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Abstract—Certifying graph-based workloads on multicore sys-
tems requires valid worst-case execution time (WCET) estimates,
which are challenging to obtain. This warrants a method to
enforce execution budgets at runtime. Allowing a node in a
processing graph to overrun its budget can delay future in-
vocations of that node due to data dependencies. Conversely,
preventing overruns may lead to high rates of graph invocation
aborts. This paper presents a budget-enforcement method that
allows nodes to overrun with limited effect on future node
invocations. Additionally, analysis is presented for bounding the
abort probability of each graph invocation. Experimental results
are given to demonstrate the efficacy of the presented method.

Keywords—Real-time systems, DAG scheduling, probabilistic
analysis, restricted parallelism, budget enforcement

I. INTRODUCTION

Complex AI and robotics applications are often modeled
as processing graphs due to their dataflow dependencies.
These graphs are often large and computationally demanding,
requiring multicore machines for timely execution. In safety-
critical contexts, schedulability assessments are needed to
validate timing constraints, which requires that task worst-
case execution times (WCETs) be known. Unfortunately, the
complexity of modern multicore machines has led to the
consensus that static timing analysis, where the WCET of a
program is computed from its code structure, will likely never
be viable [8]. The only other alternative, measurement-based
timing analysis, may not capture the true WCET of a program.

Budget enforcement. Accurate WCETs can be obtained by
enforcing execution budgets. However, such an approach re-
quires a policy to handle budget overruns. Tong et al. proposed
a budget-enforcement policy for processing graphs that allows
a node that overruns its budget to continue execution by
consuming the budget of “downstream” nodes in the same
graph invocation [7]. The graph invocation is only aborted
when there is insufficient budget in the graph’s remaining
nodes, aiming to reduce the overall graph abort rate.

The need for restricted parallelism. Unfortunately, [7] as-
sumes that successive graph invocations can run in parallel
without restrictions, which is unrealistic for many real-world
applications. For example, in object tracking, processing the
ith frame of video may require data acquired from processing
the (i−ρ)th frame. This restricts graph parallelism, as at most
ρ frames can be processed in parallel. This paper presents a
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Fig. 1: (a) A processing graph G, where each node has a budget
of 4.0 time units. (b) A schedule of G demonstrating budget reallo-
cations both within the same graph invocation and across different
invocations. Ji,j denotes the jth job of τi.

new holistic graph budget-management policy that improves
upon [7] by supporting limited graph parallelism. We begin
by examining the issues arising from limited parallelism.

Cross-invocation overruns. When the parallelism of graph
nodes is limited, a cross-invocation overrun can occur, where
an invocation of a node overruns its budget and delays future
invocations of the same node that cannot execute in parallel.
To promptly execute these future node invocations, node
invocations must be allowed to execute using budget from
future graph invocations. (This is different from [7], which
only moves budget from one node to another within the
same graph invocation.) To illustrate this issue, consider the
following example pertaining to the graph G depicted in Fig. 1.

Example 1. At t = 0, the node τ1 releases its first invocation,
or job, J1,1. At t = 4, J1,1 overruns its budget, and utilizes the
budget of J2,1 (the first job of τ2) to execute until completion
at t = 5 using the policy in [7]. When J1,1 completes, J2,1
can begin execution. However, due to reallocating part of its
budget to J1,1, J2,1 overruns its budget at t = 8. Assuming
that only one invocation of each node can execute in parallel,
J2,1 must complete before J2,2 can begin execution. Therefore,
to ensure the timely execution of J2,2, J2,1 must use the budget
of J2,2 to complete its execution.

Overrun cascades. From Ex. 1, we see that cross-invocation
overruns cause nodes to drain budgets from future node
invocations, thus increasing the overrun probabilities of future
node invocations. Consequently, node overrun probabilities
will steadily increase from one graph invocation to the next if
cross-invocation overruns occur. This phenomenon, which we
call an overrun cascade, is another implication of restricting
processing graph parallelism. To limit the length of an overrun
cascade, the feedback loop of ever-increasing cross-invocation
overruns must be broken. While this can be done naı̈vely by
strictly enforcing node budgets (i.e., any overrunning node
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Fig. 2: Successive invocations of a graph G, where in each invocation
the two shaded nodes have strictly enforced budgets.

invocation would be aborted), such a solution is far from ideal.
This is because strictly enforcing node budgets disallows over-
running jobs from completing their execution by consuming
the budget of “downstream” nodes, invalidating a key method
in [7] to reduce the overall graph abort rate.

Mitigating overrun cascades. Fortunately, we can limit over-
run cascades without strictly enforcing all node budgets. This
can be done by strictly enforcing node budgets in a cyclic
fashion across graph invocations as shown in Fig. 2. Since
each node’s budget is strictly enforced once every few graph
invocations, overrun cascades can be broken.

Slowing down overrun probability increases. While the
length of overrun cascades can be limited by cycling through
some strict enforcement pattern, for large processing graphs,
such a cycle may contain many graph invocations. Conse-
quently, overrun cascades may be long, resulting in high per-
node overrun rates. This, in turn, can greatly increase the graph
abort rate. Thus, to minimize the abort rate of a processing
graph, our budget management policy must also limit the
increase in overrun probability across graph invocations.

Contributions. This paper presents a server-based graph-
level budgeting policy that supports limited parallelism and
addresses the issues raised above through three contributions.
First, we propose three mechanisms that form our budgeting
policy. The first two limit the increase in overrun probabilities
due to cross-invocation overruns. We do this via (i) a slack-
reallocation policy that allows node invocations to execute
early using the leftover budget from past invocations, and
(ii) an overrun-management policy that allows overrunning
node invocations to execute simultaneously using the budgets
of multiple downstream nodes. The third mechanism limits
the length of overrun cascades through selective strict budget
enforcement as discussed above. Second, we provide analysis
to upper-bound the abort probability of each graph invocation.
Finally, we present results from experimental evaluations that
demonstrate the efficacy of our budget-management strategy.

Organization. In the following sections, we provide necessary
background information (Sec. II), present our budgeting pol-
icy for graphs with restricted parallelism (Sec. III), provide
graph abort-rate analysis for this policy (Sec. IV), present an
experimental evaluation (Sec. V), and conclude (Sec. VI).

II. TASK MODEL AND BACKGROUND

We consider a task system Γ consisting of N processing
graphs scheduled on m identical processors. Each graph
G ∈ Γ is characterized by a set of n nodes, {τ1, τ2, ..., τn},
representing the tasks of G and a set of directed edges between
these nodes. An edge from τi to τj denotes a precedence con-

straint between the predecessor node of τj (τi) and successor
node of τi ( τj). We denote the predecessors of τi as pred(τi).

Graph structure assumptions. For simplicity, we assume that
τ1 (resp. τn) is a unique source (resp. sink) node for graph G.
However, graphs with multiple sources/sinks can be supported
by adding a “dummy” source/sink with zero execution time.
We further assume that no cycles exist in each G ∈ Γ, making
each graph we consider a directed acyclic graph (DAG).

Node parameters. Each node τi ∈ G releases a sequence of
jobs, Ji,1, Ji,2, ... according to the following rule.

Job Release Rule. J1,j is released periodically
with an interarrival time of T . For i ̸= 1, Ji,j
is immediately released after every Jk,j such that
τk ∈ pred(τi) completes.

The Job Release Rule ensures that (i) DAG invocations
are released periodically, and (ii) precedence constraints are
enforced between nodes. Each node has a relative deadline
of T , with deadlines being soft, i.e., deadline misses are
acceptable. The response time of graph G is the maximum
difference between the completion time of Jn,j and the release
time of J1,j across all job index j. Additionally, an upper
bound on each job Ji,j’s execution-time distribution is given
by its probabilistic WCET (pWCET), characterized by the
discrete random variable (RV) ei,j .

Restricted parallelism. Each graph G has a parallelization
level ρ, representing the maximum number of concurrently
executing jobs per node, similar to the notion of restricted
parallelism introduced in [2]. Thus, for each node τi, Ji,j ,
can only begin execution when Ji,j−ρ completes. In light of
this, a job Ji,j is ready (to be scheduled) when (i) it is released
and not complete, and (ii) Ji,j−ρ is complete. As Ji,j depends
on the completion of other jobs before it can become ready,
we let dep(Ji,j) denote the set of jobs on which Ji,j depends.

Server-based graph budgeting. In a server-based graph bud-
geting approach such as [7], each node τi ∈ G is assigned
a reservation server Si with a relative deadline of T and an
execution budget of Ci. Each server Si releases a sequence of
server jobs Si,1, Si,2.... We assume these server jobs are sched-
uled by a global earliest-deadline-first (G-EDF) scheduler with
the following Tie-Breaking Rule.

Tie-Breaking Rule. If Si,x and Sk,y have the same
deadline, then Si,x has a higher priority if Ci < Ck,
or if Ci = Ck, and i < k.

We denote the release time of Si,j as ri,j . These server jobs
serve as “containers” on which nodes’ jobs are scheduled. The
budget of server jobs is managed according to the following.

Consumption Rule. Si,j begins with Ci budget and
consumes one unit of budget per unit of time sched-
uled. Si,j completes when its budget is exhausted.

The response time of each server job Si,j , Ri,j , is the dif-
ference between its completion and release time. The response
time of a reservation server Si, Ri, is the maximum response
time of any of its jobs. Server-based graph budgeting uses
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server jobs to emulate an “idealized system” where the jobs
of each node τi execute for exactly Ci time units. Within this
schedule, each server job Si,j then schedules jobs of nodes in
G. We say that a job Ji,j overruns (resp. underruns) its budget
when Si,j (resp. Ji,j) is complete, but Ji,j (resp. Si,j) is not.
Since server jobs mimic the schedule of jobs in an idealized
system, server jobs must also respect the parallelism restriction
of jobs. This can be done by transforming the reservation
servers of G into an rp-sporadic task set.

Transforming servers into an rp-sporadic task set. Prior
work has shown how a periodic DAG task can be converted
to an rp-sporadic task set [5], [1]. Using such a method, each
server Si can be considered as an rp-sporadic task, i.e., a task
with an execution cost Ci, a relative deadline and period of
T , and a parallelization level ρ. In the rp-sporadic task model,
we can use existing analysis in [2] to compute an upper bound
on the response time of each server Si, denoted as Rmax

i .
Precedence constraints between two servers can be elimi-

nated through the use of a release offset Oi for each server
Si that specifies the difference between ri,j and r1,j . The
release offset of each server is assigned according to the
following rule. Then, using release offsets, server jobs are
released according to the Server Release Rule.

Offset Rule. O1 = 0. For i ̸= 1, Oi = max({Ok +
Rmax

k | τk ∈ pred(τi)}).
Server Release Rule. S1,j is released when J1,j is
released. For i ̸= 1, Si,j is released at time r1,j+Oi.

The Offset Rule ensures Prop. 1 and the Server Release
Rule, along with the Job Release Rule, guarantees Prop. 2.

Property 1. For i ̸= 1, a server job Si,j is released after
every Sk,j where τk ∈ pred(τi) completes.

Property 2. Server jobs of each node are released periodically
with an interarrival time of T .

Due to the parallelism level of the rp-sporadic task model,
a released server job Si,j is not ready to be scheduled until
Si,j−ρ completes. Therefore, similarly to the case for jobs of
nodes, we say that a server job Si,j is ready when (i) it is
released and not complete, and (ii) Si,j−ρ is complete.

Example 2. Consider the DAG G in Fig. 3(a) with ρ = 1 and
T = 3 scheduled on a two-core machine. Suppose that after
transforming the reservation servers of G into an rp-sporadic
task set, using the method in [2] to compute response time
bounds, Rmax

1 = 4, Rmax
2 = 4, Rmax

3 = 5, and Rmax
4 = 4.

Due to the Offset Rule, O1 = 0, O2 = 4, O3 = 4, and O4 = 9.
Fig. 3(b) demonstrates the Server Release Rule. Assuming that
J1,1 is released at t = 0, due to the Server Release Rule, S1,1

is released at t = 0, S2,1 and S3,1 are released at t = 4,
and S4,1 is released at t = 9. Note that at t = 3, due to the
nature of rp-sporadic tasks, and ρ = 1, S1,2 must wait for the
completion of S1,1 before it becomes ready at t = 4.

Node priority. We say that a node τi has higher (resp. lower)
priority than τk when Si,j has higher (resp. lower) priority
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Fig. 3: (a) A processing graph G, and (b) a timeline showing server
job releases of G after being converted into an rp-sporadic task set.

than Sk,j for each job index j. We can compare the priorities
of τi and τk in G by examining Oi and Ok. If Oi < Ok, then
due to the Server Release Rule and Prop. 2, Si,j is released
earlier than Sk,j for each j. Since all server jobs have the same
relative deadline of T , τi has higher priority than τk under G-
EDF. Additionally, we say that τi tops τj’s priority when Si,j

has higher priority than Sk,j+ρ for each j. Whether τi tops
τk’s priority can be determined by examining node offsets.
If Oi < Ok + ρT , then by the Server Release Rule, Si,j is
released ρT time units earlier than Sk,j . Then, by Prop. 2, Si,j

is released earlier than Sk,j+ρ, implying τi tops τk’s priority.

III. DAG BUDGETING

This section presents our budget-management policy for
DAG tasks with restricted parallelism. Similar to the scheme
in [7], our budget-management policy schedules regular jobs
within the budget of server jobs. The budget of each server
job Si,j can be split into three states: (i) before Ji,j becomes
ready, (ii) when Ji,j is ready, and (iii) after Ji,j is complete.
State (i) occurs when jobs in dep(Ji,j) overrun, preventing Ji,j
from becoming ready. To quickly progress from (i) to (ii), we
propose rules for managing overrunning jobs in Sec. III-B.
When in (ii), Si,j can progress to state (iii) through Rule R1.

R1. If Si,j is scheduled and Ji,j is ready at time t,
then Ji,j is scheduled on Si,j .

Finally, (iii) occurs when Ji,j underruns. In this state, we
propose rules in Sec. III-A that allow Si,j to use the slack
from Ji,j’s underrun to schedule other jobs. Rules in both
Sec. III-A and Sec. III-B aim to limit the increase in job
overrun probabilities due to cross-invocation overruns. Based
on these ideas, in Sec. III-C, we propose a DAG abort scheme
that limits the length of overrun cascades.

A. Cross Invocation Slack Reallocation

When a job Ji,j underruns, slack is generated in the server
job Si,j . In certain scenarios, this slack, or remaining budget
of Si,j , can be used to execute Ji,j+ρ before the server job
Si,j+ρ is released. Doing so reduces the probability of Ji,j+ρ

overrunning, thus slowing down the increase in job overrun
probabilities due to cross-invocation overruns. In Ex. 3, we
illustrate how the slack of Si,j can be used to execute Ji,j+ρ.

Example 3. Consider the DAG G in Fig. 4(a) with a period
of T = 14. τ1 is a dummy source node with a server budget
of 0, and all other nodes in G have a server budget of 6.
Fig. 4(b) gives an example schedule of G with ρ = 1 on a
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Fig. 4: (a) A processing graph G. (b) A schedule of G that shows
how Ji,j+ρ can be scheduled on the slack of Si,j . (c) An alternate
schedule of G that shows how Ji,j+ρ can instead be scheduled on
the slack of Sk,j+ρ where τk ∈ pred(τi). Job executions are shaded,
and dotted lines are used to indicate the slack of server jobs.

two-core machine. S4,1 has a lower priority than S2,2 and
S3,2, so S2,2 and S3,2 are scheduled from t = 14 to 20. This
allows J2,2 (resp. J3,2) to be scheduled on S2,2 (resp. S3,2)
via Rule R1 and complete at t = 18. By the Job Release Rule,
J4,2 is therefore released at t = 18. J4,1, which was released
prior to t = 14, completes at t = 24. This makes J4,2 ready
at t = 24 due to the definition of job readiness. Additionally,
since J4,1 completes at t = 24, 2 units of slack are created
in S4,1 from t = 24 to 26. This slack can be used to schedule
the ready job J4,2 from t = 24 to 26.

From Ex. 3, we see that if a server job Si,j (S4,1 in the ex-
ample) has a lower priority than server jobs in {Sk,j+ρ | τk ∈
pred(τi)} (S2,2 and S3,2), then Si,j can use its slack to
schedule Ji,j+ρ (J4,2). However, what if Si,j has a higher
priority than server jobs in {Sk,j+ρ | τk ∈ pred(τi)}? We
consider this alternative scenario in the following example.

Example 4. The DAG G in Fig. 4(a) has a new period of
T = 15, and S4,1 is now released first at t = 14, followed
by the release of S2,2 and S3,2 at t = 15. Fig. 4(c) depicts
the new schedule of G. S3,2 now has a lower priority than
S4,2 and S2,2, resulting in the slack of S4,1 to be from the
time interval t = 18 to 20. Meanwhile, due to the Job Release
Rule, J4,2 can only become released (and therefore ready) at
t = 24 when both J2,2 and J3,2 are complete. Thus, J4,2
cannot take advantage of the slack of S4,1. However, J4,2 can
take advantage of the slack of S3,2 from t = 24 to 26.

From Ex. 4, we see that if Si,j (S4,1 in the example) has a
higher priority than server jobs in {Sk,j+ρ | τk ∈ pred(τi)}
(S2,2 and S3,2), then Ji,j+ρ (J4,2) can be scheduled in the
slack of the server job Sℓ,j+ρ (S3,2) with the lowest priority
under G-EDF in {Sk,j+ρ | τk ∈ pred(τi)}.

Slack reallocation rules. Ex. 3 exhibits a scenario where a
server job, S4,1, uses its slack to schedule a future job of
the same task, J4,2. Meanwhile, in Ex. 4, a server job, S3,2,
uses its slack to schedule a job of a successor node, J4,2. To
guarantee the progress of jobs in our analysis, the job executed
using the slack of server jobs must be determined offline.
We therefore allow a server job to prioritize jobs of certain
nodes through the use of preferred successors as introduced
in [7]. Each node has only one preferred successor, so jobs of

Algorithm 1 Procedure for assigning preferred successors.
1: procedure PREFSUCC(G)
2: for τi ∈ V do
3: pref (τi) := τi
4: for τk ∈ pred(τi) do
5: if τi tops τk’s priority then
6: pref (τi) := ∅
7: for τi ∈ G− τ1 do
8: Let τk be the lowest priority node in pred(τi)
9: if pref (τk ) = ∅ then

10: pref (τk) := τi

the preferred successor node will naturally be prioritized. We
denote the preferred successor of a node τi as pref (τi). Using
preferred successors, we can schedule jobs as follows.

R2.1. pref (τi) = τi: if Si,j is scheduled, Ji,j is
complete, and Ji,j+ρ is ready, then Si,j schedules
Ji,j+ρ.
R2.2. pref (τk) = τi, where i ̸= k: if Sk,j is
scheduled, Jk,j is complete, and Ji,j is ready, then
Sk,j schedules Ji,j .

Assigning preferred successors. Rule R2.1 is intended to
correspond to the scenario in Ex. 3, where a server job Si,j

uses its slack to schedule Ji,j+ρ if Si,j has lower priority than
server jobs in {Sk,j+ρ | τk ∈ pred(τi)}. This intention is
realized through the preferred successor assignment in Alg. 1.

Property 3. If pref (τi) = τi, then Si,j has lower priority than
each server job in {Sx,j+ρ | τx ∈ pred(τi)}

Proof. Consider the assignment of pref (τi) in Alg. 1. After
line 3, pref (τi) = τi. After the loop in lines 4 to 6, pref (τi) =
τi only if τi is lower priority than each τx ∈ pred(τi) across
invocations. Thus, Si,j is lower priority than each Sx,j+ρ.

Meanwhile, Rule R2.2 corresponds to the scenario in Ex. 4,
where an overrunning job Ji,j+ρ is scheduled in the slack
of Sℓ,j+ρ, the lowest-priority server job in {Sk,j+ρ | τk ∈
pred(τi)}∪{Si,j}. Alg. 1 guarantees this through the follow-
ing property, which in turn implies Cor. 1.

Property 4. If pref (τk) = τi, where i ̸= k, then Sk,j is the
lowest-priority server job in {Sx,j | τx ∈ pred(τi)}∪{Si,j−ρ}.

Proof. Consider the assignment of τi to pref (τk) in Alg. 1.
Due to line 8, τk is the lowest-priority node in pred(τi). This
implies that Sk,j is the lowest-priority job in {Sx,j | τx ∈
pred(τi)}. Additionally, in the if on line 9, τi is only assigned
to pref (τk) if pref (τk) = ∅. This can only occur in the if
statement in line 5, which implies that pref (τk) = τi only
when τk does not top τx’s priority for each τx ∈ pred(τk).
This implies that Si,j−ρ has higher priority than Sk,j .

Corollary 1. If pref (τk) = τi and i ̸= k, then τk ∈ pred(τi)

B. Cross Invocation Overrun Management

When jobs in dep(Ji,j) overrun, the time Ji,j becomes re-
ady can be delayed. In our overrun-management scheme, we
aim to reduce the effect this delay has on the ready time of Ji,j .
We provide the intuition of our approach through an example.
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Fig. 5: (a) A processing graph G. (b) A schedule of G where server
jobs schedule overrunning jobs in parallel.

Example 5. Consider the DAG G in Fig. 5(a) where τ1 and τ6
are dummy nodes, and all other nodes have a server budget
of 6. Additionally, T = 10, ρ = 1, and the offset of nodes
1 through 3 is 0, while the offset of nodes 4 and 5 is 6.
Fig. 5(b) gives an example schedule of G on a two-core
machine. Suppose J2,1 and J3,1 overrun by 2 time units before
t = 10. Then J2,2 and J3,2 are not ready to be scheduled by
Rule R1 at t = 10. Thus, S2,2 (resp. S3,2) must first complete
J2,1 (resp. J3,1) before J2,2 (resp. J3,2) becomes ready. This
cross-invocation overrun causes both J2,2 and J3,2 to overrun
by 2 time units. Due to the Job Release Rule, both J2,2 and
J3,2 must complete before J4,2 and J5,2 can be released. Since
S4,2 and S5,2 are scheduled in parallel at t = 16, J2,2 and J3,2
can be completed in parallel on these two server jobs. This
minimizes the time for both J4,2 and J5,2 to become ready,
reducing the effects of the earlier cross-invocation overrun on
the overrun of J4,2 and J5,2.

Observe from Ex. 5 that when a job Ji,j−ρ (J2,1 in the
example) prevents Ji,j (J2,2) from being ready, the server
job Si,j (S2,2) can ensure that Ji,j makes progress towards
being ready by ensuring that Ji,j−ρ makes progress towards
its completion. We formally define making progress as follows.

Definition 1. A job Ji,j makes progress on server job Sk,ℓ if
a job in dep(Ji,j)∪{Ji,j} is executing and Sk,ℓ is scheduled.

From Def. 1, we see that a job Ji,j makes progress on Sk,ℓ

when Sk,ℓ schedules a ready job in dep(Ji,j) ∪ {Ji,j}. Thus,
we can formalize our first observation of Ex. 5 into the first
overrun-management rule.

R3.1. If Si,j is scheduled, and Ji,j is released
but not ready, then Si,j schedules a ready job in
dep(Ji,j−ρ) ∪ {Ji,j−ρ}.

Parallel scheduling of overrunning jobs. Additionally, ob-
serve from Ex. 5 that when the release of a job Ji,j (J5,2 in the
example) is delayed due to overrunning jobs in dep(Ji,j) (J2,2
and J3,2), these overrunning jobs can make progress in parallel
on server jobs scheduled in parallel (S4,2 and S5,2). This
parallel scheduling of jobs can quickly complete overrunning
jobs in dep(Ji,j), greatly expediting Ji,j’s release. To take
advantage of this observation, we first identify server jobs
that can execute in parallel. Logically, server jobs of the same
graph with the same release can execute in parallel.

Definition 2. For two nodes in G, τi and τk, τk is in the
parallel set of τi if rk,j = ri,j for all job indices j. We denote
the parallel set of τi as PS (τi).

Due to the Offset Rule and the Server Release Rule, it is not
uncommon for a parallel set to contain more than one node.
For instance, in the DAG in Fig. 5(a), both τ4 and τ5 share
the same predecessor nodes, resulting in O4 = O5 from the
Offset Rule. Thus, by the Server Release Rule, r4,j = r5,j for
all job indices j, implying PS(τ5) = {τ4, τ5}. However, due
to the Tie-Breaking Rule, a node such as τ4 can have higher
priority than another node (τ5) in the same parallel set. This,
along with the following property can allow jobs from nodes
of the same parallel set to execute in parallel.

Property 5. If a server job Sk,y has higher priority than the
server job Si,x, and Si,x is scheduled for t time units after
Sk,y becomes ready, then Sk,y must be scheduled for at least
min(t, Ck) time units.

Proof. With G-EDF, if Si,x is scheduled after Sk,y becomes
ready, then the higher-priority Sk,y is also scheduled unless it
is complete. Thus, if Si,x is scheduled for t time units after
Sk,y becomes ready, then either Sk,y is scheduled for at least
t time units, or is complete (scheduled for Ck time units).

Due to Prop. 5, it is helpful to introduce the following.

Definition 3. HPS (τi) is the set of nodes in PS(τi) with
priority at least that of τi.

Helping set. Once we have identified a set of server jobs that
can execute in parallel, we can use these server jobs to allow
overrunning jobs to make progress in parallel. We see this in
Fig. 5(b) at t = 16 to 18, where a job of τ2 (resp. τ3) makes
progress on a server job of τ4 (resp. τ5). In such a case, we
say that τ4 (resp. τ5) helps τ2 (resp. τ3). Formally, we have:

Definition 4. We say that a node τi helps a node τk if Si,j

must ensure that the overrunning job Jk,j makes progress on
Si,j . We let the helping set of τi, denoted as Hi, be the set of
nodes that τi must help.

With careful assignment of nodes to helping sets, we can use
the following rule to ensure that overrunning jobs in dep(Ji,j)
make progress in parallel, greatly expediting Ji,j’s release. We
demonstrate this in Ex. 6

R3.2. If Si,j is scheduled, but Ji,j is not released,
then Si,j schedules a ready job in dep(Jx,j)∪{Jx,j}
where τx ∈ Hi.

Example 6. Continuing Ex. 5, we have pred(τ5) = {τ2, τ3},
and PS (τ5) = {τ4, τ5}. If we assign H4 = {τ2}, H5 = {τ3},
then by Def. 4, S4,2 (resp. S5,2) must ensure that J2,2 (resp.
J3,2) makes progress on S4,2 (resp. S5,2). This is realized
during t = 16 to 18 of the schedule in Fig. 5(b), where S4,2

and S5,2 are scheduled, but J4,2 is not released. By Rule R3.2,
S4,2 (resp. S5,2) schedules the ready job J2,2 (resp. J3,2) where
τ2 ∈ H4 (resp. τ3 ∈ H5).
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From Ex. 6, we see that S4,2 (resp. S5,2) completes J2,2
(resp. J3,2), thus allowing J5,2 to release. However, what if
S4,2 completes before J2,2 completes? In that case, S5,2 must
complete J2,2 along with J3,2 before J5,2 can release. This
motivates our final overrun management rule.

R3.3. If Si,j is scheduled, but Ji,j is not released and
no job can be scheduled using Rule R3.2, then Si,j

schedules a ready job in dep(Jx,j) ∪ {Jx,j} where
τx ∈ pred(τi).

Helping set assignment. Observe from Ex. 6 that the assign-
ment H4 = {τ2} and H5 = {τ3} can be achieved by evenly
partitioning the common predecessors of nodes in PS(τ5) (τ2
and τ3) across the helping sets of nodes in PS(τ5) (H4, H5).
This assignment allowed the overrunning jobs J2,2 and J3,2
to execute in parallel. Therefore, following the intuition in
Ex. 6, we wish to evenly partition the common predecessors
of nodes in PS(τi) across Hk for τk ∈ PS(τi). To do so, we
first formally define the concept of an even partitioning.

Definition 5. Let Ps(X) = {Ps
1(X),Ps

2(X), ...,Ps
s(X)} be an

s-partition of set X . Ps(X) is an even partitioning of X across
s sets if ⌊ |X|

s ⌋ ≤ |Ps
i (X)| ≤ ⌈ |X|

s ⌉ for each Ps
i (X) ∈ Ps(X).

Using Def. 5, we can express our helping set assignment
using the Assignment Rule.

Assignment Rule. For each node τi, let (k) be the index of the
kth node in PS(τi). The helping set of each τ(k) is assigned
according to the following equation.

H(k) = P|PS(τi)|
k

 ⋂
τx∈PS(τi)

pred(τx)


In the Assignment Rule, the intersection represents the

common predecessors of nodes in PS(τi). These common
predecessors are evenly partitioned into |PS(τi)| sets using
the P|PS(τi)|

k term. Each of these sets is then assigned to H(k)

for some τ(k) ∈ PS(τi). Overall, this results in the common
predecessors of nodes in PS(τi) being evenly partitioned
across Hk for τk ∈ PS(τi). We can show that the Assignment
Rule ensures Prop. 6. Using this property, we can show in
Prop. 7 that a node must help the nodes in its helping set.

Property 6. For each node τi,
⋃

τk∈HPS (τi) Hk ⊆ pred(τi)

Proof. Let X =
⋃

τk∈HPS (τi) Hk, Y =
⋃

τk∈PS (τi) Hk, and
Z =

⋂
τk∈PS(τi)

pred(τk). The choice of Z implies Z ⊆
pred(τi). Since the Assignment Rule evenly partitions nodes
in Z across Hk for each τk ∈ PS(τi), we have Z = Y . This
results in Y ⊆ pred(τi). Due to Def. 3, HPS (τi) ⊆ PS(τi),
which implies that X ⊆ Y . This results in X ⊆ pred(τi).

Property 7. If Si,j is scheduled, and there exist an incomplete
job in {Jk,j | τk ∈ Hi}, then a job in {Jk,j | τk ∈ Hi} makes
progress on Si,j .

Proof. Since τi ∈ HPS (τi), Prop. 6 implies that Hi ⊆
pred(τi). Therefore, when a job in {Jk,j | τk ∈ Hi} is
incomplete, that incomplete job must also be in {Jk,j | τk ∈

pred(τi)}. By the Job Release Rule, this implies that Ji,j is not
released. Therefore, by Rule R3.2, a job in {Jk,j | τk ∈ Hi}
makes progress on Si,j .

C. Graph Abort Condition

An invocation of a graph G may be aborted for two reasons.
First, when a job of the sink node Jn,j overruns, the invocation
is aborted so that G has a known response-time bound. Since
Sn,j is released at time r1,j+On, it is guaranteed to complete
by r1,j+On+Rmax

n . By aborting Jn,j when it overruns, either
G completes within On + Rmax

n time units, or it is aborted.
This forms the first graph abort condition.

R4.1. If Jn,j is not complete when Sn,j exhausts its
budget, then the jth graph invocation is aborted.

The second reason to abort a graph invocation is to limit
overrun cascades. Due to the definition of job readiness, a job
Ji,j can overrun and delay the ready time of Ji,j+ρ. This can
then cause Ji,j+ρ to overrun and further delay the completion
of Ji,j+2ρ. This forms an overrun cascade on τi.

Definition 6. An overrun cascade of length L exists on τi
when Ji,j+xρ for each x ∈ [1, L] is allowed to overrun.

We can see that as the length of an overrun cascade in-
creases, the chance of a job overrun also increases. Fortunately,
we can place a limit, L, on the overrun cascade length of each
node in G by periodically ensuring that jobs cannot overrun.
We do this by cycling through nodes that cannot experience
budget overruns on different graph invocations. An example of
this cycle is given in Fig. 2. When a job Ji,j cannot overrun,
it may not be able to complete, thereby preventing the release
of other jobs due to the Job Release Rule. This necessitates
aborting the entire jth graph invocation, giving rise to the
following abort condition. Due to the complex nature of Rule
R4.2, we give a demonstrative example.

R4.2. The jth graph invocation is aborted if Ji,j
is not complete when Si,j exhausts its budget and
i ∈

[
n
LP + 1, n

L (P + 1)
]
, where

P =

(⌊
j − 1

ρ

⌋
mod L

)
.

.
Example 7. Consider the graph G in Fig. 5(a). Suppose ρ = 2
and L = 2. For the first graph invocation, P evaluates to 0.
This results in a different value each time a new set of nodes
can cause a graph invocation to abort. n

L evaluates to 3. This
is the number of nodes that can cause each graph invocation to
abort. According to Rule R4.2, if Ji,1 overruns and i ∈ [1, 3],
then the 1st graph invocation is aborted. This includes J1,1,
J2,1, and J3,1. For the second graph invocation, P remains
0, so the graph invocation is aborted if Ji,2 overruns and
i ∈ [1, 3]. For the third (resp. fourth) graph invocations, P
evaluates to 1, so the graph invocation is aborted if Ji,3
(resp. Ji,4) overrun for i ∈ [4, 6]. Finally, for the 5th graph
invocation, the mod operator restarts the cycle, resulting in a
graph invocation abort when J1,5, J2,5, or J3,5 overrun.
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IV. DROP-RATE ANALYSIS

In this section, we provide analysis to upper bound the abort
probability of each graph instance. In Sec. IV-A, we analyze
the effects of our slack reallocation technique introduced
in Sec. III-A, and in Sec. IV-B, we analyze the effects of
our overrun management technique introduced in Sec. III-B.
Finally, in Sec. IV-C, we combine the effects of both to obtain
an upper bound on the abort probability of each graph instance.

Tracking job progress with demand. We can track how much
progress a job needs to make before its completion with the
concept of demand, formally defined below.

Definition 7. The demand of Ji,j is the number of time units
for which Ji,j makes progress on Si,j or server jobs released
after Si,j before Ji,j completes.

Definition 8. Let the RV δi,j equal a value that upper-bounds
the demand of Ji,j .

From our scheduling rules in Sec. III, we can show that the
job Ji,j makes progress whenever Si,j is scheduled.

Lemma 1. If a server job Si,j is scheduled and Ji,j is
incomplete, then Ji,j makes progress on Si,j

Proof. If Ji,j is ready, then Si,j schedules Ji,j by Rule R1,
implying Ji,j makes progress on Si,j by Def. 1. If Ji,j is
not ready, then by the Job Release Rule and the definition
of job readiness, Ji,j depends on the completion of jobs in
X = {Jk,j | τk ∈ pred(τi)}∪{Ji,j−ρ}. If we show that when
Si,j is scheduled, Rules R3.1 to R3.3 cause some job in X to
make progress on Si,j , then Ji,j also makes progress on Si,j

due to Def. 1. We consider two cases depending on whether
Ji,j has been released when Si,j is scheduled.

Case 1. Ji,j has not been released. Rule R3.2 ensures that
a job in {Jk,j | τk ∈ Hi} makes progress on Si,j . Since
Hi ⊆ pred(τi) by Prop. 6, a job in {Jk,j | τk ∈ pred(τi)}
makes progress on Si,j . Rule R3.3 also ensures that a job in
{Jk,j | τk ∈ pred(τi)} makes progress on Si,j .

Case 2. Ji,j has been released, but is not ready. Rule R3.1
ensures that Ji,j−ρ makes progress on Si,j by Def. 1.

From Def. 7 and Lem. 1, we see that when the demand of a
job Ji,j is greater than its server budget Ci, Ji,j will overrun.
Since δi,j upper-bounds the demand of Ji,j , P (δi,j > Ci)
upper-bounds the probability Ji,j overruns. Therefore, because
Rules R4.1 and R4.2 can cause graph invocations to abort
when certain jobs overrun, we can compute the graph drop
rate by analyzing how δi,j is affected by our scheduling rules.

Comparisons between RVs. In the following analysis, we
say that for RVs X and Y , X ≥0 Y when the value of X is
always at least that of Y .

A. Effects of Slack Reallocation

Here, we examine how our slack-reallocation rules affect
each δi,j . We do this using the RV Ψi,j , which represents a
lower bound on the duration Ji,j is scheduled due to R2.1

and R2.2. To reflect that Rules R2.1 and R2.2 only apply to
preferred successor nodes, we have the following.

Definition 9. If τi is not a preferred successor node, then
Ψi,j = 0 for each job Ji,j .

Additionally, Ji,j cannot be scheduled on Si,j−ρ by Rule
R2.1 if j − ρ < 1 (Si,j−ρ does not exist).

Definition 10. If j − ρ < 1, then Ψi,j = 0 for each job Ji,j .

For the rest of the analysis, we assume that j−ρ ≥ 1. If τi is
a preferred successor node due to Alg. 1, either τi = pref (τk)
where i ̸= k or τi = pref (τi). In the former case, Ψi,j is
defined as follows.

Definition 11. If pref (τk) = τi and k ̸= i, then Ψi,j = Ck −
max({sx,j | τx ∈ pred(τi)} ∪ {si,j−ρ + Ci − Ck}), where

si,j =

{
δi,j δi,j < Ci

∞ otherwise.
(1)

To understand this definition, first note that Ji,j can only
be scheduled on Sk,j via Rule R2.2 if Ji,j is ready and Jk,j
is complete, which occurs when all jobs in {Jx,j | τx ∈
pred(τi)} ∪ {Ji,j−ρ} complete. Thus, by examining the re-
maining budget of Sk,j when these jobs complete, we can
compute Ψi,j . To do this, we first show that when Sk,j is
scheduled, these jobs are scheduled in parallel on server jobs
in {Sx,j | τx ∈ pred(τi)} ∪ {Si,j−ρ} (hence the max).

Lemma 2. If pref (τk) = τi and k ̸= i, then Sx,j where
τx ∈ pred(τi) becomes ready no later than Sk,j’s release.

Proof. This lemma follows from the definition of job readiness
if (i) Sx,j is released no later than Sk,j and (ii) Sx,j−ρ

completes no later than Sk,j’s release. From Prop. 4, Sk,j has
lower priority than Si,j−ρ and Sx,j . Thus, by the definition
of G-EDF, rk,j ≥ ri,j−ρ and rk,j ≥ rx,j . rk,j ≥ rx,j implies
(i). Meanwhile, by Prop. 1, Sx,j−ρ completes no later than
Si,j−ρ’s release. Since rk,j ≥ ri,j−ρ, Sx,j−ρ completes no
later than Sx,j’s release as well, satisfying (ii).

Lemma 3. If pref (τk) = τi where k ̸= i, and Sk,j has been
scheduled for t time units, then Sx,j where τx ∈ pred(τi) has
been scheduled for at least min(t, Cx) time units.

Proof. The lemma follows from Prop. 5 if (i) Sk,j has lower
priority than Sx,j and (ii) Sx,j becomes ready no later than
Sk,j’s release. Prop. 4 implies (i) and Lem. 2 implies (ii).

To lower-bound the execution of Si,j−ρ when Sk,j has
executed for t time units, we require the following theorem of
rp-sporadic task systems proved in [2].

Theorem 1. There exists a constant x such that the response-
time bound Rmax

i of any server Si under G-EDF scheduling
is at most x+ T + Ci.

Lemma 4. If pref (τk) = τi and k ̸= i, then Si,j−ρ becomes
ready at most Ci − Ck time units after Sk,j’s release.
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Proof. This lemma follows from the definition of job readiness
if (i) Si,j−ρ is released no later than Sk,j’s release and (ii)
Si,j−2ρ (if it exists) completes at most Ci − Ck time units
after Sk,j’s release. From Prop. 4, Sk,j has lower priority
than Si,j−ρ. Thus, by the definition of G-EDF, rk,j ≥ ri,j−ρ,
implying (i). Meanwhile, because of Cor. 1, τk ∈ pred(τi).
Thus, by the Offset Rule and the Server Release Rule, we
have ri,j−ρ ≥ rk,j−ρ + Rmax

k . Since rk,j ≥ ri,j−ρ, we
have rk,j ≥ rk,j−ρ + Rmax

k . This implies by Prop. 2 that
ρT ≥ Rmax

k . From Thm. 1, we have Rmax
k = x+T +Ck and

Rmax
i = x+T+Ci, which imply Rmax

k = Rmax
i −Ci+Ck. By

substitution into ρT ≥ Rmax
k , we have ρT+Ci−Ck ≥ Rmax

i .
This means that Si,j−2ρ, if it exists, completes no later than
t = ri,j−2ρ+ρT+Ci−Ck. By Prop. 2, ri,j−ρ = ri,j−2ρ+ρT ,
so we have t = ri,j−ρ+Ci−Ck. Since rk,j ≥ ri,j−ρ, we have
t ≤ rk,j+Ci−Ck. This means that Si,j−2ρ completes at most
Ci − Ck time units after Sk,j’s release, satisfying (ii).

Lemma 5. If pref (τk) = τi where k ̸= i and Sk,j has been
scheduled for t time units, then Si,j−ρ has been scheduled for
at least min(t− Ci + Ck, Ci) time units.

Proof. The lemma follows from Prop. 5 if (i) Sk,j has lower
priority than Sx,j and (ii) Sk,j has been scheduled for at most
Ci − Ck time units before Si,j−ρ becomes ready. Prop. 4
implies (i) and Lem. 4 implies (ii).

We now use Lems. 3 and 5, to show that Ψi,j is indeed a
lower-bound on the time Ji,j is scheduled due to Rule R2.2.

Lemma 6. If pref (τk) = τi and k ̸= i and Ψi,j > 0, then
Sk,j executes Ji,j for at least Ψk,j time units

Proof. For brevity, let X = max({δx,j | τx ∈ pred(τi)} ∪
{δi,j−ρ+Ci−Ck}). From Def. 11, we can verify that if Ψi,j >
0, then Ck − X > 0. Thus, we can let t be the time instant
when Sk,j has executed for X time units. By Lem. 3 (resp.
Lem. 5), Sx,j for each τx ∈ pred(τi) (resp. Si,j−ρ) must have
executed for at least min(X,Cx) (resp. min(X−Ci+Ck, Ci))
time units by t. Due to our choice of X , we have X ≥0 δx,j
and X ≥0 δi,j−ρ +Ci−Ck. This implies that by t, each Sx,j

(resp. Si,j−ρ) has executed for at least min(δx,j , Cx) (resp.
min(δi,j−ρ, Ci)) time units. Because Ψi,j > 0, by Def. 11,
δx,j < Cx for each τx and δi,j−ρ < Ci. This implies that at t,
each Sx,j and Si,j−ρ is not complete. Thus, by Lem. 1, each
Jx,j (resp. Ji,j−ρ) has made progress on Sx,j (resp. Si,j−ρ)
for at least δx,j (resp. δi,j−ρ) time units by t. Defs. 7 and 8
then imply that Ji,j−ρ and each Jx,j are complete at t. Thus,
by the Job Release Rule and the definition of job readiness
Ji,j is ready at t. Additionally, due to Cor. 1, τk ∈ pred(τi).
This implies that since each Jx,j is complete at t, Jk,j is also
complete at t. Since Ji,j is ready and Jk,j is complete, by Rule
R2.2, Ji,j is scheduled on Sk,j from t until Sk,j completes.
Since Si,j−ρ has already expended X units of budget by t.
Ji,j is scheduled on Sk,j for Ψi,j time units.

Next, we define Ψi,j for the case τi = pref (τi). Note the
similarities between Defs. 11 and 12.

Definition 12. If pref (τi) = τi, then Ψi,j = Ci−max({sx,j |
τx ∈ pred(τi)} ∪ {si,j−ρ}), where si,j is given by (1)

Lemma 7. If pref (τi) = τi and Ψi,j > 0, then Si,j−ρ executes
Ji,j for at least Ψi,j time units.

We can use a similar argument to the one in Lem. 6 to
prove Lem. 7 by examining the amount of time server jobs
in {Sx,j | τx ∈ pred(τi)} ∪ {Si,j−ρ} has executed along-side
Si,j−ρ instead of Sk,j . Using Lems. 6 and Lem. 7, we now
show that δi,j is a function of Ψi,j .

Lemma 8. If Ψi,j > 0, then δi,j = ei,j −Ψi,j

Proof. If Ψi,j > 0, then by Lems. 7 and 6, Ji,j executes for at
least Ψi,j time units on either Si,j−ρ or Sk,j where pref (τk) =
τi (depending on whether it is the preferred successor of its
own node or some other node). From Cor. 1, τk ∈ pred(τi). By
Prop. 1 and the definition of server job readiness, Si,j becomes
ready after each Sk,j and Si,j−ρ complete. Therefore, Ji,j is
scheduled for Ψi,j time units before Si,j becomes ready. Since
Ji,j can execute for at most ei,j time units (its pWCET) before
it completes, it can execute for at most ei,j−Ψi,j time units on
Si,j and other server jobs before its completion. The lemma
follows by Defs. 7 and 8.

B. Effects of Overrun Management

In this section, we quantify the effects of our overrun
management rules R3.1 to R3.3 on each δi,j . Recall from
Def. 7 that the demand of Ji,j is the number of time units
Ji,j makes progress before its completion on Si,j and server
jobs released after Si,j . To aid in our analysis, we break the
times that Ji,j makes progress into distinct phases.

First phase. The first phase begins after the time instant Si,j

becomes ready, which we denote as t0. In this phase, jobs that
prevent the release of Ji,j can make progress in parallel due to
Rule R3.2. This is because, during this phase, server jobs can
execute alongside Si,j . To prove this, we use the following
property of the Tie-Breaking Rule.

Property 8. For τk ∈ HPS (τi), Ci ≥ Ck.

Lemma 9. If Si,j has been scheduled for t time units, then
Sk,j where τk ∈ HPS (τi) has been scheduled for at least
min(t, Ck) time units.

Proof. We prove this lemma via induction on job indices. For
the base case, we first show that the lemma holds for each job
index x ≤ ρ. Since x ≤ ρ, Sk,x−ρ and Si,x−ρ do not exist,
implying that Sk,x (resp. Si,x) is ready immediately after rk,x
(resp. ri,x) due to the definition of server job readiness. Since
Sk,x and Si,x are ready at the same time (due to having the
same release time by Defs. 2 and 3), and Sk,x has higher
priority (as τk ∈ HPS (τi)), the lemma is true for Sk,x and Si,x

by Prop. 5. For the inductive step, we show that if the lemma is
true for some job index j−ρ, it is true for job index j. Since the
lemma is true for Sk,j−ρ and Si,j−ρ, when Si,j−ρ completes
(scheduled for Ci time), Sk,j−ρ has been scheduled for at least
min(Ci, Ck) time units. Due to Prop. 8, min(Ci, Ck) = Ck,
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implying that Sk,j−ρ is also complete. Since Si,j and Sk,j

have the same release, and Sk,j−ρ is complete when Si,j−ρ is
complete, then by the definition of server job readiness, Sk,j

is ready when Si,j is ready. Since Sk,j also has higher priority
than Si,j , the lemma holds for Si,j and Sk,j by Prop. 5.

While each server job Sk,j is scheduled, it can execute
overrunning jobs of nodes in its helping set by Rule R3.2.
We can upper-bound the time each of these overrunning jobs
can make progress before their completion.

Lemma 10. After each server job Si,j completes, Ji,j makes
progress on server jobs for at most max(0, δi,j − Ci) time
units before its completion.

Proof. By Defs. 7 and 8, δi,j gives an upper bound on the
time Ji,j makes progress on Si,j and servers released after
Si,j’s completion. As a result, if δi,j < Ci, Ji,j completes
on Si,j due to Lem. 1, and can make progress for at most
0 = max(0, δi,j − Ci) time units after Si,j’s completion. On
the other hand, if δi,j ≥ Ci, Ji,j makes progress on Si,j

for Ci time units, and thus can make progress for at most
max(0, δi,j − Ci) time units after Si,j’s completion.

Lem. 10 then implies the following.

Lemma 11. After Si,j becomes ready, jobs in {Jx,j | τx ∈
Hi} make progress on server jobs for at most a total of∑

τx∈Hi
max(0, δx,j − Cx) time units before they complete.

Proof. By Prop. 1, when Si,j is ready (and hence released),
all server jobs in {Sx,j | τx ∈ pred(τi)} are complete. Since
Prop. 6 implies Hi ⊆ pred(τi), when Si,j is ready, all server
jobs in {Sx,j | τx ∈ Hi} are complete. Thus, by Lem. 10, each
job in {Jx,j | τx ∈ Hi} can make progress on server jobs for
at most max(0, δx,j − Cx) time units after Si,j is ready.

We denote the end of the first phase as t1. This occurs when
Si,j has been scheduled for Φ1

i,j time units, as defined next.

Definition 13. For each job Ji,j , let the RV Φ1
i,j =

max({min(Ck, Ok,j) | τk ∈ HPS (τi)}) where

Ok,j =
∑

τx∈Hk

max(0, δx,j − Cx). (2)

Note that due to Prop. 8, Φ1
i,j ≤ Ci by Def. 13. This implies

that t1 is at or before Si,j’s completion. Since Si,j is scheduled
for Φ1

i,j time units between t0 (when it became ready) and t1,
we have the following due to Lem. 1.

Corollary 2. Between t0 and t1, Ji,j makes progress on Si,j

for Φ1
i,j time units.

Due to the parallel execution of server jobs for nodes in
helping sets, we can infer the following after t1.

Lemma 12. After t1, for each τk ∈ HPS (τi), jobs in
{Jx,j | τx ∈ Hk} make progress for at most a total of
max(0, Ok,j − Ck) time units before they complete.

Proof. Since Si,j is scheduled for Φ1
i,j time units by t1, Lem. 9

implies that Sk,j for each τk ∈ HPS (τi) is scheduled for at

least min(Φ1
i,j , Ck) time units by t1. From Def. 13, Φ1

i,j ≥
min(Ck, Ok,j), implying that min(Φ1

i,j , Ck) ≥ min(Ck, Ok,j)
for each τk ∈ HPS (τi). This implies that each Sk,j is sched-
uled for at least min(Ck, Ok,j) time units by t1. By Prop. 7,
this implies that for each Sk,j , jobs in {Jx,j | τx ∈ Hk} have
made progress for at least min(Ck, Ok,j) time units on Sk,j

by t1. Since Lem. 11 states that jobs in {Jx,j | τx ∈ Hk} can
make progress for at most a total of Ok,j time units before they
complete, the lemma follows because Ok,j−min(Ck, Ok,j) =
max(0, Ok,j − Ck).

Second phase. The second phase begins at t1, and ends when
Ji,j is ready. To see how much progress Ji,j can make on
server jobs in this phase, we examine how much progress jobs
in dep(Ji,j) can make before Ji,j becomes ready.

Definition 14. For each job Ji,j , let the RV

Φ2
i,j = max(0, δi,j−ρ −Ci) +

∑
τk∈HPS (τi)

max(0, Ok,j −Ci)

+
∑

τx∈pred(τi)−
⋃

τk∈HPS (τi)
Hk

max(0, δx,j − Cx) (3)

where each Ok,j is given by (2) and δi,j′ = Ci where j′ < 1.

Lemma 13. After t1, jobs in {Jx,j | τx ∈ pred(τi)}∪{Ji,j−ρ}
can make progress on server jobs for at most a total of Φ2

i,j

time units before they complete.

Proof. For brevity, we let X =
⋃

τk∈HPS (τi) Hk. Since Si,j

is ready at t0, by the definition of server job readiness and
Prop. 1, server jobs in {Sx,j | τx ∈ pred(τi)} ∪ {Si,j−ρ}
are complete at t0, implying that these server jobs are also
complete at t1. Due to Prop. 6, we can partition {Sx,j |τx ∈
pred(τi)} ∪ {Si,j−ρ} into three sets of server jobs that are
complete at t1: {Si,j−ρ}, {Sx,j | τx ∈ X}, and {Sx,j | τx ∈
pred(τi)−X}. By Lem. 10, the first term in (3) upper-bounds
the amount of progress Ji,j−ρ (if it exists) makes on server
jobs after t1. Similarly, by Lem. 10, the third term in (3) upper-
bounds the amount of progress jobs in {Jx,j | τx ∈ pred(τi)−
X} make on server jobs after t1. Finally, by Lem. 12, the
second term in (3) upper-bounds the amount of progress jobs
in {Jx,j | τx ∈ X} make on server jobs after t1.

Lem. 13 allows us to upper-bound the progress Ji,j makes
during the second phase.

Lemma 14. Between t1 and t2, Ji,j make progress on server
jobs for at most Φ2

i,j time units.

Proof. For brevity, let X = {Jx,j | τx ∈ pred(τi)}∪{Ji,j−ρ}.
If Ji,j makes progress before t2, then Def. 1 implies that some
job J ∈ dep(Ji,j) is scheduled. This implies that J must
complete before Ji,j is ready, which by the definition of job
readiness and the Job Release Rule means that J ∈ dep(Jk,ℓ)∪
{Jk,ℓ} for some Jk,ℓ ∈ X . Therefore, by Def. 1 Ji,j can only
make progress when a job in X makes progress. Since jobs
in X can make progress for at most Φ2

i,j time units after t1
due to Lem. 13, the lemma follows.
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Upper-bounding demand. After t2, Ji,j is ready, and there-
fore can make progress for at most its pWCET, ei,j time units,
before it completes. This, combined with the progress that Ji,j
made through the first two phases gives us the following.

Lemma 15. For each job Ji,j , δi,j = Φ1
i,j +Φ2

i,j + ei,j .

Proof. From Cor. 2 Ji,j makes progress for at most Φ1
i,j time

units on Si,j . Also, due to Lem. 14, Ji,j makes progress for
at most Φ2

i,j time units before Ji,j becomes ready at t2. After
Ji,j is ready, it can make progress for at most ei,j time units
before it completes. The lemma follows by Defs. 7 and 8.

C. Combining
Lem. 15 allows us to compute an upper-bound on the

demand of each job Ji,j (δi,j) in the general case. Lem. 8 also
allows us to compute a tighter upper-bound on δi,j if Ψi,j > 0.
We can utilize both lemmas to form a single equation for δi,j .

Theorem 2. For each job Ji,j , δi,j = ∆i,j + ei,j where

∆i,j =

{
−Ψi,j if Ψi,j > 0

Φ1
i,j +Φ2

i,j otherwise.
(4)

Proof. Follows directly from Lems. 8 and 15.

Observe from Defs. 12–14 that for a job Ji,j , Ψi,j and
Φi,j are functions of δi,j−ρ and δk,j for each τk ∈ pred(τi).
As a result, Thm. 2 forms a recurrence relation where δi,j ,
can be computed from δi,j−ρ and each δk,j . Therefore, the
demand upper bound of each node can be computed using the
recurrence relation in Eq. 4.

Computing demand upper bound for large job indices.
While it is possible to compute δi,j using the recurrence
relation in Eq. 4, this method can become computationally
intensive for large job indices. Fortunately, we can shorten the
recursive depth required to compute δi,j using the following.

Lemma 16. If the overrun of a job Ji,j results in a graph
invocation abort due to Rules R4.1 or R4.2, then δi,j = Ci.

Proof. If the overrun of Ji,j causes a graph-invocation abort,
then Ji,j cannot make progress on server jobs after Si,j

completes. Therefore, Ji,j can only make progress on Si,j

for at most Ci time units. The lemma follows by Def. 8.

Computing the probability distribution of δi,j . Notice from
Thm. 2 and Defs. 12–14 that the recurrence relation in (4)
consists of a sequence of operations on RVs. These operations
modify the probability distribution functions (PDFs) of RVs
according to known rules [6], [7]. Thus, by applying these
rules, we can compute the PDF of δi,j .

Theorem 3. Let A be the set of jobs whose overrun can cause
the jth invocation of G to abort due to Rules R4.1 and R4.2.
The abort probability of the jth invocation of G is at most∑

Ji,j∈A

P (δi,j > Ci).

Proof. This theorem follows from the fact that the jth graph
invocation is aborted when a job in A overruns its budget.
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Fig. 6: Plot of the maximum analytical abort-rate upper bound of
1, 000 random DAGs across 50 job invocations. Four scenarios are
shown, (a) overrun cascade lengths are limited to L = 24, (b) L =
12, (c) L = 6, and (d) each node’s budget is strictly enforced.

V. EXPERIMENTAL EVALUATION

We conducted experiments to demonstrate two attributes
of our budget-enforcement method. First, our method ensures
that the abort rate of the jth invocation of a graph does not
increase unboundedly as jth increases. Second, our method
produces a lower graph abort-rate upper bound than the naı̈ve
method where all node budgets are strictly enforced. We do
not compare our method against that in [7] as it does not
support graphs with limited preemption. We demonstrate these
attributes by evaluating the maximum analytical abort-rate
upper bound of 1, 000 randomly generated DAGs for the first
50 job invocations. Each generated DAG has 200 nodes and
is assigned a random value of ρ between 1 and 4.

DAG generation. To generate an n-node DAG, we first gener-
ated nodes with the following parameters. The pWCET of each
job follows a type-1 Gumbel distribution with a mean of 5 ms
and a standard deviation of 2 ms. (The Gumbel distribution is
often used to represent measurement-based pWCETs [4].) We
then set each node’s budget as the 99.9th percentile value of
our Gumbel distribution. Since our focus is DAG abort rate
and not schedulability, we set the period T to a large value
of 50n ms so that the DAG is trivially schedulable. We then
generated the structure of each DAG using a modified version
of the Erdös-Rényi method [3] used in [7].

Fig. 6 gives our evaluation results. We see that our budget
management method is successful in preventing an unbounded
increase in graph abort-rates across invocations. Additionally,
our method gives an analytical abort-rate upper bound that is
an order of magnitude improvement over the naive method.

VI. CONCLUSION

We have presented a budget-management method for DAGs
that supports restricted parallelism. Our policy limits the length
of overrun cascades by strictly enforcing node budgets in
a cyclic fashion, and limits increases in abort probabilities
across graph invocations by allowing overrunning jobs to be
scheduled in parallel. We also presented a probabilistic abort-
rate analysis of our method. Finally, we presented experiments
that demonstrate that our method does indeed limit graph
abort-rate increases across graph invocations, and is superior
to the naı̈ve approach of strict per-node budget enforcement.

In future work, we plan to introduce locking-protocol usage
by graph nodes that access shared resources. We also plan
to evaluate implementation tradeoffs by implementing our
method within an actual real-time OS.
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