes, it is dequeued, and the next
request (if any) in the FIFO queue becomes satisfied; if the
priority queue is not empty, the highest-priority request is
moved from the priority queue to the tail of the FIFO queue.

R1R2R5R4

lock
holder

m-element FIFO queue
priority queue

Fig. 3: The global OMLP structure for m = 4 CPUs.

TimeJ1

J2

J3

J4

J5

J6

0 5 10

�

�

�

�

�

�

�

�

�

�

�

�

Critical Section
CPU Execution
Blocking

� Lock Release
� Request Issuance

Job Completion
Job Deadline
Job Release

Fig. 4: Jobs issuing requests to the global OMLP with m = 4.

Example 2. Fig. 4 depicts six jobs that issue requests to the
global OMLP with m = 4. The global OMLP state shown in
Fig. 3 corresponds to the set of active requests at time 4.5. The
first four requests issued are enqueued directly in the FIFO
queue in issuance order; thus, R5 is satisfied before R4, even
though J4 has higher priority than J5.

Requests R6 and R3 are enqueued in the priority queue
upon issuance, as the FIFO queue is full. When J1 releases
the lock at time 7, R2 becomes satisfied (i.e., the head of the
FIFO queue), and R3 is moved from the priority queue to the
FIFO queue, as J3 has higher priority than J6. Thus, R3 is
satisfied before R6, despite being issued later. ♦

E. Accelerator Access Model

We refer to the computations performed while a request is
satisfied as its critical section. We assume that each job of a
task τi may make any number of accelerator accesses and that
successive accesses to the same accelerator may be grouped
into the critical section of a single request. We denote by Y k,1

i ,
Y k,2
i , . . . the accelerator accesses occurring during the critical

section of request Rk
i .

Example 3. Two request-issuing jobs are depicted in Fig. 5.
Job J2 makes two separate lock requests, whereas the two
accesses by job J1 are grouped into a single request.

Request R2
2 is active in the interval [5, 9): it is blocked by

both accesses of R1
1 from time 5 to time 8 and then satisfied

from time 8 to time 9 while R2
2’s critical section executes. ♦

III. TIMEWALL

Certification procedures tend to evolve slowly over time
(with good reason!). Given this reality, our proposal for
ensuring time partitioning on a multicore+accelerator platform
is based on the current ARINC 653 time-slicing approach.

0 5 10

Time
�

� �

�

� �

J1

J2

Acellerator Access
CPU Execution
Blocking

Fig. 5: Two jobs issuing requests to access the same accelerator.

Time

0 1 2 3 4 5 6
CPU 0
CPU 1
CPU 2
CPU 3

GPU 0
GPU 1

A

B

C

D

A
B D

A

B

C

D

A
B D

Detailed
in Fig. 7

Fig. 6: Time-sliced schedule. Rectangles represent reservations.

We abstract the idea of time slicing by ensuring that each
component Γ is granted exclusive periodic access to a set Υ
of computing resources (accelerators as well as M unit-speed
CPUs, where M ≤ m) by defining a periodic component
reservation (PCR) for Γ (similarly to the Single Time Slot
Periodic Partition model of Mok and Chen [36]).

The PCR for component Γ is defined as a three-tuple
(Θ,Π,Υ), denoting that Γ receives exclusive access to the
computing resources in Υ within continuous intervals of
Θ time units that begin every Π time units (Θ ≤ Π).
As an example, Fig. 6 shows the first few time slices
for four components on a platform with four CPUs and
two GPUs. In this example, Component A is specified by
(2, 3, {CPU 0,CPU 1,CPU 2,GPU 0}).

We now introduce TimeWall, a framework to enable time
partitioning on multicore+accelerator platforms.

A. Scheduling Hierarchy

At the core of TimeWall is a two-level scheduling hierarchy.
The top-level scheduler is the partition allocator (PA), which
ensures that partitions are scheduled according to their PCRs.
The PA is realized using a table-driven scheduling approach.
We assume that the table is determined offline; optimizing the
table creation is outside the scope of this paper.

The second-level scheduler is the in-partition scheduler.
Conceptually, any multiprocessor scheduler could be used
here. Our implementation uses G-EDF, but other G-EDF-like
schedulers [27] could be applied similarly. In the rest of the
paper, we focus on the allocations within a single arbitrary
component, so we will simply refer to that component’s in-
partition scheduler as “the scheduler.”

To realize this scheduling hierarchy, we extended the ex-
isting reservation-based scheduling mechanisms available in
LITMUSRT. In our implementation, each reservation is con-
tained within a scheduling environment: the PA corresponds to
an environment that schedules partition reservations, and each
in-partition scheduler is associated with an environment that
schedules task reservations. Using this hierarchical approach,
a job can query the remaining budget for its partition, which
is necessary to enforce time partitioning, as discussed next.

0.0 0.5 1.0 1.5 2.0

TimeCPU 0
CPU 1
CPU 2

GPU 0
GPU access

is not allowed

CPU job is preempted

Forbidden zone
Successful GPU access Fz-blocked GPU access

Fig. 7: Expanded view of the first time slice of Component A from
Fig. 6. Rectangles represent jobs of tasks in Component A.

B. Time Partitioning via Forbidden Zones

As discussed in Sec. II-D, we require a multiprocessor
locking protocol to ensure mutually exclusive access to each
accelerator, and we chose the global OMLP for this purpose.
We apply the global OMLP within a component, treating each
accelerator in Υ as a separate resource protected by a unique
global OMLP lock with an M -element FIFO queue. We leave
the exploration of other protocols to future work.

The key challenge of time partitioning accelerators is
preventing the continuation of a non-preemptive accelerator
access past the end of a time slice. To prevent such time-
slice overruns, we use a variant of a concept known as a
forbidden zone [30].4 Defined for each access to a non-
preemptive accelerator, a forbidden zone is the time interval
in which the access may not be initiated, otherwise it may
not complete before the end of the component’s time slice.
Thus, the length of the forbidden zone for a given access is the
worst-case duration of that access—accelerator usage by other
components has no impact on a given component’s forbidden-
zone lengths. Note that the use of a forbidden zone requires
that no accelerator access takes more than Θ time units.

Example 4. Forbidden zones are illustrated in Fig. 7, which
shows a detailed view of the execution of Component A from
Fig. 6 within the time interval [0, 2). The forbidden zone
corresponding to the final GPU access by a job executing on
CPU 2 is shown in grey, prior to the time-slice boundary. ♦

The enforcement of forbidden zones in TimeWall is applied
at the level of an individual accelerator access, rather than an
entire critical section. To enable this fine-grained enforcement,
we augmented the global OMLP to include an additional
“forbidden-zone-check” mechanism in addition to the tradi-
tional “lock” and “unlock” functionality. Prior to initiating
an accelerator access Y k,`

i , the job Ji holding the lock must
invoke the forbidden-zone check, which verifies that Y k,`

i is
not within its forbidden zone, i.e., that the time remaining

4A similar idea was later applied in a component-based setting [6], but that
work focused on uniprocessor CPU platforms and did not allow for skipping
ahead in a forbidden zone, which we discuss later.

in the time slice is at least the worst-case duration of Y k,`
i .

Otherwise, the forbidden-zone check suspends Ji until the next
time slice of its containing component. We call such forbidden-
zone-induced blocking fz-blocking.

Example 4 (cont’d). As shown in Fig. 7, the last job to
execute on CPU 2 accesses GPU 0 twice. The first GPU access
is initiated at time 1.5, before the start of its forbidden zone;
this access is allowed to execute, as it will complete before
the end of the time slice, by the definition of the forbidden-
zone length. The second GPU access is fz-blocked, and cannot
begin until Component A’s next time slice. CPU execution, like
that on CPU 0, is allowed and is preempted at time 2.0. ♦

C. Performance Optimizations

The delays caused by fz-blocking can be mitigated slightly
via two performance improvements, which we discuss now.

Skipping ahead. If the lock holder is fz-blocked due to an
accelerator access in its forbidden zone, we can allow other
requests to “skip ahead” of that access until the beginning of
the next time slice. This corresponds to the Skip Protocol pro-
posed previously [30], but requires some additional machinery
due to the separate enforcement of forbidden zones and critical
sections. Because allowing a request to skip ahead reorders the
global OMLP’s queues of requests, critical-section lengths5

rather than individual access durations are compared to the
time remaining in the slice to determine whether skipping
ahead is allowed. A consequence is that individual accesses
are not permitted to skip ahead; we leave to future work such
access-level skipping, which would require additional mecha-
nisms to ensure that the global OMLP remains starvation-free
in the presence of time-slice boundaries.

Example 5. Consider the set of active lock requests depicted
in Fig. 8, in which accesses are represented by clouds and
requests are depicted as rounded rectangles. Suppose that
after Y 1,1 completes, the job becomes fz-blocked, i.e., that the
worst-case duration of Y 1,2 is longer than the time remaining
in the time slice.

In this case, a later-enqueued request may be allowed to
skip ahead. The next request that can be satisfied is R5, as its
critical-section length is less than the worst-case duration of
Y 1,2. Note that R3 is not eligible, even though its individual
accesses are each of shorter duration than Y 1,2. ♦

Requests that skip ahead do so while another job is fz-
blocked, and thus do not introduce any additional blocking.

Merging accelerator accesses. Each request for accelerator
access incurs delays due to locking-protocol overhead as well
as pi-blocking. Such blocking depends on the worst-case
duration of any critical section [50].

As we allow multiple accelerator accesses within a critical
section, a trade-off arises as to whether to merge successive
accesses into a single critical section. If a job Ji acquires

5Skipping ahead requires that the lock call of the global OMLP be
modified to take the critical-section length as an additional parameter.

R1R2R3R4R5R6

lock
holder

Y 5,1 Y 3,2 Y 1,2 Y 1,1

Fig. 8: The global OMLP with support for forbidden zones. Widths
of rounded rectangles (requests) and clouds (accesses) indicate worst-
case critical-section and access durations, respectively.

the lock for each access individually, the locking-protocol
overhead and pi-blocking suffered by Ji are duplicated for
each access. However, if the accesses are merged, then the
single critical section has longer duration than if the lock were
separately acquired for each access, increasing the blocking
experienced by other jobs. We discuss the overhead associated
with this trade-off for our implementation in Sec. V-A.

IV. THEORY MEETS PRACTICE

In theory, forbidden zones ensure total isolation between
accelerator-using components, but does such isolation occur
in practice? To answer this question, we implemented the
two-level scheduler and forbidden-zone-aware global OMLP
comprising TimeWall within the 5.4.0-rc7 LITMUSRT ker-
nel [12], [17] and conducted experiments involving a GPU,
perhaps the most commonly used type of accelerator in work
on AI. These experiments led to several surprises, which we
detail throughout this section.

Experimental setup. Our experimental platform contains two
eight-core 2.10-GHz Intel Xeon Silver 4110 processors and
one NVIDIA Titan V GPU. Each CPU core utilizes a 32-KB
L1 instruction cache, a 32-KB L1 data cache, and a 1-MB L2
cache; all eight CPU cores on a socket share an 11-MB L3
cache. Only one socket was used to schedule components in
our experiments. The CPUs and discrete GPU have separate
DRAM, and we used platform-default mechanisms to manage
concurrent bus access. To mitigate CPU spatial interference
between components, we partitioned the L3 cache and main
memory evenly between them. We also disabled hyperthread-
ing and graphics output for all experiments.

Our case study, described in Sec. V, featured a GPU-enabled
version of the pedestrian-detection algorithm Histogram of
Oriented Gradients (HOG) [19]. HOG utilizes seven GPU
operations: a CPU-to-GPU image copy-in, five GPU-local
computations (termed kernels—not to be confused with an OS
kernel), and one final GPU-to-CPU result copy-out.

To provision forbidden zones for the seven GPU operations
in HOG, we needed the worst-case duration of each access.
Due to the complexity of multicore platforms, the industry
standard for WCET analysis on such platforms is measurement
based [51]. Thus, for 25,000 video frames, we collected GPU-
and CPU-based GPU-access-duration measurements, using
NVIDIA’s nvprof profiling tool and clock_gettime(),
respectively. The results are listed in Table I, including the
99th , 99.5th , 99.9th , 99.95th , and 99.99th CPU percentiles.

Perplexing edge cases. We expected the CPU-measured GPU-
access durations to approximately match what we measured

TABLE I: Statistics for durations of the two copies and five kernels comprising the HOG case study in microseconds, as measured on the
GPU using nvprof and on the CPU using clock_gettime().

Device Statistic Copy-In K1 K2 K3 K4 K5 Copy-Out
GPU max 77 27 42 56 28 49 29

CPU

99th 154 144 138 73 30 64 46
99.5th 157 146 139 74 31 65 47
99.9th 180 154 146 79 45 70 52
99.95th 200 161 148 86 49 76 57
99.99th 1391 1342 163 1265 55 1236 69
max 5247 1393 1388 1332 1286 1317 1300

on the GPU (with minor CPU-GPU communication overhead),
yet this behavior only held up to the 99.95th percentile of CPU
measurements. In fact, the worst-case CPU-measured times
were two orders of magnitude higher than those measured on
the GPU. What was causing such extreme edge cases, and why
had prior work not noted these cases?

Prior work seems to have obviated edge cases either by only
timing GPU accesses on the GPU [29], [35], [54] or by using
only a percentile of measured CPU times [53], [55], [56]. We
can make no such simplification. Provisioning forbidden zones
using lower percentiles would risk GPU accesses crossing
time-slice boundaries, violating temporal isolation. However,
as the average- and worst-case diverge, fz-blocking using
worst-case measurements becomes exceedingly conservative,
greatly reducing GPU utilization. Only one choice remained:
we needed to identify the cause of the edge cases.

A. Investigating Potential Culprits

Prior work [24], [54] identified pitfalls in using GPUs in
real-time systems, providing us with a starting point. After
ruling out the pitfalls listed by Yang et al. [54], we suspected
GPU interrupt handling as the edge-case culprit, as Elliott and
Anderson [24] detailed priority inversions that could occur due
to interrupt processing for CPU-GPU communication in prior
kernel and GPU driver versions.

Interrupt processing. In Linux (upon which LITMUSRT is
based), interrupts are processed in two steps: “top halves,”
which typically execute immediately and non-preemptively to
acknowledge the interrupt, and “bottom halves,” which handle
the interrupt processing itself. Despite recent changes in Linux
interrupt handling [28], [44], bottom halves in LITMUSRT

may still execute at a lower priority than any LITMUSRT task,
leading to potential priority inversions.

We mitigated edge cases due to top halves by reserving one
CPU per socket for top-half handling. To identify if bottom-
half-related priority inversions were causing the edge cases, we
used KUTrace [46], [47], a tracing tool that provides a timeline
of all work on the system, including interrupts, syscalls,
and page faults. The trace data surprisingly revealed that
interrupts were not at fault; each edge case occurred entirely
in userspace. However, this raised the question: what source
could account for a userspace slowdown of this magnitude?

Power management. The trace data revealed an additional
oddity, providing our next clue: just before a worst-case
GPU access completed, all CPUs other than the one awaiting
notification of a GPU-operation completion would exit a low-
power state. Thus, we sought to disable power management,
including both low-power states and CPU frequency scaling.

For low-power states, we disabled Linux’s cpuidle mech-
anism [15]. Frequency scaling proved more challenging, and
in fact, we discovered that it is impossible to completely
disable frequency scaling in modern Intel processors. Thus,
we implemented a monitor to periodically log CPU frequency.
We correlated these measurements with our trace data, and
observed no CPU-frequency changes during edge-case oc-
currences. To identify the userspace operations in which the
edge cases occurred, we added KUTrace markers around each
CPU-side operation occurring within our GPU-access-duration
timing interval; we found that the edge cases occurred within
library functions used to communicate with the GPU.

CUDA runtime library overhead. NVIDIA provides the
CUDA runtime library for communicating with an NVIDIA
GPU. For example, there are CUDA functions to submit a
GPU kernel to the GPU (cudaLaunchKernel) and await
its completion (cudaStreamSynchronize).

By aligning a GPU trace using NVIDIA’s nvprof trac-
ing tool with our KUTrace results, we observed two un-
expected scenarios, shown in Fig. 9. Fig. 9a illustrates a
scenario in which the asynchronous cudaLaunchKernel
took multiple milliseconds (this call typically takes tens of
microseconds). In the other scenario, depicted in Fig. 9b,
the cudaStreamSynchronize call did not return until
multiple milliseconds after the GPU execution had completed.6

Unfortunately, due to the closed-source nature of the
NVIDIA ecosystem, discovering the root cause of these edge
cases is exceedingly difficult. Furthermore, we may have
observed only one of many possible edge cases in using such
black-box GPUs. Thus, having to deal with edge cases is
an unavoidable consequence of using an NVIDIA GPU.
Consequently, to support a robust real-time system, edge-case
mitigation is a necessity.

6We use the CUDA option cudaDeviceScheduleYield to suspend on
the CPU while waiting for the GPU operation to complete, but we observed
the same results by instead spinning via cudaDeviceScheduleSpin.

//
TimeCPU

GPU
edge case

CPU Execution

Launch Kernel

Stream Sync

GPU Execution

(a) A long cudaLaunchKernel call.

//
TimeCPU

GPU
edge case

(b) A long cudaStreamSynchronize call.

Fig. 9: Illustrations of two edge-case scenarios we observed using
KUTrace and nvprof.

B. Mitigating Edge Cases through Budget Enforcement

The edge cases just discussed highlight our dual need to
ensure that our provisioned GPU-related execution times are
both respected and reasonable. The classic way of providing
such assurance is by enforcing budgets, and we do that here.
However, in the case of GPU operations, budget enforcement
is trickier than for CPU-only tasks.

Our budget-enforcement solution follows a two-pronged
approach, which we integrate into the forbidden-zone-aware
global OMLP. To enforce forbidden zones we utilize a watch-
dog timer, and provision forbidden zones using worst-case
GPU-measured access durations. To handle budget overruns,
we monitor GPU access durations and cancel any additional
job processing if a budget overrun occurs. We provision per-
access budgets using 99.95th -percentile CPU-measured access
durations. To our knowledge, this is the first GPU budget-
enforcement strategy to be proposed for real-time systems.

Enforcing forbidden zones. The watchdog timer is controlled
via a pair of syscalls (as part of the forbidden-zone-aware
global OMLP) for each accelerator access. Note that, like
lock/unlock calls, these sycalls are performed by application
code, and therefore forbidden-zone enforcement relies on an
unenforced programming convention.

The first syscall takes two parameters: the access budget
and the forbidden-zone length. If the time remaining in the
component’s time slice is less than the budget, the job is
suspended until its component’s next time slice. Otherwise,
the timer is set to fire at the start of the forbidden zone
(i.e., the time-slice end minus the forbidden-zone length).
After the syscall completes, the budget-expiration time is set
within the LITMUSRT userspace libraries. The second syscall
takes no parameters—it simply cancels the timer (if it has
not already fired) after the operation launch has completed; a
GPU operation initiated before its forbidden zone begins will
complete before the time-slice boundary.

Example 6. Our budget-enforcement mechanisms are illus-
trated for a single GPU access in Fig. 10. In each inset, the

TimeCPU

GPU

TimeCPU

GPU

TimeCPU

GPU

//

//

(c)

(b)

(a)

(1) (2) (3)

tb

tb

tb

tfz

tfz

tfz

tts

tts

tts

�

�

�

�

�

�

�

�

�

�

n

�

�

CPU Execution

Launch Kernel

Stream Sync

GPU Execution

� Request Issuance

� Lock Release

� Set Timer

� Cancel Timer

�
Check Budget:
Success

n
Check Budget:
Overrun

� Timer Firing

Fig. 10: The budget-enforcement mechanisms used in TimeWall, for
(a) a “well-behaved” GPU access, (b) a GPU access for which the
watchdog timer fires, and (c) a GPU access that exceeds its budget.

budget expires at time tb, the forbidden zone begins at tfz , and
the time slice ends at tts.

The “well-behaved” case is depicted in Fig. 10a. In this
example, the first syscall occurs at time (1); the budget is
less than the time remaining in the time slice, so the timer is
set to fire at time tfz (calculated as tts minus the forbidden-
zone length), tb is set (calculated as the current time plus the
budget), and the access is allowed to proceed. After the kernel
launch completes (time (2)), the watchdog timer is cancelled
via the second syscall. As the access begins before tfz , it is
allowed to execute within its forbidden zone. Once the access
completes, the budget is checked (time (3)); this check occurs
before time tb, so the budget has not expired. ♦

If the timer fires, the timer callback function immediately
suspends the job, ensuring that the GPU operation will not be
initiated in the current time slice.

Example 6 (cont’d). The scenario depicted in Fig. 10b
corresponds to the edge case in Fig. 9a. In this scenario, the
first syscall sets the watchdog timer, but an edge case occurs
during the kernel launch, so the timer fires at time tfz before
the second syscall occurs. The job is immediately suspended,
so the GPU operation is not submitted in this time slice. Note
that, due to this edge case, the budget check will also fail. ♦

Handling budget overruns. Unfortunately, it is not sim-
ple to immediately kill a misbehaving GPU-using task, as
this invalidates the CUDA context shared by any other
tasks in the same process. Thus, we must wait until the
cudaStreamSynchronize call completes to enforce GPU
budgeting. If the access completes after the budget expires, the
LITMUSRT userspace libraries send a SIGSYS signal to the
application, which must handle the budget overrun.7

7Note that, like forbidden-zone enforcement, handling of the SIGSYS
signal relies on unenforced programming conventions.

Example 6 (cont’d). In Fig. 10c, the edge case occurs
after the GPU operation completes, as in Fig. 9b, so tem-
poral isolation of the GPU is not violated. However, the
cudaStreamSynchronize call completes after the ac-
cess’s budget expires at time tb, so a SIGSYS signal is sent
to the application. ♦

In our HOG case study, the SIGSYS signal resulted in stop-
ping all processing for the current video frame, i.e., the frame
was dropped—in the AI use cases that motivate this work,
occasionally cancelling work (e.g., dropping a video frame)
is often deemed as acceptable. The choice of provisioning
for GPU-access budgeting provides an interesting trade-off
between job completion and system utilization; provisioning
GPU-access budgeting on a lower percentile enables better
utilization of the processors available to the partition at the
cost of a higher number of jobs (i.e., frames) being dropped.
We explore this trade-off in Sec. V.

V. EXPERIMENTAL EVALUATION OF TIMEWALL

In this section, we present an experimental evaluation of our
TimeWall implementation using both synthetic experiments
and a case study featuring the HOG application. All experi-
ments were performed on the platform described in Sec. IV.

A. Temporal Isolation and the Cost of Enforcement

We first discuss synthetic experiments we performed to ver-
ify temporal isolation and to quantify the overheads associated
with forbidden-zone enforcement.

Verifying temporal isolation. We designed two GPU-using
tasks to test temporal isolation. GPU-LIGHT, which accesses
the GPU at the start of each time slice, is affected by any GPU
interference: the GPU-LIGHT kernel executes for a given
number of cycles, and if any GPU operation from another
component overruns the time-slice boundary, the GPU-LIGHT
task’s response time will increase. GPU-HEAVY, on the other
hand, submits GPU kernels near the end of each time slice,
attempting to cause GPU interference.

We validated that our TimeWall implementation achieves
temporal isolation and measured any context-switch costs due
to alternating components sharing the GPU. We used two
components, each with 16-ms time slices; we executed one
GPU-LIGHT task in the first component, and measured its re-
sponse time with different workloads in the second component.
Our results are shown in Fig. 11, with the second component
containing (a) nothing, one GPU-LIGHT task (b) with or
(c) without forbidden-zone enforcement, or one GPU-HEAVY
task (d) with or (e) without forbidden-zone enforcement.

We used the approach of Capodieci et al. [18] to calculate
the theoretical context-switch cost using parameters of our Ti-
tan V GPU: with a GPU-internal bus bandwidth of 652.8 GB/s
and 64K 4-byte registers per streaming multiprocessor (SM),
128 KB of L1 cache per SM, 4.5 MB of L2 cache, and 80 SMs,
it takes about 51.65 µs to store or load the GPU state.

Observation 1. Observed GPU-context-switch costs match
our theoretical calculation.

0 1 2 3 4 5 6 7 8 9
Kernel cycle count (millions)

0

250

500

750

1000

M
ed

ia
n

jo
b

ex
ec

ut
io

n
tim

e
(

s)

(a)

(b), (c), (d)

(e)(a) GPU-LIGHT vs. no competitor
(b) GPU-LIGHT vs. GPU-LIGHT
 (with enforcement)
(c) GPU-LIGHT vs. GPU-LIGHT
 (no enforcement)
(d) GPU-LIGHT vs. GPU-HEAVY
 (with enforcement)
(e) GPU-LIGHT vs. GPU-HEAVY
 (no enforcement)

Fig. 11: Comparison of median GPU-LIGHT task execution times in
the presence of alternating component workloads (the middle 50th

percentile varied by less than 3%).

Curves (a) and (b)–(c) in Fig. 11 correspond to our
GPU-LIGHT task running in isolation and against another
GPU-LIGHT task, respectively; in neither case should GPU
operations cross time-slice boundaries. Demonstrating this, the
slopes of these curves are nearly identical, with a near constant
offset between (a) and (b)–(c) ranging from 98.2 to 99.2 µs. A
context switch requires both a store and a load, resulting in a
cost of about 103.3 µs, which is in line with our measurements.

Observation 2. TimeWall enforces temporal isolation be-
tween GPU-using components.

The difference between curves (d) and (e) in Fig. 11
indicates the benefit of our watchdog timer. As curves (b),
(c), and (d) are nearly identical, we can also observe that our
forbidden-zone enforcement reduce any temporal interference
to just the cost of GPU context switches.

Overhead of forbidden-zone enforcement. We used Feather-
Trace [13] to measure the overheads8 associated with enforc-
ing forbidden zones for our TimeWall implementation. We
performed a synthetic experiment with 30 GPU-using tasks in
a component with M = 5 CPU cores; the overhead for each
GPU access was 0.9 µs to set the watchdog timer, and an
additional 1.2 µs if the timer fired.

To consider the trade-off associated with merging multiple
GPU accesses into one critical section, we compare the timer
overheads to the lock and unlock calls, for which we observed
overhead costs of 0.7 µs and 4.7 µs, respectively. (The high
unlock overhead is expected due to ensuring priority inheri-
tance for the next lock holder.) These measurements suggest
potential benefits of merging a few accesses into one critical
section; e.g., two individual requests incur a total of 12.6-µs
overhead (0.7 + 0.9 + 4.7 = 6.3 µs each), but one request that
comprises two accesses incurs only 0.7 + 0.9 + 0.9 + 4.7 =
7.2-µs overhead. We plan to perform a full schedulability study
in future work to explore this trade-off further.

B. Choosing a Time-Slice Length

The overhead and GPU context-switch costs discussed in
Sec. V-A become increasingly relevant for shorter time slices.

8We used 99th -percentile measurements. LITMUSRT was developed for
academic research purposes to investigate functionality that could be fielded
in an RTOS for safety-critical contexts. We take the 99th -percentile as
representative of achievable worst-case overheads in a well-honed RTOS.

Interrupt core
Cores in Υ

CPUs 1–7

GPU 0

A B

A B

A B

A B

Time (ms)

0 Θ 2Θ 3Θ 4Θ

Fig. 12: Reservations for the two components in our time-slice
experiments. We measured response times of tasks in Component A.

However, long time slices can result in high response times
due to long intervals when jobs are released but not scheduled,
e.g., if Θ = 100 ms, Π = 200 ms, and Ti = 25 ms for
some task τi, then four jobs of τi may be released but not
scheduled during each time interval that τi’s component does
not execute. To explore the “sweet spot” between these two
time-slice-length extremes, we performed experiments using
randomly generated synthetic tasks.

Components and partitions. Our time-slice experiments used
two components, scheduled as shown in Fig. 12. Compo-
nents A and B alternately utilized CPUs 1–7 and the GPU. We
reserved CPU 0 for interrupt handling, and the other socket
(CPUs 8–15) for non-real-time tasks. We used Intel’s Resource
Directory Technology (via the resctl command) to partition
the L3 cache and DRAM between components.

Component A was comprised of GPU-using tasks with
Ci = 4 ms; each job spun on the CPU for its WCET, and
accessed the GPU once at a random point in its execution,
with Y 1,1

i uniformly chosen from [0.02, 0.04] ms (“short”),
[0.2, 0.4] ms (“medium”), or [2, 4] ms (“long”). For each of
these three access-duration ranges, we generated a task set
for Component A by adding randomly generated tasks until
we reached utilization restrictions [50]. In Component B, we
executed a cache-thrashing workload designed to evict the
contents of the per-core L1 and L2 caches.

We varied Θ and Π while maintaining the ratio Θ/Π = 0.5,
and measured the response times of the tasks in Component A
for two minutes. We set Θ to be powers of two from 0.5 ms
to 256 ms. To observe the impact of time-slice-aligned job re-
leases, we separately performed experiments in which periods
of tasks in Component A were uniformly chosen to be either
32 ms or 64 ms (“aligned”) or 25 ms or 50 ms (“unaligned”).
We assumed periodic tasks for these experiments, so releases
being aligned with time slices means that for Π ≥ Ti, a job
was released at the start of each time slice; it is possible
that multiple jobs were released during a time slice, e.g., if
Θ = 64 ms and Ti = 32 ms.

Job releases aligned with time slices. The results of our
aligned-releases experiments are shown in Fig. 13 for each
range of GPU-access durations. Note that for a task system to
be schedulable, we require Θ ≥ Y k,`

i , so we do not include
response-time curves for long GPU-access durations (up to
4 ms) with Θ < 4 ms.

Observation 3. Extremely short time slices can cause re-
sponse times to be unbounded.

0.0 0.2 0.4 0.6 0.8 1.0
Time (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

(a)

(b)

(c)

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (X

 <
=

x)

= 0.5

= 1

= 4, 2

= 16, 8

= 32 = 64
= 128

= 256

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (X

 <
=

x)

= 0.5

= 1

= 4, 2

= 16, 8

= 32
= 64 = 128

= 256

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (X

 <
=

x)

= 4

= 8, 16 = 32
= 64 = 128

= 256

= 0.5
= 1
= 2

= 4
= 8
= 16

= 32
= 64

= 128
= 256

Fig. 13: CDFs of job response times with releases aligned to time
slices, for (a) short, (b) medium, and (c) long GPU accesses.

This can be observed for the 0.5-ms curve in Fig. 13a. For
such short time slices, forbidden zones, scheduling and locking
overhead, and context-switch costs took a larger proportion of
the capacity available to the component. This was even more
pronounced for the medium GPU-access durations in Fig. 13b;
forbidden zones took up to 80% of the 0.5-ms time slices.

Observation 4. Extremely long time slices can result in
prohibitively large response times.

For Θ ≥ 64 ms and Ti = 32 or 64 ms, multiple jobs may
have been released while the component was not scheduled,
resulting in high response times in all scenarios in Fig. 13.

Observation 5. The lowest response times occurred for Θ >
Ci and Π ≤ Ti.

In all three scenarios, the lowest response times occurred for
Θ = 16 ms (Π = 32 ms) and Θ = 8 ms (Π = 16 ms). Thus,
the best reservation had time slices longer than the WCET
of any task and a period at most that of any task (i.e., a
job was released no more frequently than every time slice
of Component A).

Job releases unaligned with time slices. The results of our
unaligned-releases experiments are shown in Fig. 14. In these
experiments, we observed that Θ = 16 ms and Θ = 8 ms also
resulted in the lowest response times for tasks with unaligned

0.0 0.2 0.4 0.6 0.8 1.0
Time (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

(a)

(b)

(c)

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (X

 <
=

x)

= 0.5

= 8, 4, 16, 2

= 1, 32
= 64

= 128

= 256

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (X

 <
=

x)

= 0.5

= 8, 4, 2

= 16, 1

= 32 = 64 = 128

= 256

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (X

 <
=

x)

= 4

= 8

= 16

= 32 = 64 = 128

= 256

= 0.5
= 1
= 2

= 4
= 8
= 16

= 32
= 64

= 128
= 256

Fig. 14: CDFs of job response times with releases unaligned to time
slices, for (a) short, (b) medium, and (c) long GPU accesses.

releases. This indicates that these time-slice budgets were
not artifacts of aligned job releases, but rather, for our task-
system parameters, provided the best balance of the negative
effects of overhead and fz-blocking with the amount of time
a component was not scheduled.

C. Case-Study Evaluation

We now describe the components present in our case-study
evaluation, and then present our evaluation of TimeWall using
a real workload.

Components and partitions. Our case study used the same
partitions depicted in Fig. 12, with different workloads running
in both Components A and B. We again partitioned the DRAM
and the L3 cache between components.

Component A was comprised of three instances of HOG,
each with a period of 40 ms (corresponding to 25 frames
per second) and a parallelization level of Pi = 2. Compo-
nent B contained seven cache-thrashing and GPU-using tasks
designed to evict the contents of the per-core L1 and L2
caches, cause GPU context switches, and stress the watchdog
timer. These tasks had a period of 160 ms and each job
accessed the GPU for 5 ms.

0 25 50 75 100 125 150 175
Time (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 (X

 <
=

x)

= 5

= 10

= 20

= 40 = 80

= 160

= 5
= 10
= 20
= 40
= 80
= 160

Fig. 15: CDFs of HOG response times with varying Θ.

The HOG algorithm. As discussed in Sec. IV, the HOG
algorithm processes a video frame by copying the image to
the GPU, detecting pedestrians at multiple image-scale levels
(we used 13 levels in our experiments), and then copying the
results for each level back from the GPU. Thus, processing
each frame takes 78 GPU operations: one copy-in, 64 kernels
(kernels K2–K5 operate on all scale levels, and K1 operates
on all but the first), and 13 copy-out operations on the GPU.
We configured each HOG task to process one frame per job.

Choosing time-slice lengths for HOG. We performed ex-
periments similar to those in Fig. 13 for the HOG tasks in
Component A, with each instance processing 5,000 video
frames. We aligned job releases with time slices (in practice,
real-time systems typically have harmonic periods), and chose
Θ values ranging from 5 ms to 160 ms. The results of our
HOG time-slice experiments are depicted in Fig. 15.

Observation 6. The lowest response times for HOG tasks
occurred for Θ = 20 ms.

This matches what we expect from Obs. 5. The HOG
tasks had a period of 40 ms, so for Θ = 20 ms, each task
released a job each time slice of Component A. The worst-case
response time we observed was 16.31 ms, which corresponds
to completing a job within the time slice in which it was
released. All remaining experiments discussed in this section
thus used Θ = 20 ms.

Frame dropping due to GPU-budget enforcement. The pro-
visioning choice for budgeting GPU accesses greatly impacts
the number of frames dropped. In our implementation, if any
of HOG’s 78 GPU accesses exceeds its budget, the frame
is dropped. We treat each access as an independent random
variable with probability ρ of not exceeding its budget. Thus,
ρ78 is the probability that all 78 accesses for a given frame
do not exceed their budgets, and the probability of dropping
a frame in HOG is given by 1 − ρ78. We chose a value of ρ
to provision GPU accesses in HOG as described below.

This expected frame-drop rate of 1 − p78 is plotted as the
“Theoretical” curve in Fig. 16. The other curves correspond to
the observed frame-drop rates for different values of a safety-
margin multiplier we apply to CPU-based measurements of
GPU access times for provisioning budgets. To measure these
frame-drop rates, we provisioned GPU-access budgeting using
these different multipliers, and ran three instances of HOG for
25,000 frames each, counting the number of frames dropped.

99 99.5 99.9 99.95 99.99
Percentile Values Used for Budgeting

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f D

ro
pp

ed
 F

ra
m

es

Multiplier = 1.00
Multiplier = 1.05
Multiplier = 1.10
Theoretical

Fig. 16: Measured frame-drop rates for HOG depending on multiplier
used for provisioned GPU-access budgeting values, compared to the
theoretical frame-drop rate.

Observation 7. Theoretical frame-drop rates increase rapidly
when provisioning on less than the 99.9th percentile.

For 99.9th -percentile measurements, the theoretical frame-
drop rate is 7.5%. However, this rises to 32.4% and 54.3% for
the 99.5th - and 99th -percentile measurements, respectively.

Observation 8. Using a multiplier of 1.0 can result in highly
conservative budgeting.

This can be seen by comparing the 1.0-multiplier and
“Theoretical” curves in Fig. 16. For example, provisioning
using exactly the 99.9th percentile resulted in almost a 3×
increase in the frame-drop rate over the expected value.

Observation 9. Increasing budget provisioning by a small
multiplier can cause a sizeable reduction in frame-drop rates.

Provisioning on the 99.95th percentile with multiplier 1.1
resulted in a 1.6% frame-drop rate, compared to the expected
rate of 3.8%. By using a slightly higher multiplier, we can
use lower GPU-access measurements, enabling better platform
utilization. Thus, for the remaining HOG experiments in
this subsection, we used a multiplier of 1.1 and provisioned
budgets at the 99.95th percentile.

The cost of enforcing time partitioning. Next, we sought to
understand the trade-offs associated with using TimeWall with
a real workload. For this, we measured the response times of
the HOG tasks in Component A with no workload in Compo-
nent B (i.e., during Component B’s time slices, the CPUs and
GPU were idle), and varied the method of enforcing temporal
isolation between GPU-using components. We compared no
GPU management (i.e., no guarantee of isolation), employing
the global OMLP (but without support for forbidden zones),
and using TimeWall (including forbidden-zone enforcement
and CPU budgeting) to ensure temporal isolation.

To also consider the effects of interference between HOG
tasks, we performed experiments with three or one HOG task
executing in Component A. Our results are shown in Fig. 17.

Observation 10. Using TimeWall resulted in only a slight
increase in average-case response times for HOG tasks.

This difference is visible for three HOG tasks in Fig. 17a.
This increase is most likely the result of enforcing forbidden
zones. When only the global OMLP is employed, accesses are
allowed to begin within the forbidden zone, which can result
in temporal-isolation violations, but increases the amount of
work that may complete within a given time slice.

0.0 0.2 0.4 0.6 0.8 1.0
Time (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

(a)

(b)

0 10 20 30 40 50 60 70
0.0

0.5

1.0

Pe
rc

en
ta

ge
 (X

 <
=

x)

0 10 20 30 40 50 60 70
0.0

0.5

1.0

Pe
rc

en
ta

ge
 (X

 <
=

x)

TimeWall
Global OMLP
No GPU management

Fig. 17: CDFs of HOG response times with different GPU-
management approaches, with either (a) three or (b) one HOG task(s)
in Component A.

Observation 11. Using TimeWall resulted in a lower worst-
case response time than using the global OMLP.

The worst-case response times for HOG using either the
global OMLP or TimeWall were 42.9 ms and 19.4 ms,
respectively. This difference is likely due to GPU-access
budgeting employed by TimeWall, which terminates a job
when it experiences a GPU-access timing anomaly. Using just
the global OMLP allows for work to continue after a timing
anomaly, which can extend a job’s execution long enough to
cross a time-slice boundary (recall that we chose Θ = 20 ms).

Observation 12. When GPU accesses were not managed,
GPU contention between multiple HOG tasks greatly in-
creased response times.

This can be observed by comparing the “No GPU man-
agement” curves in Fig. 17. In our experiments, each HOG
task was executed as a separate process in Linux with its own
CUDA context. When only a single HOG task was present
in Component A and GPU accesses were not managed (as
in inset (b)), the average and worst-case response times were
3.9 ms and 11.0 ms, respectively. However, when executing
three HOG tasks without using any locking protocol (as in
inset (a)), the average and worst-case response times were
42.3 ms and 55.9 ms, respectively; almost every job took more
than a single time slice, and thus was delayed an additional
20 ms while Component A was not active. This increase
in response times was most likely due to multiprogramming
effects on the GPU [2], which were not present when only
one HOG task executed in Component A.

Putting it all together. We executed the three HOG tasks in
Component A for a total of 75,000 frames (25,000 each), either
alone or alongside our cache-thrashing and GPU-using work-
load in Component B, and measured the observed response
time for each frame and the overall number of frames dropped.
These values are listed in Table II. We also plot the cumulative
distribution function of the observed response times in Fig. 18.

Observation 13. HOG tasks in Component A were not sig-
nificantly affected by the presence of tasks in Component B.

This is supported by the observed response times in Table II
and Fig. 18 and the number of frames dropped in Table II.

TABLE II: Observed response times across 75,000 frames for HOG
instances in Component A without or with tasks executing in Com-
ponent B.

A A+B
Observed Maximum Response Time (ms) 19.40 16.54
Observed Average Response Time (ms) 14.81 14.61
Number of Dropped Frames 1212 1238

0 5 10 15 20 25 30 35 40
Time (milliseconds)

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
ta

ge
 (X

 <
=

x)

A
A+B

Fig. 18: CDFs of observed response times for the HOG tasks in
Component A without and with a workload in Component B.

Note that for the scenario in which we executed tasks in
both Components A and B, there were slightly more dropped
frames. This freed up system capacity, reducing the response
times of other HOG jobs in Component A, thereby lowering
the maximum response time for the “A+B” curve in Fig. 18.

Observation 14. The frame-drop rate of HOG matched the
expected rate for our budget provisioning choice.

The frame-drop rates were 1.6% and 1.7% when only
Component A executed work and when both components
executed work, respectively. This matches our expectation of
1.6% given our provisioned GPU-access budgets. (Recall the
discussion following Obs. 9.)

VI. DISCUSSION

While we have focused here on experimental trade-offs, the
theoretical underpinnings of TimeWall’s time-partitioning ap-
proach have been investigated in a companion paper [50]. That
work more broadly considers AI computations specified as
processing graphs, presents blocking analysis associated with
forbidden zones, and shows how to compute (and optimize)
end-to-end graph response-time bounds. Graphs are scheduled
in that work by treating their individual nodes as rp-sporadic
tasks. In this paper, we chose to consider such tasks only,
as a full consideration of graphs was not possible due to
space constraints. Nonetheless, all of our conclusions related
to forbidden zones, time isolation, etc., apply to graphs, and
our TimeWall implementation fully supports such graphs.

VII. RELATED WORK

Component-based multiprocessor real-time systems have
been investigated before [1], [4]–[11], [16], [20]–[23], [33],
[34], [37], [38], [45], [52]. Of prior work that considered
shared resources, most focused on resource sharing between
components on a uniprocessor platform [5]–[7], [20] or when
each core of a multiprocessor platform is dedicated to only
one component [37], [38]. Biondi et al. [10] considered the
higher-level problem of how to partition applications into

components, with shared resources considered, and Xu et
al. [52] explored the impact of cache interference between
components on the same platform. Notions related to the
forbidden-zone concept, which was proposed earlier [30], were
used in some of this work [6], [38], but not for managing
accelerator accesses.

GPU accesses are typically managed in one of two ways.
Accesses can be arbitrated via a real-time locking protocol or
other middleware [25], [31], [49]. For example, GPUSync [25]
provides mutually exclusive accesses for systems with multiple
GPUs. Another approach is to either utilize the existing GPU-
scheduling rules [2], [40], or to modify the GPU driver
scheduling policies [18], [32]. Capodieci et al. explored imple-
menting EDF scheduling on an NVIDIA GPU, whereas Kato
et al. presented TimeGraph [32], which uses non-preemptive
fixed-priority scheduling. However, arbitration of GPU ac-
cesses has not been previously explored in component-based
real-time systems.

VIII. CONCLUSION

We have presented TimeWall, a time-partitioning approach
for real-time systems deployed on multicore+accelerator plat-
forms. TimeWall’s design was motivated by the need to
enable component-wise certification of AI-based embedded
applications in safety-critical settings. It utilizes a modified
multiprocessor locking protocol to maintain the invariant that
each time-partitioned component always has exclusive access
to all processing resources allocated to it. We discussed the
specific challenges associated with realizing a full scheduler
implementation of TimeWall for a multicore+GPU platform,
and demonstrated the isolation properties afforded by Time-
Wall via experiments on actual hardware involving a synthetic
tasks as well as a computer-vision application.

In future work, we plan to consider locking-protocol options
other than the global OMLP used in our current TimeWall
prototype. We also intend to explore accelerators that support
multiple virtual accelerators. Finally, we plan to further ex-
amine higher-level issues that arise when breaking a system
into certifiable components, such as how to divide a set of
applications into individual components.

REFERENCES

[1] Kunal Agrawal, Alan Burns, Abhishek Singh, and Sanjoy Baruah.
Minimizing execution duration in the presence of learning-enabled
components. In Proceedings of the 24th Design, Automation and Test
in Europe Conference and Exhibition, pages 1644–1649, 2020.

[2] Tanya Amert, Nathan Otterness, Ming Yang, James H Anderson, and
F Donelson Smith. GPU scheduling on the NVIDIA TX2: Hidden
details revealed. In Proceedings of the 38th IEEE Real-Time Systems
Symposium, pages 104–115, 2017.

[3] Tanya Amert, Sergey Voronov, and James H Anderson. OpenVX and
real-time certification: The troublesome history. In Proceedings of the
40th IEEE Real-Time Systems Symposium, pages 312–325, 2019.

[4] Madhukar Anand, Arvind Easwaran, Sebastian Fischmeister, and Insup
Lee. Compositional feasibility analysis of conditional real-time task
models. In Proceedings of the 11th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing,
pages 391–398, 2008.

[5] Moris Behnam, Thomas Nolte, Mikael Sjodin, and Insik Shin. Overrun
methods and resource holding times for hierarchical scheduling of
semi-independent real-time systems. IEEE Transactions on Industrial
Informatics, 6(1):93–104, 2009.

[6] Moris Behnam, Insik Shin, Thomas Nolte, and Mikael Nolin. SIRAP: A
synchronization protocol for hierarchical resource sharing in real-time
open systems. In Proceedings of the 7th ACM and IEEE International
Conference on Embedded Software, pages 279–288, 2007.

[7] Marko Bertogna, Nathan Fisher, and Sanjoy Baruah. Resource-sharing
servers for open environments. IEEE Transactions on Industrial Infor-
matics, 5(3):202–219, 2009.

[8] Enrico Bini, Marko Bertogna, and Sanjoy Baruah. Virtual multiprocessor
platforms: Specification and use. In Proceedings of the 30th IEEE Real-
Time Systems Symposium, pages 437–446, 2009.

[9] Enrico Bini, Giorgio Buttazzo, and Marko Bertogna. The multi supply
function abstraction for multiprocessors. In Proceedings of the 15th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pages 294–302, 2009.

[10] Alessandro Biondi, Giorgio Buttazzo, and Marko Bertogna. A design
flow for supporting component-based software development in multi-
processor real-time systems. Real-Time Systems, 54(4):800–829, 2018.

[11] Jalil Boudjadar, Jin Hyun Kim, Linh Thi Xuan Phan, Insup Lee, Kim
Larsen, and Ulrik Nyman. Generic formal framework for compositional
analysis of hierarchical scheduling systems. In Proceedings of the 21st
IEEE International Symposium on Real-Time Distributed Computing,
pages 51–58, 2018.

[12] Björn B Brandenburg. Scheduling and Locking in Multiprocessor Real-
time Operating Systems. PhD thesis, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA, 2011.

[13] Björn B Brandenburg and James H Anderson. Feather-trace: A
lightweight event tracing toolkit. In Proceedings of the 3rd International
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, pages 20–27, 2007.

[14] Björn B Brandenburg and James H Anderson. Optimality results for
multiprocessor real-time locking. In Proceedings of the 31st IEEE Real-
Time Systems Symposium, pages 49–60, 2010.

[15] Neil Brown. Improvements in CPU frequency management. LWN.net,
April 2016. URL: https://lwn.net/Articles/682391/.

[16] Artem Burmyakov, Enrico Bini, and Eduardo Tovar. Compositional
multiprocessor scheduling: the GMPR interface. Real-Time Systems,
50(3):342–376, 2014.

[17] John Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C
Devi, and James H Anderson. LITMUSRT: A testbed for empirically
comparing real-time multiprocessor schedulers. In Proceedings of the
27th IEEE Real-Time Systems Symposium, pages 111–126, 2006.

[18] Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara
Paramakuru. Deadline-based scheduling for GPU with preemption
support. In Proceedings of the 39th IEEE Real-Time Systems Symposium,
pages 119–130, 2018.

[19] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Proceedings of the IEEE Computer Vision and
Pattern Recognition Conference, pages 886–893, 2005.

[20] Robert I Davis and Alan Burns. Resource sharing in hierarchical fixed
priority pre-emptive systems. In Proceedings of the 27th IEEE Real-
Time Systems Symposium, pages 257–270, 2006.

[21] Zhong Deng and Jane W-S Liu. Scheduling real-time applications in an
open environment. In Proceedings of the 18th IEEE Real-Time Systems
Symposium, pages 308–319, 1997.

[22] Arvind Easwaran, Madhukar Anand, and Insup Lee. Compositional
analysis framework using EDP resource models. In Proceedings of the
28th IEEE Real-Time Systems Symposium, pages 129–138, 2007.

[23] Arvind Easwaran, Insik Shin, and Insup Lee. Optimal virtual cluster-
based multiprocessor scheduling. Real-Time Systems, 43(1):25–59, 2009.

[24] Glenn A Elliott and James H Anderson. Robust real-time multiprocessor
interrupt handling motivated by GPUs. In Proceedings of the 24th
Euromicro Conference on Real-Time Systems, pages 267–276, 2012.

[25] Glenn A Elliott, Bryan Ward, and James H Anderson. GPUSync: a
framework for real-time GPU management. In Proceedings of the 34th
IEEE Real-Time Systems Symposium, pages 33–44, 2013.

[26] Jeremy P Erickson and James H Anderson. Response time bounds for
G-EDF without intra-task precedence constraints. In Proceedings of the
15th International Conference On Principles Of Distributed Systems,
pages 128–142, 2011.

[27] Jeremy P Erickson and James H Anderson. Fair lateness scheduling:
Reducing maximum lateness in G-EDF-like scheduling. In Proceedings
of the 23rd Euromicro Conference on Real-Time Systems, pages 3–11,
2012.

[28] Thomas Gleixner. genirq: Forced threaded interrupt handlers, February
2011. Message to the Linux kernel mailing list.

[29] Seonyeong Heo, Sungjun Cho, Youngsok Kim, and Hanjun Kim. Real-
time object detection system with multi-path neural networks. In
Proceedings of the 26th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 174–187, 2020.

[30] Philip Holman and James H Anderson. Locking under Pfair scheduling.
ACM Transactions on Computer Systems, 24(2):140–174, 2006. (an
earlier version appeared at RTSS 2002).

[31] Shinpei Kato, Karthik Lakshmanan, Aman Kumar, Mihir Kelkar, Yutaka
Ishikawa, and Raj Rajkumar. RGEM: A responsive GPGPU execution
model for runtime engines. In Proceedings of the 32nd IEEE Real-Time
Systems Symposium, pages 57–66, 2011.

[32] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa.
TimeGraph: GPU scheduling for real-time multi-tasking environments.
In Proceedings of the USENIX Annual Technical Conference, pages 17–
30, 2011.

[33] Nima Khalilzad, Moris Behnam, and Thomas Nolte. On component-
based software development for multiprocessor real-time systems. In
Proceedings of the 21st IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 132–140,
2015.

[34] Hennadiy Leontyev and James H Anderson. A hierarchical multi-
processor bandwidth reservation scheme with timing guarantees. In
Proceedings of the 20th Euromicro Conference on Real-Time Systems,
pages 191–200, 2008.

[35] Xinxin Mei, Xiaowen Chu, Hai Liu, Yiu-Wing Leung, and Zongpeng
Li. Energy efficient real-time task scheduling on CPU-GPU hybrid
clusters. In Proceedings of the IEEE INFOCOM Conference on
Computer Communications, pages 1–9, 2017.

[36] Aloysius K Mok, Xiang Feng, and Deji Chen. Resource partition for
real-time systems. In Proceedings of the 7th IEEE Real-Time Technology
and Applications Symposium, pages 75–84, 2001.

[37] Farhang Nemati, Moris Behnam, and Thomas Nolte. Independently-
developed real-time systems on multi-cores with shared resources. In
Proceedings of the 23rd Euromicro Conference on Real-Time Systems,
pages 251–261, 2011.

[38] Farhang Nemati and Thomas Nolte. Resource sharing among real-
time components under multiprocessor clustered scheduling. Real-Time
Systems, 49(5):580–613, 2013.

[39] NVIDIA. Multi-process service. Online at https://docs.nvidia.com/
deploy/pdf/CUDA Multi Process Service Overview.pdf, 2020. Version
R450.

[40] Ignacio Sañudo Olmedo, Nicola Capodieci, Jorge Luis Martinez, Andrea
Marongiu, and Marko Bertogna. Dissecting the CUDA scheduling
hierarchy: a performance and predictability perspective. In Proceedings
of the 26th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 213–225, 2020.

[41] Nathan Otterness and James H Anderson. Exploring AMD GPU
scheduling details by experimenting with “worst practices”. In Pro-
ceedings of the 29th International Conference on Real-Time Networks
and Systems, pages 24–34, 2021.

[42] Paul J Prisaznuk. ARINC 653 role in integrated modular avionics
(IMA). In Proceedings of the 27th IEEE/AIAA Digital Avionics Systems
Conference, pages 1–E, 2008.

[43] Shahin Roozkhosh and Renato Mancuso. The potential of programmable
logic in the middle: cache bleaching. In Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications Symposium,
pages 296–309, 2020.

[44] Marta Rybczyńska. Modernizing the tasklet API. LWN.net, September
2020. URL: https://lwn.net/Articles/830964/.

[45] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In Proceedings of
the 20th Euromicro Conference on Real-Time Systems, pages 181–190,
2008.

[46] Richard Sites. Benchmarking ”hello, world!”: Six different views of the
execution of ”hello, world!” show what is often missing in today’s tools.
ACM Queue, 16(5):54–80, October 2018. doi:10.1145/3291276.
3291278.

https://lwn.net/Articles/682391/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://lwn.net/Articles/830964/
https://doi.org/10.1145/3291276.3291278
https://doi.org/10.1145/3291276.3291278

[47] Richard Sites. Understanding Software Dynamics. Addison-Wesley
Professional, 2021.

[48] Muhammad R Soliman and Rodolfo Pellizzoni. PREM-based optimal
task segmentation under fixed priority scheduling. In Proceedings of
the 31st Euromicro Conference on Real-Time Systems, pages 4:1–4:23,
2019.

[49] Uri Verner, Avi Mendelson, and Assaf Schuster. Scheduling periodic
real-time communication in multi-GPU systems. In Proceedings of
the 23rd International Conference on Computer Communication and
Networks, pages 1–8, 2014.

[50] Sergey Voronov, Stephen Tang, Tanya Amert, and James H Anderson. AI
meets real-time: Addressing real-world complexities in graph response-
time analysis. In Proceedings of the 42nd IEEE Real-Time Systems
Symposium, 2021.

[51] Reinhard Wilhelm. Real time spent on real time. In Proceedings of the
41st IEEE Real-Time Systems Symposium, pages 1–2, 2020.

[52] Meng Xu, Linh Thi Xuan Phan, Oleg Sokolsky, Sisu Xi, Chenyang Lu,
Christopher Gill, and Insup Lee. Cache-aware compositional analysis
of real-time multicore virtualization platforms. Real-Time Systems,
51(6):675–723, 2015.

[53] Ming Yang, Tanya Amert, Kecheng Yang, Nathan Otterness, James H
Anderson, F Donelson Smith, and Shige Wang. Making OpenVX
really “real time”. In Proceedings of the 38th IEEE Real-Time Systems
Symposium, pages 80–93, 2018.

[54] Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita, James H
Anderson, and F Donelson Smith. Avoiding pitfalls when using NVIDIA
GPUs for real-time tasks in autonomous systems. In Proceedings of the
30th Euromicro Conference on Real-Time Systems, pages 20:1–20:21,
2018.

[55] Ming Yang, Shige Wang, Joshua Bakita, Thanh Vu, F Donelson Smith,
James H Anderson, and Jan-Michael Frahm. Re-thinking CNN frame-
works for time-sensitive autonomous-driving applications: Addressing
an industrial challenge. In Proceedings of the 25th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 305–
317, 2019.

[56] Shuochao Yao, Yifan Hao, Yiran Zhao, Huajie Shao, Dongxin Liu,
Shengzhong Liu, Tianshi Wang, Jinyang Li, and Tarek Abdelzaher.
Scheduling real-time deep learning services as imprecise computations.
In Proceedings of the 26th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 1–10, 2020.

[57] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni.
PALLOC: DRAM bank-aware memory allocator for performance iso-
lation on multicore platforms. In Proceedings of the 20th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages
155–166, 2014.

	Introduction
	System Model and Background
	System Model
	Task Model
	Request Model
	Global OMLP
	Accelerator Access Model

	TimeWall
	Scheduling Hierarchy
	Time Partitioning via Forbidden Zones
	Performance Optimizations

	Theory Meets Practice
	Investigating Potential Culprits
	Mitigating Edge Cases through Budget Enforcement

	Experimental Evaluation of TimeWall
	Temporal Isolation and the Cost of Enforcement
	Choosing a Time-Slice Length
	Case-Study Evaluation

	Discussion
	Related Work
	Conclusion
	References

