
Time Bounds for Mutual Exclusion and Related Problems�

(Extended Abstract)

Jae-Heon Yang

Department of Computer Science

The University of Maryland

College Park, Maryland 20742-3255

James H. Anderson

Department of Computer Science

The University of North Carolina

Chapel Hill, North Carolina 27599-3175

Abstract

We establish trade-o�s between time complexity and

write- and access-contention for solutions to the mu-

tual exclusion problem. The write-contention (access-

contention) of a concurrent program is the number

of processes that may be simultaneously enabled to

write (access) the same shared variable. Our notion

of time complexity distinguishes between local and re-

mote references to shared memory. We show that,

for any N -process mutual exclusion algorithm with

write-contention w, there exists an execution involv-

ing only one process in which that process executes


(log
w
N ) remote memory references for entry into its

critical section. We further show that among these re-

mote references, 
(
p
log

w
N ) distinct remote variables

are accessed. For algorithms with access-contention

c, we show that the latter bound can be improved

to 
(log
c
N ). The last two of these results imply

that a trade-o� between contention and time complex-

ity exists even if coherent caching techniques are em-

ployed. Because the execution that establishes these

bounds involves only one process, our results show that

\fast mutual exclusion" requires arbitrarily high write-

contention. We show that these bounds hold when using

any of a variety of synchronization primitives, including

read, write, test-and-set, load-and-store, compare-and-

swap, and fetch-and-add, and that they can be general-

ized to apply when using even stronger primitives. Our

results can be extended to apply to a class of decision

problems that includes the leader-election problem. The

time bounds that we establish are the �rst of their kind

�Work supported, in part, by NSF Contracts CCR-9109497
and CCR-9216421 and by the NASA Center for Excellence in
Space Data and Information Sciences (CESDIS).

for asynchronous shared memory concurrent programs.

1 Introduction

The mutual exclusion problem is a fundamental

paradigm for coordinating accesses to shared data on

asynchronous shared memory multiprocessing systems

[4]. In this problem, accesses to shared data are ab-

stracted as \critical sections" of code, and it is required

that at most one process executes its critical section at

any time. In this paper, we consider bounds on time

for mutual exclusion, a subject that has received scant

attention in the literature. Past work on the complex-

ity of mutual exclusion has almost exclusively focused

on space requirements; the limited work on time bounds

that has been done has focused on partially synchronous

models [10].

The lack of prior work on time bounds for mutual

exclusion within asynchronous models is probably due

to di�culties associated with measuring the time spent

within busy-waiting constructs. In fact, because of such

di�culties, there has been scarcely little work of any

kind on time bounds for asynchronous concurrent pro-

gramming problems for which busy-waiting is inherent.

One of the primary contributions of this paper is to show

that it is possible to establish meaningful time bounds

for such problems.

A natural approach to measuring the time complexity

of a mutual exclusion algorithm would be to simply use

the standard sequential programmingmeasure of count-

ing all operations. However, in any algorithm in which

processes busy-wait, the number of operations needed

for one process to get to its critical section is unbounded

in the worst case. In other words, the standard sequen-

tial programming metric yields no useful information

concerning the performance of such algorithms under

contention.

In a recent paper, Yang and Anderson proposed

a time measure for concurrent programs that distin-

guishes between local and remote accesses of shared

memory [14]. A shared variable access is local if does not



require a traversal of the global interconnect between

processors and shared memory, and is remote other-

wise. Although the notion of a locally accessible shared

variable may seem counterintuitive, there are two archi-

tectural paradigms that support it. In particular, on

distributed shared memory machines, a shared variable

can be made locally accessible by storing it in a local

portion of shared memory, and on cache-coherent ma-

chines, a shared variable can become locally accessible

by migrating to a local cache line.

Under Yang and Anderson's proposed measure, the

time complexity of a concurrent program is measured

by counting only remote accesses of shared variables;

local accesses are ignored. This measure satis�es two

criteria that must be met by any reasonable complex-

ity measure. First, it is conceptually simple. In fact,

this measure is a natural descendent of the standard

time complexity measure used in sequential program-

ming. Second, this measure has a tangible connection

with real performance, as demonstrated by a number of

recently published performance studies [3, 11, 14]. All

other proposed time complexitymeasures for concurrent

programs that we know of fail to satisfy at least one of

these criteria.1

We present several lower-bound results for mutual ex-

clusion that are based on the time complexity measure

of Yang and Anderson. Our results establish trade-

o�s between time complexity and write- and access-

contention for solutions to the mutual exclusion prob-

lem. The write-contention (access-contention) of a con-

current program is the number of processes that may

be simultaneously enabled to write (access) the same

shared variable. Limiting access-contention is an impor-

tant consideration when designing algorithms for prob-

lems, such as mutual exclusion and shared counting,

that must cope well with high competition among pro-

cesses [3, 7, 8, 13]. Performance problems associated

with high access-contention can be partially alleviated

by employing coherent caching techniques to reduce

concurrent reads of the same memory location. How-

ever, even when such techniques are employed, limiting

write-contention is still an important concern.

We show that, for any N -process mutual exclusion

algorithm with write-contention w, there exists an ex-

ecution involving only one process in which that pro-

cess executes 
(log
w
N ) remote memory references for

entry into its critical section. We further show that

among these remote references, 
(
p
log

w
N) distinct re-

mote variables are accessed. For algorithms with access-

contention c, we show that the latter bound can be im-

proved to 
(log
c
N ).

1Our time complexity measure cannot be used to make dis-
tinctions between programs that busy-wait on remote variables.
However, many concurrent programming problems that require
busy-waiting (including mutual exclusion) can be solved without
busy-waiting on such variables.

These results have a number of important implica-

tions. For example, because the �rst access of any vari-

able causes a cache miss, the latter two bounds imply

that a time/contention trade-o� exists even if coherent

caching techniques are employed. Also, because the ex-

ecution that establishes these bounds involves only one

process, it follows that so-called fast mutual exclusion

algorithms | i.e., algorithms that require a process to

execute only a constant number of remote memory ref-

erences in the absence of competition [9] | require ar-

bitrarily high write-contention in the worst case. These

bounds hold assuming that each atomic operation ac-

cesses at most one remote variable. A variety of well-

known synchronization primitives satisfy this assump-

tion, including read, write, test-and-set, load-and-store,

compare-and-swap, and fetch-and-add. We show that

our basic results can be extended to apply to programs

with operations that access multiple remote variables,

establishing similar trade-o�s between time complexity

and atomicity. Our results apply not only to mutual

exclusion but also to a class of decision problems that

includes the leader-election problem.

Related work includes previous research by Dwork et

al. given in [5], where it is shown that solving mutual ex-

clusion with access-contention c requires 
((log
2
N )=c)

memory references. Our work extends that of Dwork

et al. in several directions. First, the implications con-

cerning fast mutual exclusion and cache coherence noted

above do not follow from their work. Second, we con-

sider programs in which atomic operations may access

multiple shared variables, whereas they only consider

reads, writes, and read-modify-writes. Third, in our

main result, we restrict only write-contention and obtain

a tight bound of 
(log
w
N ), which exceeds the bound

established by them. Finally, and most importantly,

Dwork et al. make no distinction between local and re-

mote shared memory accesses. Because busy-waiting is

required for mutual exclusion in general, an unbounded

number of memory accesses (local or remote) are re-

quired in the worst case. It is our belief that time com-

plexity results that do not distinguish between local and

remote accesses to shared memory are of questionable

value as a measure of performance of mutual exclusion

algorithms under contention.

The rest of the paper is organized as follows. In Sec-

tion 2, we present our model of shared memory systems.

The above-mentioned time bounds are then established

in Section 3. Concluding remarks appear in Section 4.

2 Shared Memory Systems

Our model of a shared memory system is similar to that

given by Merritt and Taubenfeld in [12]. A system S =

(C;P; V ) consists of a set of computations C, a set of

processes P = f1; 2; � � �; Ng, and a set of variables V .



A computation is a �nite sequence of events.

An event, denoted [R;W; i], where R = f(xj; uj)j
1 � j � mg for some m, W = f(yk; vk)j1 � k � ng
for some n, and i 2 P , represents reading value uj from

variable xj, for 1 � j � m, and writing value vk to

variable yk, for 1 � k � n; each variable in R (W )

is assumed to be distinct. We say that this event ac-

cesses each such xj and yk. We use R:var to denote the

set of variables xj such that (xj ; uj) 2 R for some uj,

and W:var to denote the set of variables yk such that

(yk; vk) 2W for some vk. An initial value is associated

with each variable.

Each variable is local to at most one process and is

remote to all other processes. (Note that we allow vari-

ables that are remote to all processes.) An event is local

if it does not access any remote variable, and is remote

otherwise.

We use he; � � �i to denote a computation that begins

with the event e, and hi to denote the empty computa-

tion. We de�ne the length of computation H, denoted

jHj, as the number of events in H. H � G denotes the

computation obtained by concatenating computations

H and G. If G is a subsequence of H, then H�G is the

computation obtained by removing all events in G from

H. The value of variable x at the end of computation

H, denoted value(x;H), is the last value that is written

to x in H (or the initial value of x if x is not written in

H).

An extension of computation H is a computation of

which H is a pre�x. For a computation H and a set

of processes Y , HY denotes the subsequence of H that

contains all events in H of processes in Y . A computa-

tion H is a Y -computation i� H = HY holds.

Computations H and G are equivalent with respect

to a set of processes Y , denoted H[Y ]G, i� HY = GY .

Note that [Y ] is an equivalence relation. For simplicity,

we abbreviate the preceding de�nitions when applied to

a singleton set of processes. For example, if Y = fig,
then we use Hi to mean Hfig, i-computation to mean

fig-computation, and [i] to mean [fig]. We now present

our model of shared memory systems.

De�nition: A shared memory system S = (C;P; V ) is

a system that satis�es the following properties.

� (P1) If H 2 C and G is a pre�x of H, then G 2 C.

� (P2) If H � h[R;W; i]i 2 C, G 2 C, G[Y ]H, and

i 2 Y , and if for all x 2 R:var, value(x;H) =

value(x;G) holds, then G � h[R;W; i]i 2 C.

� (P3) If H � h[R;W; i]i 2 C, G 2 C, G[Y ]H, and

i 2 Y , then G�h[R0;W 0; i]i 2 C for someR0 andW 0

such that R0:var = R:var and W 0:var = W:var.

� (P4) For any H 2 C, H � h[R;W; i]i 2 C only if for

all (x; v) 2 R, v = value(x;H) holds. 2

Most of our results are dependent on the following as-

sumption concerning events. Note that this assumption

de�nes the allowable degree of \atomicity" for events.

Atomicity Assumption: Each event of process i may

access at most one variable that is remote to i. 2

For simplicity, we call a remote event a remote read

if it does not write a remote variable, and a remote

write otherwise. Note that a remote write may both

read and write the remote variable that it accesses. A

wide variety of synchronization primitives satisfy the

Atomicity Assumption, including read, write, test-and-

set, load-and-store, compare-and-swap, and fetch-and-

add. In Section 3.3, we show that our results can be

generalized by relaxing this assumption.

In the following section, we establish time bounds in-

volving various notions of contention. Consider a shared

memory system S = (C;P; V ). The strictest notion of

contention is static in nature. In particular, consider a

variable x in V . A process i in P is a reader (writer)

of x i� there is an event of i that reads (writes) x in

some computation in C. We say that x is a k-reader

(k-writer) variable i� there are k readers (writers) of

x. The other two notions of contention that we em-

ploy are dynamic in nature. For H 2 C and x 2 V ,

let overwriters(x;H) � fi j H � h[R;W; i]i 2 C

where x 2 W:varg. Then, the write-contention of

S is maxx2V;H2C(joverwriters(x;H)j). Similarly, let

contenders(x;H) � fi j H � h[R;W; i]i 2 C where

x 2 (R:var[W:var)g. Then, the access-contention of S

is maxx2V;H2C(jcontenders(x;H)j). These notions of

contention bound the number of processes that may si-

multaneously write (access) the same memory location.

3 Time Bounds for Mutual Exclu-

sion

Our main results concerning the mutual exclusion prob-

lem are based on a simpli�ed version of the problem,

which we call the \minimal mutual exclusion problem".

Minimal Mutual Exclusion Problem: We de�ne

the minimal mutual exclusion problem for a shared

memory system S = (C;P; V ) as follows. Each pro-

cess i 2 P has a local variable i:dine that ranges over

fthink; hungry; eatg. Variable i:dine is initially think

and is accessed only by the following events:

Think i � [fg; f(i:dine; think)g; i]
Hungry

i
� [fg; f(i:dine; hungry)g; i]

Eati � [fg; f(i:dine; eat)g; i]

The allowable transitions of i:dine are as follows: for any

H 2 C, H � hThink ii 2 C i� value(i:dine;H) = eat;



H � hHungry
i
i 2 C i� value(i:dine;H) = think; and

if H � hEatii 2 C, then value(i:dine;H) = hungry.

System S solves the minimal mutual exclusion problem

i� the following requirements are satis�ed.

� Exclusion: For any H 2 C and processes i 6= j,

value(i:dine;H) = eat ) value(j:dine;H) 6= eat.

� Progress: For any H 2 C and process i 2 P , if H

is an i-computation, then either H contains Eati,

or there exists an i-computation G such that H �
G � hEatii 2 C. 2

Note that the Progress condition above is much

weaker than that usually speci�ed for the mutual ex-

clusion problem. (This, of course, strengthens our im-

possibility proofs.)

Before presenting our main results, we give bounds for

the case of statically-de�ned contention. In this theo-

rem and those that follow, we assume that S is a shared

memory system and that i 2 P .

Theorem 1: If S = (C;P; V ) solves the minimal mu-

tual exclusion problem, and if either all variables in V

are k-reader variables, or all variables in V are k-writer

variables, then there exists an i-computation in C that

contains 
(N=k) remote events but no Eat i event.

Proof Sketch: It can be shown that for any i-

computation H containing Eat i and any process j 6= i,

H contains a read of a variable that can be written by

j and a write of a variable that can be read by j. By

employing this fact, it is possible to prove the theorem

by using a relatively simple counting argument. 2

For any N -process system S that satis�es the con-

ditions of Theorem 1, some process i executes 
(N=k)

remote events in the absence of competition. If we re-

move process i from system S, we obtain a system that

satis�es the conditions of the theorem with N replaced

by N � 1. Thus, there is a process j 6= i in system S

that executes 
((N � 1)=k) remote events in the ab-

sence of competition. Continuing in this manner, at

least half the processes in S execute at least 
(N=2k)

remote events in the absence of competition. Thus, we

have the following corollary.

Corollary 1: For any system S satisfying the condi-

tions of Theorem 1, there exist 
(N ) processes i in P

for which the conclusion of the theorem holds. 2

Similar corollaries apply to the theorems in the fol-

lowing subsections.

In [2], a mutual exclusion algorithm requiring O(N )

remote memory references per critical section acquisi-

tion is given that employs only single-reader, single-

writer variables. Thus, if k is taken to be a positive

constant, then the bound of Theorem 1 is asymptoti-

cally tight. In the remainder of the paper, we consider

more interesting bounds based on dynamic notions of

contention.

3.1 Main Result: Bounding Remote

Events

In this section, we show that for any system with write-

contention w, 
(logwN ) remote events are required in

the absence of competition to solve the minimal mu-

tual exclusion problem. This bound has important

consequences for distributed shared memory multipro-

cessing systems. On such systems, remote events re-

quire a traversal of a global interconnection network and

hence are more expensive than local events. Thus, for

such machines, the lower bound of Theorem 2 not only

gives the inherent time complexity of the problem, it

also bounds the communication complexity measured

in terms of global tra�c.

Theorem 2 is proved by considering a class of compu-

tations, as de�ned by a set of conditions. Each of these

conditions refers to an arbitrary computation H in this

class. The �rst condition is as follows.

� (C1) For events [R;U; i] and [T;W; j] in H, if

(R:var \W:var) 6= fg holds and [T;W; j] precedes2

[R;U; i] in H, then i = j. Informally, no process

reads a variable that is accessed by a preceding

write of another process in H.

The next lemma gives us a means for projecting a

computation onto a set of processes so that the result-

ing projection is itself a computation.

Lemma 1: For any S = (C;P; V ), if a computation H

in C satis�es (C1), then for any Y � P , HY 2 C.

Proof Sketch: For any process in Y , HY is not dis-

tinguishable from H. Thus, we can let processes in Y

execute the same events as they execute in H. 2

Before presenting the remaining lemmas, we state the

remaining three conditions that serve to characterize the

class of computations considered in the main theorem.

The �rst of these conditions refers to \active" processes.

If H = hi or Hi 6= hi, then process i is active in H; oth-

erwise i is inactive inH. Recall that in these conditions,

H denotes an arbitrary computation from the class to

be considered.

� (C2) For any event [R;W; i] in H, if x 2 (R:var [
W:var), and if x is local to a process j that is active

2Although our de�nition of an event allows multiple instances
of the same event, we assume that such instances are distin-
guishable from each other. (For simplicity, we do not extend
our notion of an event to include an additional identi�er for
distinguishability.)



in H, then i = j. Informally, no local variable of

an active process is accessed by other processes in

H.

� (C3) For any events [R;W; i] and [T; U; j] in H, if

(W:var \U:var) 6= fg, then i = j. Informally, each

variable is written by at most one process in H.

� (C4) For any pre�x G of H, value(i:dine;G) 6= eat.

Informally, no process eats in H.

According to the next lemma, if n processes are com-

peting for entry into their critical sections, and if each of

these n processes has no knowledge of the others, then

at least n � 1 of the processes have at least one more

remote event to execute. To formally capture the latter,

consider a system S = (C;P; V ) that solves the minimal

mutual exclusion problem and let i 2 P and H 2 C. We

say that i has a remote event after H i� there exists an

i-computation M such that M does not contain Eati,

M has a remote event, and H �M 2 C.

Lemma 2: Suppose that S = (C;P; V ) solves the mini-

mal mutual exclusion problem. Let Y � P be a set of n

processes, and letH be a Y -computation in C satisfying

(C1), (C2), and (C4). Then, at least n� 1 processes in

Y have a remote event after H.

Proof Sketch: If there are two processes that do not

have a remote event after H, then we can extend H by

executing those processes and violate the Exclusion re-

quirement. 2

Our next lemma provides the induction step that

leads to the lower bound in Theorem 2.

Lemma 3: Let S = (C;P; V ) be a shared memory sys-

tem with write-contention w that solves the minimal

mutual exclusion problem. Let Y � P be a set of n

processes, and let H be a Y -computation in C satisfy-

ing (C1), (C2), (C3), and (C4) such that each process

in Y executes r remote events in H. Then, there exist

Z � Y , where jZj = d(n�1)=6we, and a Z-computation

G in C satisfying (C1), (C2), (C3), and (C4) such that

each process in Z executes r + 1 remote events in G.

Proof Sketch: The proof strategy is as follows. We

show that there exists Z � Y such that each process in

Z can execute another remote event without violating

any of the conditions (C1) through (C4). We \elim-

inate" processes not in Z, i.e., ones that may violate

some condition. Finally, we construct a Z-computation

G that satis�es (C1), (C2), (C3), and (C4).

Lemma 2 implies that there exists Y 1 � Y , where

jY 1j � n � 1, satisfying the following condition: for

any i 2 Y 1, there exists an i-computation B(i) such

that H � B(i) 2 C, B(i) does not contain Eati, and

B(i) has at least one remote event. For i 2 Y 1, let

B(i) = L(i)�h[Ri;Wi; i]; � � �i where [Ri;Wi; i] is the �rst

remote event in B(i).

By the Atomicity Assumption, each remote event ac-

cesses exactly one remote variable. Let X denote the

set of variables that are accessed as remote variables by

the events [Ri;Wi; i] where i 2 Y 1. For any x 2 X, let

Qx = fi j x 2Wi:var and x is remote to ig. Informally,

Qx consists of all those processes that may be simulta-

neously enabled to write x after H. Using the fact that

S has write-contention w, it is possible to show that

jQxj � w.

From each Qx, where x 2 X, we eliminate all but

one process. We use Y 2 to denote the set of processes

that are not eliminated from Y 1. Note that, from the

Atomicity Assumption, for each distinct x and y in X,

Qx \Qy = fg. Thus, because jQxj � w, it follows that

jY 2j � d(n � 1)=we.
In order to identify those processes that must be

eliminated from Y 2, we construct an undirected graph

hY 2; Ei as follows. We do not distinguish a vertex

representing p from the process p when this does not

cause any confusion. Informally, an edge joining two

processes represents possible information 
ow between

the two processes. Our proof strategy is to prohibit in-

formation 
ow between active processes. Suppose that

x 2 Rp:var[Wp:var and x is remote to p. We construct

E by the following rules.

� (R1): If x is local to q, where q 2 Y 2, then intro-

duce an edge (p; q).

� (R2): If there is a process w 6= p that writes x in

H, where w 2 Y 2, then introduce an edge (p; w).

By (C2), p introduces at most one edge. In particular,

if x is local to q, then no process w 6= q writes x in H.

Assume that jY 2j = m. At most one edge is intro-

duced for each remote event, so m processes in Y 2 may

introduce at mostm edges. Let V0 denote the number of

vertices that have no incident edge, let V1 denote those

that have exactly one incident edge, let V2 denote those

that have exactly two incident edges, and let V3 denote

those that have at least three incident edges. By count-

ing the number of vertices, we have V0+V1+V2+V3 = m,

and hence

V1 + V2 + V3 = m� V0 : (1)

Observe that if the event of p introduces an edge by (R1)

or (R2), then the edge is incident to p. This implies that

the number of edges is m� V0. Because the sum of the

degrees of all vertices is twice the number of edges, we

have

V1 + 2V2 + 3V3 � 2(m � V0) : (2)

Subtracting (1) from (2) yields V2 + 2V3 � m � V0,

which implies that V3 � bm=2c holds. We conclude



that at least dm=2e vertices have at most two incident

edges each.

Eliminate all vertices that have at least three edges

and remove those edges from the graph. Then, because

m � d(n�1)=we, there are at least d(n�1)=2we vertices
that remain. Consider maximal connected subgraphs of

the resulting graph. Because each vertex has at most

two incident edges, each subgraph is either an acyclic

graph or a simple cycle. We now eliminate some ver-

tices (and edges incident to them) if necessary in order

to make each connected subgraph bipartite. Note that

acyclic graphs and even-length cycles are bipartite. If

a subgraph is an odd-length cycle, then it has at least

three vertices and the same number of edges by our con-

struction. In each such subgraph, we eliminate one ver-

tex and two incident edges to get an acyclic subgraph,

which is bipartite. Thus, we can make every subgraph

bipartite by eliminating at most one third of the ver-

tices. Observe that at least d(n � 1)=3we vertices are

not eliminated. Vertices in a bipartite graph can be

partitioned into two subsets so that each edge joins two

vertices in di�erent sets. For each such subgraph, we

eliminate vertices in the smaller of the two subsets and

the edges incident to them. The resulting graph has

at least d(n � 1)=6we vertices and has no edges. These

remaining vertices represent the subset of processes se-

lected from the original n processes in Y . We use Z to

denote this subset of Y .

We partition Z into two subsets, Z1 and Z2, so that,

for i 2 Z1, Wi:var contains no remote variable, and

for j 2 Z2, Wj :var contains a remote variable. Infor-

mally, Z1 is the set of processes that do not write a

remote variable, and Z2 are those that write a remote

variable. Without loss of generality, assume the pro-

cesses are numbered so that Z1 = f1; 2; � � � ; jZ1jg, and
Z2 = fjZ1j+1; jZ1j+2; � � � ; jZ1j+ jZ2jg. Observe that
jZ1j+ jZ2j = jZj. The computation G that we seek is

de�ned as follows.

G � HZ � L(1) � L(2) � � � � � L(jZj) � h[R1;W1; 1];

[R2;W2; 2]; � � �; [RjZj;WjZj; jZj]i

To complete the proof, we must show that G is in

C and that G satis�es (C1) through (C4). For brevity,

we only provide a sketch of these arguments, deferring

detailed proofs to the full paper.

To see that G 2 C, note that by Lemma 1, HZ 2 C.

Because H satis�es (C2), and because each L(j) consists

of only local events, it is straightforward to show that

HZ�L(1)�L(2)�� � ��L(jZj) is also in C. Using this fact,
it is possible to show that events of the form [Ri;Wi; i]

can be inductively appended to HZ �L(1) � L(2) � � � � �
L(jZj) and the resulting computation is in C.

To conclude, consider conditions (C1) through (C4).

(C4) clearly holds by the construction of G. Because

H satis�es (C1), (C2), and (C3), and because each L(i)

consists only of local events, HZ�L(1)�L(2)�� � ��L(jZj)
satis�es (C1), (C2), and (C3). Thus, it su�ces to con-

sider events of the form [Ri;Wi; i]. Because events of

this form are ordered so that all reads precede all writes,

and no two writes access the same variable, by (R2), no

such event reads a variable that is written by another

process in G. Thus, G satis�es (C1). By (R1), no event

[Ri;Wi; i] accesses a local variable of a process that is

active in G. Thus, G satis�es (C2). By the de�nition

of Y 2 and by (R2), for each j 6= i, [Ri;Wi; i] does not

write a variable that is written by [Rj;Wj; j] or by any

event of process j inHZ or L(j). Thus, G satis�es (C3).

This concludes the proof of Lemma 3. 2

Theorem 2: For any S = (C;P; V ) with write-

contention w > 1 that solves the minimal mutual exclu-

sion problem, there exists an i-computation in C that

contains 
(log
w
N ) remote events but no Eat i event.

Proof: hi is a P -computation and satis�es (C1), (C2),

(C3), and (C4). By repeatedly applying Lemma 3, this

implies that there exists a computation F in C that sat-

is�es (C4) and that contains 
(log
w
N ) remote events

of some process i in P . By Lemma 1, Fi 2 C holds,

from which the theorem follows. 2

Corollary 2: For any system S satisfying the condi-

tions of Theorem 2, there exist 
(N ) processes i in P

for which the conclusion of the theorem holds. 2

It is possible to show that the bound of Theorem 2

is asymptotically tight for any value of w. In particu-

lar, an algorithm by Mellor-Crummey and Scott given

in [11] solves the mutual exclusion problem for w pro-

cesses, in O(1) time, with access-contention (and hence

write-contention) w. By applying this solution within

a balanced w-ary tree with N leaves, it is possible to

obtain an N -process O(log
w
N ) mutual exclusion algo-

rithm with access-contention w.

Note that Mellor-Crummey and Scott's algorithm

uses load-and-store and compare-and-swap. Even with

weaker atomic operations, logarithmic behavior can be

achieved. In particular, an N -process O(log
2
N ) mu-

tual exclusion algorithm based on read/write atom-

icity has been given by Yang and Anderson in [14].

This algorithm has access-contention (and hence write-

contention) two.

3.2 Bounds for Cache-Coherent Multi-

processors

On cache-coherent shared memory multiprocessors, the

number of remote memory references may be reduced: if

a process repeatedly accesses the same remote variable,

then the �rst access may create a copy of the variable in



a local cache line, with further accesses being handled

locally. In this section, we count the number of distinct

remote variables a process must access to solve the min-

imal mutual exclusion problem. A lower bound on such

a count not only implies a lower bound on the number

of cache misses a process causes, but also implies that

these cache misses will incur global tra�c.

We prove two lower bounds. First, in Theorem 3 be-

low, we show that if the conditions of Theorem 2 are

strengthened so that at most c processes can concur-

rently access (read or write) any variable, then some

process accesses 
(log
c
N ) distinct remote variables be-

fore eating. Second, in Theorem 4 below, we show that

with the conditions of Theorem 2 unchanged, i.e., write-

contention is w, then some process accesses 
(
p
log

w
N )

distinct remote variables before eating. Before estab-

lishing the �rst of these results, we introduce some ad-

ditional de�nitions.

De�nition: Consider a remote event e of a process p in

a computationH. Let x be the remote variable accessed

by e. If e is the �rst event by p in H that accesses x,

then we say that e is an expanding event in H. If e is a

read (write) event, and if e is the �rst event by p in H

that reads (writes) x, then we say that e is an expanding

read (write) event in H. 2

An expanding event is either an expanding read or

an expanding write. Note, however, that an expanding

read (write) is not necessarily an expanding event. We

count the number of expanding events in order to deter-

mine the number of distinct remote variables accessed.

Observe that if a process executes r expanding events,

then it accesses at least r distinct remote variables.

Because the �rst result of this section is based on a

restriction on all concurrent accesses (rather than only

concurrent writes) of the same variable, it is necessary

to replace condition (C3) by the following.

� (C5) For any events [R;W; i] and [T; U; j] in H, if

((R:var [ W:var) \ (T:var [ U:var)) 6= fg, then
i = j. Informally, each variable is accessed by at

most one process in H.

Our next lemma provides the induction step that

leads to the lower bound in Theorem 3.

Lemma 4: Let S = (C;P; V ) be a shared memory

system with access-contention c that solves the mini-

mal mutual exclusion problem. Let Y � P be a set of n

processes, and letH be a Y -computation in C satisfying

(C2), (C4), and (C5) such that each process in Y exe-

cutes r expanding remote events inH. Then, there exist

Z � Y , where jZj = d(n�1)=6ce, and a Z-computation

G in C satisfying (C2), (C4), and (C5) such that each

process in Z executes r+ 1 expanding remote events in

G.

Proof Sketch: The proof is similar to the proof

of Lemma 3 and hence is omitted. The central dif-

ference between the two proofs lies in the fact that

access-contention is restricted here whereas only write-

contention is restricted in Lemma 3. In particular, be-

cause H satis�es (C5), it is possible to prove a result

similar to Lemma 2 showing that at least n � 1 pro-

cesses have a \next" expanding remote event after H.

The rest of the argument is almost identical to that

given in the proof of Lemma 3. 2

Theorem 3: For any S = (C;P; V ) with access-

contention c > 1 that solves the minimal mutual exclu-

sion problem, there exists an i-computation in C con-

taining no Eat i event in which 
(logcN ) distinct remote

variables are accessed.

Proof: hi is a P -computation and satis�es (C2), (C4),

and (C5). By repeatedly applying Lemma 4, this im-

plies that there exists a computation F in C that satis-

�es condition (C4) and that contains 
(log
c
N ) expand-

ing remote events of some process i in P . By Lemma 1,

Fi 2 C holds, from which the theorem follows. 2

Corollary 3: For any system S satisfying the condi-

tions of Theorem 3, there exist 
(N ) processes i in P

for which the conclusion of the theorem holds. 2

The tree-based algorithms mentioned after Corollary

2 have time complexity O(log
c
N ), i.e, the bound of

Theorem 3 is asymptotically tight for any value of c.

In the remainder of this section, we prove a lower

bound on the number of distinct remote variables re-

quired for solving the minimal mutual exclusion prob-

lem with write-contention w. Before proving this result,

we present some additional de�nitions.

De�nition: Consider a computation H that contains

a nonexpanding remote write (read) event e by process

i. Let x denote the remote variable accessed by e, and

let f be the last remote write (read) of x by process i

that precedes e in H. We call f the predecessor of e in

H. 2

De�nition: Consider a remote event e of a process i

in a computation H. Event e is a critical event i� one

of the following holds: e is an expanding write; e is an

expanding read; e is a nonexpanding event and there is

an expanding write by i between e and its predecessor

in H. 2

The next lemma is a variation of Lemma 2 that deals

with critical remote events. Suppose that S = (C;P; V )

solves the minimal mutual exclusion problem and let

i 2 P and H 2 C. Corresponding to the de�nition



prior to Lemma 2, we say that i has a critical remote

event after H i� there exists an i-computation M such

that M does not contain Eati, M has a critical remote

event, and H �M 2 C.

Lemma 5: Suppose that S = (C;P; V ) solves the min-

imal mutual exclusion problem. Let Y � P be a set of

n processes, and let H be a Y -computation in C satis-

fying (C1), (C2), (C3), and (C4). Then, at least n � 1

processes in Y have a critical remote event after H.

Proof Sketch: Lemma 2 implies that at least n� 1 of

the processes in Y have a remote event after H. Let p

denote such a process and suppose that the next remote

event of p is noncritical. Then, there exists a compu-

tation H � L � hei in C, where L is a p-computation

consisting of only local events, and e is a noncritical

remote event of p. Let x denote the remote variable ac-

cessed by e. We show that there exists a computation G

in C, obtained by rearranging the events of H �L � hei,
that satis�es conditions (C1) through (C4).

Because e is noncritical, H is of the form X � hfi �Y ,
where f is the predecessor of e in H � L � hei, and Y

contains no expanding write by p. It follows that each

event in Yp is either a local event of p, a remote read, or

a remote write of a variable that is also written by p in

X�hfi. From this, it can be shown thatX�hfi�Yp�(Y �
Yp) is a computation in C that satis�es (C1), (C2), (C3),

and (C4). Because L consists of only local events of p, it

is straightforward to show thatX�hfi�Yp�L�(Y �Yp) is
also a computation in C that satis�es (C1), (C2), (C3),

and (C4). Call this last computation G0.

To conclude the construction of G, observe that e and

f are both either remote reads of x or remote writes of

x. From this, it can be shown that G � X � hfi � Yp �
L � hei � (Y � Yp) is a computation in C. We now show

that G satis�es conditions (C1), (C2), (C3), and (C4).

If e is a remote read, then f is also a remote read. In

this case, either both events read the same value for x in

G, or e reads a value written by p in Yp. In either case,

because G0 satis�es (C1), G also satis�es (C1). Because

G0 satis�es (C2), and because e and f access the same

remote variable, G also satis�es (C2). If e is a remote

write, then f is also a remote write. Hence, because G0

satis�es (C3), G also satis�es (C3). Finally, because G0

satis�es (C4), and e is a remote event, G satis�es (C4).

To summarize, we have shown that if some process in

Y has a next remote event after H that is noncritical,

then there exists a Y -computation in C satisfying (C1),

(C2), (C3), and (C4) that contains more remote events

than H. If this argument could be applied repeatedly,

then it would possible to construct a computation in C

that violates the Progress requirement. This proves the

lemma. 2

The next lemma is a stronger version of Lemma 3

in which only critical remote events are counted rather

than all remote events.

Lemma 6: Let S = (C;P; V ) be a shared memory

system with write-contention w that solves the minimal

mutual exclusion problem. Let Y � P be a set of n pro-

cesses, and let H be a Y -computation in C satisfying

(C1), (C2), (C3), and (C4) such that each process in Y

executes r critical remote events inH. Then, there exist

Z � Y , where jZj = d(n�1)=6we, and a Z-computation

G in C satisfying (C1), (C2), (C3), and (C4) such that

each process in Z executes r + 1 critical remote events

in G.

Proof Sketch: The proof is almost identical to that

of Lemma 3, except that Lemma 5 is used instead of

Lemma 2. 2

According to the following theorem, among the


(log
w
N ) remote events mentioned in Theorem 2,


(
p
log

w
N) distinct remote variables are accessed.

Theorem 4: For any S = (C;P; V ) with write-

contention w > 1 that solves the minimal mutual exclu-

sion problem, there exists an i-computation in C con-

taining no Eat i event in which 
(
p
log

w
N ) distinct re-

mote variables are accessed.

Proof: hi is a P -computation and satis�es (C1), (C2),

(C3), and (C4). By repeatedly applying Lemma 6, this

implies that there exist a computation F in C that sat-

is�es (C4) and that contains 
(log
w
N ) critical remote

events of some process i in P . By Lemma 1, Fi 2 C.

Let D denote the number of expanding events in Fi, let

W denote the number of expanding writes in Fi, let R

denote the number of expanding reads in Fi, and let

E denote the number of nonexpanding critical remote

events in Fi. Then,

(W +R +E) � c � log
w
N (3)

holds for some positive constant c. Observe that D is at

least as big as W or R. Also, D is at least as big as the

number of distinct remote variables accessed by events

in E. A remote variable can be accessed multiple times

by events in E only if there is an intervening write from

W between any two such accesses. It follows, then, that

D � max(W;R;E=(W + 1)) : (4)

We now show thatD � m�
p
log

w
N for some positive

constant m. Assume, to the contrary, that

D < m �
p
log

w
N . Then, by (4), we have

W < m �
p
log

w
N and R < m �

p
log

w
N . By (3), this



implies that

E

W + 1
>
c � log

w
N � 2m �

p
log

w
N

m �
p
log

w
N + 1

:

By (4), this inequality implies that D � s �
p
log

w
N for

some positive constant s. 2

Corollary 4: For any system S satisfying the condi-

tions of Theorem 4, there exist 
(N ) processes i in P

for which the conclusion of the theorem holds. 2

3.3 Relaxing the Atomicity Assumption

The results we have presented so far are dependent on

the Atomicity Assumption given in Section 2. In this

section, we show that our main results can be gener-

alized if this assumption is relaxed to allow events to

access multiple remote variables.

First, let us consider Theorem 2. The crux of the

proof of this theorem is the graph-based argument given

in Lemma 3. This argument was used to reduce the

original set of n processes to a set of d(n� 1)=6we pro-
cesses whose next remote event can be applied without

violating conditions (C1) through (C4). The argument

is based on the assumption that each process (in Y 2)

introduces at most one incident edge.

If each remote event is allowed to access at most v re-

mote variables, then this argument can be generalized

as follows. It can be shown that concurrent writes to

the same variable (among the remote events yet to be

applied to H) can be eliminated in the original set of n

processes by reducing to a set of d(n�1)=vwe processes.
If the graph argument is then applied to this reduced

set of processes, then it can be shown that each pro-

cess introduces at most v incident edges. We number

the edges introduced by each process from 1 up to (at

most) v. We then apply the original graph argument

to the edges numbered \1". This reduces the num-

ber of processes from d(n � 1)=vwe to d(n � 1)=6vwe
and eliminates all edges numbered \1". We apply the

same argument again to eliminate the edges numbered

\2", and the number of processes is further reduced to

d(n � 1)=62vwe. If this argument is repeated until all

edges have been eliminated, then we reduce the number

of processes to d(n� 1)=6vvwe.
Note that the argument of the previous paragraph

eliminates any con
icts between those events that are

yet to be applied and previous events (i.e., those in

computation H of Lemma 3). However, there might

be additional con
icts among the events to be applied.

(In Lemma 3, all such events are either remote writes

to distinct variables or remote reads. In this case, by

applying all reads �rst, further con
icts can easily be

avoided.) Note, however, that the argument of the pre-

vious paragraph can be applied yet again to remove all

such con
icts. This reduces the number of processes by

another factor of 1=6v. Putting this all together, we

have reduced the original set of n processes to a set of

d(n�1)=62vvwe processes whose next remote event can

be applied without violating conditions (C1) through

(C4). Using this result as an induction step, it is possi-

ble to establish the following theorem, which generalizes

Theorem 2.

Theorem 5: For any S = (C;P; V ) with write-

contention w > 1 that solves the minimal mutual exclu-

sion problem, if each event accesses at most v remote

variables, then there exists an i-computation in C that

contains 
((log
2
N )=(v+ log

2
w)) remote events but no

Eat i event. 2

Similarly, Theorems 3 and 4 can be generalized as fol-

lows.

Theorem 6: For any S = (C;P; V ) with access-

contention c > 1 that solves the minimal mutual exclu-

sion problem, if each event accesses at most v remote

variables, then there exists an i-computation in C con-

taining no Eat i event in which 
((log
2
N )=(v + log

2
c))

distinct remote variables are accessed. 2

Theorem 7: For any S = (C;P; V ) with write-

contention w > 1 that solves the minimal mu-

tual exclusion problem, if each event accesses at

most v remote variables, then there exists an i-

computation in C containing no Eat i event in which


(
p
(log

2
N )=(v + log

2
w) ) distinct remote variables

are accessed. 2

Corollaries similar to those given previously also fol-

low fromTheorems 5 through 7. Detailed proofs of these

three theorems will be presented in the full paper.

4 Concluding Remarks

The time bounds proved in this paper establish that

trade-o�s exist between time complexity and write- and

access-contention in solutions to the minimalmutual ex-

clusion problem. The results of Section 3.3 show that

similar trade-o�s exist between time complexity and

atomicity. Because any algorithm that solves the leader

election or mutual exclusion problems also solves the

minimal mutual exclusion problem (this will be shown

formally in the full paper), these trade-o�s apply to

these problems as well.

For wait-free algorithms, Herlihy has characterized

synchronization primitives by consensus number [6].

Such a characterization is not applicable when waiting is

introduced. One way of determining the power of syn-

chronization primitives in this case is to compare the



time complexity of mutual exclusion using such primi-

tives. For instance, it is possible to solve the mutual ex-

clusion problem with O(1) time complexity using load-

and-store or fetch-and-add, while the best-known up-

per bound for read/write algorithms is O(log
2
N ) [14].

If a lower-bound result could be proved showing that

this gap is fundamental, then this would establish that

reads and writes are weaker than read-modify-writes

from a performance standpoint. This would provide

contrasting evidence to Herlihy's hierarchy, from which

it follows that reads and writes are weaker than read-

modify-writes from a resiliency standpoint. It is inter-

esting to note that there exist read/write mutual exclu-

sion algorithms with write-contention N that have O(1)

time complexity in the absence of competition [1, 9, 14].

Thus, establishing the above-mentioned lower bound for

read/write algorithms will require proof techniques that

di�er from those given in this paper.

We do not know whether the bound given in Theo-

rem 4 is tight. We conjecture that this bound can be

improved to 
(log
w
N ), which has a matching algorithm

[14].

One may be interested in determining the e�ect of

contention on space requirements. It is quite easy to

show that solving the minimal mutual exclusion prob-

lem with write-contention w requires at least N=w vari-

ables. In particular, it can be shown that every process

writes a variable before eating. So, consider the com-

putation in which every process is enabled to perform

its �rst write. Because write-contention is w, the total

number of variables enabled to be written is 
(N=w).

It can be shown that this bound is tight; we defer a

detailed proof of this result to the full paper.

It is our belief that the most important contribution

of this paper is to show that meaningful time bounds

can be established for concurrent programming prob-

lems for which busy-waiting is inherent. We hope that

our work will spark new work on time complexity re-

sults for such problems.

Acknowledgements: We would like to thank Gadi

Taubenfeld for prompting us to consider the bounds for

cache-coherence presented in Section 3.2. We would also

like to thank Sanglyul Min and the anonymous referees for

their helpful comments on an earlier draft of this paper.

References

[1] R. Alur and G. Taubenfeld, \Results about Fast

Mutual Exclusion", Proceedings of the Thirteenth

IEEE Real-Time Systems Symposium, December,

1992, pp. 12-21.

[2] J. Anderson, \A Fine-Grained Solution to the Mu-

tual Exclusion Problem", Acta Informatica, Vol.

30, No. 3, 1993, pp. 249-265.

[3] T. Anderson, \The Performance of Spin Lock Al-

ternatives for Shared-Memory Multiprocessors",

IEEE Transactions on Parallel and Distributed

Systems, Vol. 1, No. 1, January, 1990, pp. 6-16.

[4] E. Dijkstra, \Solution of a Problem in Concur-

rent Programming Control", Communications of

the ACM , Vol. 8, No. 9, 1965, pp. 569.

[5] C. Dwork, M. Herlihy, and O. Waarts, \Contention

in Shared Memory Algorithms", Proceedings of the

25th ACM Symposium on Theory of Computing ,

May, 1993, pp. 174-183.

[6] M. Herlihy, \Wait-Free Synchronization", ACM

Transactions on Programming Languages and Sys-

tems, Vol. 13, No. 1, 1991, pp. 124-149.

[7] M. Herlihy, B-H. Lim, and N. Shavit, \Low Con-

tention Load Balancing on Large-Scale Multipro-

cessors", Proceedings of the 3rd ACM Symposium

on Parallel Algorithms and Architectures, July,

1992, pp. 219-227.

[8] M. Herlihy, N. Shavit, and O. Waarts, \Low Con-

tention Linearizable Counting", Proceedings of the

32nd IEEE Symposium on Foundations of Com-

puter Science, October, 1991, pp. 526-535.

[9] L. Lamport, \A Fast Mutual Exclusion Algo-

rithm", ACM Transactions on Computer Systems,

Vol. 5, No. 1, February, 1987, pp. 1-11.

[10] N. Lynch and N. Shavit, \Timing-Based Mutual

Exclusion", Proceedings of the Thirteenth IEEE

Real-Time Systems Symposium, December, 1992,

pp. 2-11.

[11] J. Mellor-Crummey and M. Scott, \Algorithms

for Scalable Synchronization on Shared-Memory

Multiprocessors", ACM Transactions on Computer

Systems, Vol. 9, No. 1, February, 1991, pp. 21-65.

[12] M. Merritt and G. Taubenfeld, \Knowledge in

Shared Memory Systems", Proceedings of the Tenth

ACM Symposium on Principles of Distributed

Computing , August, 1991, pp. 189-200.

[13] G. P�ster and A. Norton, \Hot Spot Contention

and Combining in Multistage Interconnection Net-

works", IEEE Transactions on Computers, Vol. C-

34, No. 11, November, 1985, pp. 943-948.

[14] J. Yang and J. Anderson, \Fast, Scalable Synchro-

nization with Minimal Hardware Support", Pro-

ceedings of the Twelfth ACM Symposium on Prin-

ciples of Distributed Computing , August, 1993, pp.

171-182.


