
AI Meets Real-Time: Addressing Real-World
Complexities in Graph Response-Time Analysis*

Sergey Voronov, Stephen Tang, Tanya Amert, and James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract—Artificial-intelligence algorithms are enabling ever
more sophisticated autonomous features in safety-critical applica-
tion domains. These algorithms can be quite complex—consisting
of many tasks interconnected in processing graphs—and often
must execute on complex heterogeneous hardware—typically
multicore machines augmented with one or more hardware
accelerators. To further complicate matters, these processing
graphs often must be supported in contexts where a large system
is broken into smaller components. With this confluence of
factors, existing response-time analysis for processing graphs is
not applicable. In this paper, such analysis is extended to address
these complexities in systems where components are isolated via
time partitioning. Additionally, graph restructuring methods are
presented that enable response-time bounds to be reduced.

Index Terms—Processing graphs, response-time bounds, hard-
ware accelerators, component isolation

I. INTRODUCTION

Today, we are witnessing ever more sophisticated au-
tonomous features in safety-critical application domains, no-
tably in the avionics and automotive industries. These features
are being realized via an evolving repertoire of artificial-
intelligence (AI) algorithms that realize capabilities such as
visual perception and decision-making. These algorithms often
have complex dataflow dependencies expressible using pro-
cessing graphs that can be computationally intensive, requiring
the usage of hardware accelerators (HACs), such as graphics
processing units (GPUs), field-programmable gate arrays (FP-
GAs), etc. To further complicate matters, multiple AI functions
typically must be integrated on a common multicore+HAC
platform to save on size, weight, power, and cost; these func-
tions are often developed separately, by different developers
or even companies. Such a separation is helpful, as smaller
components are easier to specify, implement, and understand.

Unfortunately, the confluence of the three factors alluded to
above—(i) complex graph-based workloads, (ii) complex het-
erogeneous hardware, and (iii) the need to integrate separately
developed components—is creating challenges for real-time
certification. These challenges were recently highlighted at an
Industry Panel at RTAS 2021 [1], where the lack of real-time
analysis that fully addresses these challenges was called out
as a key stumbling block.

This paper is directed at producing such analysis. Our spe-
cific contributions lie in extending prior graph-based response-

*This work was supported by NSF grants CNS 1563845, CNS 1717589,
CPS 1837337, CPS 2038855, and CPS 2038960, ARO grant W911NF-20-1-
0237, and ONR grant N00014-20-1-2698.

1 2 3

4 5

6

7

tw
o frames olddata on

e frame old
data

one frame olddata
Input

Two frames
old data

Same frame
data

Fig. 1: An example AI algorithm that processes video frames.

time analysis so that accelerators can be accommodated, and
separately developed graph-based components can be isolated
via time partitioning. We elaborate on these contributions
below, after first introducing some relevant concepts and re-
viewing prior efforts on analyzing real-time processing graphs.

Graph model. AI algorithms are often depicted as graphs in
which nodes represent computations and edges indicate data
dependencies. For example, consider the special case of an AI-
based computer-vision (CV) algorithm (which we use here to
illustrate key concepts) as shown in Fig. 1. This CV algorithm
includes data dependencies from the current video frame (solid
edges in Fig. 1) and may also include dependencies from
previous frames (dotted/dashed edges); such a combination is
necessary to determine object motion, for example.

To exploit the parallelism inherent to such graphs, real-
time task models must also utilize a graph-based structure.
This structure may support instance-level self-parallelism, in
which multiple invocations of the same graph may execute
concurrently (i.e., parallel processing of frames). However,
most prior work on graph scheduling does not properly handle
such parallelism; instead, it either precludes instance-level
self-parallelism [11], [19], [51], [55], [68], [73] or arbitrarily
forces dependencies to the prior frame only [57], [90], [91].

Additionally, graph-based tasks may have historical data
dependencies (i.e., cycles in the graph). However, prior work
mostly ignores such inter-instance node-level dependencies
entirely [12], [42], [55], [66], [85], [92].

Accelerator usage. Accesses to HACs tend to be non-
preemptive; for example, even when possible, GPU preemp-
tions typically introduce prohibitively high overhead. Thus,
HAC usage must be carefully managed if multiple work-
loads share a platform. Non-preemptive accesses complicate
response-time analysis, as HAC blocking by one application
can increase response times for other applications, or even
break temporal isolation if not handled correctly. Some prior
work has considered HAC accesses by graph-based task
systems, but not when shared between components that are



Partition 1 Partition 2

Non-preemptive
access of partition 1

Isolation
violation

HAC 0

Partition boundary

Fig. 2: Isolation violation example.

temporally isolated from each other.

Component isolation. On a conventional uniprocessor, time
and space partitioning can be applied to fully isolate sys-
tem components from one another, enabling a separation of
concerns that is crucial for providing certification authorities
with high confidence in a system’s correctness. In avionics, for
example, ARINC 653 [67] provides real-time operating system
design specifications for hardware sharing. In ARINC 653,
system applications execute within time slices; a time slice is
a time interval during which an application is ensured sole
access to a given set of processing resources.

Time-partitioned systems can be scheduled hierarchi-
cally [3]: a top-level scheduler schedules time slices, and for
each time slice, a lower-level scheduler allocates processing
resources to the assigned workload. As shown in Fig. 2, a non-
preemptive access to a HAC shared by two components may
violate temporal isolation if the access crosses the boundary
between time slices. However, prior approaches that consid-
ered the isolation of graph-based systems (e.g., [25], [86]) have
not addressed the challenge posed by multiprocessor platforms
equipped with non-preemptive HACs.

Summary of prior work. A summary of prior approaches
that address some of challenges (i)–(iii) is presented in Tbl. I.
To our knowledge, no prior work has considered all three
challenges, all of which are addressed herein. Also, we show
how to reduce graph response-time bounds by modifying a
graph’s structure, an issue also unaddressed by prior work.

Contributions. Our focus in this paper is real-time analysis
of graph-based AI applications on time-partitioned multipro-
cessor+HAC platforms. Our contributions are fourfold.

First, we present an approach for ensuring that non-
preemptive HAC accesses do not cross time-slice boundaries.
This approach can add delays in accessing HACs; we derive
upper bounds on these delays.

Second, we present analysis for partially available CPUs and
HACs, as in our time-sliced setting. A series of transformations
enables us to leverage prior graph response-time analysis that
assumes a fully available platform of identical CPUs.

Third, in some AI use cases, HACs (especially GPUs) can
be highly contended. We show that prior HAC-arbitration
approaches can result in overly conservative schedulability
analysis in this case, and present a new approach for handling
such accesses that can greatly improve schedulability.

Finally, we propose heuristics to reduce graph response-
time bounds by merging graph nodes. In experiments that we
conducted, these heuristics improved response-time bounds by
30-35%. To our knowledge, we are the first to consider node
merging as a means to reduce graph response-time bounds.

Graph Model

R
es

po
ns

e-
Ti

m
e

R
ed

uc
tio

ns
vi

a
G

ra
ph

R
efi

ne
m

en
t

In
st

an
ce

-le
ve

l
Se

lf-
pa

ra
lle

lis
m

N
od

e-
le

ve
l

D
ep

en
de

nc
ie

s
A

m
on

g
In

st
an

ce
s

A
cc

el
er

at
or

s
U

sa
ge

C
om

po
ne

nt
Is

ol
at

io
n

[75] No Obviated1 Partially2 No No
[91] Yes No Yes No No
[92] Yes No Yes No No
[90] Partially3 Yes Yes No No
[7] Yes Yes Yes No No
[81] Yes No No Partially4 No
[25] No Obviated1 No Yes No
[86]5 No Obviated1 No Yes No
[62] Sequential Tasks Yes Partially6 No

This Paper Yes Yes Yes Yes Yes
1 Fine-grained dependencies are replaced with per-instance dependency

(due to implicit/constrained deadlines).
2 Graph has only one accelerated node.
3 Limited by prior instance dependencies.
4 Different reservation type (one interval).
5 Task model considers communication costs among nodes.
6 CPU can be occupied by only one component, no isolation over HACs.

TABLE I: Comparison of papers that consider at least two of
graphs, accelerators, and component isolation.

Organization. In the rest of this paper, we overview our
bound-computation process (Sec. II), provide needed back-
ground (Sec. III), present our four contributions (Secs. IV–
VII) and a related experimental validation of our approach
(Sec. VIII), discuss implications for real-world AI graphs
(Sec. IX) and related work (Sec. X), and conclude (Sec. XI).

II. THE TRANSFORMATION PROCESS

Our primary goal is to provide response-time bounds for
a single component whose workload is a collection of graphs
with HAC accesses. To this end, we apply a series of transfor-
mations to the workload and the processing supply, as depicted
in Fig. 3; we focus on a single graph, but the same steps can
be applied to a set of graphs simultaneously.

The five main steps transform a graph into a set of individual
tasks (Steps 1 and 2, covered in Sec. III), abstract HAC
requests (Step 3, Sec. III, IV), and transform the processing
supply and workload to leverage existing response-time anal-
ysis on identical multiprocessors [7] (Steps 4 and 5, Sec. V).

Two optional steps can additionally be used to reduce
response-time bounds via factoring out tasks with the longest
HAC requests (Step 6, Sec. VI) and modifying a DAG’s
structure (Step 7, Sec VII).

III. WORKING WITH GRAPH-BASED TASK SYSTEMS

Prior work on response-time analysis for graph-based task
systems has shown how to convert a graph containing both
CPU and HAC computations into a set of CPU-only tasks [7],
[57] (Steps 1–2 in Fig. 3). We illustrate this process using the
graph in Fig. 4a. Each graph node denotes a recurrent com-
putation. Instances (or jobs) of these nodes are released with
a period common to all nodes in the graph. Edges and their
weights denote dependencies between nodes, e.g., an instance



graph

DAG

rp-sporadic task set

CPU-only tasks, some
tasks with HAC accesses

CPU-only tasks in
reservation (with non-
preemptive regions)

CPU-only tasks on a
continuous platforn

CPU-only tasks on an
indentical multiprocessor

per-task rtb

graph response-time bound

factored out
tasks with HAC
accesses

per-task rtb

direct analysis
(Appendix A,
online [84])

eliminate delay dependen-
cies (including cycles)

define task offsets

abstract HAC accesses
via locking protocol

translate offsets,
transform supply

inflate execution,
inflate supply

analysis
from [7]

compute bound
using DAG offsets

merge
DAG
nodes

Step 1
Sec. III

Step 2
Sec. III

Step 3
Sec. III, IV

Step 4
Sec. V

Step 5
Sec. V

Step 6
Sec. VI

Step 7
Sec. VII

Step 2
Sec. III

Main Steps Optional Steps

Fig. 3: The response-time-bound (rtb) computation process.

of node 4 requires the output of node 6 from two instances
ago. Omitted weights denote intra-instance dependencies.

Step 1: Graph to DAG. The first step of the transformation
produces a DAG by removing backward delay edges (dashed
lines in Fig. 4a from higher-indexed to lower-indexed nodes).
Backward delay edges (e.g., from node 6 to node 4) may
form cycles, and can be eliminated by combining the nodes
in a cycle into a single “super node” [7], [57]. Forward delay
edges (e.g., from node 1 to node 2) are addressed using offsets
similarly to non-delay edges (solid lines), as discussed below.

The resulting DAG in our example is depicted in Fig. 4b. For
simplicity, we omit task self-dependencies in Fig. 4b (dotted
lines in Fig. 1); these dependencies are used later to define
tasks. The cycle comprised of nodes 4, 5, and 6 has been
merged into a single super node.1

1Each node invocation is sequential, so the super node’s self loop represents
a trivial cycle.

1

2

3

4 5 6

1 2 Regular edge

Delay edge

(a) Example graph.

1

2

3

4, 5, 6

1 2

(b) DAG obtained by introducing a super node.

τ1

τ2

τ3

τ4

1 2

Φ1 = 0

Φ2 = max(Φ1+R1,Φ1+R1−T1)

Φ3 = Φ1+R1

Φ4 = max(Φ2+R2,Φ3+R3)

Contribution to Φ:

from regular edge

from delay edge

(c) Task offset computation.

Fig. 4: Graph-to-tasks transformation example.

Step 2: DAG to tasks. The next step of the transformation
converts the DAG to a set of independent tasks. Each node in
Fig. 4b is made into a task in Fig. 4c. Dependencies between
tasks are removed by the introduction of release offsets. With
suitably sized release offsets, by the time any job of interest J
is released, all prior jobs that J depends on (via edges such as
in Fig. 4b, including both solid and forward delay edges) will
have already completed. Thus no job’s execution is delayed
by dependencies, so it is safe to analyze this task system with
the assumption that tasks are independent.

Release offsets are computed by initially computing
response-time bounds Ri for each task τi assuming inde-
pendent tasks (“per-task rtb” nodes in Fig. 3 represent the
collection of Ri values). Then, the offset Φi of each task
τi is calculated recursively as the maximum of the values
Φj + Rj for any task τj that τi depends on (some additional
details about forward delay edges are omitted here; see [7]
for details). The response-time bound of a node τi in the
DAG is given by Φi + Ri. For example, τ4 in Fig. 4c has
Φ4 = (Φ2 +R2,Φ3 +R3), as τ4 depends on τ2 and τ3, and
the response-time bound for τ4 is given by Φ4 + R4. In [7],
these steps are carried out assuming global earliest-deadline-
first (G-EDF) scheduling, which we also assume in this paper.

After the per-task response-time bounds computation, an
end-to-end response-time bound for one graph can be simply
computed as the largest response-time bound for any of its
tasks (see the last step in Fig. 3).
Enabling intra-task parallelism via the rp-sporadic task
model. While the above process is sufficient for transforming
to the standard sporadic task model, much potential parallelism
in the graph is lost under this model. Such parallelism can
be recaptured by instead transforming to the rp-sporadic task
model (rp stands for restricted parallelism), which augments



the sporadic task model by assigning to each task τi a
parallelism level Pi denoting how many jobs of τi may
execute simultaneously. Parallelism is limited by DAG node
self-dependencies (dotted lines in Fig. 1) and delay edges,
particularly backward delay edges such as between τ4 and
itself in Fig. 4b (recall that forward delay dependencies are
satisfied by release offsets). The weight of this edge is 2, i.e.,
τ4 requires output from two instances ago, so two consecutive
jobs of τ4 may execute concurrently; thus, P4 = 2.

Enabling intra-task parallelism as in the rp-sporadic task
model may be required for other reasons as well. For example,
a super node (which forces several of the original tasks to ex-
ecute sequentially) could easily over-utilize a single processor,
in which case intra-task parallelism must be allowed for it.

Early releasing. Using release offsets may increase observed
response times. This negative impact can be mitigated by
allowing jobs to be early released [32]: a job J is eligible for
scheduling as soon as all jobs it depends on have completed,
even if this occurs before J’s actual release time, as long as its
scheduling priority remains unchanged. An example of early
releasing can be found in Fig. 5 (job J1,5 is scheduled before
its actual release). Early releasing does not violate schedula-
bility guarantees under G-EDF-based scheduling [32].

Step 3: Tasks to CPU-only tasks. To transform to CPU-
only tasks, all HAC execution must be abstracted as CPU
execution (Step 3 in Fig. 3). This was done in [7] via a locking
protocol by analytically treating time spent waiting for and
executing on a HAC as additional CPU execution time. We
compute the total waiting time in our setting in Lemma 1 (in
Sec. IV). Once the graph is fully transformed into a set of
independent rp-sporadic tasks with only CPU execution, the
existing response-time analysis [7] can be applied to derive an
end-to-end response-time bound for the entire graph.

Problems. Four fundamental problems arise when attempting
to apply the transformation process summarized above to time-
partitioned AI components:
Problem 1: HAC accesses, which are typically non-

preemptive, can overrun time-slice boundaries.
Problem 2: The considered response-time analysis is not ap-

plicable when hardware resources are partially available
to a component because of time partitioning.

Problem 3: In AI use cases, some HACs (particularly GPUs)
can be highly contended, causing blocking bounds (which
are analytically translated into CPU execution time) to
become so large that over-utilization results, making
acceptable response-time bounds impossible to obtain.

Problem 4: Response-time bounds, which scale with release
offsets, may be prohibitively large when dependencies
form long paths; this effect is exacerbated by time slicing.

We address these problems in turn next in Secs. IV–VII.

IV. PREVENTING HAC TIME-SLICE OVERRUNS

Given that the first two steps of the transformation process
discussed in the prior section maps a graph to a set of rp-
sporadic tasks, it suffices to limit our attention to such tasks

0 1 2 3 4 5

TimeCPU 0
CPU 1 J1,1

J1,2

J1,3

J1,4

J1,5

Early release of J1,5 Actual release of J1,5u1 > 1

Job release Job deadline Jobs of τ1 Other jobs

Fig. 5: An rp-sporadic task τ1 schedule (u1 = 1.25, P1 = 2).

for now. (We return to graphs later in Sec. VII when discussing
graph-restructuring methods to reduce graph response-time
bounds.) Given this focus, a formal treatment of the rp-
sporadic task model is needed. For ease of reading, a table
of notation (Tbl. III) is provided in an online appendix [84].

The rp-sporadic task model, formally defined. We denote
the period (and relative deadline) of task τi as Ti, τi’s worst-
case execution time (WCET) as Ci, and its utilization as ui =
Ci/Ti. We denote the jth job of task τi as Ji,j and its release
time as ri,j . Thus, its (absolute) deadline is at time ri,j + Ti.
Note that deadlines in this paper are only used to prioritize
jobs by schedulers such as G-EDF, and are not required upper
bounds on jobs’ completion times.

As in [7], we associate with each task τi a parallelization
level Pi: up to Pi jobs of τi may execute concurrently, and job
Ji,j (if j > Pi) cannot execute until job Ji,j−Pi completes.
For example, in Fig. 5, two jobs of task τ1 with P1 = 2
execute simultaneously at several time instants. We allow early
releasing of jobs of rp-sporadic tasks (e.g., J1,5 in Fig. 5).

We consider a set of rp-sporadic tasks τ to be schedulable
if each task has a bounded response time; τ is schedulable if
and only if ∀τi : ui ≤ Pi, and

∑
τi∈τ

ui does not exceed the

total number of CPUs [7].

Partial-supply model. Given our focus on time-partitioned
AI computations, we consider a system divided into sets of
rp-sporadic tasks, called components. When considering time-
partitioned platforms, we look to certification processes used
in industry, as exemplified by the current ARINC 653 time-
slicing approach as used in avionics. Because complicated
partitioning strategies are unlikely to be adopted in practice,
we consider simple periodic time slicing.

We abstract the idea of time slicing by ensuring that each
component Γ is granted exclusive periodic access to a set
Υ of computing resources by defining a periodic component
reservation (PCR) for Γ (similar to the Single Time Slot
Periodic Partition model by Mok and Chen [60] and the
multiprocessor periodic resource (MPR) model by Shin et
al. [76]). We assume that Υ contains M unit-speed identical
CPUs and (for simplicity) a single non-preemptive HAC (we
discuss extending to multiple HACs per component later in
this section). The PCR for component Γ is defined as a three-
tuple (Θ,Π,Υ), denoting that Γ receives exclusive access to
the computing resources in Υ within continuous intervals of Θ
time units that begin every Π time units (Θ ≤ Π). We assume
that the choice of Θ and Π per component is given; optimizing
such choices is outside the scope of this paper.



Time

0 1 2 3 4 5 6
CPU 0
CPU 1
CPU 2
CPU 3

HAC 0
HAC 1

A

B

C

D

A
B D

A

B

C

D

A
B D Detailed

in Fig. 7

Fig. 6: Time-sliced schedule (rectangles are component slices).

0.0 0.5 1.0 1.5 2.0

TimeCPU 0
CPU 1
CPU 2

HAC 0
HAC access is
not allowed

CPU job is
preempted

Successful HAC access Blocked HAC access Forbidden zone

Fig. 7: Forbidden zone example (component A of Fig. 6).

As an example, Fig. 6 shows the first few time slices
for four components on a platform with four CPUs and
two HACs. In this example, Component A is specified by
(2, 3, {CPU 0,CPU 1,CPU 2,HAC 0}).
Forbidden zones. We henceforth assume Γ denotes a com-
ponent with PCR (Θ,Π,Υ) as defined above. If a HAC
access within Γ crosses a time-slice boundary, then the next
component to execute does not have exclusive access to this
HAC. This behavior breaks the assumed resource model.

Fortunately, a concept from prior work known as a for-
bidden zone [46] can be applied to solve this problem.2 A
forbidden zone for a given HAC access in Γ is a region of
time in which that access may not be initiated, as it may
cross Γ’s next time-slice boundary; the zone length is thus
the worst-case duration of that access. Note that accelerator
usage by other components has no impact on Γ’s forbidden-
zone lengths. The use of forbidden zones in Γ requires that
no accelerator access in Γ takes more than Θ time units.

The forbidden-zone idea is illustrated in Fig. 7, which shows
execution details of Component A from Fig. 6 within the time
slice [0, 2). The forbidden zone is shown in grey prior to
the time-slice boundary at time 2. Note that a HAC access
initiated on CPU 2 is rejected in this zone, while ordinary
CPU execution (such as on CPU 0) is allowed.
Step 3: Blocking analysis of a HAC access. Blocking
analysis for locking protocols can be augmented to consider
forbidden zones. In this paper, we use the suspension-based
global OMLP [21] to arbitrate HAC accesses within each
component, though alternate locking protocols could be used.
Under the global OMLP, a job waiting to acquire a HAC
suspends (freeing a CPU for other jobs) and is added to the
global OMLP’s queues—both a priority queue and an M -
element FIFO queue are used, with HAC requests at the head
of the priority queue feeding into the FIFO queue. The request
at the head of the FIFO queue is allowed HAC access.

2A similar idea was later applied in a uniprocessor component-based
setting [14], but that work did not target graphs as considered in this paper.

0 2 4 6 8 10

τ1

τ2

τ3

Time

µ

µ

µ

µ Lock request Pi-blocking HAC access

(a) Three tasks accessing one shared HAC via the global OMLP with
M = 2. This figure is inspired by Fig. 1 in [21].

0 2 4 6 8 10

τ1

τ2

τ3

Time

CPU execution Job
release

Job
deadline

Job
completion

(b) The same task system from inset (a) with pi-blocking and
accelerator-execution time modeled as CPU execution time.

Fig. 8: Illustration of suspension-oblivious analysis under the
global OMLP.

. Def. 1. LetBmax be the longest HAC-access duration in Γ./

Given our aim of extending the prior response-time analysis
overviewed in Sec. III, and that analysis’s focus on G-EDF,
we assume G-EDF scheduling within each component (it is
“global” within a component). This choice of scheduler moti-
vates our interest in the global OMLP because it has optimal
priority-inversion blocking (pi-blocking) under suspension-
oblivious analysis, which is the suspension-accounting method
usually used under G-EDF. Under suspension-oblivious anal-
ysis, a job in Γ is only pi-blocked if it is one of the M highest-
priority active jobs but is not scheduled.

For example, in Fig. 8a, job J1,1 is blocked during the entire
interval [3, 6), but is only pi-blocked in the interval [5, 6), as
only then is J1,1 one of the M = 2 highest-priority active jobs.
In checking schedulability, both pi-blocking times and HAC
execution times are analytically viewed as preemptive CPU
execution time, as depicted in Fig. 8b. Note that this execution-
time inflation may not include all task suspension time, but
only that occurring while a task is actually pi-blocked.

. Def. 2. Let X , (2M − 1)Bmax be the maximum duration
of blocking induced by the global OMLP on an identical
multiprocessor without time partitioning [22]. /

We now calculate the total HAC-related blocking by ac-
counting for zone-related blocking.

Lemma 1. The total pi-blocking introduced by the man-
agement of non-preemptive HAC accesses is at most X +
d(X +Bmax) / (Θ−Bmax)e ·Bmax time units for each lock
request by a task in Component Γ.

Proof. In each time slice of length Θ, because Bmax is the
worst-case duration of a forbidden zone, at least Θ − Bmax
time units are available for a job to initiate an access to



a HAC. In executing this work, and while the access is
unfinished, additional blocking of up to Bmax time units may
be incurred for each time-slice boundary crossed. Thus, we
upper bound the number of such boundaries that may be
crossed between the initiation of the request and the com-
pletion of the access. The worst case occurs when the request
is initiated right before a time-slice boundary, in which case
d(X +Bmax) / (Θ−Bmax)e boundaries are crossed.

Skipping ahead. If the next HAC access of the job at the head
of the OMLP’s FIFO queue is requested within its forbidden
zone, then we can allow other access requests to “skip ahead”
of that access until the beginning of the next time slice. This
corresponds to the Skip Protocol proposed previously [46].
With skipping, the total blocking bound of an access of length
B can be reduced to X + d(X +B) / (Θ−B)eB.

Inflating execution times. To convert (analytically) to a CPU-
only workload, as in Sec. III, we must add to the WCET of
each task in Γ the maximum blocking duration specified in
Lemma 1 and the duration of the HAC access itself for each
such access. This WCET inflation may cause task utilizations
to exceed 1.0, which is an additional motivation to use the rp-
sporadic task model instead of the standard sporadic model.

Extending to multiple HACs. Extending to multiple HACs
per component is straightforward. Each HAC is governed by
its own OMLP lock within the component. The analysis must
be modified such that Bmax and X are defined per HAC.

If a set of k HACs is interchangeable (any HAC in the
set can service a request), then the k HACs can instead be
managed by a k-exclusion locking protocol (which allows up
to k “lock holders”). This roughly divides X by a factor of
k in the analysis. In practice, however, certain HACs (like
GPUs in some use cases) may be unreasonable to view as
interchangeable due to high costs associated with moving task
state between HACs.

V. COMPUTING RESPONSE TIMES UNDER TIME-SLICING

In this section, we provide response-time analysis for tasks
in Γ (i.e., CPU tasks with WCETs inflated using Lemma 1).
We seek to leverage existing response-time analysis for rp-
sporadic tasks on multiprocessor platforms for which (unlike
our considered platform) all CPUs are fully available [7];
our results are applicable for any such analysis. This per-task
analysis is used to compute task offsets and thereby obtain a
graph response-time bound (the last step in Fig. 3).

As depicted in Fig. 3, Steps 4 and 5 define the sequence
of processing-supply transformations, starting with the supply
given by Γ’s PCR and ending with one corresponding to a
fully available platform. Step 4 transforms our reservation to
a reservation with the same schedule and continuous supply.
Step 5 inflates task execution times to apply the analysis of [7].
We perform these transformations such that no job’s response
time decreases, and we track task utilization changes as we
transform. It is important to track utilizations, because as noted
in Sec. III, the rp-sporadic task model requires ui ≤ Pi for

each task τi. To prevent over-utilization on an M -CPU unit-
speed platform, we also require that the total utilization of all
tasks in Γ, denoted as U , satisfies U ≤M .

Step 4: Transform PCR to a continuous supply. Firstly,
we transform the PCR parameterized by Θ, Π, and M to
a continuous processing supply without changing the total
processing capacity supplied over long time intervals (e.g., the
hyperperiod of all system reservations).

. Def. 3. Let Φres be the start of the first time slice of the
reservation of Γ. As the reservation is periodic, its time slices
are [Φres + iΠ,Φres + iΠ + Θ) for i ∈ {0, 1, 2, ...} and
Φres + Θ ≤ Π. /

Def. 3 allows us to describe the transformed CPU platform.

. Def. 4. Define a new platform with M CPUs, each with
speed Θ/Π, that begins supplying processing time at time
Φres. We call this platform the reduced-speed platform. /

The total supply provided to Γ by the initial and reduced-
speed platforms is the same over any time interval of length
iΠ for i ∈ {0, 1, 2, ...} that starts after Φres. The processing
supply provided by both platforms is depicted in Fig. 9a.

Step 4: Transform releases and deadlines. Although both
platforms deliver equal processing supply in the long run,
the change in how processing supply is provided changes the
schedule significantly. In particular, job completion times may
differ greatly. For example, consider a task in Γ that releases
a job in the interval after one time slice completes but before
the next begins. On the initial platform, such a job must wait
until the next slice to be considered for execution, whereas
on the reduced-speed platform, it would execute immediately
if there are free CPUs. To avoid this issue, we transform job
releases and deadlines of the tasks in Γ.

. Def. 5. Define the piecewise-linear function F (·), plotted in
Fig. 9b (solid line), as follows:

F (t) =



Φres, if t ∈ [0,Φres),

Φres + iΠ + zΠ/Θ, if t ∈ [Φres + iΠ,
Φres + iΠ + Θ),

Φres + (i+ 1)Π, if t ∈ [Φres + iΠ + Θ,
Φres + (i+ 1)Π),

where z = t− Φres − iΠ. /

To circumvent the issue of inconsistent allocations noted
above, we shift all job releases and deadlines on the reduced-
speed platform into the future by Π−Θ time units compared
to the initial platform. We also allow the early releasing
of jobs on the reduced-speed platform. Specifically, letting
ri,j be the release time of a job on the initial platform,
we define its release time on the reduced-speed platform to
be (ri,j + Π−Θ) and its eligibility time to be F (ri,j) (we
explain below why this is “early”), as illustrated in Fig. 9c.

To preserve the scheduling order, we break deadline ties the
same way as before the transformation. Thus, the priority order
of jobs does not change after this transformation. To explore



t

t
Θ Θ0

0 Φres Φres + Π Φres + 2Π

initial

reduced-speed

platform

platform

speed = 1

speed = Θ/Π

(a) The transformation of processing supply in Step 4.

t

F (t)

Θ Π−Θ

Θ Π−Θ

0
Φres Φres + Π Φres + 2Π

Φres

Φres + Π

Φres + 2Π

Π−Θ

y =
ty =

t+
Π−

Θ

(b) Plot of F (·).

t

t

t

0

0

0
Φres Φres + Π Φres + 2Π

initial releases

eligibility times

shifted releases

Π−Θ Π−Θ Π−Θ
(c) The transformation of releases and eligibility times.

Fig. 9: Transformation clarification figures.

how schedules on the initial and reduced-speed platforms are
now connected, we first need bounds on F (·).

Lemma 2. t ≤ F (t) ≤ t+ (Π−Θ).

Proof. Fig. 9b illustrates the lemma statement. First, consider
t ∈ [0,Φres). By Def. 5, t < F (t). Furthermore, because the
first reservation slice is [Φres,Φres + Θ), and the reservation
is periodic, Φres + Θ ≤ Π. Thus, F (t) = Φres ≤ Π − Θ ≤
t+ Π−Θ.

Second, consider t ∈ [Φres + iΠ,Φres + iΠ + Θ) for some
integer i, and z = t− Φres − iΠ. In this case, by Def. 5,

t = Φres + iΠ + z

≤ Φres + iΠ + z ·Π/Θ {= F (t)}
{because Θ ≤ Π and z ≥ 0}

= Φres + iΠ + z + z · (Π/Θ− 1)

= t+ z · (Π/Θ− 1)

≤ t+ Θ · (Π/Θ− 1) {because z ≤ Θ}
= t+ (Π−Θ).

Finally, if t ∈ [Φres + iΠ + Θ,Φres + (i + 1)Π), then by
Def. 5, F (t) = Φres + (i + 1)Π, so t < F (t). Additionally,
F (t) = Φres + iΠ + Π + (Θ − Θ) ≤ t + (Π − Θ), as t ≥
Φres + iΠ + Θ.

By Lemma 2, on the reduced-speed platform, a job with a
release at time ri,j can be scheduled at time F (ri,j) due to

t

speed = 2/3

t

speed = 1J0

J0

J1

J1

J0

J0

J2

J2

J2

J2

Φres + iΠ Φres + (i+ 1)Π Φres + (i+ 2)Π

F (t0)

t0

Scheduling
interval

Θ

Π
=

2

3
Interval
length

initial

reduced-speed

platform

platform

Fig. 10: Lemma 3 intuition.

its defined eligibility time, while its actual release happens at
time ri,j + Π−Θ ≥ F (ri,j).

. Def. 6. Let Sin be the schedule of Γ on the initial platform
defined by PCR (Θ,Π,Υ). Let Str denote the corresponding
schedule on the reduced-speed platform, with job releases and
deadlines adjusted as above. /

The next lemma gives the schedule correspondence we seek.

Lemma 3. A job is scheduled at time t in Sin if and only if it is
scheduled at time F (t) in Str.

Proof. Fig. 10 illustrates the proof. Assume, for the purpose
of contradiction, that the lemma does not hold, i.e., that there
exists a time t such that the sets of scheduled jobs in Sin at
t and Str at F (t) differ. Let t0 be the first such time instant.

By the definition of Φres, no jobs are scheduled in either Sin
or Str within [0,Φres), so t0 > 0. By the definition of t0, any
scheduling interval of a job within [0, t0) in Sin is transformed
into a scheduling interval of the same job in Str by F (·). By
Def. 5, any such interval of length h is transformed into a
scheduling interval of length h·Π/Θ, scheduled on a CPU with
speed Θ/Π, because a job can be scheduled in Sin only during
active reservation slices (see Fig. 10). This results in the same
total amount of completed work, h, for both the initial and
transformed intervals. Thus, the amount of completed work
for each job in Sin within [0, t0) is identical to the amount
of completed work for the same job in Str within [0, F (t0)).
As the eligibility times of jobs are also transformed from the
actual releases with F (·), the sets of uncompleted jobs at t0
in Sin and at F (t0) in Str are identical. The transformation
process does not affect the relative order of deadlines, so the
set of scheduled jobs is the same in Sin at t0 and in Str at
F (t0), which contradicts the definition of t0.

Because F (·) directly transforms Sin into Str, we can
bound the response time of an initial job in Sin via the
response time of its transformed job in Str.

Theorem 1. If a job has a response time of Rtr in Str, then
its response time Rin in Sin is at most Rtr + Π−Θ.

Proof. Let ri,j be release time of the job in Sin, and let fi,j be
its completion in Sin. Then Rin = fi,j − ri,j . By Lemma 3,
all of this job’s scheduling intervals in Sin are transformed
via F (·) into scheduling intervals in Str. Thus, the job is
completed at time F (fi,j) in Str, and by definition of the
transformed release time, Rtr = F (fi,j)−(ri,j + Π−Θ). By



Lemma 2, F (fi,j) ≥ fi,j , so Rtr ≥ fi,j − (ri,j + Π−Θ) =
Rin − (Π + Θ). Thus, Rin ≤ Rtr + Π−Θ.

Step 4 does not affect task utilizations, so thus far, no
changes to schedulability conditions are required. However,
such changes are inevitable because the initial reservation
restricts processing supply. These changes occur in the final
step, discussed next.
Step 5: From reduced-speed supply to identical multipro-
cessor. On the reduced-speed platform, each CPU has speed
Θ/Π. However, we can easily rescale these speeds to 1.0 by
multiplying by the factor Π/Θ, which requires correspond-
ingly multiplying each Ci by Π/Θ (thus, the utilization of
task τi on the identical multiprocessor platform is defined as
u′i = ui ·Π/Θ). This step allows us to completely abstract the
reservation and consider the scheduling of Γ on an identical
multiprocessor platform with M CPUs with WCETs that have
been inflated to account for HAC accesses.

By Theorem 1, Step 4 preserves the system schedulability.
Step 5 preserves the schedule, so it preserves schedulability
too. Thus, the schedulability conditions for Γ before Steps 4
and 5 can be derived from those of the system after Step 5:
U ′ ≤ M , and ∀i u′i ≤ Pi [7], where U ′ = Π/Θ · U is the
modified system’s utilization.

Lemma 4. The schedulability conditions of Γ before Steps 4
and 5 are U ≤ Θ/Π ·M and ui ≤ Θ/Π · Pi.

We now consider the scheduling of tasks in Γ on an identical
multiprocessor (recall that there are M CPUs available to Γ)
with WCETs and releases altered as described above. Let
C ′i = Π/Θ · Ci be the altered WCET for task τi ∈ Γ. We
leverage results for rp-sporadic tasks on uniform multiproces-
sor+accelerator platforms [7].

. Def. 7. We call a task τi ∈ Γ p-restricted (i.e., parallelism
is restricted) if Pi < M . Let U ′res be the sum of the M − 1
largest altered utilizations of p-restricted tasks in Γ. Let C ′res
be the sum of the M−1 largest altered WCETs of p-restricted
tasks in Γ. /

If ∀i, Pi ≥ α for some integer α ≥ 2, then the above terms
can be reduced: M − 1 can be replaced by b(M − 1)/αc in
the definitions of both C ′res and U ′res. As seen in the bound
stated next, these reductions imply that increasing parallelism
decreases response-time bounds (which is intuitive).

Lemma 5 (follows from Corollary 1 of [7]). The response
time of any task τi ∈ Γ is bounded by x+ Ti + C ′i, where

x =
(M − 1)C ′max + 2C ′res

M − U ′res
,

and C ′max is the largest altered WCET of any task in Γ.

The bound in Lemma 5 can be reduced by computing x
iteratively (see Theorem 1 of [7]), or by computing per-task
xi values (via compliant-vector analysis [37], [39]). We stress
that Lemma 5 merely provides one method for computing
response-time bounds; any response-time analysis for sporadic
tasks on an M -CPU identical multiprocessor may be used.

VI. DEALING WITH HIGHLY CONTENDED HACS

Unfortunately, a single long HAC access can cause high
blocking times (by Def. 2 and Lemma 1). These blocking
times are used to inflate tasks’ execution times, so even
a short access can be inflated by a relatively large value,3

which produces pessimistic response-time bounds (or makes
the system unschedulable). In this section, we describe an
optional step that may reduce these bounds (Step 6 in Fig. 3).

Example 1. Consider a system with a single component Γ
comprised of 15 tasks with continuous access to eight CPUs
and a single HAC. Assume that each task performs 1 time unit
of CPU execution and has a period of 30 time units (thus, from
the CPU point of view, the system has utilization 0.5).

Additionally, assume that eight of the tasks must also access
the HAC once per job for 2 time units. Each HAC-accessing
task has its WCET increased by X = (2 · 8− 1)2 = 30 under
the global OMLP. Thus, each HAC-accessing task’s utilization
increases by 30/30 = 1, leading to a total utilization increase
of (8 · 1) = 8. The increase in total utilization due to blocking
alone consumes the capacity of all eight allocated CPUs!

Step 6: Factoring out HACs. Total utilization explodes in
Ex. 1 because the increase in utilization caused by lock-
related blocking scales with the number of HAC-accessing
tasks multiplied by the number of CPUs. This would be
exacerbated if supply was not continuous under Γ’s PCR due
to additional blocking from forbidden zones. This encourages
factoring out the problematic HAC and its associated tasks
into a subsystem with the smallest possible CPU count,
namely one. Tasks accessing that HAC are then scheduled
non-preemptively and busy-wait on the dedicated CPU during
their accesses, ensuring that jobs access the HAC immediately
upon request (thus removing the need for a locking protocol).

Example 1 (cont’d). Suppose instead that the seven CPU-
only tasks are scheduled on seven CPUs and the eight HAC-
accessing tasks are scheduled exclusively on a dedicated CPU.
Factoring out the HAC results in 1 + 2 = 3 time units of
execution per job and a utilization of 3/30 per task (no
blocking inflation is needed), totaling to 8(3/30) = 24/30
for all HAC-accessing tasks. The seven CPU-only tasks can
clearly be scheduled on the seven remaining CPUs. The
dedicated CPU has greater capacity (1.0) than the HAC-
accessing tasks (total utilization of 24/30).

Of course, not all systems will have only one HAC as in
Ex. 1. If, after factoring out a single HAC, total utilization
remains high due to accesses to other HACs, then we can
simply continue to factor out HACs onto other dedicated CPUs
until the remaining subsystem becomes schedulable.
Factoring assumptions. Being able to factor out HACs is
predicated upon the assumption that all tasks that access a
HAC fit on a single CPU. This is not a strong assumption for
some AI applications, such as deep learning (e.g., [18]), that

3Note that the Skip Protocol [46] improves only the forbidden-zone-related
blocking time in Lemma 1 and does not affect the lock-related blocking X .



tend to be dominated by GPU workloads and require negligible
CPU execution in comparison. Furthermore, if a HAC’s tasks
over-utilize a dedicated CPU and their CPU execution is
negligible compared to their HAC execution, then the HAC
must already be executing nearly continuously. This implies
that HAC capacity is the limiting factor for schedulability, in
which case adding more CPUs is ineffective.

We have also assumed that each task accesses at most one
HAC (if not, tasks would need to migrate between different
dedicated CPUs, requiring us to reintroduce locking to man-
age accesses). This assumption can be removed by allowing
multiple HACs to share the same dedicated CPU (assuming
their corresponding tasks fit on a single CPU). Because only
one HAC is accessed by a task on a shared dedicated CPU at a
time (dedicated CPUs schedule non-preemptively), the HACs
that share the dedicated CPU are effectively combined into a
single logical HAC with worst-case access time equal to the
largest time to access any of the combined HACs.

Response-time analysis is needed for the tasks on dedicated
CPUs. When the system is time-sliced (unlike in Ex. 1),
forbidden zones of HACs must then be accounted for. By
analytically pretending that the CPU is also unavailable when
the HAC is in its forbidden zone, the response-time analysis
for a HAC and its dedicated CPU in a PCR reduces to that of a
single partially available CPU, for which existing analysis can
be applied [32]. This existing analysis (which targets global
scheduling) is pessimistic for dedicated CPUs, so we provide
our own response-time analysis. This analysis is presented in
an online appendix [84].
Choosing HACs to factor out. When factoring out HACs,
some capacity will inevitably be lost due to partitioning tasks
onto dedicated CPUs, making the choice of which HACs to
factor out a trade-off. We assume that the number of HACs
is small enough that considering every possibility of factoring
out HACs is feasible (note that for any two HACs accessed by
the same task, the fact that that task cannot be managed both
by the OMLP and via a dedicated CPU means that either
both or neither HAC must be factored out). Our proposed
approach iterates through every possible factoring and chooses
the factoring of HACs that best satisfies a given metric (e.g.,
lowest maximum or average response-time bound).

In the discussion above, we have implicitly assumed that the
precise HACs a task accesses are fixed and known (as noted
earlier, using any of a set of HACs is sometimes not practical
due to costs associated with moving task state among HACs).
If HAC accesses are not fixed and known, then the full space of
possible assignments of tasks to HACs must be considered. We
do not consider this possibility here due to space constraints
(while we cannot consider every possible nuance in detail
here, the discussion above should make the idea of “factoring
out” HACs intuitively clear). Generally, tasks that make long
accesses should be made to access factored-out HACs.

The intuition behind preferentially assigning factored-out
HACs to tasks with long accesses is that removing long ac-
cesses to HACs that are managed by the global OMLP reduces
Bmax (Def. 1), which in turn reduces X (Def. 2), thereby

reducing blocking under the global OMLP (Lemma 1). As
such blocking inflates jobs execution times, reducing blocking
should reduce the total utilization.

Although our discussion here has focused on using the
global OMLP, the principles above apply regardless of the
choice of locking protocol.

VII. REDUCING RESPONSE-TIME BOUNDS

In graph-based scheduling, graph nodes are normally taken
to be the schedulable entities, i.e., the scheduler focuses on
prioritizing and scheduling the tasks that define these nodes.
However, as shown next, end-to-end response-time bounds
can often be reduced by merging certain nodes to create new
schedulable entities; this is the optional Step 7 in Fig. 3.

Task/node merging has been considered before, but mostly
for reasons orthogonal to our work, such as to reduce task-to-
task communication costs [8], [40], [95], enable task cluster-
ing [15], [31], [34], [87], or reduce energy consumption [70],
[72]. Also, as noted in Sec. III, prior work [7], [90] used
node merging to eliminate cycles. In fact, with respect to
response-time bounds and schedulability, the conventional
wisdom seems to favor task splitting, not merging [23], [30],
[38], [41], [49], [50], [52], [78].

Recall from Sec. III (see Step 2) that the graph-scheduling
approach of release offsets results in end-to-end response-
time bounds proportional to the longest path in the DAG. In
this section, we show that such bounds can be reduced via
restructuring such graphs by merging certain nodes.

Redefining schedulable entities through node merging. We
illustrate our approach with a simple example, which does
not involve HACs or time-partitioning but still illustrates key
concepts. Consider a component Γ that executes on a four-
core platform without HACs and consists of one graph without
delay dependencies, as depicted in Fig. 11. Assume that this
DAG has a period of 15, a parallelization level of one, and its
tasks have execution times of {3, 1, 2, 4, 5} time units.

As shown in Tbl. II, we can compute an end-to-end DAG
response time-bound of 122.8 time units using Lemma 5. This
same table allows us to infer individual task response-time
bounds (which are of the form x+Ci + Ti) from the x value
given. This response-time bound calculation is impacted by
the offset-based approach introduced earlier in Sec. III.

Now consider the same graph, but with tasks τ3 and τ4
considered as a single schedulable entity (colored gray in
Fig. 11). We call this new task τnew. Note that τnew has an
execution time of 6 time units, so Cmax, Cres, and Ures (in
Lemma 5) are changed. The end-to-end bound for this new
graph is given in Tbl. II; x is increased (and hence per-task
bounds increased), but the end-to-end response time of the
graph is 104 time units, a 15% reduction.

Step 7: Graph node merging. The main source of pessimism
in the end-to-end bound is the general looseness of the per-task
response-time bounds. Most papers that derive response-time
bounds like we use here [7], [33], [37], [39], [80], [89] develop
a bound of at least Ci + Ti + xi for task τi with xi > 0 (xi



τnew, 6

τ1

3

τ3

2
τ4

4
τ2

1

τ5

5

Fig. 11: Scheduling entities of the graph.

Cmax Cres Ures x end-to-end r.t.
Unmodified DAG 5 12 0.8 12.2 122.8
{τ3, τ4} → τnew 6 14 0.93 15 104

TABLE II: Response-time bounds for the graph in Fig. 11.

may be constant for all tasks). Denote the length of a path in
a DAG as the sum of the per-node response-time bounds over
the path. Then, merging two nodes in the longest path reduces
the end-to-end DAG response-time bound by approximately
Ti time units if other paths have lesser lengths and per-node
bounds do not change significantly due to merging.

From the discussion above it may seem desirable to merge
many nodes into one (e.g., merge all nodes of the DAG into
one node). However, the ordinary sporadic task model limits
merging opportunities: for the system to remain schedulable,
the total utilization of a merged node must be at most 1.0.
Fortunately, the rp-sporadic task model eases utilization re-
strictions: the total utilization of a merged node is limited by
the graph parallelization level.

Connections between merging and bin-packing. While node
merging can decrease end-to-end response-time bounds, the
choice of which nodes to merge to minimize the longest path
is complex. We illustrate this complexity with an example. In
this example, we assume that per-task response-time bounds
do not change significantly after merging nodes relative to the
length of the longest path (i.e., a path of two nodes always
has smaller length than a path of three nodes).

Consider a set of rp-sporadic tasks τ = {τ0, τi1 , ...,
τis , τj1 , ..., τjq} with parallelization level P , where task τ0 has
utilization equal to P , and tasks {τj1 , ...τjq} have utilizations
of ε → 0. The DAG specifying their dependencies is shown
in Fig. 12.

Note that the longest path in the graph contains three
nodes. Also note that τ0 cannot be merged with any other
node, because of its utilization constraint. Thus, the shortest
possible path length after node merging is two. To achieve
the longest path of length two, each node of {τi1 , ..., τis}
should be merged with one node of {τj1 , ...τjq}. The only
constraints on which nodes may be merged are utilization
constraints, and thus, the minimization of the shortest path in
this graph is equivalent to the bin-packing problem with jq
bins of size P − ε.

Heuristics. The common way of solving a problem that likely
has no polynomial-time solution is by using heuristics. Each
heuristic chooses a valid pair of nodes to merge, and is applied
repeatedly until no new pair is chosen (i.e., response-time
bound R would not decrease further). We experimentally show
that these heuristics can enable significant reductions in graph

τ0

...τi1 τi2 τis−1 τis

τj1 ... τjq

P

Any ≤ P

ε→ 0

U
til

iz
at

io
ns

Fig. 12: Shortest path elimination as bin packing.

response-time bounds. As our systems contain several DAGs,
we use the largest response-time bound of these DAGs as the
system’s response-time bound.

Our first heuristic computes the longest path in any graph
of the system, weighing each of the z system nodes by
their individual response-time bound Ri. As we consider
DAGs, this step takes O(z) time. From the longest path, this
heuristic randomly chooses two consecutive nodes. We call
this heuristic SinglePathRT.

The second heuristic, BestPair, considers each of the O(z2)
pairs of nodes and computes R assuming they are merged
(including all O(z) nodes on any path between them); this
heuristic chooses a valid pair that minimizes R.

We also consider the simpler version of BestPair, Elemen-
taryPair. It considers only nodes connected by a direct edge
that do not have any other path between them.

Experimental setup. To determine the efficacy of our heuris-
tics, we generated synthetic graph task systems consisting of
several connected DAGs. First, for each DAG, we allocated a
number of nodes from the total nodes in the system. Second,
we generated a random tree over these nodes to make the
DAG connected. Finally, the remaining edges were generated
using the Erdős-Rényi model [36] (with constant probability).
Each edge was made a dependency by making the lower-
indexed task a predecessor of the higher-indexed task (thereby
guaranteeing that dependencies form DAGs).

Tasks’ parameters were generated independently. Pi for
each task τi in each subset was sampled uniformly from
[2, 3, 4]. Ti was sampled uniformly from the interval of pos-
sible periods [10, 50]. The utilization of nodes was uniformly
chosen by the Dirichlet-Rescale algorithm [44].

Evaluation metric. To evaluate these heuristics, we use two
metrics: the share of improved graphs (SIG) and the relative
end-to-end bound improvement (RBI). SIG is the percentage
of DAGs that see a response-time bound improvement. RBI
estimates how good the improvement is. For a DAG D, it is
defined as (Rin − Rm)/Rin, where Rin is D’s initial end-
to-end bound, and Rm is D’s bound after merging nodes. To
compute response-time bounds, we used a tighter version of
Lemma 5 (Theorem 1 of [7]).

CPU-only graph workloads. Our first experiment compares
the heuristics on the same graphs with CPU-only nodes with-
out reservations. The goal of the experiment is to show that
the node merging approach works for the most common case
and is not tied to the usage of HACs or time partitioning (as it
improves the offset-based response-time bound computation).



6 8 10 12 14 16
Total system utilization

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Re
la

tiv
e 

RB
I

BestPair
ElementaryPair
SinglePathRT

Fig. 13: Comparison of heuristics with CPU-only workloads.

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Total system utilization

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Re
la

tiv
e 

RB
I

BestPair
ElementaryPair
SinglePathRT

Fig. 14: Comparison of heuristics with CPU/HAC workloads
within PCR.

We generated graph task systems with five connected com-
ponents and 100 nodes total on a platform with 16 CPUs. The
total utilization of these systems varies from 6 to 15.5. We
generated 60 tasks systems for each choice of total utilization.

Fig. 13 shows RBI trends for this experiment. BestPair is
the best heuristic (with a relative RBI of around 30%), with
ElementaryPair being second best. Note that, for all heuristics,
RBI trends downward as system utilization increases. This
trend is due to fewer options for merging at higher utilization.
CPU+HAC workloads within PCRs. In the second exper-
iment, we evaluated the above heuristics in the presence of
HAC nodes within PCRs, and sought to demonstrate that
introducing HACs and PCRs does not compromise the efficacy
of heuristics. We assumed that all HAC accesses are arbitrated
using a locking protocol (as described in Sec. IV).

We generated graph task systems with five connected com-
ponents and 100 total nodes for a PCR with six CPUs and
two HACs (Θ = 40,Π = 80). Each node is a HAC-only
node with a probability of 0.35. As the total CPU capacity
of this PCR is 3.0, no system with utilization higher than
3.0 can be schedulable. Moreover, some nodes are HAC-only:
the execution times of these nodes must be inflated to reflect
lock-related blocking. Thus, most of the generated systems
with utilizations of more than 2.4 were unschedulable (thus,
they are not presented). The total utilization of the considered
systems varies from 0.75 to 2.4. We generated 60 task systems
for each choice of total utilization.

Fig. 14 shows RBI trends for this experiment (with results
similar to the previous experiment). BestPair is again the best
heuristic, with ElementaryPair being second best. Note that,
for all heuristics, RBI trends downward as system utilization
increases. This trend is again due to fewer options for merging
at higher utilizations.
Efficacy vs. run time. In both experiments, heuristics with

higher efficacy had higher run time. For a connected DAG with
z nodes and E edges, the number of merge attempts per step is
proportional to z2 for BestPair, to E for ElementaryPair, and
to z for SinglePathRT. Thus, BestPair should be used generally
unless the number of nodes makes its run time infeasible, in
which case a heuristic with lower efficacy can be used (e.g.,
ElementaryPair has comparable results to BestPair)

As these experiments show, our node-merging heuristics
have value in systems with and without HACs or time-
partitioning.

VIII. EXPERIMENTAL VALIDATION

A full experimental evaluation of the real-time graph-based
analysis presented in this paper must answer three questions:
Question 1: How long are forbidden zones in practice?
Question 2: What is the cost of providing isolation between

HAC-using components?
Question 3: What reservation time-slice lengths are appropri-

ate for a given task system?
Answering these questions requires a full operating-system-

based implementation, which is beyond the scope of this
paper. These questions are answered in detail in a compan-
ion paper [6], in which we introduce TimeWall, a time-
partitioning framework that supports scheduling graph-based
task systems within reservations; TimeWall is implemented
within the 5.4.0-rc7 LITMUSRT kernel [20], [26].

In seeking to answer Questions 1–3, our experimental evalu-
ation of TimeWall revealed some surprising timing edge cases
for GPU-using workloads, necessitating further explorations:
Question 4: How should HAC accesses be budgeted in the

event of high worst-case access durations?
We now summarize the answers to these questions using

the key results of our evaluation; full details can be found in
the companion paper [6].
Q1: Forbidden-zone lengths. To determine how long for-
bidden zones can be in practice, we measured durations of
data copies and computations for a GPU-using pedestrian-
detection application. We found that CPU- and GPU-based
measurements differed beyond the 99.95th percentile; worst-
case CPU-based measurements were two orders of magnitude
higher than those taken on the GPU. Our investigation into
these edge cases revealed NVIDIA’s proprietary CUDA API
as the culprit. As we could not remove the source of the edge
cases, we added a GPU budgeting mechanism to TimeWall to
prevent misbehaving jobs from performing additional work.
Q2: Cost of isolation. In TimeWall, forbidden-zone enforce-
ment increases lock overheads. Our measured lock overheads
were comparable to the original global OMLP (5.4 µs per
request), with an additional 0.9 µs per GPU access. We also
found that using TimeWall instead of the original global
OMLP (without support for forbidden zones) resulted in
slightly higher median and lower worst-case response times.
Q3: Time-slice lengths. Recall from Sec. IV that we require
Θ ≥ Bmax. However, long time slices can result in high
response times due to the interval of length Π−Θ when jobs



are released but not scheduled (i.e., when other components’
jobs are scheduled). We explored this trade-off via synthetic
GPU-using tasks, assuming Θ/Π = 0.5, and found that the
lowest response times occurred when Θ > Ci and Π ≤ Ti.
Q4: Budgeting HAC accesses. Increasing the budget for
HAC accesses reduces the number of accesses that exceed
that budget. Budgeting at the 99.95th percentile of CPU-based
measurements results in a theoretical frame-drop rate (i.e., the
proportion of jobs during which an access duration exceeded
its budget) of 3.8%, but allows for shorter forbidden zones
(closer to the GPU-measured worst cases).

IX. DISCUSSION

In this paper, we are motivated by graph-based AI algo-
rithms, of which neural networks (NNs) currently serve as
the most popular class. These NNs (VGG [77], ResNet [45],
Inception [79], etc.) are generally assumed to use one or sev-
eral GPUs, utilizing all available capacity, and are represented
by large multi-node graphs. Unfortunately, the high latency
and low bandwidth of CPU-GPU memory transfers make it
inefficient to offload nodes to the CPU, so an optimal scheduler
should consider an invocation of a typical NN as a single GPU
job (and the NN itself as a single GPU graph node).

However, real applications may be comprised of many
additional nodes, including CPU ones (e.g., data processing or
sequential computations), as well as other HAC-using tasks,
which together form the graph we consider. An example of
such an application was mentioned in the RTAS 2021 Industry
Panel [1] (at time 59:00).

X. RELATED WORK

Prior work on real-time graph models has mostly focused on
the DAG model, which differs from our model by considering
different timing constraints (e.g., hard real-time with im-
plicit/constrained deadlines) [11], [19], [68], [69], [73], [94],
ignoring inter-instance graph dependencies (e.g., hard real-
time with arbitrary deadlines) [12], [42], [51], [55], [66], [85],
arbitrarily forcing these dependencies to the prior instance
only [57], [90]–[92], or by considering a different graph
task model (e.g., conditional DAGs) [13], [43], [48], [50],
[59], [66]. Some other work on graph scheduling considered
different schedulers [12], [49], [56], [61], [71], [74], [83] or
objectives (e.g., minimizing makespan or energy consumption)
[15], [16], [47], [85], [88].

Other real-time graph models include the synchronous
dataflow graph model (SDF) and digraph task model. These
models can be used under our approach with minor analysis
modifications (e.g., SDF graphs can be converted into DAGs
or sporadic tasks [4], [9], [10], [58], [63]).
GPUs and other HACs. GPUs are perhaps the most popular
type of HAC, as they are commonly used to accelerate
AI applications. Of the prior work that considers GPU or
HAC accesses in graph-based task systems, most use locking
protocols to arbitrate accesses (e.g., [7], [62], [90]), whereas
others rely on the underlying driver’s scheduling policies
(e.g., [92]). GPU-access arbitration has typically either used

a real-time locking protocol (e.g., [35], [53], [82]) or relied
on modifications to the GPU driver to reorder work [27],
[54]. Alternatively, some work has sought to understand the
scheduling rules employed by the GPU drivers themselves
through micro-benchmarking experiments [5], [64], [65].

Isolation of system components. Real-time isolation of
system components is typically done using the notion of
virtual processors (or reservations) with guaranteed capacity.
We consider a simple PCR model that requires capacity to
be supplied over a continuous time interval; more general
models (e.g., MPR [76] or service functions [29]) cannot be
easily used instead because of HAC non-preemptivity issues.
However, the prior work with these models uses a simpler (and
less general) task model (e.g., standard sporadic task) without
accelerator accesses [2], [17], [24].

Work that considers graph models and component isolation
[25], [28], [86], [93] does not address the complexities related
to the usage of non-preemptive accelerators, such as the
potential for component-isolation violations. Nemati et al. [62]
considered accelerator accesses in component-based systems,
but they required that a given CPU be dedicated to a single
component, and thus did not consider a model in which a
component has exclusive access to a HAC.

XI. CONCLUSION

We have extended prior work on computing response-
time bounds for graph-based accelerator-using computations
so that such bounds can be computed in systems of time-
partitioned components. In doing so, we have explored various
nuances that arise when attempting to support accelerator
accesses efficiently without compromising inter-component
time isolation. Time partitioning can increase response-time
bounds. To ameliorate this issue, we have presented node-
merging heuristics that restructure graphs. To our knowledge,
this is the first work to consider node merging as a means for
reducing response times. These heuristics are of interest even
in the absence of time partitioning.

This paper was motivated by the desire to efficiently support
AI workloads on multicore+HAC platforms. The techniques
we have proposed have been applied in related work that fo-
cuses on experimental trade-offs involving such workloads [6].
That work shows that the concepts we have discussed (the rp-
sporadic task model, lock-based accelerator arbitration, forbid-
den zones, etc.) can be practically applied on real hardware.

Many avenues for further work exist. For example, it would
be interesting to consider resource models that are more
flexible than the PCR model. Conditional graphs, which are
often used in AI applications, also warrant consideration.
Finally, many trade-offs exist when allocating time partitions
to the components of a system. We plan to investigate these
trade-offs both theoretically and experimentally.

REFERENCES

[1] Panel Discussion – RTOS for Autonomous Machines, 27th IEEE
Real-Time and Embedded Technology and Applications Symposium.
www.youtube.com/watch?v=VYUWwUHMcj4, May 2021.



[2] Luca Abeni, Alessio Balsini, and Tommaso Cucinotta. Container-based
real-time scheduling in the linux kernel. ACM SIGBED Review, 2019.

[3] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer,
and Robert Ian Davis. An empirical survey-based study into industry
practice in real-time systems. In Proceedings of the 41st IEEE Real-Time
Systems Symposium, 2020.

[4] Hazem Ismail Ali, Benny Akesson, and Luis Miguel Pinho. General-
ized extraction of real-time parameters for homogeneous synchronous
dataflow graphs. In Proceedings of the 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing,
2015.

[5] Tanya Amert, Nathan Otterness, Ming Yang, James H Anderson, and
F Donelson Smith. GPU scheduling on the NVIDIA TX2: Hidden
details revealed. In Proceedings of the 38th IEEE Real-Time Systems
Symposium, 2017.

[6] Tanya Amert, Zelin Tong, Sergey Voronov, Joshua Bakita, F Donelson
Smith, and James H Anderson. Timewall: Enabling time partitioning for
real-time multicore+accelerator platforms. In Proceedings of the 42nd
IEEE Real-Time Systems Symposium, 2021.

[7] Tanya Amert, Sergey Voronov, and James H Anderson. OpenVX and
real-time certification: The troublesome history. In Proceedings of the
40th IEEE Real-Time Systems Symposium, 2019.

[8] Peter Aronsson and Peter Fritzson. Task merging and replication using
graph rewriting. In Proceedings of the 10th International Workshop on
Compilers for Parallel Computers, 2003.

[9] Mohamed A Bamakhrama and Todor Stefanov. Hard-real-time schedul-
ing of data-dependent tasks in embedded streaming applications. In
Proceedings of the 9th ACM International Conference on Embedded
Software, 2011.

[10] Mohamed A Bamakhrama and Todor Stefanov. Managing latency
in embedded streaming applications under hard-real-time scheduling.
In Proceedings of the 8th IEEE International Conference on Hard-
ware/Software Codesign and System Synthesis, 2012.

[11] Sanjoy Baruah. Improved multiprocessor global schedulability analysis
of sporadic DAG task systems. In Proceedings of the 26th Euromicro
Conference on Real-Time Systemss, 2014.

[12] Sanjoy Baruah. The federated scheduling of constrained-deadline spo-
radic DAG task systems. In Proceedings of the 19th Design, Automation
and Test in Europe Conference and Exhibition, 2015.

[13] Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela.
The global EDF scheduling of systems of conditional sporadic DAG
tasks. In Proceedings of the 27th Euromicro Conference on Real-Time
Systems, 2015.

[14] Moris Behnam, Insik Shin, Thomas Nolte, and Mikael Nolin. SIRAP: A
synchronization protocol for hierarchical resource sharing in real-time
open systems. In Proceedings of the 7th ACM and IEEE International
Conference on Embedded Software, 2007.

[15] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan,
and Haoyi Xiong. Energy-efficient real-time scheduling of DAG tasks.
ACM Transactions on Embedded Computing Systems, 17(5):1–25, 2018.

[16] Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah, Nan
Guan, and Zhishan Guo. Energy-efficient parallel real-time scheduling
on clustered multi-core. IEEE Transactions on Parallel and Distributed
Systems, 31(9):2097–2111, 2020.

[17] Enrico Bini, Marko Bertogna, and Sanjoy Baruah. Virtual multiprocessor
platforms: Specification and use. In Proceedings of the 30th IEEE Real-
Time Systems Symposium, 2009.

[18] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
YOLOv4: Optimal speed and accuracy of object detection. arXiv
preprint arXiv:2004.10934, 2020.

[19] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and
Andreas Wiese. Feasibility analysis in the sporadic DAG task model. In
Proceedings of the 25th Euromicro Conference on Real-Time Systems,
2013.

[20] Björn B Brandenburg. Scheduling and Locking in Multiprocessor Real-
time Operating Systems. PhD thesis, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA, 2011.

[21] Björn B Brandenburg and James H Anderson. Optimality results for
multiprocessor real-time locking. In Proceedings of the 31st IEEE Real-
Time Systems Symposium, 2010.

[22] Björn B Brandenburg and James H Anderson. The OMLP family of
optimal multiprocessor real-time locking protocols. Design Automation
for Embedded Systems, 17(2):277–342, 2013.

[23] Björn B Brandenburg and Mahircan Gül. Global scheduling not required:
Simple, near-optimal multiprocessor real-time scheduling with semi-
partitioned reservations. In Proceedings of the 37th IEEE Real-Time
Systems Symposium, 2016.

[24] Artem Burmyakov, Enrico Bini, and Eduardo Tovar. Compositional
multiprocessor scheduling: the GMPR interface. Real-Time Systems,
50(3):342–376, 2014.

[25] Giorgio Buttazzo, Enrico Bini, and Yifan Wu. Partitioning real-
time applications over multicore reservations. IEEE Transactions on
Industrial Informatics, 7(2):302–315, 2011.

[26] John Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C
Devi, and James H Anderson. LITMUSRT: A testbed for empirically
comparing real-time multiprocessor schedulers. In Proceedings of the
27th IEEE International Real-Time Systems Symposium, 2006.

[27] Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara
Paramakuru. Deadline-based scheduling for GPU with preemption
support. In Proceedings of the 39th IEEE Real-Time Systems Symposium,
2018.

[28] Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B Brandenburg.
Response-time analysis of ROS 2 processing chains under reservation-
based scheduling. In Proceedings of the 31st Euromicro Conference on
Real-Time Systems, 2019.

[29] Samarjit Chakraborty, Simon Künzli, and Lothar Thiele. A general
framework for analysing system properties in platform-based embedded
system designs. In Proceedings of the 7th Design, Automation and Test
in Europe Conference and Exhibition, 2003.

[30] Jian-Jia Chen and Cong Liu. Fixed-relative-deadline scheduling of hard
real-time tasks with self-suspensions. In Proceedings of the 35th IEEE
Real-Time Systems Symposium, 2014.

[31] Klaus Danne and Marco Platzner. Periodic real-time scheduling for
FPGA computers. In Proceedings of the 3rd International Workshop on
Intelligent Solutions in Embedded Systems, 2005.

[32] UmaMaheswari C Devi. Soft Real-Time Scheduling on Multiprocessors.
PhD thesis, University of North Carolina, Chapel Hill, NC, 2006.

[33] UmaMaheswari C Devi and James H Anderson. Tardiness bounds for
global EDF scheduling on a multiprocessor. In Proceedings of the 26th
IEEE Real-Time Systems Symposium, 2005.

[34] Ahmed Ebaid, Reda Ammar, Sanguthevar Rajasekaran, and Tahany
Fergany. Task clustering & scheduling with duplication using recursive
critical path approach (RCPA). In Proceedings of the 10th IEEE Inter-
national Symposium on Signal Processing and Information Technology,
2010.

[35] Glenn A Elliott, Bryan Ward, and James H Anderson. GPUSync: a
framework for real-time GPU management. In Proceedings of the 34th
IEEE Real-Time Systems Symposium, 2013.

[36] P. Erdős and A. Rényi. On random graphs I. Publicationes Mathematicae
Debrecen, 6:290–297, 1959.

[37] Jeremy P Erickson and James H Anderson. Response time bounds for
G-EDF without intra-task precedence constraints. In Proceedings of the
15th International Conference On Principles Of Distributed Systems,
2011.

[38] Jeremy P Erickson and James H Anderson. Reducing tardiness under
global scheduling by splitting jobs. In Proceedings of the 25th Euromicro
Conference on Real-Time Systems, 2013.

[39] Jeremy P Erickson, Nan Guan, and Sanjoy Baruah. Tardiness bounds
for global EDF with deadlines different from periods. In Proceedings of
the 14th International Conference On Principles Of Distributed Systems,
2010.

[40] Hamid R Faragardi, Björn Lisper, Kristian Sandström, and Thomas
Nolte. An efficient scheduling of AUTOSAR runnables to minimize
communication cost in multi-core systems. In Proceedings of the 7th
International Symposium on Telecommunications, 2014.

[41] David Ferry, Jing Li, Mahesh Mahadevan, Kunal Agrawal, Christopher
Gill, and Chenyang Lu. A real-time scheduling service for parallel tasks.
In Proceedings of the 19th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2013.

[42] José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Schedulability
analysis of DAG tasks with arbitrary deadlines under global fixed-
priority scheduling. Real-Time Systems, 55(2):387–432, 2019.

[43] José Carlos Fonseca, Vincent Nélis, Gurulingesh Raravi, and
Luı́s Miguel Pinho. A multi-DAG model for real-time parallel appli-
cations with conditional execution. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing, 2015.



[44] David Griffin, Iain Bate, and Robert I Davis. Generating utilization vec-
tors for the systematic evaluation of schedulability tests. In Proceedings
of the 41th IEEE Real-Time Systems Symposium, 2020.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the 29th
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[46] Philip Holman and James H Anderson. Locking under Pfair scheduling.
ACM Transactions on Computer Systems, 24(2):140–174, 2006.

[47] Biao Hu, Zhengcai Cao, and Mengchu Zhou. Energy-minimized
scheduling of real-time parallel workflows on heterogeneous distributed
computing systems. IEEE Transactions on Services Computing, 2021.

[48] Xu Jiang, Nan Guan, Di Liu, and Weichen Liu. Analyzing G-
EDF scheduling for parallel real-time tasks with arbitrary deadlines.
In Proceedings of the 23rd Design, Automation and Test in Europe
Conference and Exhibition, 2019.

[49] Xu Jiang, Nan Guan, Xiang Long, and Wang Yi. Semi-federated
scheduling of parallel real-time tasks on multiprocessors. In Proceedings
of the 38th IEEE Real-Time Systems Symposium, 2017.

[50] Xu Jiang, Xiang Long, Nan Guan, and Han Wan. On the decomposition-
based global EDF scheduling of parallel real-time tasks. In Proceedings
of the 37th IEEE Real-Time Systems Symposium, 2016.

[51] Xu Jiang, Jinghao Sun, Yue Tang, and Nan Guan. Utilization-tensity
bound for real-time DAG tasks under global EDF scheduling. IEEE
Transactions on Computers, 69(1):39–50, 2019.

[52] Augusto Santos Júnior, George Lima, Konstantinos Bletsas, and Shinpei
Kato. Multiprocessor real-time scheduling with a few migrating tasks.
In Proceedings of the 34th IEEE Real-Time Systems Symposium, 2013.

[53] Shinpei Kato, Karthik Lakshmanan, Aman Kumar, Mihir Kelkar, Yutaka
Ishikawa, and Raj Rajkumar. RGEM: A responsive GPGPU execution
model for runtime engines. In Proceedings of the 32nd IEEE Real-Time
Systems Symposium, 2011.

[54] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa.
TimeGraph: GPU scheduling for real-time multi-tasking environments.
In Proceedings of the 22th USENIX Annual Technical Conference, 2011.

[55] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Analysis
of global EDF for parallel tasks. In Proceedings of the 25th Euromicro
Conference on Real-Time Systems, 2013.

[56] Jing Li, Jian-Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and
Abusayeed Saifullah. Analysis of federated and global scheduling
for parallel real-time tasks. In Proceedings of the 26th Euromicro
Conference on Real-Time Systems, 2014.

[57] Cong Liu and James H Anderson. Supporting soft real-time DAG-based
systems on multiprocessors with no utilization loss. In Proceedings of
the 31st IEEE Real-Time Systems Symposium, 2010.

[58] Di Liu, Jelena Spasic, Jiali T Zhai, Todor Stefanov, and Gang Chen.
Resource optimization for CSDF-modeled streaming applications with
latency constraints. In Proceedings of the 18th Design, Automation &
Test in Europe Conference & Exhibition, 2014.

[59] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto
Marchetti-Spaccamela, and Giorgio C Buttazzo. Response-time analysis
of conditional DAG tasks in multiprocessor systems. In Proceedings of
the 27th Euromicro Conference on Real-Time Systems, 2015.

[60] Aloysius K Mok, Xiang Feng, and Deji Chen. Resource partition for
real-time systems. In Proceedings of the 7th IEEE Real-Time Technology
and Applications Symposium, 2001.

[61] Mitra Nasri, Geoffrey Nelissen, and Björn B Brandenburg. Response-
time analysis of limited-preemptive parallel DAG tasks under global
scheduling. In Proceedings of the 31st Euromicro Conference on Real-
Time Systems, 2019.

[62] Farhang Nemati, Moris Behnam, and Thomas Nolte. Independently-
developed real-time systems on multi-cores with shared resources. In
Proceedings of the 23rd Euromicro Conference on Real-Time Systems,
2011.

[63] Sobhan Niknam, Peng Wang, and Todor Stefanov. Hard real-time
scheduling of streaming applications modeled as cyclic CSDF graphs.
In Proceedings of the 23th Design, Automation & Test in Europe
Conference & Exhibition, 2019.

[64] Ignacio S Olmedo, Nicola Capodieci, Jorge L Martinez, Andrea
Marongiu, and Marko Bertogna. Dissecting the CUDA scheduling
hierarchy: A performance and predictability perspective. In Proceedings
of the 26th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2020.

[65] Nathan Otterness and James H Anderson. Exploring AMD GPU
scheduling details by experimenting with “worst practices”. In Pro-

ceedings of the 29th International Conference on Real-Time Networks
and Systems, 2021.

[66] Andrea Parri, Alessandro Biondi, and Mauro Marinoni. Response time
analysis for G-EDF and G-DM scheduling of sporadic DAG-tasks with
arbitrary deadline. In Proceedings of the 23rd International Conference
on Real Time and Networks Systems, 2015.

[67] Paul J Prisaznuk. ARINC 653 role in integrated modular avionics
(IMA). In Proceedings of the 27th IEEE/AIAA Digital Avionics Systems
Conference, 2008.

[68] Manar Qamhieh, Frédéric Fauberteau, Laurent George, and Serge Mi-
donnet. Global EDF scheduling of directed acyclic graphs on multipro-
cessor systems. In Proceedings of the 21st International conference on
Real-Time Networks and Systems, 2013.

[69] Manar Qamhieh, Laurent George, and Serge Midonnet. A stretching
algorithm for parallel real-time DAG tasks on multiprocessor systems.
In Proceedings of the 22nd International Conference on Real-Time
Networks and Systems, 2014.

[70] Qinru Qiu, Shaobo Liu, and Qing Wu. Task merging for dynamic
power management of cyclic applications in real-time multiprocessor
systems. In Proceedings of the 24th International Conference on
Computer Design, 2006.

[71] Shenyuan Ren, Ligang He, Junyu Li, Chao Chen, Zhuoer Gu, and Zhiyan
Chen. Scheduling DAG applications for time sharing systems. In
Proceedings of the 21st International Conference on Algorithms and
Architectures for Parallel Processing, 2018.

[72] Peng Rong and Massoud Pedram. Energy-aware task scheduling and
dynamic voltage scaling in a real-time system. Journal of Low Power
Electronics, 4(1):1–10, 2008.

[73] Abusayeed Saifullah, David Ferry, Chenyang Lu, and Christopher Gill.
Real-time scheduling of parallel tasks under a general DAG model. IEEE
Transactions on Parallel and Distributed Systems, 2012.

[74] Maria A Serrano, Alessandra Melani, Marko Bertogna, and Eduardo
Quinones. Response-time analysis of DAG tasks under fixed priority
scheduling with limited preemptions. In Proceedings of the 20th Design,
Automation & Test in Europe Conference & Exhibition, 2016.

[75] Maria A Serrano and Eduardo Quinones. Response-time analysis of
DAG tasks supporting heterogeneous computing. In Proceedings of the
55th Annual Design Automation Conference, 2018.

[76] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In Proceedings of
the 20th Euromicro Conference on Real-Time Systems, 2008.

[77] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[78] Muhammad R Soliman and Rodolfo Pellizzoni. PREM-based optimal
task segmentation under fixed priority scheduling. In Proceedings of the
31st Euromicro Conference on Real-Time Systems, 2019.

[79] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the 28th
IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[80] Guangmo Tong and Cong Liu. Supporting soft real-time sporadic
task systems on uniform heterogeneous multiprocessors with no uti-
lization loss. IEEE Transactions on Parallel and Distributed Systems,
27(9):2740–2752, 2015.

[81] Niklas Ueter, Georg Von Der Brüggen, Jian-Jia Chen, Jing Li, and Kunal
Agrawal. Reservation-based federated scheduling for parallel real-time
tasks. In Proceedings of the 39th IEEE Real-Time Systems Symposium,
2018.

[82] Uri Verner, Avi Mendelson, and Assaf Schuster. Scheduling periodic
real-time communication in multi-GPU systems. In Proceedings of
the 23rd International Conference on Computer Communication and
Networks, 2014.

[83] Micaela Verucchi, Mirco Theile, Marco Caccamo, and Marko Bertogna.
Latency-aware generation of single-rate DAGs from multi-rate task sets.
In Proceedings of the IEEE 26th Real-Time and Embedded Technology
and Applications Symposium, 2020.

[84] Sergey Voronov, Stephen Tang, Tanya Amert, and James H An-
derson. AI meets real-time: Addressing real-world complexities
in graph response-time analysis (extended version with appendix),
https://jamesanderson.web.unc.edu/papers/, 2021.

[85] Kankan Wang, Xu Jiang, Nan Guan, Di Liu, Weichen Liu, and Qingxu
Deng. Real-time scheduling of DAG tasks with arbitrary deadlines. ACM



Transactions on Design Automation of Electronic Systems, 24(6):1–22,
2019.

[86] Yifan Wu, Zhigang Gao, and Guojun Dai. Deadline and activation
time assignment for partitioned real-time application on multiprocessor
reservations. Journal of Systems Architecture, 60(3):247–257, 2014.

[87] Yinglong Xia, Viktor K Prasanna, and James H Li. Hierarchical schedul-
ing of DAG structured computations on manycore processors with
dynamic thread grouping. In Workshop on Job Scheduling Strategies
for Parallel Processing, 2010.

[88] Guoqi Xie, Xiongren Xiao, Renfa Li, and Keqin Li. Schedule length
minimization of parallel applications with energy consumption con-
straints using heuristics on heterogeneous distributed systems. Con-
currency and Computation: Practice and Experience, 29(16):402, 2017.

[89] Kecheng Yang and James H Anderson. On the soft real-time optimality
of global EDF on uniform multiprocessors. In Proceedings of the 38th
IEEE Real-Time Systems Symposium, 2017.

[90] Kecheng Yang, Glenn A Elliott, and James H Anderson. Analysis
for supporting real-time computer vision workloads using OpenVX on
multicore+GPU platforms. In Proceedings of the 23th International
Conference on Real-Time Networks and Systems, 2015.

[91] Kecheng Yang, Ming Yang, and James H Anderson. Reducing response-
time bounds for DAG-based task systems on heterogeneous multicore
platforms. In Proceedings of the 24th International Conference on Real-
Time Networks and Systems, 2016.

[92] Ming Yang, Tanya Amert, Kecheng Yang, Nathan Otterness, James H
Anderson, F Donelson Smith, and Shige Wang. Making OpenVX
really “real time”. In Proceedings of the 39th IEEE Real-Time Systems
Symposium, 2018.

[93] Tao Yang, Qingxu Deng, and Lei Sun. Building real-time parallel task
systems on multi-cores: A hierarchical scheduling approach. Journal of
Systems Architecture, 92:1–11, 2019.

[94] Shuai Zhao, Xiaotian Dai, Iain Bate, Alan Burns, and Wanli Chang.
DAG scheduling and analysis on multiprocessor systems: Exploitation
of parallelism and dependency. In Proceedings of the 41st IEEE Real-
Time Systems Symposium, 2020.

[95] Naqin Zhou, Deyu Qi, Xinyang Wang, and Zhishuo Zheng. A static
task scheduling algorithm for heterogeneous systems based on merging
tasks and critical tasks. Journal of Computational Methods in Sciences
and Engineering, 17(4):715–732, 2017.


