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Abstract

The PD2 Pfair/ERfair scheduling algorithm is the most
efficient known algorithm for optimally scheduling peri-
odic tasks on multiprocessors. In this paper, we prove
that PD2 is also optimal for scheduling “rate-based”
tasks whose processing steps may be highly jittered.
The rate-based task model we consider generalizes the
widely-studied sporadic task model.

1 Introduction

In the real-time scheduling literature, the periodic [10]
and sporadic [11] task models have received the most
attention. In the periodic model, each task is invoked
repeatedly, with consecutive invocations, or jobs, be-
ing spaced apart by a fixed amount; in the sporadic
model, a lower bound on the time between invocations
is assumed. In practice, however, event occurrences
often are neither periodic nor sporadic. For example,
in an application that services packets arriving over a
network, packet arrivals may be highly jittered. Rate-
based scheduling schemes are more seamlessly able to
cope with jitter. In such schemes, there is no restric-
tion on a task’s instantaneous rate of execution, but
an average rate is assumed. If a task’s instantaneous
rate exceeds its average rate, then it is dealt with by
using simple mechanisms such as postponing deadlines.
In this paper, we investigate rate-based scheduling on
multiprocessors. The starting point for our work is
recent research on Pfair and ERfair scheduling algo-
rithms, which are known to be optimal for scheduling
periodic tasks on multiprocessors [2, 4, 5, 6].
Under Pfair scheduling , each task is required to exe-

cute at a uniform rate, while respecting a fixed alloca-
tion quantum. Uniform rates are ensured by requiring
the allocation error for each task to be always less than
one quantum, where “error” is determined by compar-
ing to an ideal fluid system. Due to this requirement,
each task is effectively subdivided into quantum-length
subtasks that must execute within windows of approx-
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imately equal lengths: if a subtask of a task T ex-
ecutes outside of its window, then T ’s error bounds
are exceeded. Early-release fair (ERfair) differs from
Pfair scheduling in a rather simple way: under ERfair
scheduling, a subtask may become eligible for execu-
tion early , i.e., before its Pfair window. By allowing
early releases, response times can often be reduced.
In [3], we proposed the intra-sporadic task model,

which generalizes both the sporadic and early-release
models. In the intra-sporadic model, subtasks may be-
come eligible either early or late, i.e., there may be
separation between consecutive windows of the same
task. As explained later, the intra-sporadic notion of
a rate is quite similar to that found in the recently-
proposed uniprocessor rate-based execution model [9].
In [3], we presented an algorithm that optimally sched-
ules intra-sporadic tasks on two processors. However,
we left open the problem of optimally scheduling intra-
sporadic tasks on systems of more than two processors.

Contributions of this paper. In this paper, we
close this problem by showing that the PD2 Pfair al-
gorithm [2, 4] correctly schedules any feasible intra-
sporadic task system on M processors. Because the
intra-sporadic model is a generalization of the sporadic
model, our work also shows that PD2 is optimal for
scheduling sporadic tasks on multiprocessors. Since pe-
riodic task systems represent a “worst-case” scenario in
the spectrum of intra-sporadic (or sporadic) task sys-
tems, one may think that the optimality of PD2 would
follow as a simple corollary from previous work. How-
ever, previously-presented proofs for Pfair and ERfair
scheduling algorithms do not easily extend beyond the
periodic task model. In this paper, we provide a new
approach for dealing with Pfair- or ERfair-scheduled
systems and use it to show that intra-sporadic tasks
can be optimally scheduled on multiprocessors. This
paper breaks new ground by being the first to show
that sporadic or intra-sporadic tasks can be optimally
scheduled on systems of more than two processors.

Some example schedules. The length and align-
ment of a task’s Pfair windows is determined by its
weight , which is defined as the ratio of its per-job exe-
cution cost and period. Fig. 1 shows some schedules in-

1



slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

T(5/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

U(4/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

V(4/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

W(4/16): _ _ _ _

(a)

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

T(5/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

U(4/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

V(4/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

W(4/16): _ _ _ _

(c)

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

T(5/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

U(4/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

V(4/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

W(4/16): _ _ _ _

(b)

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _

_ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _

_ _ _ _ _ _ _
_ _ _ _ _ _

_ _ _ _
_ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _

_ _ _ _
_ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _
_ _ _ _ _ _

_ _ _ _
_ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _
_ _ _ _ _ _

_ _ _ _

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

T(5/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

U(4/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

V(4/16): _ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

W(4/16): _ _ _ _

(d)

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _
_ _ _ _

_ _ _ _

_ _ _ _ _ _ _ _
_ _ _ _ _ _

_ _ _ _
_ _ _ _ _ _

_ _ _ _
_ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _

_ _ _ _
_ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _
_ _ _ _ _ _

_ _ _ _
_ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _
_ _ _ _ _ _

_ _ _ _

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

Figure 1: A partial schedule for an intra-sporadic task set under various conditions. In each of these schedules, subtasks
of the same task are shown on different lines. Each subtask has an eligibility interval corresponding to the sequence of
time slots in which it can be scheduled; a subtask’s eligibility interval must include its Pfair window. In each schedule,
each subtask’s eligibility interval is denoted by a sequence of dashes, with its Pfair window denoted in bold; the time
slot in which the subtask is scheduled is denoted by an ‘X’. (a) All tasks are periodic and are Pfair-scheduled. (b) All
tasks are periodic and are ERfair-scheduled. (c) Task T has a late-released subtask and no subtask is eligible before its
Pfair window. (d) Task T has a late-released subtask and all subtasks become eligible as early as possible.

volving four tasks: T with weight 5/16, and U , V , and
W with weight 4/16. Insets (a) and (b) show schedules
for Pfair- and ERfair-scheduled systems, respectively.
Insets (c) and (d) show similar schedules, except that
the third subtask of task T is released two time units
late (perhaps this late release represents a packet that
arrived late). In the intra-sporadic model, each sub-
task must be scheduled within an eligibility interval

that includes its Pfair window. For example, the el-
igibility interval of T ’s second subtask in inset (b) is
[1, 6], whereas its Pfair window is [3, 6].

In the rest of this paper, we present needed defini-
tions (Sec. 2), describe the PD2 algorithm (Sec. 3),
prove that PD2 optimally schedules intra-sporadic
tasks (Sec. 4), and then conclude (Sec. 5).

2 Definitions

In the scheduling disciplines we consider, processor
time is allocated in discrete quanta; the time inter-
val [t, t+ 1), where t is a nonnegative integer, is called
slot t. A task T may be allocated time on different
processors, but not in the same slot. The sequence of
allocation decisions over time defines a schedule S. For-
mally, S : τ ×Z 7→ {0, 1}, where τ is a set of tasks and
Z is the set of nonnegative integers. S(T, t) = 1 means
that task T is scheduled in slot t. In any schedule for
M processors,

∑

T∈τ S(T, t) ≤ M for all t. Note that
the definition of a schedule given here permits “invalid”
scheduling decisions (e.g., missed deadlines). Our va-
lidity condition for schedules is defined later in Sec. 2.2.
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2.1 Pfair and ERfair Scheduling

In this subsection, we define notions relevant to Pfair
and ERfair scheduling. For now, we limit attention to
periodic tasks. A periodic task T with a period T.p and
an execution cost T.e has a weight of T.e/T.p. Every
T.p time units, T releases a new job (i.e., instance)
with cost T.e. Each job of T must complete execution
before the next job of T is released. We require that
T.e ≤ T.p and hence wt(T ) ≤ 1. A task with weight
less than (at least) 1/2 is called a light (heavy) task.

The notion of a Pfair schedule is defined by com-
paring to an ideal system with an infinitesimally small
quantum that allocates exactly (T.e/T.p)t time to each
task T over [0, t] for any integer t. Deviance from the
ideal system is formally captured by the concept of lag .
Formally, the lag of task T at time t in a schedule S is

lag(T, t) = (T.e/T.p)t−

t−1
∑

u=0

S(T, u). (1)

(For conciseness, we leave the schedule implicit and use
lag(T, t) instead of lag(T, t, S).) A schedule is Pfair iff

(∀T, t :: −1 < lag(T, t) < 1). (2)

Informally, the allocation error associated with each
task must always be less than one quantum.

The lag bounds above have the effect of breaking
each task T into an infinite sequence of unit-time sub-
tasks. We denote the ith subtask of task T as Ti, where
i ≥ 1. As in [5], we associate a pseudo-release r(Ti) and
pseudo-deadline d(Ti) with each subtask Ti, as follows.

r(Ti) =

⌊

i− 1
wt(T )

⌋

(3)

d(Ti) =

⌈

i
wt(T )

⌉

− 1 (4)

(For brevity, we often drop the prefix “pseudo-.”) In
a Pfair-scheduled system, subtask Ti can be scheduled
only within the interval [r(Ti), d(Ti)], termed its win-
dow , and denoted w(Ti). The length of w(Ti), denoted
|w(Ti)|, is d(Ti)− r(Ti)+ 1. As an example, consider a
task T with weight T.e/T.p = 8/11. Each job of T con-
sists of eight windows, one for each of its unit-length
subtasks, as shown in Fig 1(a). It can be shown that,
in general, consecutive windows of a task are either
disjoint or overlap by one slot.

The notion of ERfair scheduling [2] is obtained by
simply dropping the −1 constraint in (2). With this
change, a subtask can become eligible before its win-
dow. Note that any Pfair schedule is ERfair, but not
necessarily vice versa. It is easy to show that, in any
Pfair or ERfair schedule, all job deadlines are met [2].

slot number: 0 1 2 3 4 5 6 7 8 9 10

_ _
_ _

_ _ _
_ _

_ _
_ _ _

_ _
T(8/11): _ _

Figure 2: The eight windows of the first job of a task T
with weight T.e/T.p = 8/11. This job consists of subtasks
T1, . . . , T8, each of which must be allocated processor time
during its window, or else a lag-bound violation will result.

2.2 Intra-sporadic Tasks

The intra-sporadic task model generalizes the sporadic
model by allowing separation between consecutive sub-
tasks of a task. In addition, early releases are allowed.
Formally, an intra-sporadic task system is defined by

a pair (τ, e), where τ is a task set, and e is a func-
tion that indicates when each subtask becomes eligible.
Each task may release either a finite or infinite number
of subtasks. We assume that e(Ti) ≥ e(Ti−1) for all
i ≥ 2, i.e., no subtask is eligible before its predecessor.
In the intra-sporadic model, each subtask has both a

Pfair window (PF-window) and an intra-sporadic win-
dow (IS-window). A subtask’s IS-window, which in-
cludes its PF-window, defines the interval during which
it is eligible to be scheduled. For example, the fourth
subtask of T in Fig. 1(d) has an IS-window of [9, 14]
and a PF-window of [11, 14]. Formally, Ti’s IS-window
is defined as [e(Ti), d(Ti)] and its PF-window is defined
as [r(Ti), d(Ti)]. As we shall see, the terms r(Ti) and
d(Ti) have a similar interpretation to that given previ-
ously for periodic task systems. As before, we will use
w(Ti) to denote the PF-window of subtask Ti.

r(Ti) and d(Ti) are defined inductively by examining
the PF-windows of T in a periodic system. As men-
tioned earlier, consecutive PF-windows of a periodic
task are either disjoint or overlap by one slot. The bit
b(Ti) distinguishes between these two possibilities.

b(Ti) =







1, if

⌈

i
wt(T )

⌉

−1 =

⌊

i
wt(T )

⌋

0, otherwise.
(5)

By (3) and (4), if T is periodic, then w(Ti) and w(Ti+1)
overlap (by one slot) if b(Ti) = 1, and do not overlap
if b(Ti) = 0. For intra-sporadic tasks, we define b(Ti)
exactly as above. Given this definition, we can define
r(Ti), which defines the beginning of Ti’s PF-window.

r(Ti) =

{

e(Ti), if i = 1
max(e(Ti), d(Ti−1) + 1− b(Ti−1)), if i ≥ 2

(6)
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Thus, if Ti becomes eligible during Ti−1’s PF-window,
then r(Ti) = d(Ti−1)+1−b(Ti−1), and hence, the spac-
ing between r(Ti−1) and r(Ti) is exactly as in a periodic
task system.1 On the other hand, if Ti becomes eligible
after Ti−1’s PF-window, then Ti’s PF-window begins
when Ti becomes eligible. Note that (6) implies that
consecutive PF-windows of the same task are either
disjoint or overlap by one slot, as in a periodic system.

Ti’s deadline d(Ti) is defined to be r(Ti) + |w(Ti)| −
1. PF-window lengths here are as in periodic systems.
Thus, by (3) and (4), we have the following.

|w(Ti)| =

⌈

i
wt(T )

⌉

−

⌊

i− 1
wt(T )

⌋

(7)

d(Ti) = r(Ti) +

⌈

i
wt(T )

⌉

−

⌊

i− 1
wt(T )

⌋

− 1 (8)

Thus, if Ti becomes eligible early, i.e., e(Ti) < r(Ti),
then its deadline is postponed to where it would have
been if e(Ti) = r(Ti).

To summarize, our notion of an intra-sporadic task is
obtained by allowing a task’s PF-windows to be right-
shifted from where they would appear if the task were
periodic. In addition, we allow a subtask to become
eligible before its PF-window, as in ERfair scheduling.
A schedule for a system of intra-sporadic tasks is said to
be valid iff each subtask is scheduled in its IS-window.

In [3], we proved that an intra-sporadic task system
τ has a valid schedule onM processors (i.e., is feasible)
iff

∑

T∈τ

T.e

T.p
≤M. (9)

Our proof in fact shows that a valid schedule exists in
which each subtask is scheduled in its PF-window.

Relation to the RBE task model. In the recently-
proposed uniprocessor rate-based execution (RBE)
model [9], each task is characterized by four param-
eters: (x, y, d, c). A task is expected to release x jobs
every y time units; each job has an execution cost of
c and a relative deadline of d. In the intra-sporadic
model, a task with parameters (e, p) is expected to re-
lease e subtasks every p time units; each subtask has an
execution cost of one and a relative deadline of approxi-
mately p/e. An RBE task may release more than x jobs
every y time units, but the deadlines of jobs released
early are postponed in a way that ensures the system is
still feasible. Deadlines of early intra-sporadic subtasks
are similarly postponed using (6) and (8).

1Note that the notion of a job is not mentioned here. For
systems in which subtasks are grouped into jobs that are released
in sequence, the definition of e would preclude a subtask from
becoming eligible before the beginning of its job.

Lag values in an intra-sporadic task system.
The lag of an intra-sporadic task at time t can be de-
fined in the same way as it is defined for periodic tasks:

lag(T, t) = ideal(T, t)−

t−1
∑

u=0

S(T, u), (10)

where ideal(T, t) is the amount of processor time task
T receives in an ideal system2 in [0, t). For a periodic
task, ideal(T, t) = (T.e/T.p)t. To define ideal(T, t) for
an intra-sporadic task, we consider the feasibility proof
given in [3]. There, a valid schedule is shown to exist by
constructing a flow network with a certain real-valued
flow. ideal(T, t) is defined based on this flow:

ideal(T, t) =

t−1
∑

u=0

flow(T, u). (11)

Here, flow(T, u) is the flow (or share) assigned to task
T in slot u. We formally define flow(T, u) below. For
motivation, consider a task of weight 5/16. In any valid
schedule, each subtask of this task must receive a share
of one unit processor time over its IS-window. In the
ideal system, each subtask gets a share of 5/16 in each
slot of its PF-window, except maybe the first and last
slots of the window. This is illustrated in Fig. 3. Inset
(a) shows the shares assigned in each slot of the PF-
window for a periodic task of weight 5/16, and inset
(b) shows the shares in each slot for an intra-sporadic
task of weight 5/16 in which some subtasks are released
late. Note that the shares for each subtask sum to
one (e.g., 5/16 + 5/16 + 5/16 + 1/16 = 1 for the first
subtask). Also, note that the share in each slot is at
most 5/16, the weight of the task. For the periodic
task, the share in each slot is exactly 5/16, whereas for
the intra-sporadic task, it may be less (see slot 3 in
inset (b)). In the flow network, each subtask has flows
corresponding to these shares.
Formally, flow(T, u) is defined in terms of a function

f , which indicates the share assigned to each subtask
Ti in each slot u. The function f is defined as follows.

f(Ti, r(Ti)) = (
⌊

i−1
wt(T )

⌋

+ 1)× wt(T )− (i− 1)

f(Ti, d(Ti)) = i− (
⌈

i
wt(T )

⌉

− 1)× wt(T ) (12)

f(Ti, u) =

{

wt(T ), if u ∈ [r(Ti) + 1, d(Ti)− 1]
0, if u /∈ [r(Ti), d(Ti)].

For example, consider the last slot of the second sub-

2We assume the ideal system gives each task T a share of
exactly T.e/T.p, and does not distribute any excess processor
capacity. There may be other ways to define an “ideal” system,
but the definition given here is sufficient for our proof.
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Figure 3: Windows of a task of weight 5/16 and the share of each subtask in the slots of its window. (a) No subtask is
released late. (b) The second and fifth subtasks are released late.

task in Fig. 3(b) and also the first slot of the third
subtask. f(T2, d(T2)) = f(T2, 8), which by (12) equals

2−(
⌈

2
5/16

⌉

−1)×(5/16) = 2/16, as shown in the figure.

Similarly, f(T3, r(T3)) = f(T3, 8), which by (12) equals

(
⌊

2
5/16

⌋

+1)× (5/16)− (3−1) = 3/16. Note that these

two flows sum to 5/16, the weight of the task.
The function flow(T, u) is defined as flow(T, u) =

∑

i f(Ti, u). From this, (P1) below follows.

(P1) For all time slots t, flow(T, t) ≤ wt(T ).

From (10) and (11), we get

lag(T, t+ 1) =

t
∑

u=0

(flow(T, u)− S(T, u)) (13)

= lag(T, t) + flow(T, t)− S(T, t).

Similar to the notion of lag for tasks, we can define
the total lag of a task system. The total lag for a
schedule S and task system τ at time t+1, denoted by
LAG(τ, t+ 1), is defined as follows.

LAG(τ , t+ 1) = LAG(τ , t) +
∑

T∈τ

(flow(T, t)− S(T, t))

(14)
LAG(τ, 0) is defined to be 0. Note that the definitions
of lag and LAG do not make any assumptions about
the validity of the corresponding schedule.

3 Algorithm PD2

PD2 prioritizes subtasks by their deadlines. Any ties
are broken using two tie-break parameters: the b-bit
defined in (5), and the “group deadline,” defined next.

The group deadline. It can be shown that all win-
dows of a heavy task are of length two or three. Con-
sider a sequence Ti, . . . , Tj of subtasks of a heavy task
T (without any late releases) such |w(Tk)| = 2 for all
i < k ≤ j, b(Tk) = 1 for all i ≤ k < j, and either

b(Tj) = 0 or |w(Tj+1)| = 3 (e.g., T1, T2 or T3, T4, T5 or
T6, T7, T8 in Fig. 2). If any of Ti, . . . , Tj is scheduled
in the last slot of its window, then each subsequent
subtask in this sequence must be scheduled in its last
slot. In effect, Ti, . . . , Tj must be considered as a single
schedulable entity subject to a “group” deadline. For-
mally, we define the group deadline for the subtasks
Ti, . . . , Tj to be d(Tj) if b(Tj) = 0, and d(Tj) + 1 if
|w(Tj+1)| = 3. Intuitively, if we imagine a job of T in
which each subtask is scheduled in the first slot of its
window, then the remaining empty slots exactly cor-
respond to the group deadlines of T . For example, in
Fig. 2, T has group deadlines at slots 3, 7, and 10.
We let D(Ti) denote the group deadline of subtask

Ti. Formally, if T is heavy, then D(Ti) = (min u :: u ≥
d(Ti) and u is a group deadline of T ). For example, in
Fig. 2, D(T1) = 3 and D(T6) = 10. If T is light,
then D(Ti) = 0. For an intra-sporadic task, the group
deadline is defined in the same way, assuming that all
the future subtasks are released as early as possible.
The group deadline can be calculated using a simple
formula (ommitted here due to space limitations).
Having explained the notion of a group deadline, we

can now state the PD2 priority definition.

PD2 Priority Definition: Subtask Ti’s priority at
slot t is defined to be (d(Ti), b(Ti), D(Ti)), if it is eligible
at t. Priorities are ordered using the following relation.

(d′, b′, D′) ¹ (d, b,D)≡ [d < d′] ∨ [(d = d′) ∧ (b > b′)]
∨ [(d = d′) ∧ (b = b′) ∧ (D ≥ D′)]

If Ti and Uj are both eligible at t, then Ti’s prior-
ity is at least Uj ’s at t if (d(Uj), b(Uj), D(Uj)) ¹
(d(Ti), b(Ti), D(Ti)). 2

According to the definition above, Ti has higher pri-
ority than Uj if it has an earlier deadline. If Ti and
Uj have equal deadlines, but b(Ti) = 1 and b(Uj) = 0,
then the tie is broken in favor of Ti. This is because
the window of Ti may overlap with that of its successor
(and hence not scheduling it may reduce the number
of slots available for its successor by one, constraining
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the future schedule). If Ti and Uj have equal deadlines
and b-bits, then their group deadlines are inspected to
break the tie. If one is heavy and the other light, then
the tie is broken in favor of the heavy task (by the
definition of the group deadline). If both are heavy
and their group deadlines differ, then the tie is broken
in favor of the one with the later group deadline. Note
that the subtask with the later group deadline can force
a longer cascade of scheduling decisions in the future.
Thus, choosing to schedule such a subtask early places
fewer constraints on the future schedule. Any ties not
resolved by PD2 can be broken arbitrarily.

4 Proof of Optimality of PD2

We now prove that PD2 optimally schedules intra-
sporadic tasks. Assume to the contrary that there ex-
ists a feasible task set not schedulable using PD2. We
consider one such task system with certain properties
that are in some sense “minimal.” By reasoning about
lags in the PD2 schedule, we derive a contradiction.
Due to space limitations, only light tasks are consid-
ered in detail in this section; needed lemmas involving
heavy tasks are proved in an appendix. The follow-
ing property follows from the fact that light tasks have
windows of length at least three.

(P2) For a light task T , d(Ti+1) > d(Ti) + 1 for all i.

Generalized intra-sporadic task systems. In our
proof, we consider task systems obtained by removing
subtasks from an intra-sporadic task system. Note that
such a task system may no longer be intra-sporadic (see
Fig. 4). To circumvent this problem, we define a more
general model called the generalized intra-sporadic task
model, and show that PD2 can optimally schedule task
systems in this model. In a generalized intra-sporadic
task system, a task T , after releasing subtask Ti, may
release subtask Tk, where k > i + 1, instead of Ti+1,
with the following restriction: r(Tk)− r(Ti) is at least
⌊

k−1
wt(T )

⌋

−
⌊

i−1
wt(T )

⌋

. In other words, r(Tk) is not smaller

than what it would have been if Ti+1, Ti+2, . . . , Tk−1

were present and released as early as possible. For the
special case where Tk is the first subtask released by T ,

r(Tk) must be at least
⌊

k−1
wt(T )

⌋

. Thus, for every gen-

eralized intra-sporadic task system τ , there exists an
intra-sporadic task system τ ′ such that τ can be ob-
tained by simply removing certain subtasks in τ ′. For
generalized intra-sporadic task systems, the parame-
ters in the PD2 priority definition are defined and cal-
culated in the same way as for intra-sporadic systems.
A task T of a generalized intra-sporadic task system

is active at slot t if there exists a subtask Ti such that

slot number: 0 1 2 3 4 5 6 7 8 9 10 11

_ _
_ _

_ _ _
_ _

_ _

_ _
T(8/11): _ _

Figure 4: The PF-windows of a generalized intra-sporadic
task T with weight T.e/T.p = 8/11. Subtask T3 is removed
and T5 becomes eligible one unit late. (Because T3 is miss-
ing, this is not an intra-sporadic task.)

e(Ti) ≤ t ≤ d(Ti). (Note that a task that is active at t
is not necessarily scheduled at t.) If a task T is inactive
and its most-recently released subtask is Ti, then it can
resume execution with any subtask Tk such that r(Ti)+
⌊

k−1
wt(T )

⌋

−
⌊

i−1
wt(T )

⌋

≤ t. If a task T , after executing

subtask Ti, releases subtask Tk, then Tk is called the
successor of Ti and Ti is called the predecessor of Tk

(e.g., T4 is the successor of T2 in Fig. 4).
The following are properties of generalized intra-

sporadic task systems ((P4) is proved in the appendix).

(P3) Removing a subtask from a generalized intra-
sporadic task system results in another general-
ized intra-sporadic task system. (Follows from the
definition of such systems.)

(P4) Let Ti be a subtask such that b(Ti) = 1, and let
Tk be the successor of Ti. If r(Tk) > d(Ti), then
flow(T, d(Ti)) + flow(T, d(Ti) + 1) ≤ wt(T ).

Henceforth, when we refer to a task system, we mean
a generalized intra-sporadic task system.
Given the above definitions, we are now ready to

prove the optimality of PD2 for scheduling generalized
intra-sporadic tasks. If PD2 is not optimal, then there
exists a task system that is feasible and yet misses a
deadline under PD2. This implies that there exists a
time slot td and a task system τ defined as follows.

Definition 1 td is defined as the minimal time slot at
which some task system misses a deadline under PD2,
i.e., some such task system misses a deadline at td, and
no such task system misses a deadline prior to td. 2

Let the rank of a task system be the sum of the eli-
gibility times of all subtasks with deadlines at most td.

Definition 2 τ is a feasible task system with the fol-
lowing properties.

(T1) τ misses a deadline under PD2 at td.
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(T2) No feasible task system satisfying (T1) releases
fewer subtasks in [0, td] than τ .

(T3) No feasible task system satisfying (T1) and (T2)
has a larger rank than τ .3 2

By (T1), (T2), and Def. 1, exactly one subtask in τ
misses its deadline: if several subtasks miss their dead-
line, all but one can be removed and the remaining
subtask will still miss its deadline, contradicting (T2).
In the rest of this section, we use S to denote the

PD2 schedule of τ . (Note that we have assumed that S
is an invalid schedule and our aim is to show that it is
valid.) We henceforth assume that ties among subtasks
in τ , not resolved by PD2, are resolved consistently (for
example, by using task identifiers).
We now prove some properties about τ and S. The

following lemma is concerned with idle processors: in a
schedule S, if k processors are idle at time slot t, then
we say that there are k holes in S at slot t.

Lemma 1 If LAG(τ , t) < LAG(τ , t+ 1), then there

is a hole in slot t in S.

Proof: Let k be the number of subtasks scheduled in
slot t. Then, by (14), LAG(τ , t+ 1) = LAG(τ , t) +
∑

T∈τ flow(T, t) − k. If LAG(τ , t) < LAG(τ , t+ 1),
then k <

∑

T∈τ flow(T, t). Because flow(T, t) ≤ wt(T )
(by (P1)), we have

∑

T∈τ flow(T, t) ≤
∑

T∈τ wt(T ),
which by (9) implies that

∑

T∈τ flow(T, t) ≤ M .
Therefore, k < M , i.e., there is a hole in slot t. 2

Lemma 2 The following properties hold for τ and S,
the PD2 schedule for τ , where Ti is any subtask in S.

(a) Let t be the slot in which Ti is scheduled. Then,

e(Ti) ≥ min(r(Ti), t).

(b) Let t be the slot in which Ti is scheduled. If either

t < d(Ti) or t = d(Ti) ∧ b(Ti) = 0, then the

successor of Ti is not eligible before t+ 1.

(c) For all Ti, d(Ti) ≤ td.

(d) There are no holes in slot td.

(e) LAG(τ , td + 1) > 0.

(f) LAG(τ , td) > 0.

(g) There exists u ∈ [0, td−1] such that LAG(τ , u) ≤ 0
and LAG(τ , u+ 1) > 0.

3Note that these conditions are being applied in sequence. We
are not, for example, claiming that τ is of maximal rank; rather,
it has the largest rank among those task systems satisfying (T1)
and (T2).

Proof of (a): Suppose that e(Ti) is less than
min(r(Ti), t). Consider the task system τ ′ obtained
from τ with the following change: the eligibility time
e′(Ti) in τ ′ is min(r(Ti), t). (Note that τ ′ is feasible.
This follows from the feasibility proof for intra-sporadic
task systems [3], which yields a schedule in which each
subtask is scheduled in its PF-window.) Note that τ ′

has a larger rank than τ . It is easy to see that the rel-
ative priorities of the subtasks do not change for any
slot u ∈ [0, td], and therefore, the PD

2 schedules for τ ′

and τ are the same. Therefore, τ ′ misses a deadline at
td as well. This contradicts (T3).

Proof of (b): Because Ti is scheduled at t, the suc-
cessor of Ti is scheduled after slot t. Also, if either
d(Ti) > t or d(Ti) = t ∧ b(Ti) = 0, then by (6), we have
r(Ti+1) > t and hence, r(Tk) > t for all k > i. In par-
ticular, if Tk is the successor of Ti, then r(Tk) ≥ t+ 1.
Therefore, by (a), e(Tk) ≥ t+ 1.

Proof of (c): Suppose τ contains a subtask Uj with a
deadline greater than td. Uj can be removed without
affecting the scheduling of subtasks with higher prior-
ity. Thus, if Uj is removed, then a deadline is still
missed at td. This contradicts (T2).

Proof of (d): If there were a hole in slot td, then the
subtask that misses its deadline at td would have been
scheduled there by PD2. Contradiction.

Proof of (e): By (14), we have

LAG(τ , td + 1) =

td
∑

t=0

∑

T∈τ

flow(T, t)−

td
∑

t=0

∑

T∈τ

S(T, t).

The first term on the left hand side of the above equa-
tion is the total flow in [0, td], which is equal to the
total number of subtasks in τ . The second term cor-
responds to the number of subtasks scheduled by PD2

in [0, td]. Since exactly one subtask misses its deadline
under PD2, the difference between the two terms is 1.
Therefore, LAG(τ , td + 1) = 1 > 0.

Proof of (f): By (d), there are no holes in slot td.
Hence, by Lemma 1, LAG(τ , td) ≥ LAG(τ , td + 1).
Therefore, by (e), LAG(τ , td) > 0.

Proof of (g): This follows from the fact that
LAG(τ , 0) = 0 and LAG(τ , td) > 0 (from (f)). 2

Later, using Lemmas 9 and 10, we show that
LAG(τ , td + 1) ≤ 0, contradicting part (e) of Lemma 2.
To establish these properties, we consider schedules ob-
tained by removing some subtasks. (By (P3), the re-
sulting system is a generalized intra-sporadic task sys-
tem as well). Removing a subtask may cause other
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X(1),t1,X(2),t2

X(2),t2 ,X(3),t3

X(3),t3,X(4),t4

X(4),t4,X(5),t5

X(2)

X(3)

X(4)

X(5)

t1 t2 t3 t4 t5

Figure 5: A chain of four displacements, caused by remov-
ing X(1), which was scheduled in slot t1.

subtasks to shift elsewhere in the schedule.
Let X(i) denote a subtask of any task in τ . Assume

that removing subtask X(1) scheduled at slot t1 in S
causes the subtaskX(2) to be shifted from slot t2 to slot
t1, where t1 6= t2, which in turn may cause other shifts.
We call this shift a displacement and represent it by a
4-tuple 〈X(1), t1, X

(2), t2〉. This is equivalent to saying
that X(2) originally scheduled at t2 in S displaces X(1)

scheduled at t1 in S. A displacement 〈X(1), t1, X
(2), t2〉

is valid iff e(X(2)) ≤ t1. Because there can be a cas-
cade of shifts, we may have a chain of displacements.
This chain is represented by a sequence of 4-tuples. An
example of this is given in Fig. 5.
The lemmas below concern displacements. Lemma 3,

proved in the appendix, states that a subtask removal
can only cause left-shifts, as in Fig. 5. Lemma 4 indi-
cates when a left-shift into a slot with a hole can occur.

Lemma 3 Let X(1) be a subtask that is removed

from τ , and let the resulting chain of displace-

ments in S be C = ∆1,∆2, . . . ,∆k, where ∆i =
〈X(i), ti, X

(i+1), ti+1〉. Then ti+1 > ti for all i ∈ [1, k].

Lemma 4 Let ∆ = 〈X(1), t1, X
(2), t2〉 be a valid dis-

placement in any PD 2 schedule. If t1 < t2 and there

is a hole in slot t1 in that schedule, then X(2) is the

successor of X(1).

Proof: Because ∆ is valid, e(X(2)) ≤ t1. Since there
is a hole in slot t1 and X(2) is not scheduled there by
PD2, X(2) must be the successor of X(1). 2

The next three lemmas state conditions that must
hold for S. In each of these lemmas, we show that if
these conditions do not hold, then a subtask can be
removed from τ without causing the missed deadline

in S to be met, contradicting (T2). (Note that remov-
ing a subtask could cause a sequence of left-shifts that
results in the missed deadline being met.) We remind
the reader of our assumption that ties among subtasks
are resolved consistently. Thus, if task system τ ′ is ob-
tained by removing a subtask from τ , then the relative
priorities of two subtasks in τ ′ are the same as in τ .

Lemma 5 Suppose there is a hole in slot t ∈ [0, td]
in S. Let Uj be a subtask scheduled at t′ < t. If the

eligibility time of the successor of Uj is at least t + 1,
then either d(Uj) < t or d(Uj) = t ∧ b(Uj) = 1.

Proof: We prove this by contradiction. Assume that
the following is true.

d(Uj) > t or d(Uj) = t ∧ b(Uj) = 0 (15)

Let τ ′ be the task system obtained by removing the
subtask Uj from τ . Let S′ be the PD2 schedule for τ ′.
Let the chain of displacements caused by remov-

ing Uj be ∆1,∆2, . . . ,∆k, where ∆i = 〈X(i), ti,
X(i+1), ti+1〉, X

(1) = Uj and t1 = t′. By Lemma 3,
ti+1 > ti for all i ∈ [1, k]. Note that at slot ti,
the priority of subtask X(i) is higher than the prior-
ity of X(i+1), because X(i) was chosen over X(i+1)

in S. Thus, because X(1) = Uj , by (15), for each
subtask X(i), i ∈ [1, k + 1], either d(X(i)) > t or
d(X(i)) = t ∧ b(X(i)) = 0. Therefore, by part (b)
of Lemma 2, we have the following property.

(E) The eligibility time of the successor of X (i) (if it
exists in τ) is at least t+ 1 for all i ∈ [1, k + 1].

We now show that the displacements do not extend
beyond slot t, which implies that a deadline is still
missed at td in S′, contradicting (T2). Suppose that
these displacements extend beyond slot t, i.e.,

tk+1 > t. (16)

Refer to Fig. 6(a). Let h be the smallest i ∈ [2, k + 1]
such that ti > t. Then, th−1 ≤ t. Since ∆h−1 is valid,

e(X(h)) ≤ th−1.

Now, if th−1 < t, then by the above expression, X(h)

is eligible at t. Because there is a hole in slot t, this
implies that X(h) should have been scheduled at t in S
instead of at th > t. Therefore, th−1 = t. Because there
is a hole in slot t, by Lemma 4, X(h) is the successor of
X(h−1). However, because e(X(h)) ≤ th−1 = t, by (E),
X(h) cannot be the successor of X(h−1).
Thus, we have a contradiction of (16), implying that

no subtask scheduled after t can get left-shifted. Hence,
a deadline is still missed at td in S′, contradicting (T2).
Thus, either d(Uj) < t or d(Uj) = t ∧ b(Uj) = 1. 2
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t(=        )h−1
k+1t

t(=        )h−2 t(=        )h−1
k+1t

X(h−2)
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X(h−1)

. . .
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t’ t. . .
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X(h)
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. . .

X(h−1)

h
. . . . . . t’ . . .

X(2)

holehole

tt+1t h
. . . . . .

(b)(a)

Figure 6: (a) Lemma 5. There is a hole in slot t. X(h) must be the successor of X(h−1). (b) Lemma 6. X(h−2),
X(h−1), and X(h) must be consecutive subtasks of the same task because there are holes in slots t and t + 1.

Lemma 6 Let Uj be a subtask of a light task sched-

uled at t′ < d(Uj) in S. If the eligibility time of the

successor of Uj is at least d(Uj) + 1, then there cannot

be holes in both d(Uj) and d(Uj) + 1.

Proof: Note that by part (c) of Lemma 2, d(Uj) ≤ td.
Therefore, t′ < td. Let d(Uj) = t. If t = td, then t sat-
isfies the stated requirement because there is no hole
in slot td (by part (d) of Lemma 2). In the rest of the
proof, we assume that t < td, and hence t + 1 ≤ td.
Suppose that there are holes in both t and t + 1. Be-
cause there is a hole in slot t and (from the statement
of the lemma) the eligibility time of the successor of
Uj is at least t + 1, by Lemma 5, either d(Uj) < t or
d(Uj) = t ∧ b(Uj) = 1. Because d(Uj) = t, the latter
in fact must hold, i.e., d(Uj) = t ∧ b(Uj) = 1. We
now show that Uj can be removed without causing the
missed deadline to be met, contradicting (T2). In par-
ticular, we show that the sequence of left-shifts caused
by removing Uj does not extend beyond slot t+ 1.
Let the chain of displacements caused by remov-

ing Uj be ∆1,∆2, . . . ,∆k, where ∆i = 〈X(i), ti,
X(i+1), ti+1〉, X

(1) = Uj and t1 = t′. By Lemma 3,
we have ti+1 > ti for all i ∈ [1, k]. Also, the priority of
X(i) is greater than the priority of X(i+1) at ti, because
X(i) was chosen over X(i+1) in S. Because U is light
and d(Uj) = t ∧ b(Uj) = 1, this implies the following.

(P) For all i ∈ [1, k + 1], either (i) d(X(i)) > t or (ii)
d(X(i)) = t and X(i) is the subtask of a light task.

Suppose this chain of displacements extends beyond
t+1, i.e., tk+1 > t+1. Let h be the smallest i ∈ [1, k+1]
such that ti > t+ 1. Then, th−1 ≤ t+ 1.
If th−1 < t+ 1, then X(h) is eligible to be scheduled

in slot t + 1 because e(X(h)) ≤ th−1 (by the validity
of displacement ∆h−1). Because there is a hole in slot

t+1 in S, X(h) should have been scheduled there in S.
Therefore, th−1 = t+1 and by Lemma 4, X(h) must be
the successor of X(h−1). By similar reasoning, because
there is a hole in slot t, th−2 = t and X(h−1) must be
the successor of X(h−2) (see Fig. 6(b)).
By (P), either d(X(h−2)) > t or d(X(h−2)) = t

and X(h−2) is the subtask of a light task. In either
case, d(X(h−1)) > t + 1. To see this, note that if
d(X(h−2)) > t, then because X(h−1) is the successor
of X(h−2), by (6), d(X(h−1)) > t + 1. On the other
hand, if d(X(h−2)) = t and X(h−2) is the subtask of
a light task, then, by (P2), d(X(h−1)) > t + 1. Now,
because X(h−1) is scheduled at t + 1, by part (b) of
Lemma 2, the successor of X(h−1) is not eligible be-
fore t + 2, i.e., e(X(h)) ≥ t + 2. This implies that the
displacement ∆h−1 is not valid. Thus, the chain of dis-
placements cannot extend beyond t + 1 and because
t + 1 ≤ td, removing Uj cannot cause a missed dead-
line at td to be met. This contradicts (T2). Therefore,
there cannot be holes in both t and t+ 1. 2

The following lemma is the counterpart of Lemma 6
for heavy tasks. It is proved in the appendix.

Lemma 7 Let Uj be a subtask of a heavy task sched-

uled in slot t′ in S. If t′ < d(Uj) ∧ b(Uj) = 1 and Uj’s

successor is not eligible before d(Uj) + 1, then there

exists a slot t ∈ [d(Uj),min(D(Uj), td)] with no hole.

Lemma 8 If LAG(τ , t) < LAG(τ , t+ 1) for some t
in S, then there exists a task that is active at t but not
scheduled at t.

Proof: Let I denote the set of tasks that are inactive
at slot t. Let A denote the set of tasks that are active
but not scheduled in slot t, and let B denote the set of
active tasks scheduled in slot t. Note that these three
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sets are disjoint and I ∪A∪B = τ . Our aim is to show
that A is non-empty.
By Lemma 1, there is at least one hole in slot t. Let

the number of these holes be h. Then, the number of
allocations in slot t in S is M −h, i.e.,

∑

T∈τ S(T, t) =
M − h. By (14), LAG(τ , t+ 1) = LAG(τ , t) +
∑

T∈τ (flow(T, t) − S(T, t)). Thus, because LAG(τ , t)
< LAG(τ , t+ 1), we have

∑

T∈τ flow(T, t) > M −
h. Because

∑

T∈I flow(T, t) = 0, it follows that
∑

T∈A∪B flow(T, t) > M − h. Therefore, by (P1),
∑

T∈A∪B wt(T ) > M −h. Because the number of tasks
scheduled at t is M − h, |B| = M − h. Because each
task’s weight is at most one,

∑

T∈B wt(T ) ≤ M − h.
Thus,

∑

T∈A wt(T ) > 0. Hence, A is not empty. 2

The following definition is used in the next lemma.

Definition 3 Subtask Uj is the critical subtask of U
at slot t iff e(Uj) ≤ t ≤ d(Uj) and no other subtask Uk

of U , where k > j, satisfies e(Uk) ≤ t ≤ d(Uk). 2

The next lemma is used later to contradict the fact
that LAG(τ , td + 1) > 0 (part (e) of Lemma 2).

Lemma 9 Suppose that for some t ∈ [0, td − 1],
LAG(τ , t) ≤ 0 and LAG(τ , t+ 1) > 0. Let A denote

the set of tasks that are active but not scheduled in slot

t. If any task in A is light, then LAG(τ , t+ 2) ≤ 0.

Proof: Because LAG(τ , t) ≤ 0 and LAG(τ , t+ 1) > 0,

LAG(τ , t) < LAG(τ , t+ 1) (17)

By Lemma 1, we have the following for some h ≥ 1.

(H) There are h holes in slot t.

Let I denote the set of tasks that are inactive at slot
t, and let B denote the set of tasks scheduled in slot t.
Note that I, A, and B are disjoint and I ∪A ∪B = τ .
By (17) and Lemma 8, A is non-empty.
Let U be any task in A. Because U is active at t, t

lies within the eligibility interval of some subtask of U .
Therefore, there exists a subtask Uj that is critical at
slot t. Let t′ be the slot at which Uj is scheduled.
Let Uk be any subtask satisfying e(Uk) ≤ t ≤ d(Uk)

such that Uk is scheduled after t and its predecessor
(if it exists) is scheduled before t. (Because U ∈ A,
no subtask of U is scheduled at t.) Because there is a
hole in slot t (by (H)), and because Uk is eligible at t, it
should have been scheduled there by PD2. Thus, for all
subtasks Uk with e(Uk) ≤ t ≤ d(Uk), Uk is scheduled
before t. In particular, t′ < t.
Note that, by Def. 3, the successor of Uj has an

eligibility time of at least t + 1. Because there is
a hole in slot t, by Lemma 5, either d(Uj) < t or
d(Uj) = t ∧ b(Uj) = 1. Also, by Def. 3, d(Uj) ≥ t.

Therefore, d(Uj) = t ∧ b(Uj) = 1. This is true for the
critical subtask of each task in A. Let C denote the set
of critical subtasks of all the tasks in A. Then,

∀Uj ∈ C, d(Uj) = t ∧ b(Uj) = 1. (18)

Because A is not empty, by the statement of the lemma,
A contains at least one light task. Let U ∈ A be light.
Because there is a hole in slot t = d(Uj), by Lemma 6,
there is no hole in slot t+ 1 = d(Uj) + 1. We are now
ready to show that LAG(τ , t+ 2) ≤ 0.
Let the sum of the weights of all tasks in set B be

W . Then, the total sum of the weights of all tasks
in I ∪ A is at most M − W . For all tasks T ∈ I,
flow(T, t) = 0. By (P1), this implies that for all tasks
T ∈ I, flow(T, t) + flow(T, t + 1) ≤ wt(T ). Consider
U ∈ A. Let Uj denote its critical subtask, and let
Uk denote the successor of Uj . Because the eligibility
time of Uk is at least t + 1, r(Uk) ≥ t + 1 = d(Uj) +
1. Therefore, by (P4), flow(U, t) + flow(U, t + 1) ≤
wt(U) for all U ∈ A. Because

∑

U∈I∪A wt(U) ≤ M −

W ,
∑

U∈I∪A(flow(U, t) + flow(U, t + 1)) ≤ M − W .

Also, by (P1),
∑

U∈B(flow(U, t) + flow(U, t + 1)) ≤

2(
∑

U∈B wt(U)) = 2W . Therefore,

∑

U∈τ

(flow(U, t) + flow(U, t+ 1)) ≤M +W. (19)

By (H), there are h holes in slot t. Because there are
no holes in slot t+ 1,

∑

U∈τ

(S(U, t)+S(U, t+1)) =M−h+M = 2M−h. (20)

Because the number of tasks scheduled at t is M −
h, and the weight of each task is at most one, we
have

∑

U∈B wt(U) ≤ M − h, i.e., W ≤ M − h.
This relation and (19) and (20) together imply that
∑

U∈τ flow(U, t) + flow(U, t + 1) ≤
∑

U∈τ S(U, t) +

S(U, t + 1). Using this relation in the identity (ob-
tained from (14)), LAG(τ , t+ 2) = LAG(τ , t) +
∑

U∈τ (flow(U, t) + flow(U, t + 1)) −
∑

U∈τ (S(U, t) +
S(U, t+ 1)), and the fact that LAG(τ , t) ≤ 0, we have
LAG(τ , t+ 2) ≤ 0. 2

The following lemma, which is proved in the ap-
pendix, generalizes Lemma 9 by allowing heavy tasks.

Lemma 10 For any t ∈ [0, td − 1], if LAG(τ , t) ≤ 0
and LAG(τ , t+ 1) > 0, then there exists u ∈ [t+2, td+
1] such that LAG(τ , u) ≤ 0.

By Lemma 2, part (g), there exists a u ∈ [0, td − 1]
such that LAG(τ , u) ≤ 0 and LAG(τ , u+ 1) > 0. Let
v be the largest such u. Because v ≤ td − 1, we have
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v + 2 ≤ td + 1. By Lemma 10, LAG(τ , t) ≤ 0 for some
t ∈ [v + 2, td + 1]. By Lemma 2, parts (e) and (f),
t cannot be td or td + 1. Thus, t ∈ [0, td − 1]. Be-
cause LAG(τ , td) > 0, this contradicts the maximality
of v. Hence, τ cannot exist, i.e., our original assump-
tion that PD2 is not optimal is incorrect. Thus, we
have the following.

Theorem 1 PD2 is optimal for scheduling generalized

intra-sporadic tasks on M processors.

Corollary 1 PD2 is optimal for scheduling intra-

sporadic tasks on M processors.

5 Concluding Remarks

In this paper, we have shown that PD2, the most
efficient optimal Pfair scheduling algorithm proposed
to date, correctly schedules any feasible intra-sporadic
task system onM processors. This paper is the first to
show that either sporadic or intra-sporadic tasks can
be optimally scheduled on systems of more than two
processors.

Two key insights led to our proof: the development
of a notion of lag for intra-sporadic systems that can
be used to sufficiently predict where holes exist in a
schedule, and the identification of certain minimality
conditions (Defs. 1 and 2) that facilitate the reasoning.
It is these notions that distinguish our proof from pre-
vious proofs for Pfair/ERfair scheduling algorithms.

Its rate-based properties make PD2 potentially use-
ful in several application domains. In joint work with
researchers at NC State University, we are currently
investigating the potential of using PD2 to schedule
rate-based packet flows in wave-division-multiplexing
(WDM) networks. In WDM networks, optical multi-
plexing techniques are used to send multiple packets
over the same link in parallel. In a similar vein, PD2

can be used to solve the parallel switching problem in
ATM networks mentioned in [1].

Rate-based scheduling algorithms are also useful for
multiplexing independently-authored applications on
the same server. This is because such algorithms ensure
temporal isolation among applications (no “misbehav-
ing” application can execute faster than its proscribed
rate, unless there is spare processing capacity). Many
systems that could benefit from the use of rate-based
scheduling algorithms have workloads that necessitate
the use of multiple processors. Consider, for exam-
ple, the proliferation of Internet service providers that
host third-party websites on multiprocessor servers [7].
One such service provider, Ensim Corp., has in fact de-
ployed multiprocessor rate-based scheduling algorithms

in its product line; these algorithms have been evalu-
ated empirically by Chandra et al. [7, 8]. Unfortu-
nately, Chandra et al. give no formal correctness proofs
for the algorithms they consider. In this paper, we have
given the first ever general optimality proof for a mul-
tiprocessor rate-based scheduling algorithm. The tech-
niques in our proof are not unique to PD2 and should
be applicable to other rate-based algorithms as well.
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Appendix: Remaining Proofs

In this appendix, we present all proofs omitted earlier.
We begin with Lemma 3.

Lemma 3 Let X(1) be a subtask that is removed from τ ,
and let the resulting chain of displacements in S (the
PD 2 schedule for τ) be ∆1,∆2, . . . ,∆k, where ∆i =
〈X(i), ti, X

(i+1), ti+1〉. Then ti+1 > ti for all i ∈ [1, k].

Proof: Let τ ′ be the task system obtained by removing
X(1) from τ , and let S′ be its PD2 schedule. Note
that the last displacement creates a hole at tk+1 in S′.
Suppose ti+1 > ti is not true for some i ∈ [1, k]. Let

tj =min(ti | ti+1 < ti).

(Informally, the leftmost right-shift occurs when
X(j+1) scheduled at tj+1 shifts to tj .) We consider two
cases depending on whether j is equal to k. If j = k,
then the last displacement will be as shown in Fig. 7(a).
Note that X(k+1) is eligible to be scheduled in slot tk+1

in S′, because it is scheduled there in S and no subtask
(in particular, its predecessor) scheduled before tk+1 is
shifted to tk+1 (by choice of j). Because there will be
a hole in slot tk+1 in S′ and tk+1 < tk, this contradicts
the greedy behavior of the PD2 algorithm.

If j < k, then by our choice of j, tj+1 < tj and the
displacements are as in Fig. 7(b). By the minimality
of tj , tj+2 > tj+1. Thus, at tj+1, X

(j+1) was chosen
over X(j+2) in S. After the displacements, X(j+1) is
scheduled at tj and X(j+2) at tj+1. This contradicts
our assumption that ties are broken consistently in S
and S′. Hence, ti+1 > ti for all i ∈ [1, k]. 2

We now prove (P4), from Sec. 4, and several prop-
erties that are used later in proof of Lemma 10. With
the exception of (B3) (see below), all of the properties
below apply to generalized intra-sporadic task systems.

(B1) Let Ti be a subtask with b(Ti) = 1. If Ti+1 exists,
then f(Ti, d(Ti)) + f(Ti+1, r(Ti+1)) = wt(T ).

Proof: By (12), f(Ti, d(Ti)) = i − (di/wt(T )e −
1) × wt(T ), and f(Ti+1, r(Ti+1)) = (bi/wt(T )c + 1) ×
wt(T ) − i. Since b(Ti) = 1, by (5), di/wt(T )e =
bi/wt(T )c + 1. This implies that f(Ti+1, r(Ti+1)) =
di/wt(T )e × wt(T ) − i. Hence, f(Ti, d(Ti)) +
f(Ti+1, r(Ti+1)) = wt(T ). (See Fig. 3.) 2

(B2) Let Ti be a subtask such that b(Ti) = 1. If Ti+1

exists and is released late, i.e., r(Ti+1) ≥ d(Ti) + 1,
then flow(T, d(Ti)) + flow(T, d(Ti) + 1) ≤ wt(T ).

Proof: By (6) and (8), it follows that r(Tk) > d(Ti)+1
for all k > i+ 1. Similarly, d(Tj) < d(Ti) for all j < i.
This implies that the slot d(Ti) lies within the PF-

X(5)

X(2)

X(4)

X(3)

t1 t2 t4 t5 t3

t1 t2 t5 t3 t4

X(2)

X(4)

X(3)

X(5)

(a)

(b)

Figure 7: Lemma 3. A chain of k = 4 displacements is
shown. (a) The leftmost right shift occurs when X (5) shifts
from t5 to t4, i.e., j = k. (b) The leftmost right shift
occurs when X(4) shifts from t4 to t3, i.e., j < k (here,
tj = t3, tj+1 = t4, and tj+2 = t5).

window of only one subtask, namely, Ti, and the slot
d(Ti) + 1 can lie within the PF-window of only one
subtask, namely, Ti+1. Thus, the contribution to the
flow in slot d(Ti) is f(Ti, d(Ti)) and the contribution
to slot d(Ti)+ 1 is at most f(Ti+1, r(Ti+1)). Hence, by
(B1), flow(T, d(Ti)) + flow(T, d(Ti) + 1) ≤ wt(T ). 2

(B3) If Ti and Tk are subtasks of an intra-sporadic

heavy task T such that k > i and r(Tk) ≤ D(Ti), then
f(Ti, d(Ti)) + f(Tk, r(Tk)) ≤ wt(T ).

Proof: If b(Ti) = 0, then D(Ti) = d(Ti). In this
case, r(Tk) > D(Ti) holds, since (6) implies r(Tk) >
d(Ti) (thus, no task Tk exists such that k > i and
r(Tk) ≤ D(Ti)). In the rest of the proof, we assume
that b(Ti) = 1. Note that, by the definition of D (the
group deadline), because r(Tk) ≤ D(Ti), for all j ∈
[i + 1, k − 1], |w(Tj)| = 2 and b(Tj) = 1. Because
|w(Tj)| = 2, we have d(Tj) = r(Tj) + 1. Because the
total flow for a subtask is one, this implies that

∀j ∈ [i+1, k−1], f(Tj , r(Tj))+f(Tj , d(Tj)) = 1. (21)

Because b(Tj) = 1, by (B1), we have for all j ∈ [i, k −
1], f(Tj , d(Tj)) + f(Tj+1, r(Tj+1)) = wt(T ). There-
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fore,
∑k−1

j=i f(Tj , d(Tj)) + f(Tj+1, r(Tj+1)) = (k − i)×

wt(T ). Rewriting, we get f(Ti, d(Ti)) + f(Tk, r(Tk)) +
∑k−1

j=i+1(f(Tj , r(Tj)) + f(Tj , d(Tj))) = (k− i)×wt(T ).
By (21), this implies that

f(Ti, d(Ti))+f(Tk, r(Tk))+k− i−1 = (k− i)×wt(T ).

Therefore, f(Ti, d(Ti)) + f(Tk, r(Tk)) = wt(T ) + (k −
i− 1)(wt(T )− 1). Because k ≥ i+1 and wt(T ) ≤ 1 for
all T , we have f(Ti, d(Ti)) + f(Tk, r(Tk)) ≤ wt(T ). 2

(B4) Let Ti be a subtask of a heavy task T and let
Tk (k > i) be a subtask such that r(Tk) ≤ D(Ti).
Then, f(Ti, d(Ti)) + f(Tk, r(Tk)) ≤ wt(T ).

Proof: Because T is a generalized intra-sporadic task,
there is an intra-sporadic task U such that wt(U) =
wt(T ), all subtasks between Ui and Uk are present,
and r(Uk) = r(Tk). Hence, r(Uk) ≤ D(Ui). By (B3),
f(Ui, d(Ui)) + f(Uk, r(Uk)) ≤ wt(U). Correspond-
ing subtasks in T and U have identical flows. Thus,
f(Ti, d(Ti)) + f(Tk, r(Tk)) ≤ wt(T ). 2

(B5) Let Ti be a subtask of a heavy task T such
that b(Ti) = 1 and let Tk be the successor of Ti.
If r(Tk) ≥ u, where u ∈ [d(Ti) + 1, D(Ti)], then
flow(T, d(Ti)) + flow(T, u) ≤ wt(T ).

Proof: Since b(Ti) = 1, by the definition of D,
D(Ti) > d(Ti). Since u > d(Ti) and Tk is Ti’s succes-
sor, if r(Tk) > u, then flow(T, u) = 0. Thus, by (P1),
flow(T, d(Ti)) + flow(T, u) ≤ wt(T ). The other possi-
bility is r(Tk) = u, which implies r(Tk) ≤ D(Ti). In
this case, by (B4), f(Ti, d(Ti))+ f(Tk, r(Tk)) ≤ wt(T ).
Thus, flow(T, d(Ti)) + flow(T, u) ≤ wt(T ). 2

(P4) Let Ti be a subtask such that b(Ti) = 1 and let
Tk be the successor of Ti. If r(Tk) ≥ d(Ti) + 1, then
flow(T, d(Ti)) + flow(T, d(Ti) + 1) ≤ wt(T ).

Proof: If k = i + 1, then by (B2), flow(T, d(Ti)) +
flow(T, d(Ti) + 1) ≤ wt(T ). Also, if r(Tk) > d(Ti) +
1, then flow(T, d(Ti) + 1) = 0. Hence, by (P1),
flow(T, d(Ti)) + flow(T, d(Ti) + 1) ≤ wt(T ).

In the rest of the proof, we assume that k > i+1 and
r(Tk) = d(Ti)+1. We first show that T must be heavy.
If T is light, then by (P2), we have d(Ti+1) > d(Ti)+1.
By (6), we also have r(Tk) ≥ d(Ti+1) and therefore,
r(Tk) > d(Ti)+1, which contradicts r(Tk) = d(Ti)+1.

Thus, T is heavy. Because b(Ti) = 1, by the defi-
nition of D, D(Ti) > d(Ti). Hence, because r(Tk) =
d(Ti) + 1, we have r(Tk) ≤ D(Ti). Thus, by (B4),
flow(T, d(Ti)) + flow(T, d(Ti) + 1) ≤ wt(T ). 2

Finally, we prove Lemmas 7 and 10.

Lemma 7 Let Uj be a subtask of a heavy task scheduled

in slot t′ in S. If t′ < d(Uj) ∧ b(Uj) = 1 and Uj’s

successor is not eligible before d(Uj) + 1, then there

exists a slot t ∈ [d(Uj),min(D(Uj), td)] with no hole.

Proof: By part (c) of Lemma 2, d(Uj) ≤ td, and hence,
t′ < td. If min(D(Uj), td) = td, then by part (f) of
Lemma 2, t = td satisfies the stated requirement. In
the rest of the proof, assume that D(Uj) < td. Let
u = d(Uj) and v = D(Uj). Since b(Uj) = 1, by the
definition of D, D(Uj) > d(Uj), i.e.,

u < v. (22)

Suppose that the following property holds.

(H) There is a hole in slot t for all t ∈ [u, v].

Given (H), we show that removing Uj does not cause
the missed deadline to be met, contradicting (T2). Let
∆1,∆2, . . . ,∆k be the chain of displacements caused
by removing Uj , where ∆i = 〈X(i), ti, X

(i+1), ti+1〉,
X(1) = Uj , and t1 = t′. By Lemma 3, ti+1 > ti for
all i ∈ [1, k − 1]. Also, X(i) has higher priority than
X(i+1) at ti since X(i) is scheduled at ti in S. Thus,
for all i ∈ [2, k + 1], one of the following holds:

(a) d(X(i)) > u,

(b) d(X(i)) = u ∧ b(X(i)) = 0, or

(c) d(X(i)) = u ∧ b(X(i)) = 1 ∧ D(X(i)) ≤ v.

We now show that the displacements do not extend
beyond v (which implies that Uj can be removed with-
out causing the missed deadline to be met). Suppose,
to the contrary, they do extend beyond v, i.e., tk+1 > v.
Let tg be the largest ti such that ti < u and let th be

the smallest ti such that ti > v. (Note that such a tg
exists because t1 < u.) Then, by (H), there are holes
in all slots in [tg+1, th−1]. Thus, by Lemma 4,

∀i∈ [g+1, h−1], X(i+1) is the successor of X(i). (23)

We now show that the situation is as shown in Fig. 8(a).
By Lemma 3, ti+1 ≥ ti + 1 for all i ∈ [g + 1, h −
2]. If ti+1 > ti + 1, then because (i) there is a hole
in slot ti + 1, (ii) e(X(i+1)) ≤ ti, and (iii) X(i+1)’s
predecessor X(i) is scheduled at ti, X

(i+1) should have
been scheduled at ti + 1 in S, a contradiction. Thus,
ti+1 = ti + 1 for all i ∈ [g + 1, h − 2]. By similar
reasoning, we have the following.

tg+1 = u ∧ th−1 = v (24)

∀i ∈ [g + 1, h− 1], ti = u+ i− (g + 1) (25)

Earlier, we showed that one of (a)–(c) holds for all
i ∈ [2, k + 1]. If either d(X(g+1)) > u or d(X(g+1)) =
u ∧ b(X(g+1)) = 0, then since X(g+1) is scheduled at u,
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Figure 8: Lemma 7. (a) There are holes in all slots in [u, v]. X (i) scheduled at ti displaces X(i−1) scheduled at ti−1. Also,
by (25), the ti’s are consecutive and satisfy ti = u+ i− (g + 1). Further, X(h−1) is the subtask scheduled in slot v. (b)

Case 2. D(X(g+1)) = v′. Hence, either d(X(v′−u+g+1)) = v′ ∧ b(X(v′−u+g+1)) = 0 (as depicted) or d(X(v′−u+g+1)) > v′.

by Lemma 2, part (b), e(X(g+2)) ≥ u+ 1 (recall that,
by (23), X(g+2) is the successor of X(g+1)). In other
words, the displacement ∆g is not valid. Therefore,

d(X(g+1))=u ∧ b(X(g+1))=1 ∧ D(X(g+1))≤v. (26)

We now consider two cases. In each, we show that the
displacements do not extend beyond v, as desired.

Case 1: X(g+1) is the subtask of a light task.
By (22), u + 1 ≤ v and hence, by (H), there is a hole
in both u and u + 1. Also, by (25) and (25), we have
v = u+(h−1)−(g+1) = u+h−g−2. Hence, because
u < v (by (22)), we have h > g + 2, i.e.,

h ≥ g + 3.

We now show that the displacement ∆g+2 is not valid.
By (25), X(i) is scheduled at u+ i− (g+ 1) in S for

all i ∈ [g + 1, h− 1]. In particular, X(g+1) and X(g+2)

are scheduled at u and u + 1, respectively. Observe
that d(X(g+1)) = u (by 26), X(g+1) is the subtask of
a light task (our assumption for Case 1), and X (g+2)

is the successor of X(g+1) (by (23)). Thus, by (P1),
d(X(g+2)) ≥ u+2. Since X(g+2) is scheduled at u+1,

by Lemma 2, part (b), the eligibility time of X (g+2)’s
successor is at least u + 2, i.e., e(X (g+3)) ≥ u + 2.
(X(g+3) exists because h ≥ g + 3.) This implies that
the displacement ∆g+2 is not valid. Hence, the dis-
placements do not extend beyond u+1 (and hence v).

Case 2: X(g+1) is the subtask of a heavy task.
Let v′ = D(X(g+1)). By (26), v′ ≤ v. We now show
that the displacements cannot extend beyond v′ (and
hence v). By (25), X(i) is scheduled at u+ i− (g + 1)
in S for all i ∈ [g+1, h−1]. By (23), all X(i) where i ∈
[g+1, h] are subtasks of the same heavy task. We now
show that the displacement ∆v′−u+g+1 is not valid.

By (25), tv′−u+g+1 = v′. Because X(i) is sched-

uled at ti, the subtask scheduled at v
′ is X(v′−u+g+1).

Since X(i+1) is the successor of X(i), by (8), d(X(i)) >
d(X(i−1)) for all i ∈ [g + 2, v′ − u + g + 1]. Hence,
because d(X(g+1)) = u ∧ b(X(g+1)) = 1 (by (26)),

∀i ∈ [g+1, v′−u+g+1], d(X(i)) ≥ u+i−(g+1). (27)

In particular, d(X(v′−u+g+1)) ≥ v′.

We now show that if d(X(v′−u+g+1)) = v′,
then b(X(v′−u+g+1)) = 0. In this case, be-
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cause d(X(v′−u+g)) < d(X(v′−u+g+1)), we have
d(X(v′−u+g)) < v′. By (27), d(X(v′−u+g)) ≥ v′ − 1.
Therefore, d(X(v′−u+g)) = v′ − 1. Similarly, by induc-
tion, d(X(i)) = u+ i− (g+1) for all i ∈ [g+1, v′−u+
g + 1]. (Refer to Fig. 8(b).) Because D(X (g+1)) = v′,
by the definition of D, b(X(v′−u+g+1)) = 0.
Thus, either d(X(v′−u+g+1)) > v′ or d(X(v′−u+g+1))

= v′∧b(X(v′−u+g+1)) = 0. Since X(v′−u+g+1) is sched-
uled at v′, by Lemma 2, part (b), the eligibility time of
the successor of X(v′−u+g+1) is at least v′ + 1. Hence,
∆v′−u+g+1 is not valid. Thus, the displacements do
not extend beyond v′ (and hence v). 2

The following claims are used in proving Lemma 10.

Claim 1 If Uj is scheduled in t ∈ [0, td] in S, where
t ≤ d(Uj), and if there is a hole in t, then d(Uj) = t.

Proof: We show that if d(Uj) > t, then we can re-
move subtask Uj without causing any displacements.
Because d(Uj) > t and Uj is scheduled at t, by part
(b) of Lemma 2, its successor (if it exists) is not eli-
gible before t + 1. Also, any other subtask scheduled
after t is not eligible at t. (If it were eligible, because
there is a hole in t, PD2 would have scheduled that
subtask.) Thus, no subtask can shift into slot t if Uj is
removed. This contradicts (T2). Hence, d(Uj) ≤ t. By
Lemma 2, part (d), there are no holes in td. Because
there is a hole in slot t, we have t < td. Therefore, Uj

does not miss its deadline, i.e., d(Uj) = t. 2

Claim 2 Suppose there is a hole in slot t ∈ [0, td]. Let
Uj be a subtask scheduled at t

′ ≤ t. If the eligibility time
of the successor of Uj is at least t+1, then d(Uj) ≤ t.

Proof: If t′ = t, then by Lemma 1, d(Uj) = t. On the
other hand, if t′ < t, then by Lemma 5, d(Uj) ≤ t. 2

Lemma 10 For any t ∈ [0, td−1], if LAG(τ , t) ≤ 0 and
LAG(τ , t+ 1) > 0, then there exists v ∈ [t+ 2, td + 1],
such that LAG(τ , v) ≤ 0.

Proof: Because LAG(τ , t) ≤ 0 and LAG(τ , t+ 1) > 0,

LAG(τ , t) < LAG(τ , t+ 1). (28)

Thus, by Lemma 1, we have the following property.

(H) There is at least one hole in slot t.

Let I denote the set of inactive tasks at slot t. Let A
denote the set of tasks that are active but not scheduled
in slot t and let B denote the set of tasks scheduled
in slot t. Note that these three sets are disjoint and
I ∪A∪B = τ . By (28) and Lemma 8, A is non-empty.
Let U be any task in A. Because U is active at t, t

lies within the eligibility interval of some subtask of U .
Thus, there exists a subtask Uj that is critical at slot t

(refer to Def. 3 in Sec. 4). Let t′ be the slot where Uj

is scheduled. We now show that t′ < t. Suppose t′ >
t. Then there exists a subtask Uk satisfying e(Uk) ≤
t ≤ d(Uk) such that Uk is scheduled after t and its
predecessor (if it exists) is scheduled before t. (Because
U ∈ A, no subtask of U is scheduled at t.) Since there
is a hole in slot t (by (H)), and since Uk is eligible at t, it
should have been scheduled there by PD2. Thus, there
cannot exist any such subtask, implying that t′ < t.
Note that, by Def. 3, the successor of Uj has an

eligibility time of at least t + 1. Because there is
a hole in slot t, by Lemma 5, either d(Uj) < t or
d(Uj) = t ∧ b(Uj) = 1. Also, by Def. 3, d(Uj) ≥ t.
Therefore, d(Uj) = t ∧ b(Uj) = 1. This is true for the
critical subtask of each task in A. Let C denote the set
of critical subtasks of all the tasks in A. Then,

∀ Uj ∈ C, d(Uj) = t ∧ b(Uj) = 1. (29)

If any task in A is light, then by Lemma 9,
LAG(τ , t+ 2) ≤ 0, which establishes our proof obli-
gation. We henceforth assume all tasks in A are heavy.
Let Li be the lowest-priority subtask in C. By (29),

∀Uj ∈ C, d(Uj)= t ∧ b(Uj) = 1 ∧D(Uj)≥D(Li). (30)

Because Li is a critical subtask, the eligibility time of
its successor Lk is at least t + 1. Thus, by Lemma 7,
there is a slot in [t,min(D(Li), td)] with no hole. Let u
be the slot defined as follows.

(U) u is the earliest slot in [t,min(D(Li), td)] with no
hole.

Fig. 9 depicts this situation. By (U) and (H),

u ≥ t+ 1, (31)

and there are holes in all slots in [t, u − 1]. We now
establish the following property about tasks in A.

Claim 3 All tasks in A are inactive over the in-

terval [t+ 1, u− 1].

Proof: If the interval [t + 1, u − 1] is empty,
then the claim is vacuously true, so assume it is
nonempty. Let V be any task in A. We first show
that no subtask of V is scheduled in [t, u− 1].

Note that because V ∈ A, no subtask of V is
scheduled in slot t. Let Vi be the earliest subtask
of V scheduled in [t+1, u−1] and let v be the slot
in which it is scheduled. Because there is hole in
slot v, by Lemma 1, d(Vi) = v. By (6) and (8), this
implies that r(Vi) < v and hence, e(Vi) < v. Thus,
because there are holes in all slots in [t, v − 1], it
should have been scheduled earlier. Contradiction.
Hence, no subtask of any task in A is scheduled in
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Figure 9: Lemma 10. Uj is the critical subtask of a task
in A and Uk is the successor of Uj . There is a hole in each
slot in [t, u− 1] and there is no hole in slot u. The earliest
time at which Uk’s PF-window starts is u, i.e., r(Uk) ≥ u.

[t, u− 1] (see Fig. 9). Moreover, because there are
holes in all slots in [t, u− 1], the earliest slot after
t at which a subtask of a task in A is eligible to be
scheduled is u. By (29), this implies that all the
tasks in A are inactive in [t+ 1, u− 1]. 2

Let Uj be any subtask in C, and let Uk be the suc-
cessor of Uj . By Claim 3, r(Uk) ≥ u. Furthermore, by
(29)–(31) and (U), d(Uj) = t < u ≤ D(Uj). Hence,
by (B5), flow(U, t) + flow(U, u) ≤ wt(U). Because this
argument is applicable to all tasks in A, we have

∀U ∈ A, flow(U, t) + flow(U, u) ≤ wt(U). (32)

We now show that LAG decreases over [t+ 1, u− 1].

Claim 4 For all v ∈ [t+ 1, u− 1], LAG(τ , v + 1)
≤ LAG(τ , v).

Proof: If [t + 1, u − 1] is empty, then the claim
is vacuously true, so assume it is nonempty. Sup-
pose for some v ∈ [t + 1, u − 1], LAG(τ , v + 1) >
LAG(τ , v). Then, by Lemma 8, there exists a task
that is active at v but not scheduled at v. Let V
be one such task and let Vk be the critical subtask
of V at slot v. Then, by Def. 3,

e(Vk) ≤ v ≤ d(Vk). (33)

Because no subtask of V is scheduled at v, Vk is
scheduled before v. (It cannot be scheduled later
by PD2 because there is a hole at v, by (U).) By
(U), there is a hole at v − 1; moreover, because
v ∈ [t + 1, u − 1], we have v − 1 ∈ [t, u − 2] ⊆
[0, td]. Hence, by Claim 2, we have d(Vk) ≤ v − 1,
which contradicts (33). Therefore, LAG(τ , v + 1)
≤ LAG(τ , v) for all v ∈ [t+ 1, u− 1]. 2

Thus, the LAG continues to decrease in the interval
[t + 1, u − 1]. We now show that LAG(τ , u+ 1) ≤ 0,
which establishes our proof obligation.
For each v ∈ [t, u], let Hv denote the number of holes

in slot v. Then, M −Hv tasks are scheduled in slot v.

By Claim 3, only tasks in I ∪B are active at v ∈ [t+
1, u− 1]. Thus, by (14) and Claim 4,

∑

T∈τ flow(T, v)
=
∑

T∈I∪B flow(T, v) ≤
∑

T∈I∪B S(T, v). Therefore,

∀ v ∈ [t+ 1, u− 1],
∑

T∈τ

flow(T, v) ≤M −Hv. (34)

Since I ∪ A ∪ B = τ ,
∑

T∈I∪A∪B wt(T ) ≤ M , by

(9). Hence, by (32) and (P1),
∑

T∈A(flow(T, t) +
flow(T, u)) +

∑

T∈I∪B flow(T, u) ≤M . Thus,

∑

T∈A

flow(T, t) +
∑

T∈τ

flow(T, u) ≤M. (35)

Because the tasks in B are the ones scheduled in slot t,
the number of tasks in set B isM−Ht. Hence, because
the weight of each task is at most one,

∑

T∈B

flow(T, t) ≤
∑

T∈B

wt(T ) ≤M −Ht. (36)

We are now ready to show that LAG(τ , u+ 1) ≤ 0.
Because S(T, v) = M −Hv, by (14), LAG(τ , u+ 1) −
LAG(τ , t) = R, where R =

∑u
v=t

(
∑

T∈τ flow(T, v)
)

−
∑u

v=t(M −Hv). Because, by (U), there are no holes in
slot u, Hu = 0. Therefore,

R =

u
∑

v=t

(

∑

T∈τ

flow(T, v)

)

−

u−1
∑

v=t

(M −Hv)−M. (37)

The right-hand side of (37) can be rewritten as follows.

∑

T∈τ

(flow(T, t) + flow(T, u))− (M −Ht)−M

+

u−1
∑

v=t+1

(

∑

T∈τ

flow(T, v)− (M −Hv)

)

.

Rearranging terms, and using
∑

T∈I flow(T, t) = 0
(which follows by the definition of I), we get

∑

T∈A

flow(T, t) +
∑

T∈τ

flow(T, u)−M

+
∑

T∈B

flow(T, t)− (M −Ht)

+

u−1
∑

v=t+1

(

∑

T∈τ

flow(T, v)− (M −Hv)

)

.

By (34)–(36), the above value is non-positive. Hence,
by (37), LAG(τ , u+ 1) − LAG(τ , t) ≤ 0. Because
LAG(τ , t) ≤ 0, this implies that LAG(τ , u+ 1) ≤ 0.

By (U) and (31), u ∈ [t+1,min(D(Uj), td)]. Hence,
u+1 ∈ [t+2, td+1]. Thus, there exists a v ∈ [t+2, td+1]
such that LAG(τ , v) ≤ 0. 2
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