
To be presented at the 17th IEEE Real-Time Systems Symposium, December 1996.

A Framework for Implementing Objects and Scheduling Tasks in Lock-Free
Real-Time Systems�

James H. Anderson and Srikanth Ramamurthy
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

We present an integrated framework for developing real-
time systems in which lock-free algorithms are employed to
implement shared objects. There are two key objectives of
our work. The first is to enable functionality for object shar-
ing in lock-free real-time systems that is comparable to that
in lock-based systems. Our main contribution toward this
objective is an efficient approach for implementing multi-
object lock-free operations and transactions. A second key
objective of our work is to improve upon previously proposed
scheduling conditions for tasks that share lock-free objects.
When developing such conditions, the key issue is to bound
the cost of operation “interferences”. We present a general
approach for doing this, based on linear programming.

1. Introduction

Most work on implementing shared objects in preemptive
real-time uniprocessor systems has focused on using critical
sections to ensure object consistency. The main problem
that arises when using critical sections is that of priority
inversion. A priority inversion exists when a given task must
wait on a task of lower priority to release a critical section. A
number of schemes have been proposed to bound blocking
times associated with priority inversion; these include the
priority inheritance protocol [15, 17], the priority ceiling
protocol (PCP) [4, 15, 17], the dynamic PCP (DPCP) [7],
and the earliest-deadline-first scheme with dynamic deadline
modification (EDF/DDM) [10].

An alternative to such schemes is to use lock-free al-
gorithms for implementing objects. The general utility of
lock-free objects in real-time applications was first estab-
lished by Anderson, Ramamurthy, and Jeffay [3]. Oper-
ations on lock-free objects are usually implemented using
“retry loops”.1 Figure 1 depicts lock-free queue operations

�Work supported by NSF grants CCR 9216421 and CCR 9510156, by
an Alfred P. Sloan ResearchFellowship, and by a Young InvestigatorAward
from the U.S. Army Research Office, grant number DAAH04-95-1-0323.

1In this paper, we consider both lock-free objects and the related notion
of a “wait-free” object. Formally, if several processes attempt to access a

that are implemented in this way. An item is enqueued
in this implementation by using a two-word compare-and-
swap (CAS2) instruction2 to atomically update a shared tail
pointer and the “next” pointer of the last item in the queue.
The CAS2 instruction is attempted repeatedly until it suc-
ceeds. Dequeue is implemented similarly. Note that the
queue is never “locked” by any task.

On the surface, it is not immediately apparent that lock-
free shared objects can be employed if tasks must adhere to
strict timing constraints. In particular, lock-free operations
may interfere with each other, and repeated interferences
can cause a given operation to take an arbitrarily long time
to complete. For example, the enqueue implementation in
Figure 1 allows a given task to experience repeated failed
loop iterations due to “interfering” concurrent enqueues.
Anderson et al. observed that, on a uniprocessor, the cost of
such failed loop iterations over an interval of time can be
bounded by the number of job releases3 within that interval
[3]. This observation is the basis of scheduling conditions
presented in [3] for the rate-monotonic (RM) [13], deadline-
monotonic (DM) [12], and earliest-deadline-first (EDF) [13]
schemes. Note that, with lock-free objects, the overhead
term is the cost of failed loop iterations, and lower-priority
tasks are most likely to pay this overhead cost. In contrast,
when two tasks access a common object under a lock-based
scheme, the higher-priority task pays the price of ensuring
object consistency, because it is the higher-priority task that
can be blocked by a priority inversion.

Though encouraging, the results of Anderson et al. can
only be viewed as a first step towards a general framework
for lock-free object sharing in real-time systems. For ex-
ample, in bounding failed loop iterations, they assume that
all retry loops are of uniform cost, and that each job release

lock-free (wait-free) object concurrently, and if some proper subset of these
processes stop taking steps, then one (each) of the remaining processes
completes its access in a finite number of its own steps. The stronger
wait-free condition precludes waiting dependencies of any kind, including
potentially unbounded retry loops.

2The first two parameters of CAS2 specify addresses of two shared
variables, the next two parameters are values to which these variables are
compared, and the last two parameters are new values to be assigned to the
variables if both comparisons succeed.

3We use the term job to refer to a single task invocation; a job is released
when it becomes available for execution.

type Qtype = record data: valtype; next: �Qtype end
shared variable Head, Tail: �Qtype
private variable old, new: �Qtype

procedure Enqueue(input : valtype)
�new := (input, NULL);
repeat old := Tail
until CAS2(&Tail;&(old�>next); old;NULL; new;new)

procedure Dequeue() returns �Qtype
repeat old := Head;

if old = NULL then return NULL fi;
new := old�>next

until CAS2(&Head;&(old�>next); old; new; new;NULL);
return(old)

Figure 1. Lock-free queue implementation.

causes an interference. Such assumptions lead to schedul-
ing conditions that are somewhat pessimistic. In addition,
Anderson et al. only considered operations on single ob-
jects. This stands in contrast to prior work on lock-based
object sharing, where “nested” critical sections have been
considered in which multiple objects are accessed.

In this paper, we present an integrated framework for
implementing lock-free objects in real-time systems, and
for scheduling tasks that share such objects. This frame-
work resolves all of the shortcomings noted in the previous
paragraph. We first consider the problem of implement-
ing multi-object lock-free operations and transactions, the
lock-free counterpart to nested critical sections. It has been
shown that such implementations can be developed by using
a multi-word compare-and-swap (MWCAS) primitive within
a lock-free retry loop in which many objects are accessed
at once; the semantics of MWCAS generalizes that of CAS2
used in Figure 1. A general MWCAS primitive is impracti-
cal to provide in hardware, so it must be implemented in
software. For our purposes, such an implementation should
be lock-free or wait-free. Unfortunately, previous lock-free
and wait-free implementations of primitives like MWCAS
have rather high worst-case time complexity [1, 5, 9, 18].
Thus, they are of limited utility in real-time systems.

One of the main contributionsof this paper is to show that
a wait-freeMWCAS primitive can be implemented efficiently
if one assumes a priority-based uniprocessor task scheduler.
Our implementation ofMWCASwas inspired by recent results
of Ramamurthy, Moir, and Anderson, who were the first to
realize that properties of priority-based schedulers can be
exploited to simplify wait-free (and lock-free) algorithms
[16]. The basis of this realization is the fact that certain task
interleavings cannot occur when using such schedulers. In
particular, if a task Ti accesses an object in the time interval
[t; t0], and if another task Tj accesses that object in the
interval [u; u0], then it is not possible to have t < u < t0 <

u0, because the higher-priority task must finish its operation
before relinquishing the processor. In effect, accesses of
high-priority tasks appear atomic to low-priority tasks.

The second major contribution of this paper is a general
approach, based on linear programming, for obtaining an
accurate bound on the cost of operation interferences. In
this approach, the total cost of interferences inTi and higher-
priority tasks over an interval I is first expressed as a linear
expression involving a set of variables. Each variable in the
expression represents the number of interferences in each
lock-free operation due to higher-priority jobs in I. Then,
a set of conditions constraining the variables is derived. A
simple example of such a constraint is that the total number
of interferences caused by task Tj in I is bounded by the
number of job releases of Tj in I. Finally, an upper bound
on the total cost of interferences in Ti and higher-priority
tasks during I is calculated using linear programming. We
show that this approach can be applied to most common
scheduling schemes. The scheduling conditions we derive
are much tighter than those originally reported in [3].

How do lock-free objects implemented using the results
of this paper compare to lock-based implementations? To
answer this question, we conducted a number of simulation
experiments involving randomly generated sets of tasks that
perform both single- and multi-object operations. Although
it is hard to draw definitive conclusions about specific ap-
plications from these experiments, the results suggest that
lock-free implementations are probably more efficient if, on
average, the cost of a retry-loop is less than that of a cor-
responding lock/object-access/unlock sequence. Thus, for
example, lock-free implementations may be preferable if a
high percentage of operations are read-only (such operations
can usually be implemented with inexpensive retry loops),
or if lock and unlock primitives are costly.

The rest of this paper is organized as follows. In Section
2, we present our wait-free implementation of the MWCAS
primitive, and briefly consider some applications of it. We
then present our approach to task scheduling in Section 3,
and discuss results from simulation experiments in Section
4. We end the paper with concluding remarks in Section 5.

2. The MWCAS Primitive

MWCAS is a useful primitive for two reasons. First, it
simplifies the implementation of many lock-free objects;
queues, for instance, are easy to implement withMWCAS, but
harder to implement with single-word primitives. Second,
it can be used to implement multi-object operations and
transactions. For example, an operation that dequeues an
item off of one queue and enqueues it onto another could be
implemented by using MWCAS to update both queues.

2.1. Lock-Free Transactions

The idea of using MWCAS to atomically access many ob-
jects can be generalized to implement arbitrary lock-free

transactions on memory-resident data. Such an implemen-
tation was presented recently by Anderson, Ramamurthy,
Moir, and Jeffay [2]. In this implementation, memory that
can be read and written by transactions is partitioned into
blocks of words. These blocks are accessible by means of
a bank of pointers, one for each block. In order to write
a word, a transaction makes a copy of each block to be
changed, and then attempts to replace the old version of
that block by its modified copy (using MWCAS). Blocks that
are read but not modified are not copied (thus, read-only
transactions are executed with low overhead). A “version
counter” is associated with each block pointer. A transac-
tion attempts to validate and commit by invoking MWCAS to
atomically compare version counters of accessed blocks and
to swap in new pointers and version counters for modified
blocks. If this MWCAS invocation is unsuccessful, then the
transaction is retried. This transaction implementation has
the desirable property that read-only transactions do not in-
terfere with each other. This is because pointers and version
counters are updated only for modified blocks.

The transaction implementation just described shows that
functionality comparable to that in lock-based systems can
be achieved in lock-free systems by using a MWCAS primi-
tive. In the following subsection, we consider the question
of how to implement such a primitive efficiently.

2.2. A Wait-Free Implementation of MWCAS

Figure 2 depicts our implementation of MWCAS and an
associated Read primitive. The implementation requires a
CAS instruction. Requiring CAS is not a severe limitation,
because Ramamurthy et al. [16] have shown that CAS can
be implemented on most priority-based real-time systems
from reads and writes with time complexity that is linear
in the number of tasks sharing a common object. Many
processors, in fact, either provide CAS directly or provide
synchronization instructions that can be used to implement
CAS in constant time. For example, CAS is provided in hard-
ware on the Motorola 680x0 line of processors and on the
Intel Pentium. It can be implemented in constant time on the
Intel 80x86 line of processors using a memory-to-memory
move instruction (see [16] for details), and on the PowerPC
using load-linked and store-conditional instructions.

In our implementation, a task performs a MWCAS opera-
tion on a collection of words by invoking the MWCAS pro-
cedure. This procedure takes as input an integer parameter
indicating the number of words to be accessed, an array con-
taining the addresses of the words to be accessed, and arrays
containing old and new values for these words. We assume
that task identifiers range over f0; : : : ; N�1g and that each
MWCAS operation accesses at most B words. A task reads a
word by invoking the Read procedure, which takes as input
the word’s address. The words that may be accessed by

the MWCAS and Read procedures are assumed to be of type
wordtype. A word of this type consists of a val field, which
contains an application-dependent value, and three fields
that are used in the implementation, count (dlogBe bits),
valid (one bit), and pid (dlogNe bits). In most applications,
the val field would contain an object pointer, and perhaps a
small amount of control information. For example, in the
implementation of lock-free transactions discussed above, a
version counter is stored as control information.

We present below a detailed description of the MWCAS
and Read procedures. In reading this description, it is im-
portant to keep in mind that these procedures were designed
assuming a priority-based uniprocessor task model. In fact,
if one assumes a conventional asynchronous task model,
then the implementation does not work. The priority-based
task model assumed here is the same as that considered in
the work of Ramamurthy et al. [16]. This model is char-
acterized by two simple requirements: (i) a task’s priority
may change over time, but not during a MWCAS or Read
operation; (ii) if a given task has an enabled statement at a
state, then no lower-priority task has an enabled statement at
that state. Note that these requirements imply that if a given
task begins executing one of the procedures in Figure 2, then
no lower-priority task may execute any statement until that
procedure invocation completes.4

With this task model in mind, we now explain how the
implementation works. We begin with an overview of the
MWCAS procedure. We follow this by an example that illus-
trates the key ideas. After this, we present a brief overview
of the (much simpler) Read procedure. We then conclude
by considering several subtleties of the implementation that
are not addressed in our initial overview.

We explain the MWCAS procedure by focusing on a
MWCAS operation by task Tr . Such an operation is exe-
cuted in three phases. In the first phase (lines 1 through 17),
the kth word that is accessed by Tr — call itw — is updated
so that its val field contains the desired new value, the count
field contains the value k, the valid field is false, and the pid
field contains the value r (see lines 14 and 15). In addition,
the old value of w is saved in the shared variable Save [r; k]
(line 10). The pid and count fields of w are used by other
tasks to retrieve the old value from the Save array. The pid
field is also used as an index into the Status array, the role
of which is described below.

To understand the “effect” the first phase has on the words
that are accessed, it is necessary to understand how each
word’s “current value” is defined.

Definition 1: Let w denote a variable of type wordtype that
is accessible by a MWCAS or Read operation. Then, the
current value of w, denoted Val(w), is defined as follows.

4The only common scheduling policy that we know of that violates
these requirements is least-laxity-first (LLF) scheduling [14]. Under LLF
scheduling, the priority of a task invocationcan changeduring its execution.

type =�Assume N tasks, each MWCAS accesses at most B words �=
wordtype = record val: valtype; count: 0::B� 1; valid: boolean; pid: 0::N � 1 end; =�All of these fields are

stored in one word; the val field is application dependent; the valid field should be initially true �=

addrlisttype = array[0::B� 1] of pointer to wordtype; =�Addresses to perform MWCAS on �=
vallisttype = array[0::B� 1] of valtype =� List of old and new values for MWCAS �=

shared variable
Status: array[0::N� 1] of 0::2 initially 0; =� Status of task’s latest MWCAS: 0 if pending, 1 if invalid, 2 if valid �=
Save: array[0::N � 1; 0::B� 1] of valtype =� Used to temporarily save value from a word during a MWCAS on that word �=

private variable =� For task Tp, where 0 � p < N �=

init, assn: array[0::B� 1] of wordtype; =�Values initially read and assigned to words by MWCAS �=
ovlap: array[0::B� 1] of boolean; =� Indicates if a lower-priority MWCAS operation is overlapped�=
i,j: 0::B+ 1; retval: boolean; word: wordtype; val: valtype

procedure MWCAS(numwds: 0::B; addr: addrlisttype;
old, new: vallisttype) returns boolean

1: Status[p] := 0;
2: i := 0;
3: while i < numwds ^ Status[p] 6= 1 do
4: init[i] := �addr[i];
5: if init[i]:valid _ Status[init[i]:pid] = 2 then
6: ovlap[i] := false;
7: val := init[i]:val

else
8: ovlap[i] := true;
9: val := Save[init[i]:pid; init[i]:count]

fi;
10: Save[p; i] := val;
11: if old[i] 6= val then Status[p] := 1

else
12: if old[i] 6= new[i] ^ ovlap[i] then 13: Status[init[i]:pid] := 1 fi;
14: assn[i] := (new[i]; i; false; p);
15: if : CAS(addr[i]; init[i]; assn[i]) then 16: Status[p] := 1 fi;
17: i := i+ 1

fi
od;

=� MWCAS continued �=
18: retval := CAS(&Status[p]; 0; 2);
19: for j := 0 to i� 1 do
20: if retval ^ old[j] 6= new[j] then
21: CAS(addr[j]; assn[j]; (new[j]; 0; true; p))
22: else if : CAS(addr[j]; assn[j]; init[j]) ^ ovlap[j] then
23: Status[init[j]:pid] := 1

fi
od;

24: return(retval)

procedure Read(addr: pointer to wordtype) returns valtype
25: word := �addr;
26: if word:valid _ Status[word:pid] = 2 then
27: return(word:val)

else
28: return(Save[word:pid;word:count])

fi

Figure 2. Wait-free implementation of MWCAS from CAS.

Val(w) =

8><
>:

w:val if w:valid _
Status [w:pid] = 2

Save [w:pid; w:count] otherwise 2

We see from this definition that Val(w) depends on the
value of Status [r] ifw:pid = r. Status [r] is initialized to 0
when a MWCAS operation of Tr begins (line 1). If the oper-
ation is interfered with by other MWCAS operations, or if the
current value of some word accessed by the operation differs
from the old value specified for that word, then Status[r] is
assigned the value 1 (lines 11, 13, 16, and 23). A value of 2
in Status [r] indicates that task Tr’s latest MWCAS operation
has succeeded.

With Definition 1 in mind, the “effect” of the first phase of
a MWCAS operation can now be understood. This phase does
not change the current value of any word that is accessed.
However, if this phase is “successful” — i.e., Status [r] is
not assigned the value 1 by any task — then at the end of
the first phase, the proposed new value for each word is
contained within the val field of that word.

The second phase of a MWCAS operation consists of only
one statement: the CAS at line 18. This CAS attempts
to both validate and commit the operation by resetting the
value of Status [r] from 0 to 2. By Definition 1, this CAS,
if successful, atomically changes the current value of each
accessed word to the desired new value. The third and final
phase consists of lines 19 through 24. In this phase, each
word w that is accessed by the MWCAS operation of Tr is
“cleaned up” so that w:pid 6= r _ w:valid holds. This
implies that the current value of word w does not depend
on Status[r]. Hence, when task Tr performs a subsequent
MWCAS operation, reinitializing Status [r] does not change
the current value of any word.

Example. Figure 3 depicts the effects of a MWCAS opera-
tion m by task T4 on three words x, y, and z, with old/new
values 12/5, 22/10, and 8/17, respectively. The values of
relevant shared variables are shown at various points within
this operation. Inset (a) shows the contents of various vari-
ables just before m begins. Note that the current value of
each word matches the desired old value. Inset (b) shows the
variables after the first phase of m has completed, assum-
ing no interferences by higher-priority tasks. Note that the

current value of each word is unchanged. Also, Status[3]
has been updated to indicate that task T3 (which must be of
lower priority) has been interfered with. Note that changing
the value of Status [4] from 0 to 2 in inset (b) would have
the effect of atomically changing the current value of each
of x, y, and z to the desired new value. Inset (c) shows
relevant variables at the termination of m, assuming no in-
terferences by higher-priority tasks. The current value of
each word is now the desired new value, and all valid fields
are true (so the value of Status[4] is no longer relevant).
Inset (d) shows relevant variables at the termination of m,
assuming an interference on word z by task T9 (which must
be of higher-priority)with new value 56. Status [4] is now 1,
indicating the failure of T4’s operation. Status [3] is still 1,
indicating that T3’s operation has also failed. Observe that
T4 has successfully restored the original values of words x
and y. Insets (e) and (f) show the operation interleavings
corresponding to insets (c) and (d), respectively.5 2

Having dispensed with the MWCAS procedure, the Read
procedure can be readily explained. If theReadprocedure is
invoked with the address of word w as input, then it simply
computes the current value of w as given in Definition 1.
Note that the current value of each word accessed by the
MWCAS procedure is computed within that procedure in the
same way as in the Read procedure (see lines 4 through 9).

Although the above description conveys the basic idea
of the implementation, there are some subtleties that we
have not yet addressed. One such subtlety concerns the
Read procedure. If this procedure is invoked by Tr to
read word w, and if line 25 is executed when w:pid =
q ^w:count = c holds, then the value ofVal(w) potentially
could be determined incorrectly if the values of Status [q]
or Save [q; c] were to change during the execution of the
Read procedure. However, Status [q] and Save [q; c] affect
the value of Val(w) only if w:valid is false when line 25
is executed. As explained above, any MWCAS operation
of task Tq that accesses word w “cleans up” in its third
phase, thereby ensuring that w:pid 6= q _ w:valid holds
upon termination of that operation. Thus, if w:pid = q ^

:w:valid holds when line 25 of the Read procedure is
executed by task Tr , then it must be the case that Tr has
preemptedTq as illustrated in Figure 4. Because Tr has been
preempted, the value of Save [q; c] cannot change during
the execution of the Read procedure. Also, it must be
the case that Status [q] 6= 2 holds during the execution of
this procedure (the value of Status [q] could potentially be
changed by a higher-priority task from 0 to 1, but this does
not affect the value of Val(w)).

5In these insets, and in subsequent similar figures, we only concern
ourselveswith statement executionsthat arise from invoking the procedures
in Figure 2, i.e., we abstract awayfrom the other statement executionsof the
tasks invoking these procedures. We denote operations by line segments,
with time running from left to right.

val count valid pid
x: 12 2 true 2 Val (x) = 12

y: 3 1 false 3 Val (y) = 22

z: 8 3 true 4 Val (z) = 8

Save [3; 1]: 22 Status [3]: 0

(a)

val count valid pid
x: 5 0 false 4 Val (x) = 12

y: 10 1 false 4 Val (y) = 22

z: 17 2 false 4 Val (z) = 8

Save [3; 1]: 22 Status [3]: 1 Save [4; 0]: 12

Save [4; 1]: 22 Save [4; 2]: 8 Status [4]: 0

(b)

val count valid pid
x: 5 0 true 4 Val (x) = 5

y: 10 0 true 4 Val (y) = 10

z: 17 0 true 4 Val (z) = 17

Status [4]: 2

(c)

val count valid pid
x: 12 2 true 2 Val (x) = 12

y: 3 1 false 3 Val (y) = 22

z: 56 4 true 9 Val (z) = 56

Save [3; 1]: 22 Status [3]: 1 Status [4]: 1

(d)

T3Task

T4Task

T3Task

T4Task

T9Task

(e) (f)

Figure 3. Task T4 performs a MWCAS operation on words
x, y, and z, with old/new values 12/5, 22/10, and 8/17,
respectively. The contents of relevant shared variables are
shown (a) at the beginning of the operation; (b) after the
loop in lines 3..17; (c) at the end of the operation, assuming
success; and (d) at the end of the operation, assuming failure
on word z. The operation interleavings that result in (c) and
(d) are shown in (e) (T4 preempts T3) and (f) (T4 preempts
T3, and T9 preempts T4), respectively.

Save[q,c] does not change here
Status[q] = 0 or 1 here

TrREAD by Task

TqMWCAS by Task

Figure 4. Example of a Read operation by Task Tr .

Another subtlety involves the conditions under which a
MWCAS operation may fail. Strictly speaking, it should be
possible to linearize any MWCAS operation to some point
during its execution at which it “appears” to take effect
[8]. Successful MWCAS operations can be linearized to the
state at which line 18 is executed. To correctly linearize a
failed MWCAS operation m, it is necessary that there be a
state during the execution of m at which the current value
of some word accessed by m differs from the old value
specified for that word. In our implementation, we allow
this linearization requirement to be violated by permitting a
MWCASm to fail if it is “overlapped” by a MWCAS operation
m0 that attempts to modify a word that is accessed by m.
Observe thatm0 may itself fail, in which case it might not be
possible to correctly linearize m as discussed above. In fact,
this is exactly what happened in Figure 3(f). Task T9 causes
taskT4 to fail because T9 modifies word z, which is accessed
byT4. Task T3 is also caused to fail because it accesses word
y, which T4 attempts (unsuccessfully) to modify. Observe
that it was not necessary (nor correct, strictly speaking) for
T3 to fail in this case. We allow a MWCAS operation to fail in
a situation like this because it greatly simplifies the MWCAS
algorithm and because the scheduling conditions derived in
Section 3 view such a situation as an interference anyway.

A final subtlety involves MWCAS operations in which
some word is accessed but not modified. Such an access
should not interfere with accesses of that word by other
tasks. To see how this is accomplished in our implementa-
tion, consider the situation in Figure 5(a). The only word
in common between operations m1 and m2 is x. Neither
operation changes the value of x, so both succeed. In par-
ticular, note that m2 restores the value of x (line 22) before
completing. Thus, it appears to m1 that no other task has
updated x. In contrast, consider the situation in Figure 5(b).
In this situation, m1 and m2 are preempted by a third oper-
ation m3 that does modify x. In this case, m3 causes m2 to
fail by updating m2’s Status variable (line 13). m2 in turn
causes m1 to fail by updatingm1’s Status variable (line 23).

The full paper contains a detailed correctness proof of
our MWCAS/Read implementation. From this proof and the
code in Figure 2, we conclude the following.

Theorem 1: A Read operation and a W -word MWCAS
operation can be implemented in a wait-free manner from
CAS withO(1) and O(W) time complexity, respectively, in

m
1
(2,[x,y],[0,1],[0,2])

m
2
(2,[x,z],[0,3],[0,4])

succeeds

succeeds

m
1
(2,[x,y],[0,1],[0,2])

(a)

m
2
(2,[x,z],[0,3],[0,4])

(b)

m
3
(1,[x],[0],[5])

.
18

succeeds

fails

fails.
18

initially
x=0,
y=1,
z=3

initially
x=0,
y=1,
z=3

Figure 5. (a) Two overlapping MWCAS operations m1

and m2. Parameters are (number of words, [list of words
accessed], [list of old values], [list of new values]). The only
potential conflict is on word x, which neither m1 nor m2

changes, so both succeed. (b) m 1 andm2 are overlapped by
a third MWCAS operation,m3, which does changex; m1 and
m2 are preempted just before executing the CAS at line 18.

a real-time uniprocessor system. 2

3. Scheduling with Lock-Free Objects

Scheduling conditions that apply to tasks that share lock-
free objects can be obtained by modifying scheduling con-
ditions for independent tasks to account for the overhead of
operation interferences. In this section, we present a gen-
eral approach based on linear programming for determining
a bound on the cost of such interferences over an interval
of time. We illustrate the utility of this approach by apply-
ing it to obtain scheduling conditions for the RM, DM, and
EDF schemes, and a variation of the EDF scheme, which
we call the EDF/NPD scheme, in which deadlines do not
equal periods. Our approach for bounding the cost of inter-
ferences can be applied to any scheduling scheme satisfying
the following axioms.

Axiom 1: If a job of task Ti can preempt a job of task Tj ,
then no job of Tj preempts any job of Ti. 2

Axiom 2: The priority of a job does not change while
accessing a shared object. 2

Axiom 3: Different jobs of the same task cannot preempt
one another. 2

These axioms hold for the RM, DM, EDF, and EDF/NPD
schemes, and for variations of these schemes in which tasks
consist of multiple phases with separate execution priorities.
We make explicit the preemption order between any two
tasks — as specified by Axiom 1 — by indexing the tasks
such that, if a job of task Ti can preempt a job of task Tj ,
then i < j. For the RM, DM, EDF, and EDF/NPD schemes,
arranging tasks in the order of increasing deadlines results

in task indices compatible with this indexing scheme.

3.1. Definitions and Notation

The scheduling conditions we derive are based on a pre-
emptive, periodic task model in which all tasks are multi-
programmed on one processor. Most aspects of the model
are in keeping with other similar models considered in the
literature, and therefore are not described in detail here. One
aspect that does warrant attention is the manner in which we
model object accesses. We assume that each job is com-
posed of distinct nonoverlapping computational fragments
or phases. Each phase is either a computation phase or an
object-access phase. Shared objects are not accessed dur-
ing a computation phase. An object-access phase consists
of exactly one retry loop in which one or more objects are
accessed. The cost of an object-access phase is equal to the
cost of its associated retry loop.

The following is a list of symbols that will be used re-
peatedly in deriving our scheduling conditions.

� N - The number of tasks in the system. We use i,
j, and l as task indices; each is universally quantified
over f0; : : : ; N � 1g.

� pi - The period of task Ti.

� w(i) - The number of phases in a job of task Ti. The
phases are numbered from 1 to w(i). We use u and v

to denote phases.

� cvi - The worst-case computational cost of the vth

phase of task Ti’s job, where 1 � v � w(i), assuming
no contention for the processor or shared objects. We
denote total cost over all phases by ci =

Pw(i)
v=1 c

v
i .

� m
i;v
j (t) - The worst-case number of interferences in

Ti’s vth phase due to Tj in an interval of length t.

� fvi - An upper bound on the number of interferences
of the retry loop in the vth phase of Ti during a single
execution of that phase.

We obtain scheduling conditions by determining the
worst-case demand of each task. The demand due to task Ti
in an interval is the total computation time required by jobs
of Ti in that interval. In our analysis, we assume that an
object-access phase is interfered with every time a higher-
priorityjob that modifies a common object is released during
that phase. This assumption is pessimistic because not all
such releases necessarily cause an interference. If a job of
Tj interferes with the vth phase of a job of Ti, then an ad-
ditional demand is placed on the processor, because another
execution of the retry-loop iteration in Ti’s vth phase is re-
quired. We denote this additional demand by si;vj . Formally,

s
i;v
j is defined as follows.

Definition 2: Let Ti and Tj be two distinct tasks, where
Ti has at least v phases. Let zj denote the set of objects
modified by Tj , and avi denote the set of objects accessed in
the vth phase of Ti. Then,

s
i;v
j =

�
cvi if j < i ^ avi \ zj 6= ;

0 otherwise. 2

3.2. Bounding Interference Cost

The goal of this subsection is to show how to obtain a
reasonably accurate bound on the additional demand due
to interferences over an interval I. To this end, we define
an expression that gives the exact worst-case cost of inter-
ferences in tasks T0 through Ti in any interval of length t.

Definition 3: The total cost of interferences in jobs of tasks
T0 throughTi in any interval of length t,denotedEi(t), is de-
fined as follows: Ei(t) �

Pi

j=0

Pw(j)
v=1

Pj�1
l=0 m

j;v

l (t)sj;vl .
2

The term m
j;v
l (t) in the above expression denotes the

worst-case number of interferences caused inTj’s vth phase
by jobs of Tl in an interval of length t. The term s

j;v
l

represents the amount of additional demand required if Tl
interferes once with Tj’s vth phase. The expression within
the leftmost summation denotes the total cost of interfer-
ences in a task Tj over all phases of all jobs of Tj in an
interval of length t.

Expression Ei(t) accurately reflects the worst-case ad-
ditional demand placed on the processor in an interval I
of length t due to interferences in tasks T0 through Ti. Of
course, to evaluate this expression, we first must determine
values for the mj;v

l (t) terms. Unfortunately, in order to do
so, we potentiallyhave to examine an exponential number of
possible task interleavings in the interval I. Instead of ex-
actly computingEi(t), our approach is to obtain a bound on
Ei(t) that is as tight as possible. We do this by viewingEi(t)
as an expression to be maximized. Themj;v

l (t) terms are the
“variables” in this expression. These variables are subject
to certain constraints. We obtain a bound for Ei(t) by using
linear programming to determine a maximum value ofEi(t)
subject to these constraints. We now explain how appropri-
ate constraints on the mj;v

l (t) variables are obtained. In this
explanation, we focus on the RM scheme. At the end of
this subsection, we explain how similar constraints can be
obtained for other schemes.

We impose three sets of constraints on the mi;v
j (t) vari-

ables. All of these constraints are straightforward. How-
ever, the third constraint involves terms (f vi) that are not
completely straightforward to calculate. Most of the rest
of this subsection is devoted to explaining how these terms
are computed. For a set of tasks scheduled under the RM

scheme, and an interval of length t, the three sets of con-
straints are as follows.

Constraint Set 1:
(8i; j : j < i ::

Pw(i)
v=1 m

i;v
j (t) �

l
t+1
pj

m
). 2

Constraint Set 2:
(8i ::

Pi

j=0

Pw(j)
v=1

Pj�1
l=0 m

j;v

l (t) �
Pi�1

j=0

l
t+1
pj

m
). 2

Constraint Set 3:
(8i; v ::

Pi�1
j=0 m

i;v
j (t) �

l
t+1
pi

m
fvi). 2

The first set of constraints follows because the number
of interferences in jobs of Ti due to Tj in an interval I of
length t is bounded by the maximum number of jobs of Tj
that can be released in I. The second set of constraints
follows from a result presented in [3], which states that the
total number of interferences in all jobs of tasks T0 through
Ti in an interval I of length t is bounded by the maximum
number of jobs of tasks T0 through Ti�1 released in I. In
the third set of constraints, the term f vi is an upper bound
on the number of interferences of the retry loop in the vth

phase of Ti during a single execution of that phase. The
details of calculating fvi are described later. The reasoning
behind this set of constraints is as follows. If at most f vi
interferences can occur in the vth phase of a job of Ti, and if
there are n jobs of Ti released in an interval I, then at most
nfvi interferences can occur in the vth phase of Ti in I.

We use an inductive approach to calculate fvi for any i

and v. This inductive approach is expressed in pseudo-code
in Figure 6. The compute retries procedure in this figure
computes all fvi values. This procedure begins by setting
fv0 to zero for all phases of T0 (line 1). This is because, by
Axiom 1 and our ordering on tasks, operations of T0 can
never be interfered with. We then calculate the f values for
tasks T1 through TN�1, respectively. If the vth phase of
task Ti is a computation phase, then fvi is set to zero (line
5) because a computation phase cannot be interfered with.
Lines 6 through 10 are executed if the vth phase of task Ti
is an object-access phase. In this case, we first calculate a
bound R1 on the maximum time it takes to execute phase
v, given that at most k interferences of phase v can occur
(line 7). We then calculate a bound R2 on the maximum
time it takes to execute phase v, given that at most k + 1
interferences of phase v can occur (line 8). The manner
in which R1 and R2 are determined is described below.
If R2 exceeds the period of task Ti, then we have failed
to find a constraint that can be imposed on the number of
interferences in phase v (line 9). IfR1 equalsR2, then phase
v of Ti can experience at most k interferences (line 10).

We now explain the manner in which R1 is determined;
R2 is calculated in a similar manner. R1 is assigned a
value t that is an upper bound on the length of an interval
that includes n � k + 1 iterations of phase v of task Ti;
the interval begins with the first statement execution in the

first iteration of phase v, and ends with the last statement
execution of the nth execution of phase v. In line 7, the first
component in the left-hand side of the inequality denotes
the portion of time in the interval that is taken to execute the
last iteration of phase v. The second component denotes the
time spent executing jobs of higher-priority tasks, excluding
interferences in those tasks. (In the interval of length t in
question, there can be no higher-priority job releases at the
first point in the interval, and any such job released at the
(t + 1)st point in the interval executes after the interval.
This is why t � 1 appears in this expression.) The third
component denotes an upper bound on the additional time
spent executing additional iterations of loops that have been
interfered with inTi’s vth phase and in higher-priority tasks.

The third component is calculated by invoking ic(i, v,
k, t), which determines an upper bound on the interference
cost in tasks T0 through Ti�1 and the vth phase of task Ti in
an interval of length t in which Ti is interfered with at most
k times. Determining an exact bound is difficult, so we use
linear programming within ic to obtain an upper bound. The
constraints for ic(i, v, k, t) only use f values of tasks T0

through Ti�1, so there is no circularity.
The maximum value of the expression given in ic is de-

termined subject to five constraint sets, labeled (a) through
(e). The set of constraints labeled (a) follows from our defi-
nition of the interval to be determined. For example, forR1,
the interval ends with the completion of the nth iteration of
phase v of task Ti, where n � k + 1. The set of constraints
labeled (b) follows from the fact that the number of times a
higher-priority task Tj can interfere with Ti’s vth phase in
an interval is bounded by the number of jobs of Tj released
in that interval. The rest of the constraint sets are similar to
Constraint Sets 1 through 3 given earlier. In the full paper,
we show that the bounds returned by compute retries are
correct by proving the following lemma.

Lemma 1: The value returned for fvi by compute retries is
an upper bound on the number of times the vth phase of Ti
can be interfered with in a single job of Ti. 2

The constraints considered so far apply not only to RM
scheduling, but also to DM scheduling. Similar constraints
can be derived for the EDF and EDF/NPD schemes. In par-
ticular, Constraint Sets 1 through 3 can be transformed to
EDF constraint sets by replacing the ceiling function in the
bounding terms by a floor function, and by replacing t + 1
in the numerator of the bounding terms by t. For example,
Constraint Set 2 is transformed to the EDF constraint set
(8i ::

Pi

j=0

Pw(j)
v=1

Pj�1
l=0 m

j;v

l
(t) �

Pi�1
j=0bt=pjc). This

follows because the number of jobs released in an inter-
val of length t with deadlines at or before t equals bt=pjc.
Constraints for EDF/NPD scheduling can be derived from
those for EDF scheduling by accounting for the deadline di
(where di � pi) of each task Ti, e.g., the previous EDF con-

procedure compute retries()

1: for v := 1 to w(0) do f v0 := 0 od; =� Task T0 cannot be interferred with �=
2: for i := 1 to N � 1 do
3: for v := 1 to w(i) do =� Consider each phase v of task T i �=

4: if Ti’s vth phase is a computational phase then
5: f

v

i
:= 0 =� Computational phase cannot be interferred with �=

else =� Phase v is an object-access phase �=
6: for k := 0 to 1 do
7: R1 := (min t :: cv

i
+

P
i�1
j=0

d(t� 1)=pjecj + ic(i; v; k; t� 1) � t);

8: R2 := (min t :: cv
i
+

P
i�1
j=0

d(t� 1)=pjecj + ic(i; v; k + 1; t� 1) � t);

9: if R2 � pi then f
v

i
:=1; break fi; =� Period exceeded, give up �=

10: if R2 = R1 then f
v

i
:= k; break fi =�At most k interferences can occur �=

od
fi

od
od

procedure ic(i; v; k; t) returns integer =� Computes bound on
interference costs in Ti and higher-priority tasks in an interval
of length t during the v th phase of Ti in which Ti is interfered

with at most k times �=

return the maximum value ofP
i�1
j=0

m

i;v

j
(t)s

i;v

j
+

P
i�1
j=0

P
w(j)

u=1

P
j�1
l=0

m

j;u

l
(t)s

j;u

l

subject to the following constraints:

(a)
P

i�1
j=0

m

i;v

j
(t) � k

(b)(8j : 0 � j < i :: mi;v

j
(t) �

l
t+1
pj

m
)

(c) (8j; l : j < l < i ::
P

w(l)

u=1
m

l;u

j
(t) �

l
t+1
pj

m
)

(d)(8l : l<i ::
P

l

j=0

P
w(j)

v=1

P
j�1
l0=0

m

j;v

l0
(t) �

P
l�1
j=0

l
t+1
pj

m
)

(e) (8l;u : 0 � l < i ::
P

l�1
j=0

m

l;u

j
(t) �

�
t+1
pl

�
f
u

l
)

Figure 6. Pseudo-code to calculate f v

i values.

straint set becomes (8i ::
Pi

j=0

Pw(j)
v=1

Pj�1
l=0 m

j;v

l (t) �Pi�1
j=0b(t + pi � di)=pjc). For the EDF and EDF/NPD

schemes, the compute retries and ic procedures are the same
as for the RM scheme. (Ceilings must be used instead of
floors in these procedures because a task’s deadline is not
considered when bounding interferences in its phases.)

3.3. Scheduling Conditions

We now present sufficient scheduling conditions for the
RM, DM, EDF, and EDF/NPD schemes. In each of these
conditions, we give an expression that represents the maxi-
mum demand in an interval I of length t, and require that
total demand over I is less than or equal to the available
processor time in I. The expression for demand consists
of two components: the first represents demand due to job
releases, and the second represents demand due to interfer-
ences. Recall that Ei(t) is the actual worst-case cost of
interferences in jobs of tasks T0 through Ti in any interval
of length t. We let E0

i(t) denote a bound on Ei(t) that is
determined as described in the previous subsection. The
scheduling condition for the RM scheme is as follows.

Theorem 2: Under the RM scheme, a set of tasks is schedu-
lable if the following holds for every task Ti.

(9t : 0 < t � pi ::
Pi

j=0

l
t
pj

m
cj +E0

i(t� 1) � t)

Proof: We prove that if a task set is not schedulable, then
the negation of the above expression holds. Let the kth

job of some task Ti be the first to miss its deadline, and
let ri(k) denote the time at which this job is released, i.e.,
ri(k) = ri(0) + kpi. The proof hinges on examining the
busy point of the kth job of task Ti, which is denoted by
bi(k). The busy point bi(k) is the most recent point in time
at or before ri(k) when Ti and all higher-priority jobs either
release a job or have no unfulfilled demand. In [3], it is

shown that “if the kth job of Ti misses its deadline, and
if t is some point in [bi(k); ri(k + 1)), then the difference
between the total demand placed on the processor by Ti
and higher-priority tasks in the interval [bi(k); t] and the
available processor time in that interval is greater than one”.
Thus, for any t in [bi(k); ri(k+ 1)), we have the following.

Pi

j=0

l
t�bi(k)+1

pj

m
cj + Ei(t � bi(k)) > t�bi(k)+1 (1)

Observe that (1) is independent of t and bi(k) (it is a
function of the length of an interval). Thus, we can replace
t�bi(k) in (1) by t0, where t0 = t�bi(k) and t0 2 [0; ri(k+

1)� bi(k)) to get
Pi

j=0

l
t0+1
pj

m
cj + Ei(t

0) > t0 + 1. Now,

replace t0 by t, where t = t0+1 and t 2 (0; ri(k+1)�bi(k)].

Then, we have
Pi

j=0

l
t
pj

m
cj +Ei(t� 1) > t for all t in

(0; ri(k+1)�bi(k)]. Finally, note thatE0

i(t�1) � Ei(t�
1). Hence, we have the following.

Pi

j=0

l
t
pj

m
cj +E0

i(t� 1) > t (2)

By definition, bi(k) � ri(k). Therefore, the interval
(0; ri(k+ 1)� ri(k)] is completely contained in (0; ri(k+
1)� bi(k)]. Because ri (k + 1)� ri (k) = pi, (2) therefore
holds for all t in (0; pi]. 2

Sufficient scheduling conditions can be proved for the
DM, EDF, and EDF/NPD schemes in a manner similar to
that above. We state these conditions without proof in the
following theorems.

Theorem 3: Under the DM scheme, a set of tasks is schedu-
lable if the following holds for every task Ti.

(9t : 0 < t � di ::
Pi

j=0

l
t
pj

m
cj + E0

i(t� 1) � t) 2

Theorem 4: Under the EDF scheme, a set of tasks is schedu-
lable if the following holds.

(8t ::
PN�1

j=0

j
t
pj

k
cj + E0

N�1(t � 1) � t) 2

Theorem 5: Under the EDF/NPD scheme, a set of tasks is
schedulable if the following holds.

(8t ::
PN�1

j=0

j
t+pj�dj

pj

k
cj + E0

N�1(t � 1) � t) 2

As formulated above, the expressions in Theorems 4 and
5 cannot be verified because the value of t is unbounded.
However, there is an implicit bound on t. In particular, we
only need to consider values less than or equal to the least
common multiple (LCM) of the task periods. (If an upper
bound on the utilization available for the tasks is known,
then we can restrict t to a much smaller range [6].)

4. Simulation Results

In this section, we present results from simulation ex-
periments conducted to compare lock-free, wait-free, and
lock-based object implementations under the RM scheme.
These experiments involved randomly generated task sets
consisting of 10 tasks and 5 shared objects, obtained by
varying four parameters: r/w ratio, cost ratio, conflicts, and
nesting level. The r/w ratio parameter specifies the frac-
tion of all operations that are read-only. This parameter is
of interest because, as explained in Section 2.1, read-only
operations do not interfere with each other in lock-free im-
plementations. The cost ratio parameter specifies the ratio
of the cost of a lock-free (wait-free) object access to that of
a lock-based access; e.g., the retry-loop cost of a lock-free
object is (on average) twice as expensive as a lock-based ac-
cess if the cost ratio parameter is 2. The cost of a lock-based
operation includes the cost of acquiring and releasing a lock;
for lock-based objects, an implementationbased on the stack
resource policy was assumed [4]. If the conflicts parameter
is k, then at least one object is accessed by k tasks, and no
object is accessed by more than k tasks. In our experiments,
tasks were modeled as a sequence of three phases, of which
only the second is an object-access phase. The nesting level
parameter specifies the number of objects accessed in this
phase, and ranges from 1 to 3 (the word “nesting” refers to
nested locks in lock-based implementations).

In order to bound the simulation lengths, task periods
were randomly selected from a predetermined set of 36 pe-
riods. For the set of periods considered, the LCM of the
periods was 134,534,400 time units, and the minimum and
maximum periods were 8,448 and 1,747,200 time units, re-
spectively. Computation phase costs ranged between 1 and
500 time units, and were randomly generated subject to the
constraint that overall utilization is at most one. In all ex-
periments, context switch times were ignored.

Lock-based object access costs were randomly generated
assuming a normal distribution with mean and standard de-
viation of 128 and 20 time units, respectively. The overall

cost of each object-access phase depends on both the nesting
level and the object access costs. In our experiments, nesting
levels 1, 2, and 3 were selected with probability 0.6, 0.25,
and 0.15, respectively. We selected this distribution based
on our belief that multi-object accesses are less frequent than
single-object accesses in practice.

To compare the performance of the different schemes,
we calculated the breakdown (computation) utilization of
each task set that was generated. The breakdown utilization
(BU) of a task set is obtained by scaling the cost of task
phases, and is defined to be the maximum utilization at
which the task set is still schedulable. The total utilization
of all computation phases of all tasks at the breakdown point
is called the breakdown computation utilization (BCU).

BU and BCU curves resulting from our experiments
are shown in Figures 7 and 8. Each curve in these fig-
ures was obtained from 4,000 generated task sets. Ex-
perimental BU (BCU) values for lock-based and lock-free
schemes are given by “blocking experimental” and “lock-
free experimental”, respectively. These values were ob-
tained for each generated task set by checking schedula-
bility in a brute force manner, i.e., by checking to the LCM
of the task periods. Predicted BU (BCU) values for lock-
based objects are given by “blocking predicted”. Values for
this case were obtained by using the scheduling condition
given in [15]. BU (BCU) values predicted by the schedul-
ing conditions presented in this paper and in [3] are given
by “lockfree predicted new” and “lockfree predicted old”,
respectively. Observe that the RM scheduling condition
presented in this paper is much tighter than that given in [3].
Also, the new condition results in better predications when
there are fewer conflicts, and (although not shown here)
when most operations are read-only. BU (BCU) values for
wait-free objects are given by “waitfree”; these values were
obtained by using the RM scheduling condition in [11].
Experimental BCU values are not tabulated for this case be-
cause the RM condition in [11] is necessary and sufficient.

Our simulations indicate that only the cost ratio param-
eter significantly affects relative performance. Simulations
for different r/w ratios and other nesting probabilities (not
shown here) resulted in similar graphs. In examining the
effects of various cost ratios, it is best to focus on BCU val-
ues. This is because the BU curves include overhead associ-
ated with object accesses, and because the experimental BU
curves do not show much variation. (A high BU curve can
be misleading, because much of the utilizationaccounted for
in the BU values may be due to object sharing overhead; an
inefficient object sharing scheme may give rise to high BU
values solely because of this overhead.) The BCU curves in
Figure 8 indicate that lock-free objects perform better than
lock-based schemes when the cost ratio is less than one (in-
set (a)), slightly worse than lock-based schemes when the
cost ratio equals one (inset (b)), and worse than lock-based

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 0.50

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 1.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 2.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(c)

Figure 7. Breakdown Utilization.

schemes when the cost ratio is greater than one (inset (c)).
The main conclusion to be drawn from these experiments

is that, when lock-free loop costs are (on average) less than
corresponding lock-based access costs, lock-free implemen-
tations perform better. Preliminary cost figures from actual
implementations indicate that lock-free implementations of
common objects like queues, stacks, and linked lists are
likely to be more efficient than lock-based implementations.
On the other hand, lock-based implementations of more
complex objects like balanced trees are likely to be more
efficient than lock-free ones. Wait-free implementations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 0.50

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 1.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 2.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(c)

Figure 8. Breakdown Computation Utilization.

perform better than their lock-free counterparts in all situa-
tions when access costs are identical. However, in practice,
wait-free operation costs are typically much higher than
corresponding lock-free costs, due to the additional algo-
rithmic overhead required to ensure wait-freedom. On the
other hand, for certain very simple objects like read/write
buffers, a wait-free implementation may be the best choice.

Although our results indicate that the r/w ratio parameter
is not very significant, in practice, a high r/w ratio will result
in a low cost ratio for lock-free objects. This is because, for
many objects, read-only operations do not require copying.

Thus, lock-free implementations may be preferable if most
operations are read-only. In our experiments, we did not
account for the fact that read-only operations are usually
more efficient than updates in lock-free implementations.
In addition, the larger conflicts parameter values considered
(which resulted in less accurate predications for lock-free)
may not be reflective of what one would find in practice.

5. Concluding Remarks

We have presented an integrated framework for the de-
velopment of real-time applications in which tasks share
lock-free objects. This framework consists of two key com-
ponents. The first is an efficient implementation of a MWCAS
primitive for real-time uniprocessor applications. This prim-
itive can be used to simplify the implementation of many
lock-free objects, and to implement multi-object operations
and transactions. The second key component of our frame-
work is a general approach, based on linear programming,
for determining bounds on the cost of operation interferences
when lock-free objects are used. The simulation studies we
have presented suggest that this approach is likely to produce
reasonably accurate bounds in practice.

References

[1] J. Anderson and M. Moir, “Universal Constructions for
Multi-Object Operations”, Proceedings of the 14th An-
nual ACM Symposium on Principles of Distributed Com-
puting, ACM, New York, August 1995, pp. 184-193.

[2] J. Anderson, S. Ramamurthy, M. Moir, and K. Jeffay,
“Lock-Free Transactions for Real-Time Systems”, Pro-
ceedings of the First International Workshop on Real-
Time Databases: Issues and Applications, March 1996,
pp. 107-114.

[3] J. Anderson, S. Ramamurthy and K. Jeffay, “Real-Time
Computing with Lock-Free Shared Objects (Extended
Abstract)”, Proceedings of the 16th IEEE Real-Time Sys-
tems Symposium, IEEE Computer Society Press, Decem-
ber 1995, pp. 28-37.

[4] T. Baker, “Stack-Based Scheduling of Real-Time Pro-
cesses”, Journal of Real-Time Systems, 3(1), March 1991,
pp. 67-99.

[5] G. Barnes, “A Method for Implementing Lock-Free
Shared Data Structures”, Proceedings of the Fifth Annual
ACM Symposium on Parallel Algorithms and Architec-
tures, 1993, pp. 261-270.

[6] S. Baruah, R. Howell, and L. Rosier, “Feasibility Prob-
lems for Recurring Tasks on One Processor”, Theoretical
Computer Science, 118, 1993, pp. 3-20.

[7] M. I. Chen and K. J. Lin, “Dynamic Priority Ceiling: A
Concurrency Control Protocol for Real Time Systems”,
Journal of Real-Time Systems, 2(1), 1990, pp. 325-346.

[8] M. Herlihy and J. Wing,“Linearizability: A Correctness
Condition for Concurrent Objects,”ACM Transactions on
Programming Languages and Systems, 12(3), July 1990,
pp. 463-492.

[9] A. Israeli and L. Rappoport, “Disjoint-Access-Parallel
Implementations of Strong Shared Memory Primitives”,
Proceedings of the 13th Annual ACM Symposium on
Principles of Distributed Computing, ACM, New York,
August 1994, pp. 151-160.

[10] K. Jeffay, “Scheduling Sporadic Tasks with Shared Re-
sources in Hard Real-Time Systems”, Proceedings of the
13th IEEE Symposium on Real-Time Systems, Phoenix,
AZ, 1992, pp. 89-99.

[11] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Mono-
tonic Scheduling Algorithm: Exact Characterization and
Average Case Behavior”, Proceedings of the Tenth IEEE
Real-Time Systems Symposium, Santa Monica, CA, 1989,
pp. 166-171.

[12] J.Y.T. Leung and J. Whitehead, “On the Complexity of
Fixed-Priority Scheduling of Periodic, Real-Time Tasks”,
Performance Evaluation, 2(4), 1982, pp. 237-250.

[13] C. Liu and J. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”,
Journal of the ACM, 30, Jan. 1973, pp. 46-61.

[14] A. Mok, Fundamental Design Problems of Distributed
Systems for the Hard Real-Time Environment, Ph.D. The-
sis, MIT Laboratory for Computer Science, 1983.

[15] R. Rajkumar, Synchronization In Real-Time Systems
– A Priority Inheritance Approach, Kluwer Academic
Publications, 1991.

[16] S. Ramamurthy, M. Moir, and J. Anderson, “Real-
Time Object Sharing with Minimal System Support”,
Proceedings of the 15th Annual ACM Symposium on
Principles of Distributed Computing, ACM, New York,
May 1996, pp. 233-242.

[17] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority Inheri-
tance Protocols: An Approach to Real-Time System Syn-
chronization”, IEEE Transactions on Computers, 39(9),
1990, pp. 1175-1185.

[18] N. Shavit and D. Touitou, “Software Transactional
Memory”, Proceedings of the 14th Annual ACM Sym-
posium on Principles of Distributed Computing, ACM,
New York, August 1995, pp. 204-213.

