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Abstract—The increasing complexity and parallelization of
hardware and applications in embedded systems have brought
unavoidable uncertainty in determining the worst-case execution
times (WCETs) of real-time tasks. While budget enforcement
can address this uncertainty by limiting an overrunning task
from affecting the rest of the system, less explored is how to
determine the rate and pattern of failures resulting from budget
overruns. For analysis using probabilistic techniques, one must
first consider potential dependence relations across different tasks
or jobs of the same task. As a result, prior work on probabilistic
WCET (pWCET) distributions seeking to enable independence
assumptions has suffered from excessive pessimism and intricate
derivation processes. In contrast, industry designs have opted
for relatively simple heuristics such as “fudge factors,” budgets
set by scaling mean or observed worst-case execution times
by a constant factor. However, such heuristics do not have a
strong analytical foundation. This paper addresses this gap in
theory and practice, presenting analysis of a budgeted real-
time system’s failure rate not reliant on extensive knowledge
of a task’s execution behavior or independence assumptions,
only requiring approximations of the mean execution time and
standard deviation. This analysis bounds the rate of deadline
failures, particularly those which would violate weakly-hard
robustness specifications, to efficiently and optimally allocate
budget and to evaluate industry heuristics.

Index Terms—budget allocation, FIT analysis, weakly-hard
constraints, real-time systems

I. INTRODUCTION

Two trends are evident in real-time embedded applications
today. First, the applications themselves are growing larger and
less deterministic. Second, the underlying hardware platforms
have become more parallelized and complex. Even in the face
of this complexity, given worst-case execution-time (WCET)
values, a real-time scheduler, and corresponding schedulability
or response-time analysis, one may, in principle, validate
whether a given system is guaranteed to meet its timing
constraints.

Unfortunately, multiprocessor machines introduce inherent
uncertainties to tasks’ execution durations, hampering efforts
to produce WCET values that are safe yet not excessively
pessimistic. Prior work suggests that the complexity of multi-
processor platforms may be a fundamental barrier to producing
useful WCET values through static timing analysis, which pro-
duces the WCET of a program by examining its code structure
[1]. On the other hand, measurement-based timing analysis
(MBTA) may be less pessimistic, but cannot guarantee that the
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true WCET was observed, and thus cannot provide absolute
safety guarantees.

This unavoidable uncertainty in execution times may be
addressed through budget enforcement, where each task must
execute within its provisioned budget. Such systems must be
capable of tolerating and responding to some degree of budget
overruns. Through budget enforcement, a task that overruns
its budget can be prevented from affecting the scheduling
guarantees for other tasks, allowing correctness of the wider
system to be maintained.

It is not clear, however, how to best assign budgets when
there is uncertainty in tasks’ WCETs such that the likelihood
of overruns is low enough to be tolerable without blindly
introducing pessimism. Lacking an analytical foundation, it
has been commonplace in industry to rely upon simple heuris-
tics such as “fudge factors,” i.e., setting budgets equal to
average or maximum execution durations observed in testing,
multiplied by some constant factor (e.g., 1.5, 2) [2], [3].
Such an approach, while simple to apply, may allocate budget
ineffectively and waste capacity. Even more concerning is
the possibility that this approach does not actually result
in sufficient safety guarantees. Even if budget overruns are
difficult to observe, over a large fleet of machines or long
periods of operation, they may cause system failures at an
unacceptable rate.

This paper. We demystify the relationship between task
budgets and system failures from a stochastic perspective,
giving bounds for the frequency of system failures due to
unacceptable patterns of overruns. We do not rely upon pre-
cise information about tasks’ WCETs, pWCET distributions,
or dependency relations, resulting in widely applicable and
accessible analysis.

Our approach only requires a priori information of two
kinds: safe overapproximations to the mean and standard
deviation of each task’s execution times, and weakly-hard
(h, k) robustness specification, characterizing the degree and
pattern of acceptable budget overruns and commonly referred
to as an (m, k) constraint. Notably, our work acknowledges
the possibility that jobs are not only dependent on one another,
but that individual jobs may have distributions and behavior
discordant from long-term characteristics of the task.

Our analysis is scheduler-agnostic, provided that budgets
are enforced at job-level granularity. We demonstrate how this
analysis can be leveraged to assign budgets that minimize the
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rate of failures while meeting schedulability requirements and
examine how the constant-factor scaling heuristic compares.

Related work. Weakly-hard real-time systems have been long
studied and used to specify the patterns of deadline misses
that an application or system can tolerate [4]–[13]. Studies
have also produced schedulability analysis for weakly-hard
constraints, providing guarantees of strict adherence to such
constraints or bounding the likelihood of constraint violation
[5], [14], [15], [15]–[23]. These studies are often reliant on
simulation [14], static verification approaches [5], [15]–[19],
or scheduler-specific analyses [15], [17]–[20].

Some recent work has taken a probabilistic approach, ana-
lyzing deadline misses and weakly-hard constraint violations
[14], [21]–[23]. Work such as [21] builds and analyzes rigor-
ous stochastic models for tasks and their execution sequences,
while notably also focusing on long-term failure metrics such
as mean time to failure (MTTF) and failures in time (FIT).
Probabilistic analyses for fault-tolerant systems, particularly
those characterized as containing workloads of mixed criti-
cality, have also been explored [24]–[27]. For instance, work
such as [26] assumes probabilistic execution times of real-
time tasks and characterizes a system’s reliability with metrics
such as deadline misses per hour. Other work has taken
advantage of stochastic execution time models in combination
with execution budgets to achieve probabilistic guarantees
[28]–[31]. However, to our knowledge, prior work has not
placed weakly-hard systems and their failures in the context
of effective and efficient budgeting.

The computation of an independent and identically dis-
tributed (i.i.d.) probabilistic WCET (pWCET), i.e., a safe
overapproximation to the cumulative distribution function of
a task’s execution times, can greatly simplify the derivation
of overrun likelihood and ensuing analysis. Prior work has
used pWCET distributions to characterize system reliability
the under varying definitions of system failures and robustness
[26]. Early pWCET characterizations have been insufficient
to guarantee soundness of analysis under independence as-
sumptions [32]–[34]. While Bozhko et al. recently proposed
meticulous requirements for a pWCET definition to be safe
under i.i.d. assumptions, methods for the efficient derivation of
pWCET distributions satisfying their requirements are not yet
well researched [32]. Furthermore, the degree of pessimism
required to mask dependencies may be too great for some
applications. Recent work by Marković et al. on the worst-case
deadline failure probability under fixed-priority scheduling is
notable in that, similar to this paper, they adapt Cantelli’s
inequality to avoid relying on independence assumptions or
detailed knowledge of execution time distributions [20].

Contributions. Our contribution is three-fold.

(i) We present a sharp bound on the failures in time (FIT),
the expected number of failures over a defined length
of operation, of a real-time task system that relies only
on knowledge of tasks’ mean execution-time requirement
and standard deviation.

(ii) We demonstrate how the above analysis may be adapted
into an optimization problem that allocates budgets to
minimize failures while maintaining schedulability con-
straints.

(iii) We examine industry heuristics and budget overrun strate-
gies to characterize their efficacy and provide updated
guidelines.

Organization. After covering necessary background and list-
ing analysis assumptions in Sec. II, we analyze overrun and
weakly-hard failure rates in Sec. III. We demonstrate how
to optimize budgets with respect to our analysis in Sec. IV,
evaluating our approach as well as the constant-factor heuristic
in Sec. V. Sec. VI concludes the paper.

II. PRELIMINARIES AND ANALYSIS ASSUMPTIONS

We consider a set τ ≜ {τ1, τ2, . . . , τn} of n sporadic tasks
running on a platform of one or more identical processors.
Each task τi has a known period Ti, the minimum separation
time between arrivals of its jobs. Jobs of each τi are assigned
an execution budget of Ci time units, within which each job
is expected to finish. Time is modeled as continuous.

We assume a hard real-time scheduler with budget enforce-
ment, i.e., all tasks are guaranteed to meet their deadlines in the
absence of budget overruns. The execution of a task is halted
whenever it exhausts its budget. We discuss later in this section
the different policies a scheduler can apply to unfinished jobs
that overrun their budget.

Because each job’s budget is enforced and the overrun
strategies we examine ensure that any overruns are isolated to
a single job or jobs of the same task, the execution budget
and any scheduler-specific guarantees for each task is not
negatively affected by one another. This allows failures to be
analyzed for each task individually, agnostic of the specific
scheduling algorithm used or of any interactions with other
tasks in the system.

job execution

release of job

budget overrun
(not executed)

0 2 4 6

Ti Ti

CiCi

τi

time

Fig. 1. Timeline of jobs of τi with Ti = 3 and Ci = 2. At time t = 5, the
second job depletes its budget and is not allowed to continue executing.

Weakly-hard specification model. We examine the (h, k)
robustness specification, often referred to as a weakly-hard
specification, to characterize the patterns of deadline failures
that a system can or cannot tolerate. An execution scenario
of a task is (h, k) robust if, every window of k consecutive
jobs contains at least h successes. We assume each task τi is
subject to one such robustness requirement, denoted (hi, ki).

We consider only the jobs that finish execution without
exceeding their originally assigned budget to be successful.
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All others, whether they are terminated, allowed to finish
with additional budget, or skipped altogether, are considered
failures. A window of ki consecutive jobs of τi with fewer
than hi successes is considered as a system failure.

Multiple overlapping windows of size ki violating (hi, ki)
robustness are counted as at most one system failure event.
In other words, each job failure can contribute to at most
one system failure. We believe this is appropriate since such
a failure would imply continuation of normal execution is
unsafe, immediately triggering a separate fallback or recovery
mechanism. We discuss later in Sec. IV how one might give
more weight to failures of specific tasks, since our failure
model inherently implies that constraints specified with a
larger ki value have fewer violations over the same interval.
Stochastic execution duration model. The execution dura-
tions of jobs are modeled as random variables. We define Xi

j as
the non-negative real-valued random variable whose outcome
is equal to the full execution duration of the jth job of task τi.

Crucially, we seek to minimize assumptions regarding
ground-truth distributions of these random variables, as well as
possible dependence relations. This includes the existence of a
consistent probability distribution, expected value, or variance
in execution durations across jobs of the same task. To see
why such an assumption could be problematic, consider the
following example.

Example 1 (Danger of unfounded i.i.d. assumptions). Let
τi be a task with Ti = Di = 1 whose jobs, in order of
activation, have a full execution duration which repeats the
following pattern: {1, 1, 3}. Suppose that τi given a budget
of Ci = 1 and must be (3, 3) robust. Clearly, a randomly
sampled job of τi has a 1

3 probability of overrun. If one were to
wrongly assume execution durations of τi are i.i.d., they would
conclude that a random window of three consecutive jobs has
a (1− 1

3 )
3 = 8

27 chance of conforming to (3, 3) robustness. In
reality, every single window has at least one overrun, violating
the robustness specification with a probability of 1.

1 1 3 1 1 3

fail
fail

fail

Fig. 2. Illustration of the execution time pattern described in Ex. 1. Despite
being possibly characterized as having a 1/3 probability of overrun, no
window of 3 jobs of τi can ever satisfy (3, 3) robustness.

Example 1 illustrates how even a relatively simple cor-
relation or pattern of job execution durations, coupled with
unfounded i.i.d. assumptions, can lead to false confidence in
the safety and reliability of a system.

Thus, instead of a consistent distribution among jobs of
the same task, we only assume the existence of a long-term
distribution that jobs converge to in the aggregate. Such a

distribution permits ensuing analysis to be applied to tasks
whose execution times follow any processes or pathological
worst-case patterns. We state our assumption more formally
below.

Let Y j
i be defined as the random variable whose outcome

is selected uniformly at random from {X1
i , . . . , X

j
i }, the

execution durations of the first j jobs of τi. We assume that
there exists an independent, real-valued random variable Yi

with finite mean and variance such that Y j
i converges in

probability towards Yi. That is, for all ε > 0,

lim
ℓ→∞

P
(
|Y ℓ

i − Yi| > ε
)
= 0.

While proving the existence and exact distribution of such
Yi is far from trivial, the lack of such an assumption would
preclude most probabilistic analysis aiming to generalize the
long-term behavior of any application. Intuitively, Yi describes
the distribution of execution times of τi across a “sufficiently
long” interval of execution. For the remainder of the paper,
we assume that our analysis interval length is long enough
such that the overall deviation from Yi is negligible. The exact
interval lengths used for our analysis metrics are described
later in this section and Sec. III.

We denote the expected value and standard deviation of
Yi as ei and si, respectively, and assume they are finite and
positive. We also assume that it is possible to determine “safe”
overapproximations of these values, denoted êi and ŝi, such
that êi ≥ ei and ŝi ≥ si with high certainty. We require
that Ci ≥ ei for our analysis. We consider this requirement
to be reasonable, as assigning a budget lower than the mean
execution duration would clearly result in excessive overruns.
Overrun strategies. When a job J of task τi is about to
overrun its budget and miss its deadline, the system may
respond via one of the following strategies [35]:
(i) Kill. Terminate J and undo any changes from the execu-

tion of J as necessary.
(ii) Skip-Next. Skip the next job of τi and allow J to finish

by executing in place of the skipped job, using the now
freed budget. Note that skipped jobs always miss their
deadlines, and J may not finish, even with additional
budget.

(iii) Queue. J is allowed to finish executing using budget
originally to be allocated to succeeding jobs. Succeeding
jobs are not skipped, but also execute to completion
with whatever budget is available after J completes. The
strategy can be reapplied if necessary.

We analyze strategies (i) and (ii) in this paper, as (iii) can
inherently lead to chains of deadline misses under a HRT
scheduling policy, from which recovery can be difficult [35],
[36]. Any overheads incurred by applying these strategies
are considered to be negligible, already accounted for by
the underlying system framework, or incorporated into job
execution durations.
Characterizing failure rates. We wish to characterize the rate
of system failures by deriving an upper bound on the failures
in time (FIT) of each task, defined as the number of expected
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number of failures over a large interval of given length. For
the purposes of our analysis, each window of ki consecutive
jobs of each τi with fewer than hi successes is considered
a system failure contributing to the FIT metric. We derive a
bound for a system’s FIT in the following section and later
show how to optimize for it.

TABLE I
SUMMARY OF NOTATION

Symbol Meaning
n Number of tasks
M Number of processors
τ Task system
τi ith task of τ
Ti Period of τi
Ci Execution budget of τi
(hi, ki) (m.k) robustness specification of τi
Xj

i Random var. representing execution time of jth job of τi
Yi Long-run distribution of execution times of τi
ei, si Expected value and standard deviation of Yi, respectively
êi, ŝi Safe overapproximations to ei and si, respectively
ρi(t) Function providing bound on P(Yi ≥ t)
Pi Set of tasks assigned to the ith processor by a partitioned scheduler

III. ANALYSIS

Given a budget assignment and overrun strategy, we derive
a FIT bound for the entire system via the following steps:
(i) Derive an upper bound on P(Yi > t), which translates to

the proportion of jobs requiring more than t time units
to complete.

(ii) Use the bound derived in (i) to bound the FIT of a task
given its parameters and (h, k) specification, considering
each overrun handling strategy.

(iii) Combine per-task FIT bounds into a system-wide or fleet-
wide FIT metric.

A. Bounding Overrun Probability

First, we wish to bound the portion of jobs requiring more
than a given time length to finish execution. We utilize an
upper bound on P(Yi > t) derived by adapting Cantelli’s
inequality, which we state here.

Theorem 1 (Cantelli’s inequality [37]). If X is a real-
valued random variable with finite mean value e and standard
deviation s, for any λ > 0,

P(X − e ≥ λ) ≤ s2

s2 + λ2
. (1)

Corollary 1 (adapted from [20]). Given Yi with finite ex-
pected value and standard deviation ei and si, respectively,
for any t > ei we have

P(Yi ≥ t) ≤ s2i
s2i + (t− ei)2

. (2)

Proof. By substituting X with Yi, e and s with ei and si,
respectively, in (1), we obtain the desired inequality.

As stated in Sec. II, given a sufficiently long interval of
job executions, the aggregate distribution of execution times
is expected to approach the distribution of Yi. Thus, the

bound provided in Cor. 1 serves to upper-bound the long-term
expected proportion of jobs of τi requiring at least t time units
to complete execution. Note that Cor. 1 cannot be used to draw
conclusions about the execution requirements of any specific
job.

The following corollary states that (2) is robust with respect
to overapproximations of ei and si.

Corollary 2 (adapted from [20]). Given Yi and overapprox-
imations to the expected value and standard deviation êi and
ŝi, for any t > êi we have

P(Yi ≥ t) ≤ ŝ2i
ŝ2i + (t− êi)2

. (3)

Proof. By Cor. 1, we have

P(Yi ≥ t) ≤ s2i
s2i + (t− ei)2

= 1− (t− ei)
2

s2i + (t− ei)2

≤ 1− (t− ei)
2

ŝ2i + (t− ei)2

=
ŝ2i

ŝ2i + (t− ei)2

≤ ŝ2i
ŝ2i + (t− êi)2

.

For brevity of notation in later analysis, we define ρi(t) as
follows:

ρi(t) =
ŝ2i

ŝ2i + (t− êi)2
. (4)

Cantelli’s inequality provides a sharp bound, as does Cor. 1,
meaning that general improvements to these bounds are not
possible without additional knowledge or assumptions about
the random variable under analysis, as there exist random
variables X (resp. Yi) and values of λ (resp. t) for which
the bound is tight. We illustrate this property with a simple
example.

Example 2 (Sharpness of Cor. 1). Consider a task τi whose
job execution times follow a two-point distribution given as
follows for some positive x:

∀j, P(Xj
i = t) =


1− p if t = x

p if t = 10x

0 otherwise.

When p is small, τi can be thought of as having an ex-
tremely predictable execution time for most activations, but
under rare, difficult-to-observe circumstances, exhibits a ten-
fold increased execution time. Jobs of τi have an expected
execution requirement of ei = x+9px with standard deviation
si = 9x

√
p(1− p). (Note that the latter can be derived simply

by scaling the Bernoulli distribution which takes the value 1
with probability p by 10x− x = 9x.)
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Applying the aforementioned distribution and t = 10x to
(2) gives us

P(Yi ≥ t) ≤ s2i
s2i + (10x− ei)2

= {Using ei = x+ 9px and si = 9x
√

p(1− p)}(
9x
√
p(1− p)

)2
(
9x
√

p(1− p)
)2

+ (10x− (x+ 9px))
2

=
(9x)2p(1− p)

(9x)2p(1− p) + (9x(1− p))
2

=
p

p+ (1− p)

= p.

This is the exact probability that Xj
i = 10x, illustrating how

sharpness of our bound can be observed even under somewhat
mundane execution-time distributions, and showing that Cor. 1
cannot be improved upon without additional knowledge about
the underlying task’s execution time distribution.

B. Bounding System Failures
We now wish to bound the total number of system fail-

ures, i.e., we wish to derive the maximum number of (h, k)
robustness violations. Because we do not make any assump-
tions about dependence relations between execution times of
different jobs, failures may occur in any sequence or pattern
so long as the bound given in Cor. 1 is respected in the
long run. Therefore, instead of attempting to reason about the
likelihood that a random window of ki jobs of τi violates
(hi, ki) robustness, we focus on the worst-case number of
violations that can be incurred by overrunning jobs.

We consider an analysis interval of ℓ time units. As stated
earlier, we assume ℓ is large enough such that any deviations
from Cor. 1 are negligible. We examine two overrun strategies
separately, Kill and Skip-Next, as the worst-case overrun
behavior for each are different, affecting the resulting FIT
bounds.

1) Kill: For tasks whose overruns are handled by a Kill
strategy, i.e., aborting the job about to overrun and leaving
subsequent jobs unaffected, the worst-case number of failures
can be derived rather easily. The following lemma bounds the
number of system failures under a Kill strategy.

Lemma 1. Within an analysis interval of ℓ time units, the
expected number of system failures from jobs of a task τi
whose overruns are handled by a Kill strategy is at most

ρi(Ci)

ki − hi + 1
· ⌈ℓ/Ti⌉. (5)

Proof. Under a Kill strategy, only jobs that overrun their
budget and are subsequently aborted can fail to meet their
deadlines.

By Cor. 2 and (4), the expected proportion of jobs of τi
in the analysis interval that would overrun their budgets is at
most

P(Yi > Ci) ≤ P(Yi ≥ Ci) ≤ ρi(Ci).

The number of jobs released by τi within the analysis interval
is at most ⌈ℓ/Ti⌉. Note that we use the number of jobs released
instead of jobs released and whose deadlines fall within the
analysis interval, as the latter depends on the deadline model
of the task system and is bounded by the former. Thus, the
maximum expected number of jobs that would overrun their
budget is at most

ρi(Ci) · ⌈ℓ/Ti⌉. (6)

Since each job failure can contribute to at most one system
failure, and at least ki−hi+1 failures are required to violate
τi’s robustness specification, the expected total number of
system failures is at most

ρi(Ci)

ki − hi + 1
· ⌈ℓ/Ti⌉

as desired.

2) Skip-Next: Tasks whose overruns are handled by a
Skip-Next strategy are somewhat more complicated, as an
overrunning job not only misses its own deadline, but can
cause one or more subsequent jobs to be skipped, resulting in
a variable number of failures.

Assuming no added delays from applying our overrun
strategy, a job that executes for more than its allotted budget
will cause the subsequent job to be skipped, then executes in
place of the skipped job consuming its now freed budget.

A job that executes for more than zCi time units for some
z ∈ N causes at least z + 1 job failures including itself. To
guard against indefinitely long overruns, the number of times
the Skip-Next policy can be applied to the same job may be
limited to some constant integer, which we denote zi. zi should
be at most ki−hi−1, as applying Skip-Next ki−hi or more
times would prevent any window containing the overrunning
job from having hi successes.

The following lemma bounds the maximum number of job
failures under a Skip-Next strategy.

Lemma 2. Let τi be a task whose overruns are handled by a
Skip-Next strategy allowing each overrunning job to skip at
most zi succeeding jobs. Within an analysis interval of ℓ time
units, the expected number of failed jobs of τi is at most(

ρi(Ci) +

zi∑
z=1

ρi(zCi)

)
· ⌈ℓ/Ti⌉ (7)

Proof. By induction on zi. Every overrunning job is consid-
ered to miss its own deadline and cause at least one succeeding
job to be skipped. The worst-case pattern of job execution
times occurs when all jobs which overrun their budget are
allowed to execute, contributing to failures, instead of being
skipped due to other overrunning jobs.

Base case. Consider the case that zi = 1. Each job requiring
more than Ci time units, skips at most one succeeding job
each, contributing to at most two job failures per overrunning
job. There are at most ρi(Ci) · ⌈ℓ/Ti⌉ such jobs, as shown in
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the proof of Lem. 1 and stated as (6). Thus, the number of
job failures is at most

2ρi(Ci) · ⌈ℓ/Ti⌉ = ρi(Ci) · ⌈ℓ/Ti⌉+ ρi(Ci) · ⌈ℓ/Ti⌉

=

(
ρi(Ci) ·+

1∑
z=1

ρi(zCi)

)
· ⌈ℓ/Ti⌉

as desired.
Inductive step. Suppose that the lemma holds for zi = x.
When zi = x+1, jobs that execute for longer than (x+1)Ci

time units each skip exactly one more job than when zi = x,
contributing up to one additional job failure. By Cor. 2, the
proportion of such jobs is at most ρi((x + 1)Ci), which we
can multiply by the maximum number of jobs released by τi
in the analysis interval ⌈ℓ/Ti⌉, giving us at most

ρi((x+ 1)Ci) · ⌈ℓ/Ti⌉

additional job failures. Thus, the total number of job failures
is at most (

ρi(Ci) +
x∑

z=1

ρi(zCi)

)
· ⌈ℓ/Ti⌉

+ ρi((x+ 1)Ci) · ⌈ℓ/Ti⌉

=

(
ρi(Ci) +

x+1∑
z=1

ρi(zCi)

)
· ⌈ℓ/Ti⌉.

Hence, the lemma holds for all zi.

Using Lem. 2, the following lemma bounds the maximum
number of system failures under a Skip-Next strategy.

Lemma 3. Let τi be a task whose overruns are handled by a
Skip-Next strategy allowing each overrunning job to skip at
most zi succeeding jobs. Within an analysis interval of ℓ time
units, the expected number of system failures from jobs of a
task τi is at most

ρi(Ci) +
∑zi

z=1 ρi(zCi)

ki − hi + 1
· ⌈ℓ/Ti⌉. (8)

Proof. Similar to the proof of Lem. 1, we observe that each
system failure requires at least ki−hi+1 failed jobs, with each
job failure contributing to at most one system failure. Dividing
(7), the upper bound on the expected number of failed jobs
from Lem. 2, by ki − hi + 1 gives us the desired bound.

We define

FIT(ℓ, τi, Ci, 0) =
ρi(Ci)

ki − hi + 1
· ⌈ℓ/Ti⌉ (9)

as short-hand for the FIT bound given by Lem. 1 for tasks
under a Kill strategy. We also define ∀zi ∈ {1 . . . ki−hi− 1},

FIT(ℓ, τi, Ci, zi) =
ρi(Ci) +

∑zi
z=1 ρi(zCi)

ki − hi + 1
· ⌈ℓ/Ti⌉, (10)

as short-hand for the FIT bound given by Lem. 3 for tasks
under Skip-Next.

We are now prepared to describe the FIT of an entire task
system.

Theorem 2. For each τi whose overruns are handled by Kill,
let zi = 0, and for each τi handled by Skip-Next, let zi be
equal to the number of skipped jobs allowed per overrunning
job. The FIT of task system τ , measured over ℓ time units is
at most ∑

τi∈τ

FIT(ℓ, τi, Ci, zi). (11)

Proof. The FIT of task system τ is given by the sum of the
FIT of each τi ∈ τ . The proof follows directly from Lem. 1,
Lem. 3, and the definition of FIT from (9) and (10).

The expression given by Thm. 2 may also be summed
across multiple task systems. Such a summation may be useful
in scenarios such as bounding the FIT of an airline’s entire
aircraft fleet. In the next section, we demonstrate how a system
designer may determine budget assignments that optimally
minimize the FIT bound given by Thm. 2.

IV. OPTIMIZING BUDGET ALLOCATION

In this section, we demonstrate via a case study how one
may allocate budgets to tasks effectively and efficiently to
minimize the FIT of the system with respect to our analysis
in Sec. III. We examine partitioned EDF scheduling on a
multiprocessor with M identical cores. While the analysis
presented in Sec. III is scheduler-agnostic, the schedulability
conditions of partitioned EDF are especially well suited for
efficient optimization. We consider a task set whose overruns
are managed by Kill, but the steps outlined in this section are
easily modified for tasks handled by Skip-Next.

We present two optimization problems with the FIT bound
presented in Thm. 2 as their objective. The first problem can
be solved to find an assignment of Ci values that minimize
FIT while respecting schedulability constraints. The second
problem uses the “fudge factor” heuristic, assigning a constant
c such that each Ci is set equal to cêi. The problems are
intentionally constructed to be efficiently solvable, enhancing
the accessibility and utility of our analysis.

For the remainder of the paper, Ci values are treated as
variables, whereas other task parameters (Ti, ei, si, etc.) and
the interval length ℓ are considered constants.

A. Budget Allocation via Convex Optimization

We first present an optimization to find the optimal budget
allocation that minimizes system FIT with respect to our
analysis in Sec. III. Budget values are subject to minimal
constraints in this problem, with the addition of one constraint
set that allows the problem to be a convex optimization
problem, and thus efficiently solvable by methods such as
Newton’s method.

Initial constraints. We begin by adapting our FIT bounds into
per-task variables and constraints.

Constraint Set 1. The following constraints bound the FIT
of each task, with Fi representing the FIT bound for τi under
the Kill strategy given in Lem. 1 and (9).

∀i ∈ {1, . . . n} : Fi = FIT(ℓ, τi, Ci, 0)
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Next, we must state constraints that assure that the resulting
system is schedulable under partitioned EDF. We assume that
our processor partitions are predetermined and let Pi denote
the set of tasks assigned to the ith processor. Each processor
is schedulable, in the absence of budget overruns, if and only
if its utilization is at most 1 [38]. Furthermore, the utilization
of each task must not exceed 1.

Constraint Set 2. The following constraints correspond to our
partitioned EDF schedulability condition.

∀i ∈ {1, . . .M} :
∑
τj∈Pi

Cj/Tj ≤ 1

∀i ∈ {1, . . . n} : Ci/Ti ≤ 1

While Constraint Sets 1 and 2 encompass most of the
constraints needed to state our optimization problem, as is,
the resulting objective function, characterizing the FIT bound
for the entire system, would be non-convex and relatively in-
efficient to solve. To address this, we introduce a modification
to make the objective convex within our solution space.
Constraints for convexity. With only our original requirement
that Ci is greater than ei, the FIT bound given by Lem. 1 is
non-convex. Thus, we wish to find the range of each budget
variable Ci within which our Fi variables are convex functions
of Ci. This allows us to derive and define constraints that make
our objective, the sum of Fi values, convex as well.

The following lemma identifies the values of Ci for which
ρi(Ci) is convex.

Lemma 4. The function ρi(t) is convex when t > êi+
√
3
3 ŝi.

Proof. Taking the second derivative of ρi(t) with respect to t
gives us

d2

dt2
ρi(t) =

d2

dt2
ŝ2i

ŝ2i + (t− êi)2

=
d

dt

(
− 2ŝ2i (t− êi)

(ŝ2i + (t− êi)2)2

)
=

8ŝ2i (t− êi)
2(ŝ2i + (t− êi)

2)

(ŝ2i + (t− êi)2)4

− 2ŝ2i (ŝ
2
i + (t− êi)

2)2

(ŝ2i + (t− êi)2)4

= ŝ2i ·
8(t− êi)

2 − 2(ŝ2i + (t− êi)
2)

(ŝ2i + (t− êi)2)3

= ŝ2i ·
6(t− êi)

2 − 2ŝ2i
(ŝ2i + (t− êi)2)3

.

From t > êi +
√
3
3 ŝi, we get

t > êi +

√
3

3
ŝi

⇒ t− êi >

√
3

3
ŝi

⇒ {Squaring and multiplying both sides by 6}
6(t− êi)

2 > 2ŝ2i

⇒ 6(t− êi)
2 − 2ŝ2i > 0

⇒ {Because ŝ2i > 0 and ŝ2i + (t− êi)
2 > 0}

ŝ2i ·
6(t− êi)

2 − 2ŝ2i
(ŝ2i + (t− êi)2)3

> 0.

Since d2

dt2 ρi(t) is positive when t > êi +
√
3
3 ŝi, ρi(t) must be

convex for all t satisfying the stated inequality.

Corollary 3. The function FIT(ℓ, τi, Ci, 0), the FIT bound for
a task under the Kill strategy, is convex when Ci > êi+

√
3
3 ŝi.

Proof. The proof of Lem. 4 applies near equivalently, as
FIT(ℓ, τi, Ci, 0) is a positive constant multiple of ρi(Ci).

Lem. 4 and Cor. 3 show that by requiring budget values at
least

√
3
3 standard deviations greater than the mean, the FIT

bound of τi under the Kill strategy can be made convex. Setting
this requirement for each task’s budget variable Ci results in
the system FIT bound being the sum of convex functions,
making it also convex.

While we do not derive the exact thresholds herein, if
analyzing tasks under a Skip-Next strategy, range of values Ci

for which the FIT bound given by Lem. 3 and (10) is convex
may be determined by solving the following inequality for Ci

for each possible value of zi:

∂2

∂C2
i

FIT(ℓ, τi, Ci, zi) > 0.

When t = êi +
√
3
3 ŝi, by Cor. 2 we have that

P(Yi ≥ t) ≤ ŝ2i
ŝ2i + (t− êi)2

=
ŝ2i

ŝ2i + ŝ2i /3
=

3

4
,

a typically unacceptable probability of overrun. Even under
a commonly assumed normal distribution, as opposed to the
bound given by Cor. 2, t = êi +

√
3
3 ŝi results in up to an

approximately 0.28 chance of overrun. Thus, we consider
this added constraint to be reasonable and include it in our
optimization problem as follows.

Constraint Set 3. The following constraints correspond to
requirements for convexity of the objective as given by Cor. 3.

∀i ∈ {1, . . . n} : Ci ≥ êi +

√
3

3
ŝi.

Note that Constraint Set 3 implies Ci > ei > 0 as originally
required by our analysis.

We may finally state our convex optimization problem.

Optimization Problem 1. The assignment of budget values
Ci for each τi obtaining the system FIT bound that is nearly
optimal with respect to Thm. 2 is given by the solution to the
following convex optimization problem:

Minimize:
∑n

i=1 Fi

Subject to: Constraint Sets 1-3

For a solution that is guaranteed optimal with respect to
Thm. 2, one may remove Constraint Set 3 from Optimization
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Problem 1. However, the resulting problem would be non-
convex and may be more computationally intensive to solve.

B. Budget Allocation with “Fudge Factors”

We now wish to modify Optimization Problem 1 to use
each budget value Ci to be a constant multiple of êi, the
expected execution time requirement of jobs of τi. This allows
us to apply and evaluate the efficacy of the aforementioned
“fudge factor” heuristic. While we start by presenting a new
optimization problem, the optimal solution, if this problem is
feasible, has a simple, exact derivation which we show.

We begin by introducing the “fudge factor” variable c along
with the following constraints:

Constraint Set 4. The following constraints represent adher-
ence to a “fudge factor” heuristic.

∀i ∈ {1, . . . n} : Ci = c · êi
c > 1

We can state our modified optimization problem as follows:

Optimization Problem 2. The constant factor c obtaining
the system FIT bound that is optimal with respect to Thm. 2
under a “fudge factor” heuristic is given by the solution to the
following optimization problem:

Minimize:
∑n

i=1 Fi

Subject to: Constraint Sets 1, 2, and 4

While this problem may result in budget allocation that is
less than optimal, a simple derivation for the optimal “fudge
factor” c can be shown.

The following two lemmas are used to show an intuitive
property that, within the bounds of schedulability, a larger
“fudge factor” yields lower FIT bounds.

Lemma 5. FIT(ℓ, τi, Ci, zi) is monotonically decreasing with
respect to Ci when Ci > êi.

Proof. We first observe that ρi(t) is monotonically decreasing
when t > êi. Given arbitrary a, b satisfying êi < a < b, we
have

ρi(a) =
ŝ2i

ŝ2i + (a− êi)2

> {Because 0 < a− êi < b− êi}
ŝ2i

ŝ2i + (b− êi)2
= ρi(b).

Now, again for arbitrary a, b satisfying êi < a < b, consider
the following cases:
(i) zi = 0, i.e., τi is under a Kill strategy.

By (9), we have

FIT(ℓ, τi, a, 0) =
ρi(a) · ⌈ℓ/Ti⌉
ki − hi + 1

> {Because ρi(a) > ρi(b)}
ρi(b) · ⌈ℓ/Ti⌉
ki − hi + 1

= FIT(ℓ, τi, b, 0).

(ii) zi > 0, i.e., τi is under a Skip-Next strategy.
Similar to case (i), by (10), we have

FIT(ℓ, τi, a, zi) =
ρi(a) +

∑zi
z=1 ρi(za)

ki − hi + 1
· ⌈ℓ/Ti⌉

> {Because ∀z ≥ 1, ρi(za) > ρi(zb)}
ρi(b) +

∑zi
z=1 ρi(zb)

ki − hi + 1
· ⌈ℓ/Ti⌉

= FIT(ℓ, τi, b, zi).

Thus, in all cases, FIT(ℓ, τi, a, zi) > FIT(ℓ, τi, b, zi) and the
lemma holds.

Lemma 6. The objective value of Optimization Problem 2 is
monotonically decreasing with respect to feasible values of c.

Proof. Let c1, c2 be arbitrary values satisfying 1 < c1 < c2.
From Constraint Sets 1 and 4, we have

n∑
i=1

Fi =
n∑

i=1

FIT(ℓ, τi, Ci, zi)

=
n∑

i=1

FIT(ℓ, τi, cêi, zi).

Because c1êi < c2êi, by Lem. 5 we have
n∑

i=1

FIT(ℓ, τi, c1êi, zi) >
n∑

i=1

FIT(ℓ, τi, c2êi, zi),

showing that the objective is monotonically decreasing with
respect to feasible c.

Using the results of Lem. 6, we can state the exact optimal
value of c in closed form. The following theorem states that
the optimal “fudge factor” is one that is as large as possible
without over-utilizing any processors.

Theorem 3. If Optimization Problem 2 is feasible, its objec-
tive is optimally minimized when

c = min
i∈{1,...,M}


∑

τj∈Pi

êj/Tj

−1
 . (12)

Proof. A value of c any larger than that given in (12) would
violate one of the constraints in Constraint Set 2, since Ci =
cêi by Constraint Set 4. Note that if the value given by (12)
is at most 1, then Constraint Set 4 cannot be satisfied, the
problem is infeasible, and the theorem does not apply.

Thus, (12) must be the maximum feasible assignment of c
which, by Lem. 6, minimizes the objective.

We implement and evaluate Optimization Problem 1 and the
“fudge factor” heuristic solution given by Thm. 3 in Sec. V.
Possible modifications to Optimization Problem 1. While
we do not evaluate them in this paper, possible modifications
to the presented optimization problems include task-specific
constraints on failure rates. For instance, tasks with a higher
criticality level may be required not to exceed a given FIT
value, or each Fi may be multiplied by a preassigned weight
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wi in the objective, with weights determined by how much
impact a system failure caused by τi has.

If tighter bounds than those presented in Sec. III are avail-
able for a subset of tasks, perhaps stemming from additional
information on some tasks’ execution time distributions, it
may be possible to replace corresponding constraints on Fi

in Constraint Set 1 with the improved bound expressions.
However, doing so may render the resulting optimization prob-
lem non-convex or non-continuous, significantly impacting the
computational complexity required to solve it.

When examining a scheduling policy other than partitioned
EDF, Constraint Set 2 may be replaced with constraints corre-
sponding to schedulability conditions for the scheduler under
analysis. Note that such a modification is likely to affect the
resultant optimization problem’s computational complexity.

V. EVALUATION

In this section, we evaluate the analysis of Sec. III with ex-
periments based on the case study described in Sec. IV. Using
randomly generated task sets, we optimized budget allocations
with respect to the FIT bound given by Thm. 2, comparing
the results of solving Optimization Problem 1 versus applying
the “fudge factor” heuristic based on Optimization Problem 2
and Thm. 3.

A. Experimental Design

Task generation. We generated 200 task sets for each permu-
tation of the following configurations. Periods were sampled
log-uniformly from the range [10 ms, 1000 ms]. Targeting
a partitioned EDF scheduler as examined in Sec. IV with
M=4 identical processors, we sampled the number of tasks
per processor uniformly at random from the integer range
[8, 32]. Then, using Stafford’s Randfixedsum algorithm [39]
as suggested by [40], we generated expected utilization values
for each task, given by ei/Ti, summing up to each target value
from {0.4, 0.5, . . . , 0.9} for each processor.

Expected values êi for execution times were calculated
based on each task’s expected utilization value, while standard
deviations ŝi were selected by multiplying ei by a value
selected from [0.1, 0.5] uniformly at random. Note that be-
cause we select a consistent expected utilization value across
processors, by Thm. 3, optimal “fudge factors” are determined
at this point.

(h, k) robustness specifications were generated with the
window size set to k = 5, k = 10, or k = 20 across each
task set. Each task set was either assigned a constant value
of h across all tasks or assigned random per-task h values.
Constant values of h tested are h = ⌊k · 0.6⌋ or h = ⌊k · 0.8⌋,
and h = k− 1. Task sets with mixed h values had h sampled
from [⌊k · 0.6⌋, k − 1].
Budget allocation and FIT bound derivation. For each
task set, budget allocations were optimized using Optimiza-
tion Problem 1 and the “fudge factor” heuristic based on
Optimization Problem 2. The former was solved using the
SciPy [41] implementation of a trust-region method [42],
while the analytical solution from Thm. 3 was used directly for

the latter. Optimization was performed on an AMD Ryzen 5
2600 6-core CPU. Resulting FIT bounds were recorded with
the interval length ℓ set to 1 billion hours or 3.6 × 1015 in
milliseconds, i.e., the worst-case number of failures occurring
over 1 billion operating hours. For brevity, we refer to the
results of Optimization Problem 1 as ConvexFIT and that of
Optimization Problem 2 as Fudge.

B. Results and Observations

The results of our experiments are plotted in Fig. 3 and 4.
Based on the obtained results, we make the following obser-
vations.

Fig. 3. Mean FIT bounds obtained from ConvexFIT and Fudge for task sets
with k = 10.

Observation 1. Budget allocation through ConvexFIT, on
average, achieved FIT bounds orders of magnitude lower
than those obtained by Fudge. As shown in Fig. 4, the log
difference between bounds from ConvexFIT and Fudge is
consistently high, with the average difference ranging from
about 4.0 to as high as 8.2 for some configurations. While it
is unsurprising that optimization without restrictive constraints
performs better than a relatively naı̈ve heuristic, the observed
degree of improvement suggests that, where possible, system
designers should avoid using “fudge factors” as their only
method of budget assignment.

Observation 2. While Fudge generally under-performs
against ConvexFIT, our results include a small but significant
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Fig. 4. Log (base 10) difference of mean FIT bounds obtained by ConvexFIT
versus Fudge for task sets with k = 5 and k = 10.

portion of task sets for which Fudge achieves a FIT bound less
than twice as large as ConvexFIT. This implies that certain
task sets and parameters may indeed be effectively optimized
by “fudge factors.”

Observation 3. Higher per-processor expected utilization val-
ues generally correlate with higher FIT bounds as shown in
Fig. 3. FIT bounds obtained through ConvexFIT, however,
does not seem to consistently adhere to this trend. While
the “jaggedness” in our ConvexFIT results may be due
to insufficient sample size, the contrasting predictability of
bounds obtained through Fudge indicate that the performance
of ConvexFIT is inherently less predictable.

Observation 4. Computation time to derive FIT bounds via
ConvexFIT was short, requiring roughly 1.5 seconds of com-
putation per task set on average. Computation time for Fudge
was negligible.

Based on these results, we believe ConvexFIT to be a
meaningful improvement to the use of “fudge factors”.

VI. CONCLUSION

In this paper, we have explored how the reliability of real-
time systems may be analyzed without access to reliable
WCET values or detailed execution time distributions. We
have shown the likelihood of overruns in a task system
through first principles, relying only upon a priori knowledge

of each task’s long-term expected execution time and standard
deviation values. With overrun probability as a foundation, we
have determined a bound on the expected failures in time of
a task system.

We demonstrated via a case study and corresponding ex-
periments how our analysis may be leveraged to efficiently
and effectively allocate task budgets in a principled manner.
Furthermore, we have examined how “fudge factors” fare
against our tighter optimizations, showing that, while being
an intuitive and accessible heuristic, use of “fudge factors”
may lead to significantly higher FIT of a system.

In future work, we plan to investigate how to further
adapt our analysis to different scheduling algorithms and task
models. We also hope to assess and improve FIT bounds under
our analysis for systems employing various multiprocessor
partitioning schemes.
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[18] L. Köhler and R. Ernst, “Improving a compositional timing analysis
framework for weakly-hard real-time systems,” in 2019 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2019,
pp. 228–240.

[19] L. Ahrendts, S. Quinton, T. Boroske, and R. Ernst, “Verifying weakly-
hard real-time properties of traffic streams in switched networks,” in
30th Euromicro Conference on Real-Time Systems (ECRTS 2018), ser.
Leibniz International Proceedings in Informatics (LIPIcs), S. Altmeyer,
Ed., vol. 106. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018, pp. 15:1–15:22. [Online]. Available: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2018.15

[20] F. Markovic, P. Roux, S. Bozhko, A. V. Papadopoulos, and
B. B. Brandenburg, “CTA: A correlation-tolerant analysis of the
deadline-failure probability of dependent tasks,” in 2023 IEEE
Real-Time Systems Symposium (RTSS). Los Alamitos, CA, USA:
IEEE Computer Society, dec 2023, pp. 317–330. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/RTSS59052.2023.00035

[21] A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg, “From
iteration to system failure: Characterizing the FITness of periodic
weakly-hard systems,” in 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019), ser. Leibniz International Proceedings in
Informatics (LIPIcs), S. Quinton, Ed., vol. 133. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, pp. 9:1–
9:23. [Online]. Available: https://drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.ECRTS.2019.9

[22] I. Broster, A. Burns, and G. RodrÍguez-Navas, “Timing analysis of
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